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SUMMARY

Adjusting for an unmeasured confounder is generally an intractable problem, but in the
spatial setting it may be possible under certain conditions. We derive necessary conditions on
the coherence between the exposure and the unmeasured confounder that ensure the effect
of exposure is estimable. We specify our model and assumptions in the spectral domain to
allow for different degrees of confounding at different spatial resolutions. One assumption
that ensures identi!ability is that confounding present at global scales dissipates at local
scales. We show that this assumption in the spectral domain is equivalent to adjusting for
global-scale confounding in the spatial domain by adding a spatially smoothed version of
the exposure to the mean of the response variable. Within this general framework, we pro-
pose a sequence of confounder adjustment methods that range from parametric adjustments
based on the Matérn coherence function to more robust semiparametric methods that use
smoothing splines. These ideas are applied to areal and geostatistical data for both simulated
and real datasets.

Some key words: Coherence; Conditional autoregressive prior; COVID-19; Matérn covariance; Spatial
confounding.
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2 Y. Guan et al.

1. Introduction

A fundamental task in environmental and epidemiological applications is to use spa-
tially correlated observational data to estimate the effect of exposures. A key assumption
needed to identify the effect of the exposures is that all relevant confounding variables have
been included in the statistical model. This no-missing-confounder assumption is generally
impossible to verify, but in the spatial setting it may be possible to remove the effects of
unmeasured confounding variables if they have strong spatial dependence. An unmeasured
spatial confounder exists when spatially varying factors that in"uence both the exposures
and response are not observed. When the unmeasured spatial confounder is not taken into
account, the effect estimate of an exposure can be biased, and the bias depends on the spa-
tial scales of the exposure and the unmeasured spatial confounder (Paciorek, 2010; Page
et al., 2017).

A slightly different but related confounding issue in modelling spatial data was discussed
in Clayton et al. (1993). They proposed to model the geographical patterns in the response
using a spatial random effect term independent of exposure to account for unmeasured spa-
tially structured covariates that in"uence the response. Then, confounding, i.e., confounding
due to location, may arise if exposure also varies smoothly with location, and the location
may act as a confounder. In this case, regressions with and without spatial random effects
can give different inference results on regression coef!cients (Reich et al., 2006; Hodges
& Reich, 2010), a phenomena also known as spatial confounding. For confounding due to
location, the unmeasured spatial covariates do not directly in"uence the exposure, but rather
are multicollinear with the exposure, and the multicollinearity is more likely to occur when
the spatial random effects and exposure are both spatially smooth. In this paper, we focus
on spatial confounding due to an unmeasured spatial confounder, in which the confounding
due to location can be considered as a special case when the association between exposure
and missing spatial covariates is zero.

To account for spatial confounding due to location, Reich et al. (2006), Hughes & Haran
(2013) and Prates et al. (2019) restricted the residual spatial process to be orthogonal to the
exposure, an approach referred to as restricted spatial regression. However, the approach
makes a strong orthogonality assumption and can perform poorly in coef!cient inference
when the model is misspeci!ed (Hanks et al., 2015; Khan & Calder, 2022; Zimmerman &
Hoef, 2022). Alternative approaches with a focus on decomposing spatial scales following
Paciorek (2010) have appeared in the literature. The main idea is that the location confound-
ing can be eliminated by !rst removing the smooth components from both the exposure
and response (Thaden & Kneib, 2018) or just the exposure (Keller & Szpiro, 2020; Dupont
et al., 2022), then the exposure effect can be estimated by assessing the local variations in
the covariate and response. More recently, Marques et al. (2022) proposed a joint Gaussian
Markov random !eld model for exposure and response. Their work was developed indepen-
dently around the same time as ours and is related to a special case of our parametric model.
The listed works attempt to alleviate spatial confounding, but, in general, adjusting for a
missing confounding variable is impossible without further information or assumptions. It
remains unclear how to specify assumptions and methods that lead to consistent estimation
of the exposure effect in the presence of an unmeasured spatial confounding variable, which
may posit a more complex confounding structure than location confounding.

Connections with causal inference have been made. For areal data, Thaden & Kneib
(2018) and Schnell & Papadogeorgou (2020) proposed jointly modelling the spatial structure
in exposure and the unmeasured confounder. The former uses a structural equation model
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Spectral adjustment for spatial confounding 3

while the latter uses a Gaussian Markov random !eld construction. Both these methods
have connections with causal inference; see Reich et al. (2021) for a recent review of spatial
causal inference. In the spatial causal effect setting, Osama et al. (2019) permitted the spatial
causal effect to vary across space. Different assumptions on the confounding relationship
may lead to a variety of approaches.

We propose new methods to couch spatial regression with missing spatial confounding
variables using spectral methods. Similarly to Paciorek (2010), Page et al. (2017) and Keller
& Szpiro (2020), the spatial scales of exposure and missing confounder are the focus, but
we explicitly specify a joint model for these variables in the spectral domain and study their
coherence, i.e., their correlation at different spatial scales. As an aside, from a temporal per-
spective, Stokes & Purdon (2017) and Faes et al. (2019) considered a frequency-domain
measure of causality, although their estimators are quite different than those proposed here.
The resulting effect estimate from our approach reveals that the optimal confounder adjust-
ment is a function of the coherence function, providing fundamental insights on spatial
confounding. We show that the optimal confounder adjustment is not estimable without
further assumptions, and provide a set of conditions that allow us to identify the exposure
effect. Parametric and nonparametric methods are developed to approximate the optimal
confounding adjustment and identify the exposure effect, while accounting for uncertainty
in this approximation. We consider both areal and point-referenced data for Gaussian and
non-Gaussian responses. Proofs are given in the Supplementary Material.

2. Continuous-space modelling framework

2.1. Preliminaries
Let X(s) and Z(s) be the observed exposure and confounder processes, respectively, at

the spatial location s ∈ D ⊂ R2, and let vectors X = (X1, . . . , Xn)
T and Z = (Z1, . . . , Zn)

T

be the process evaluated at the set of locations S = {s1, . . . , sn} ∈ D, where Xi = X(si) and
Zi = Z(si). For simplicity, we consider only a single exposure and confounding variable, but
results extend to a multivariate setting; see the Supplementary Material. We do not assume
that S is on a complete grid nor that the n observation locations are distinct, i.e., we allow for
multiple observations at the same location with the inclusion of a nugget effect. Both X and
Z are assumed to be spatial processes, potentially with some nonspatial nugget variability.

Following the commonly used spatial regression model, we assume a linear additive rela-
tionship for the response Y = (Y1, . . . , Yn)

T. Here, we present the method for continuous
response, but the extension to non-Gaussian cases is straightforward, and therefore the
details for the generalized model are presented in the Supplementary Material.

We have

Y = β0 + βxX + βzZ + ε, (1)

where ε = (ε1, . . . , εn)
T and εi

i.i.d.∼ N(0, σ 2), a normal distribution with mean 0 and
variance σ 2. The regression coef!cient βx has a causal interpretation under the potential
outcomes framework and the stable-unit-treatment-value, consistency and conditional-
treatment-ignorability assumptions. If we observe the confounder Z, identi!cation and
estimation of βx is straightforward using multiple linear regression. However, we assume
that Z is an unmeasured confounder, making βx not identi!able in general. We propose
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4 Y. Guan et al.

to exploit the spatial structure of Z to mitigate the effects of the unobserved confounder
and specify assumptions in the spectral domain for identifying βx. Our inference procedure
involves introducing a confounder adjustment variable Ẑ to the linear model. The derivation
of Ẑ is based on the association between X and Z in the spectral domain, while in the spa-
tial domain, Ẑ can be viewed as a smoothed version of X under one of our assumptions for
identi!cation. Our work aims to identify and estimate βx, which has a causal interpretation
under the potential outcomes framework and assumptions described in the Supplementary
Material. Here instead of restating all elements of the causal framework, in the remaining
sections, we assume that the confounder process Z(s) contains all unmeasured confounders
and mainly focus on mitigating the effects of Z(s). Therefore, we interpret βx as the effect
of exposure under model (1) rather than the causal effect, as the latter requires additional
assumptions that are not essential for βx inference in this work.

2.2. Spectral representation of confounding and identi!cation
We model the dependence between X(s) and Z(s) using their spectral representations.

This allows for different dependencies at different spatial scales as each frequency cor-
responds to a spatial scale, with low frequency corresponding to large spatial scale. We
assume that both X(s) and Z(s) are mean-zero stationary Gaussian processes, and thus
have spectral representations X(s) =

∫
exp(iωTs)X (ω) dω and Z(s) =

∫
exp(iωTs)Z(ω) dω,

where ω ∈ R2 is a frequency. The spectral processes X (ω) and Z(ω) are Gaussian with
E{X (ω)} = E{Z(ω)} = 0 and are independent across frequencies, so that, for any ω |= ω′,
cov{X (ω), X (ω′)} = cov{Z(ω), Z(ω′)} = cov{X (ω), Z(ω′)} = 0. At the same frequency, the
covariance of the joint spectral process has the form

cov
{
X (ω)
Z(ω)

}
=

{
σ 2

x fx(ω) ρσxσzfxz(ω)

ρσxσzfxz(ω) σ 2
z fz(ω)

}
,

where σ 2
x and σ 2

z are variance parameters, fx(ω) > 0 and fz(ω) > 0 are spectral densities
that determine the marginal spatial correlation of X(s) and Z(s), respectively, and the cross-
spectral density fxz(ω) determines the dependence between the spectral processes.

Normalizing the cross-spectral density by each marginal standard deviation, we can
derive the coherence function that determines the correlations between the two spectral
processes (Kleiber, 2017),

γ (ω) = ρ
fxz(ω)√

fx(ω)fz(ω)
∈ [−1, 1]. (2)

The scalar parameter ρ controls the overall strength of cross-correlation.
Returning to the response model (1), we let Y(s) =

∫
exp(iωTs)Y(ω) dω be the spec-

tral representation of the response. The conditional distribution of Y(ω) given X (ω),
marginalizing over Z(ω), is

Y(ω) | X (ω)
indep∼ N{βxX (ω) + βzα(ω)X (ω), τ 2(ω) + σ 2}, (3)

α(ω) = ρ
σzfxz(ω)

σxfx(ω)
= σz

√
fz(ω)

σx
√

fx(ω)
γ (ω),

τ 2(ω) = β2
z σ 2

z fz(ω)

{
1 − ρ2 fxz(ω)2

fx(ω)fz(ω)

}
.
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Spectral adjustment for spatial confounding 5

The regression coef!cient for X (ω) is β(ω) = βx + βzα(ω) |= βx. The additional term
Ẑ(ω) = E{Z(ω) | X (ω)} = α(ω)X (ω) is a result of attributing the effect of the unmeasured
confounder on the response to the exposure, potentially inducing bias in estimating βx.

Therefore, βx is identi!ed only if the projection operator α(ω) can be assumed to be
known or estimated for some prespeci!ed ω. Of course, α(ω) is generally not known and
cannot be estimated without further assumptions because Z(s), and therefore Z(ω), is not
observed. We consider two approaches for identi!cation: assume unconfoundedness at high
frequencies, i.e., α(ω) ≈ 0 for large ‖ω‖, so that high-frequency terms identify βx; or
specify a parsimonious coherence function with constraints on the parameters to ensure
identi!cation of βx through estimation of α(ω). We detail both approaches next.

For the case of unconfoundedness at high frequencies, if we assume that α(ω) → 0
for large ‖ω‖ then E{Y(ω) | X (ω)} ≈ βxX (ω) and thus βx is identi!ed. The assumption
that α(ω) → 0 for large ‖ω‖ implies that the cross-spectral density decreases to zero faster
than the spectral density of X , which means that confounding dissipates as the frequency
increases, that is, as the scale of the spatial variation becomes smaller. High-frequency terms
provide the most reliable information about βx because they correlate local changes in the
exposure with local changes in the response. An extreme case of local information about
the exposure effect is the difference in the response for two nearby sites with different levels
of exposure. This local difference eliminates problems caused by omitted variables that vary
smoothly over space. Of course, this cannot completely rule out missing confounding vari-
ables that covary with both the exposure and the response at high frequencies, but it does
lessen the likelihood of spurious confounding effects.

For the case of parsimonious coherence, if we assume that fxz(ω) = C
√

fx(ω)fz(ω) for
a constant C, then the coherence in (2) simpli!es to the constant function γ (ω) = ρC ∈
(−1, 1). Generalizing the use of a term from Gneiting et al. (2010), we refer to this as the
parsimonious coherence model. This imposes the assumption that the correlation between
the exposure and missing confounder is frequency invariant, and this greatly simpli!es esti-
mation because the model involves only two spectral densities that can be estimated using
the marginal spatial covariances of the response and exposure, as described below. More-
over, if the marginal spectral densities differ for some frequencies then these frequencies can
be used to identify βx. The expression in (3) simpli!es under the parsimonious model to

Y(ω) | X (ω)
ind.∼ N

[{
βx + ρCβz

σz
√

fz(ω)

σx
√

fx(ω)

}
X (ω), {1 − (ρC)2}β2

z σ 2
z fz(ω) + σ 2

]
. (4)

It is important to establish the identi!ability of parameters in (4). The ρ and C are not
uniquely identi!ed, nor are βz and σz, as they both appear in the model only through prod-
ucts. However, ρ∗ = ρC is identi!ed, as is σz if βz = 1. An alternative parameterization is
to let σ ∗

z = βzσz and σ ∗
z can be identi!ed. The two expressions are equivalent, which does

not affect the result of Theorem 1 below. The identi!ability of ρ∗, σz under these conditions
and that of the remaining parameters in (4) is established in the following theorem.

THEOREM 1. Assume that fx(ω) |= fz(ω) for some ω, and set βz = 1. Then parameters βx,
ρ∗, σx and σz, and functions fx and fz in model (4) are all identi!ed.

2.3. Spatial representation of confounding and identi!cation
Returning to the spatial domain, the response process can be written as

Y(s) | X(s) = β0 + βxX(s) + βzẐ(s) + δ(s),
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6 Y. Guan et al.

Ẑ(s) =
∫

exp(iωTs)Ẑ(ω) dω =
∫

exp(iωTs)α(ω)X (ω) dω,

and δ(s) is a mean-zero Gaussian process with spectral density τ 2(ω) + σ 2 independent
of X(s) and Ẑ(s). The function α(ω) acts as a smoothing operator and, if it were known,
then Ẑ(s) would be an appropriate adjustment to the mean to account for the unmeasured
confounder. The form of the oracle confounder adjustment, i.e., Ẑ(s) if α(ω) is known, is
established in the following lemma.

LEMMA 1. If α(ω) is known then Ẑ(s) =
∫

K(s − s′)X(s′) ds′, where the kernel function
K(s − s′) is the inverse Fourier transform of α(ω).

The appealing consequence of Lemma 1 is that the oracle confounder adjustment is con-
veniently expressed as a kernel-smoothed function of the covariate of interest. It is also
straightforward to show that, for any n locations S,

Y | X = β0 + βxX + βzẐ + δ, where Ẑ = *zx*−1
x X , (5)

cov(δ) = β2
z (*z−*zx*−1

x *T
zx)+σ 2In and *zx = cov(Z, X), *x = cov(X) and *z = cov(Z).

The product *zx*−1
x serves as a smoothing operator on X . This representation is convenient

for estimation and to determine the strength of confounding dependence between X and Z.
Since Ẑ is a smoothed version of X , including it as a covariate in (5) effectively removes

effects of the large-scale spatial trends in X , so that the estimate of βx is largely determined
by high-frequency terms. This expression also lays bare the importance of assuming that
α(ω) converges to zero for large frequencies or that X and Z have different spectral densities.
If restrictions are not placed on α(ω) then it may be that *zx = *x and thus Ẑ = X , giving
the nonidenti!able model Y = β0 + βxX + βzX + δ.

3. Continuous-space estimation strategies

3.1. The bivariate Matérn parametric model
The bivariate Matérn model (Gneiting et al., 2010; Apanasovich et al., 2012) is a "ex-

ible parametric model for the spectral densities fx, fz and fxz. The Matérn spectral den-
sity function for a process in two dimensions is m(ω; ν, φ) = νφ−2ν(φ−2 + ‖ω‖2)−(ν+1),
with smoothness ν > 0 and spatial range φ > 0. The bivariate Matérn may have differ-
ent parameters for each process, fj(ω) = m(ω; νj, φj) for j ∈ {x, z, xz}, but constraints on the
range and smoothness parameters are needed to ensure that the coherence is positive de!nite
for all ω (Gneiting et al., 2010; Apanasovich et al., 2012). Another advantage of the Matérn
parametric model is the closed-form expressions for both the spectral density and covari-
ance functions. Under a common range assumption, as described in the next paragraph,
the projection operator α(ω) also has a closed-form Fourier transformation, allowing the
estimation procedure to be performed completely in the spatial domain using (5).

With the bivariate Matérn modelling assumption, the projection operator has the form
α(ω) = ρσzm(ω; νxz, φxz)/{σxm(ω; νx, φx)}. Therefore, if the cross-spectral density decays
faster than the covariate spectral density, the confounding adjustment will be smaller for
higher frequencies, i.e., α(ω) → 0. Comparison of the ratio of spectral densities such that
α(ω) → 0 is complicated in general, and so we explore the special cases of common range,
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Spectral adjustment for spatial confounding 7

vxz = 1vx vxz = 3vx vxz = 5vx

Fig. 1. Example confounder adjustment for the bivariate Matérn: X(s) is generated from Matérn with φx = 1
and νx = 1 on a 50 × 50 grid with grid spacing one. The panels show the confounder adjustment Ẑ(s)

for φxz = φx and νxz = cνx for c ∈ {1, 3, 5}. For c = 1, Ẑ(s) = X(s).

common smoothness and parsimonious models below. For each special case, we discuss the
parameter settings that ensure unconfoundedness at high frequencies.

The common range model takes φj = φ for j ∈ {x, z, xz},

α(ω) = ρ
σz

σx
(φ−2 + ‖ω‖2)−(νxz−νx). (6)

In this case, we have unconfoundedness at high frequencies, α(ω) → 0, if and only if
νxz > νx, i.e., the cross-covariance is smoother than the covariate covariance. On the other
hand, if we assume a common smoothness νj = ν for j ∈ {x, z, xz} then α(ω) → (φx/φxz)

2ν

and confounding persists at high frequencies, regardless of the range parameters. Therefore,
a common range parameterization allows us to identify the exposure effect by reducing
high-resolution confounding while a common smoothness parameterization will not. For
simplicity, we assume a common range in the remainder of this section.

Figure 1 illustrates the confounder adjustment Ẑ in (5) for the bivariate Matérn model
with a common range and different smoothness νzx = cνx for increasing values of c. Increas-
ing c implies increasing decay rates of α(ω). The original simulated X is plotted in the left
panel of Fig. 1 with c = 1, in which case we have Ẑ = X and thus a completely confounded
model. In the cases with c > 1 the confounder adjustment Ẑ is a smoothed version of X .
Therefore, including Ẑ as a covariate in the model removes large-scale trends in X to adjust
for confounding at low frequencies.

The unmeasured confounder cannot be observed, making it dif!cult to estimate all the
parameters in the bivariate Matérn model. Therefore, additional constraints are required
for identi!ability of the remaining parameters in addition to βx. These are provided in the
next theorem

THEOREM 2. Assuming that βz = 1 and a common range parameter, suf!cient con-
ditions for identi!ability of the remaining parameters {βx, ρ, νx, νz, νxz, σx, σz} are a large
cross-smoothness parameter νxz > max{νx, (νx + νz)/2} and ρ2 < νxνz/ν

2
xz.

The common range model simpli!es further under the parsimonious model in (4) with
C = (νx + νz)/(2

√
νxνz), |ρ| < 1/C and fxz(ω) = m{ω; (νx + νz)/2, φ}. This is the par-

simonious Matérn model of Gneiting et al. (2010), i.e., the cross-smoothness equals the
average of the marginal smoothness parameters, νxz = (νx + νz)/2. Under this model, the
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8 Y. Guan et al.

confounder adjustment becomes

α(ω) = ρ
σz

σx
(φ−2 + ‖ω‖2)−(νz−νx)/2, (7)

and thus α(ω) → 0 if and only if νz > νx, i.e., the missing confounder is smoother than
the exposure. On the other hand, if νz < νx then α(ω) → ∞. However, α(ω) → 0 is not
needed here as the identi!cation strategy for the parsimonious coherence is established in
Theorem 1.

3.2. Semiparametric model
Rather than indirectly modelling the projection operator α(ω) via a model for the cross-

covariance function, in this section we directly model α(ω) using a "exible mixture model.
We use a linear combination of cubic B-splines of order 4,

α(ω) =
L∑

l=1

Bl(‖ω‖)bl, 0 < ‖ω‖ < π/-s,

where the Bl(·) are B-spline basis functions, the bl are the associated coef!cients and -s =
max{ds1, ds2} for grid spacing (ds1, ds2). A uniform sequence of knots {ω∗

1, …, ω∗
L} is placed

to cover the interval [0, π/-s], such that 0 ∈ (ω∗
1, ω∗

2) and π/-s ∈ (ω∗
L−1, ω∗

L). The interval
upper bound π/-s is the largest spectrum that can be observed from uniformly spaced data
due to aliasing (Fuentes & Reich, 2010). We have restricted the projection operator to be
isotropic by taking the Euclidean norm ‖ · ‖ of the two-dimensional frequency ω, but this
can be relaxed by using bivariate spline functions. Other mixture priors (Reich & Fuentes,
2012; Jang et al., 2017; Chen et al., 2021) can also be used for modelling the projection
operator.

The B-spline mixture model for α(ω) does not have a closed-form inverse Fourier trans-
formation. We approximate the kernel-smoothed function K(s−s′) with a !nite sum at a set
of equally spaced frequencies F = {ωf

1, . . . , ωf
m} with spacing -F and ω

f
m = π/-s following

Qadir & Sun (2020):

K(s − s′) =
∑

ωf ∈F

h
(

2πωf

h

)κ+1
Jκ(ωf h)α(ωf ) -F .

Here h = ‖s − s′‖, κ = d/2 − 1 and Jκ(·) is a Bessel function of the !rst kind of order
κ (Watson, 1995). This approximation allows us to directly compute confounder adjust-
ment in the spatial domain, which would otherwise require the Fourier transform of data
to perform analysis in the spectral domain. The confounder adjustment is then given by
Ẑ(s) = ∑L

l=1 blẐl(s), where

Ẑl(s) =
∑

ωf ∈F

(2πωf )κ+1Bl(ω
f ) -F

∫ Jκ(ωf h)

hκ
X(s′) ds′. (8)

When X(s) is observed on a grid, the integral can be approximated as
∫

Jκ(ωf h)h−κ

X(s′) ds′ = (1/n)
∑n

i=1 Jκ(ωf hi)h−κ
i X(si) with hi = ‖s − si‖. For nongridded data, the
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Spectral adjustment for spatial confounding 9

covariate can be interpolated to a grid and this discrete approximation to the grid can be
applied. Other numerical approximations to integrals can be applied to nongridded data
such as the !nite element method (Johnson, 2012, Ch. 12). The confounder adjustment
covariates Ẑl(s) are precomputed to reduce computation during model !tting. We then !t
the spatial model

Y(s) = β0 + βxX(s) +
L∑

l=1

blẐl(s) + δ(s), (9)

where βz = 1 for identi!cation and δ(s) is modelled as a Gaussian process with nugget.
The coef!cients (b1, …, bL)T are given intrinsic autoregressive priors with full conditional
distributions bk | b(−k) ∼ N(b̄k, σ 2

b /Nk), where b̄k is the mean of the Nk coef!cients bl with
|l − k| = 1, so N1 = NL = 1 and N2 = · · · = NL−1 = 2.

4. Discrete-space methodology

4.1. A spectral model for confounding
We extend our methodology to the discrete case for a spatial domain comprised of n

regions. For region i, let Yi, Xi and Zi be the response, exposure and confounding vari-
ables, respectively. Let Y = (Y1, …, Yn)

T and de!ne X , Z similarly. We model Z using the
conditional autoregressive model (Gelfand et al., 2010) with the Leroux parameterization
(Leroux et al., 2000),

Z ∼ N[µ, σ 2
z {(1 − λz)In + λzR}−1],

where µ = (µ1, …, µn)
T is the mean vector, σ 2

z determines the overall variance, λz ∈ [0, 1]
controls the strength of spatial dependence and R is an n × n matrix specifying the spa-
tial dependence. For the discrete case, the spatial dependence between the regions is often
described by an adjacency structure. Let aij = 1 if regions i and j are adjacent and 0 other-
wise, and let mi be the number of regions adjacent to region i. Then R has (i, j) off-diagonal
element −aij and ith diagonal element mi. We denote this model as Z ∼ car(µ, σ 2

z , λz).
An advantage of the Leroux parameterization is that the spatial covariance can be written

as

σ 2
z {(1 − λz)In + λzR}−1 = σ 2

z 0{(1 − λz)In + λzW}−10T,

where the spectral decomposition of R is R = 0W0T for orthonormal eigenvector matrix 0
and diagonal eigenvalue matrix W with kth diagonal element ωk ! 0, ordered so that ω1 "
· · · " ωn. Assuming that all variables have the same adjacency structure R, this allows us to
project the model into the spectral domain using the graph Fourier transform (Sandryhaila
& Moura, 2013), Y∗ = 0TY = (Y∗

1 , …, Y∗
n )T, X∗ = 0TX = (X∗

1 , …, X∗
n )T and Z∗ = 0TZ =

(Z∗
1, …, Z∗

n)T. This transformation decorrelates the model and gives

Y∗
k | X∗

k , Z∗
k

indep∼ N(β0Mk + βxX∗
k + βzZ∗

k, σ 2),

where Mk is the sum of the kth column of 0 and (X∗
k , Z∗

k) are independent across k. To
exploit this decorrelation property of the graph Fourier transform, we conduct all analyses
of Gaussian data for the discrete spatial domain in the spectral scale.
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10 Y. Guan et al.

Comparing the discrete to continuous cases, the eigenvalue ωk is analogous to frequency
ω. Terms with small ωk have large variance and measure large-scale trends in the data. For
example, it can be shown that if the n locations form a connected graph then ω1 = 0 and
Y∗

1 is proportional to the mean of Y . In contrast, terms with large ωk have small variance
and represent small-scale features. Using this analogy, in the remainder of this section we
extend two of the continuous-domain methods of § 3 to the discrete case.

4.2. Bivariate conditional autoregressive model
As in § 2, we assume a joint model for X∗ and Z∗. We assume that the pairs (X∗

k , Z∗
k) are

independent across k, and Gaussian with mean zero and covariance

cov
{

X∗
k

Z∗
k

}
=

{
σ 2

x fx(ωk) ρσxσzfxz(ωk)

ρσxσzfxz(ωk) σ 2
z fz(ωk)

}
, (10)

where σ 2
x and σ 2

z are variance parameters, fx(ωk) > 0 and fz(ωk) > 0 are variance functions
that determine the covariance of X and Z, respectively, and scalar ρ and function fxz(ωk)
determine the dependence between X and Z. For the Leroux conditional autoregressive
model, we have fj(ωk) = 1/(1 − λj + λjωk) for j ∈ {x, z} so that the marginal distributions
are X ∼ car(0, σ 2

x , λx) and Z ∼ car(0, σ 2
z , λz).

One possible parametric cross-covariance model is fxz(ω) = 1/(1 − λxz + λxzω). As with
the bivariate Matérn, fxz has the same functional form as fx and fz. Constraints are required
to ensure that the covariance in (10) is positive de!nite, i.e., that

ρ2(1 − λx + λxw)(1 − λz + λzw) < (1 − λxz + λxzw)2 (11)

for all w ∈ {ω1, …, ωn}. Necessary conditions for (11) to hold for all w ! 0 are ρ2(1 −
λx)(1 − λz) < (1 − λxz)

2 and ρ2λxλz < λ2
xz, but these conditions are not suf!cient and not

even necessary when considering only w ∈ {ω1, …, ωn}.
Assuming that the covariance parameters give a valid covariance, then marginalizing over

Z∗
k and setting βz = 1, as in § 2, for identi!cation gives

Y∗
k | X∗

k
indep∼ N{β0Mk + βxX∗

k + α(ωk)X∗
k , τ 2(ωk) + σ 2}, (12)

where α(ωk) = ρσzσ
−1
x (1 − λx + λxωk)(1 − λxz + λxzωk)

−1 and τ 2(ωk) = σ 2
z (1 − λz +

λzωk)
−1 − ρ2σ 2

z (1 − λx + λxωk)(1 − λxz + λxzωk)
−2. Therefore, α(ω) → ρσzσ

−1
x λxλ−1

xz as
ω → ∞, and thus the high-resolution confounding effect is smallest when λx is smaller than
λxz.

The parsimonious cross-covariance model is fxz(ωk) = √
fx(ωk)fz(ωk), giving

cor(X∗
k , Z∗

k) = ρ for all k. With this simpli!cation, any ρ ∈ (−1, 1) and
λx, λz ∈ (0, 1) give a valid covariance, and the terms in (12) reduce to α(ωk) =
ρσzσ

−1
x (1 − λx + λxωk)

1/2(1 − λz + λzωk)
−1/2 and τ 2(ωk) = σ 2

z (1 − ρ2)/(1 − λz + λzωk).
Here, the missing confounder need not be smoother than the exposure, i.e., λz > λx, for
identifying βx as the assumption for identi!cation is parsimonious coherence. As long as
λz |= λx, the remaining parameters can also be identi!ed, as established in the next theorem.

THEOREM 3. Assuming that λx |= λz and βz = 1, then the parameters βx, σ 2, ρ, λx, λz, σ 2
x ,

σ 2
z in the parsimonious model (13) below are all identi!able.
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Spectral adjustment for spatial confounding 11

We have !xed βz = 1 in Theorem 3 so we can estimate σz, but this is unnecessary. The
alternative parameterization σ ∗ = βzσz can be used, which does not affect the results, as
discussed in § 2.2.

In the spatial domain, the parsimonious model is

Y | X , V ∼ N(β0 + βxX + 0A0TX + V , σ 2In), (13)

where V ∼ car{0, σ 2
z (1 − ρ2), λz} and A is diagonal with kth diagonal element α(ωk).

The term 0A0TX adjusts for missing spatial confounders and the term V captures spatial
variation that is independent of X . In this case with λz > λx, the confounder adjustment
0A0TX smooths X by !rst projecting into the spectral domain by multiplying by 0T, then
dampening the high-frequency terms with large ω and thus small α(ω) by multiplying by
A, and !nally projecting back in the spatial domain by multiplying by 0. Marques et al.
(2022) developed a Bayesian method to mitigate spatial confounding. Their model is related
to our parsimonious Leroux conditional autoregressive model, except they used a Gauss-
ian Markov random !eld model using the stochastic partial differential equation approach
(Lindgren et al., 2011) for X and Z, and a penalized complexity prior for ρ.

4.3. Semiparametric conditional autoregressive model
Mirroring § 3.2, rather than specifying a parametric joint model for (X∗

k , Z∗
k), we directly

specify a "exible model for the confounder adjustment, α(ω). The joint model is speci!ed
!rst with the conditional model

Z∗
k | X∗

k
indep∼ N

{
α(ωk)X∗

k ,
σ 2

z
1 − λz + λzωk

}
.

In the spatial domain, this implies that Z | X ∼ car(0A0TX , σz, λz), where A is diagonal
with diagonal elements {α(ω1), …, α(ωn)}. Therefore, with any valid marginal distribution
of X , the joint model of X and Z is well de!ned. Since X is observed, we do not need a
model for its marginal distribution.

Marginalizing over the unknown Z∗ gives

Y∗
k | X∗

k
indep∼ N

{
β0Mk + β(ωk)X∗

k ,
σ 2

z
1 − λz + λzωk

+ σ 2
}

, (14)

where β(ωk) = βx + α(ωk). Following § 3.2, we assume that α(ωn) = 0 so that X∗
n and Z∗

n
are uncorrelated for the highest-frequency term. This implies that β(ωn) = βx and E(Y∗

n ) =
β0Mn+βxXn, and thus the !nal term supplies unbiased information about the true exposure
effect βx. Of course, a single unbiased term is insuf!cient for estimation, and so we further
assume that α(ω) varies smoothly over ω to permit semiparametric estimation of βx.

We !t model (14) with a covariate effect that is allowed to vary with k to separate
associations at different spatial resolutions. Although other smoothing techniques are pos-
sible, the frequency-speci!c coef!cients are smoothed using the basis expansion β(ω) =∑L

l=1 Bl(ω)bl, where the Bl(ω) are cubic B-spline basis functions and the bl are the asso-
ciated coef!cients. Analogously to the semiparametric continuous-space model in § 3.2, we
employ equally spaced B-splines (Eilers & Marx, 1996) with an intrinsic autoregressive prior
on (b1, …, bL)T. Under the assumption that α(ωn) = 0, we use the posterior distribution of
β(ωn) to summarize the effect βx.
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12 Y. Guan et al.

In the spatial domain, the semiparametric conditional autoregressive model can be
written as (9), i.e.,

Y |X , V ∼ N
(

β0 +
L∑

l=1

Ẑlbl + V , σ 2In

)
,

where V ∼ car(0, σ 2
z , λz), Ẑl = 0Bl0

TX , Bl is the diagonal matrix with spline basis func-
tions, {Bl(ω1), …, Bl(ωn)}, on the diagonal and the regression coef!cients are modelled as
described below (8). The constructed covariates Ẑl can be precomputed prior to estima-
tion, and thus computation resembles a standard spatial analysis with L known covariates.
As above, under the assumption of no confounding for large ω, we use the posterior of
βx = ∑L

l=1 Bl(ωn)bl to summarize the exposure effect. As our estimation of βx relies on
a B-spline estimate at an endpoint, it may be associated with relatively large uncertainty.
Therefore, other smoothing techniques may also be considered to test the sensitivity of the
estimate to the chosen method of estimation.

5. Simulation study

5.1. Discrete space
Data are generated at n locations s1, …, sn on a 40 × 40 square grid with grid spac-

ing one. The conditional autoregressive model uses rook neighbourhood structure so that
aij = 1 if and only if ‖si − sj‖ = 1. Data are generated from X ∼ car(0, σ 2

x , λ), Z | X ∼
car(βxzWX , σ 2

z , λ) and Y | X , Z ∼ N(βxX + βzZ, σ 2In), where W is the kernel smoothing
matrix with bandwidth φ, i.e., Wij = wij/(

∑n
l=1 wil) and log(wij) = −(‖si − sj‖/φ)2. Includ-

ing the kernel smoothed X in the mean of Z induces low-resolution dependence between X
and Z. In all cases we take σ 2

x = 1.7, σ 2
z = 1, λ = 0.95, βx = βz = 0.5 and σ 2 = 0.252, and

we vary the strength of dependence via βxz ∈ {0, 1, 2}, and the kernel bandwidth φ ∈ {1, 2}.
The value of βz can be chosen without loss of generality, as only the product of βz and σz
can be uniquely identi!ed. For each parameter combination, we generate 500 datasets; see
the data examples in the Supplementary Material.

Figure 2 plots the induced correlations in the spectral domain for each scenario with βxz >
0. The correlation is nonzero for only low-frequency terms when φ = 2, but correlation
spills over to high-frequency terms when φ = 1, especially when βxz = 2. Therefore, the
assumption of no confounding at high frequencies is questionable when φ = 1, and these
scenarios are used to examine sensitivity to this key assumption. Also, these scenarios violate
the parsimonious assumption of constant correlation across frequency, and so they illustrate
the effects of misspecifying the parametric model.

For each simulated dataset, we !t the standard Leroux conditional autoregressive model
that has βk = βx for all k, the parametric parsimonious bivariate conditional autoregres-
sive model and the semiparametric model with βk varying across k using a cubic B-spline
basis expansion. We compare two priors for σ 2

b , the variance of the coef!cient process βk,
for the semiparametric model. The penalized complexity prior shrinks the process towards
the constant function βk = βx to avoid over!tting (Franco-Villoria et al., 2019); the second
prior for the variance induces a Un(0, 1) prior on the proportion of overall model variance
explained by variation in βk to balance all levels of spatial confounding. The prior distri-
butions for all models are given in the Supplementary Material. We !t the semiparametric
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Spectral adjustment for spatial confounding 13
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Fig. 2. Correlations in the spectral domain for the simulation study: cor(X∗
k , Z∗

k) by ωk for different kernel band-
widths (φ) and strengths of exposure/confounder dependence (βxz); the correlations in the spatial domain (over
locations) cor(Xi, Zi) are 0.62 when φ = 1 and βxz = 1, 0.80 when φ = 1 and βxz = 2, 0.44 when φ = 2 and

βxz = 1, and 0.62 when φ = 2 and βxz = 2.

models for all L ∈ {1, 5, 10, 20, 30, 40} and select the number of basis functions using the
deviance information criterion (Spiegelhalter et al., 2002). All methods are !t using Markov
chain Monte Carlo with 25 000 iterations and the !rst 5000 discarded as burn-in.

Table 1 compares methods in terms of the root mean squared error, bias, posterior stan-
dard deviation averaged over datasets and empirical coverage of 95% intervals for βx, and
Fig. 3 summarizes the sampling distribution of βk against ωk. The standard method per-
forms well in the !rst scenario with no unmeasured confounder, βxz = 0, but in all other
scenarios the standard method is biased and has coverage at or near zero. The standard
method allows for spatially dependent residuals, but this does not eliminate spatial con-
founding bias. Since the standard model assumes that X and Z are independent, when X
and Z are highly correlated, all spatial variability is attributed to the exposure effect, leading
to bias and small posterior standard deviation.

The parametric model performs well in scenario 1, and respectably in scenarios 4 and 5
where there is no confounding at high frequencies and parametric model assumptions do
not hold. In fact, the parametric model is nearly identical to the standard model in the !rst
case with no spatial confounding, suggesting that little is lost by allowing for a parametric
confounding adjustment when it is not needed. However, the parametric model gives bias
and low coverage in the cases with φ = 1, and thus the form of spatial confounding does
not match the parametric model. The estimated βk curves in Fig. 3 show that the parametric
form of the βk model cannot match the slow decline in the true correlation of Fig. 2 when
φ = 1. However, the parametric model is still able to recover reasonably well the truth for
φ = 2; it appears that there is some robustness to the parsimonious coherence assumption
for the parametric model if the unconfoundedness at high frequencies assumption holds.

The semiparametric methods have low bias and coverage near the nominal level for all !ve
scenarios. However, the posterior standard deviation is always larger for the semiparametric
models than the standard or parametric models. Therefore, in these cases, the semipara-
metric methods are robust, but conservative for estimating a casual effect in the presence of
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14 Y. Guan et al.

Table 1. Discrete-space simulation study comparing four methods: the standard Leroux
model, the parametric parsimonious model, the semiparametric model with a penalized com-
plexity prior and the semiparametric model with a uniform prior on the proportion of variance
(semi-R2). Data are generated with dependence between exposure and confounder controlled
by βxz and kernel bandwidth φ. Standard errors are given in parentheses and all results are

multiplied by 100
Scenario Method φ βxz RMSE Bias SD Cov

1 Standard – 0 1.2 (0.0) 0.0 (0.1) 1.3 (0.0) 95.2 (1.0)
Parametric 1.3 (0.0) 0.0 (0.1) 1.4 (0.0) 95.4 (0.9)

Semiparametric 4.4 (0.3) 0.0 (0.2) 2.5 (0.1) 95.0 (1.0)
Semi-R2 4.5 (0.4) 0.0 (0.2) 2.5 (0.1) 94.8 (1.0)

2 Standard 1 1 19.0 (0.1) 18.9 (0.1) 1.4 (0.0) 0.0 (0.0)
Parametric 14.0 (0.1) 13.8 (0.1) 1.7 (0.0) 0.0 (0.0)

Semiparametric 7.7 (0.3) −0.9 (0.3) 8.3 (0.1) 96.6 (0.8)
Semi-R2 8.0 (0.3) −0.7 (0.4) 8.9 (0.1) 97.2 (0.7)

3 Standard 1 2 34.3 (0.1) 34.3 (0.1) 1.7 (0.0) 0.0 (0.0)
Parametric 20.6 (0.2) 20.4 (0.1) 2.0 (0.0) 0.0 (0.0)

Semiparametric 9.5 (0.3) 0.6 (0.4) 9.3 (0.1) 94.4 (1.0)
Semi-R2 9.5 (0.3) 0.8 (0.4) 9.4 (0.1) 96.0 (0.9)

4 Standard 2 1 5.6 (0.1) 5.4 (0.1) 1.4 (0.0) 3.8 (0.9)
Parametric 2.1 (0.1) 1.2 (0.1) 1.6 (0.0) 85.4 (1.6)

Semiparametric 8.2 (0.2) −0.9 (0.4) 9.3 (0.1) 96.6 (0.8)
Semi-R2 8.2 (0.3) −0.7 (0.4) 9.2 (0.1) 95.8 (0.9)

5 Standard 2 2 8.8 (0.1) 8.7 (0.1) 1.5 (0.0) 0.0 (0.0)
Parametric 2.5 (0.1) −1.1 (0.1) 1.8 (0.0) 84.0 (1.6)

Semiparametric 10.2 (0.3) −0.6 (0.5) 10.3 (0.1) 94.8 (1.0)
Semi-R2 10.4 (0.3) −0.6 (0.5) 10.3 (0.1) 94.0 (1.1)

RMSE, root-mean-squared error; SD, average posterior standard deviation; Cov, coverage of 95% posterior
intervals.

spatial confounding. Surprisingly, the semiparametric methods are insensitive to the choice
of prior. Despite the two prior speci!cations having very different motivations, the results
are similar, likely because the deviance information criterion often selects a small number
of basis functions that negates the in"uence of the prior for σ 2

b .

5.2. Continuous space
Data in the continuous space are generated similarly to the discrete case. The data are

simulated on a 23 × 23 unit square grid. We simulated X ∼ N(0, σ 2
x *x), Z | X ∼

N(βxzWX , σ 2
z *z) and Y | X , Z ∼ N(βxX + βzZ, σ 2In), where *j is the n × n Matérn cor-

relation matrix de!ned by parameters φj and νj, and W is the kernel smoothing matrix with
bandwidth φ. In all cases we take σ 2

x = σ 2
z = 1, spatial range parameters φx = φz = 0.1,

νx = νz = 0.5, βx = βz = 1 and σ 2 = 0.252, and we vary βxz ∈ {0, 1, 2}, and the kernel
bandwidth φ ∈ {1/15, 2/15}. For each combination of these parameters, we generate 100
datasets. For each simulated dataset, we !t four models: the standard Matérn model in § 3.1
with ρ = 0, and thus no confounding adjustment, the bivariate Matérn model with common
range in (6), the parsimonious Matérn model in (7) and the semiparametric model in § 3.2.
Prior distributions and computing details are given in the Supplementary Material.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asac069/6955604 by Sistem

a Bibliotecario d'Ateneo-U
niversità di Bologna user on 29 M

ay 2023



Spectral adjustment for spatial confounding 15

0 2 4 6 8

0.4

0.6

0.8

1.0

1.2

bxz = 0

Eigenvalue wk Eigenvalue wk Eigenvalue wk

Eigenvalue wkEigenvalue wk

b k
True
Standard
Semiparametric
Parametric

0 2 4 6 8

0.4

0.6

0.8

1.0

1.2

f = 1 and bxz = 1 f = 1 and bxz = 2

f = 2 and bxz = 1 f = 2 and bxz = 2
b k

0 2 4 6 8

0.4

0.6

0.8

1.0

1.2

b k

0 2 4 6 8

0.4

0.6

0.8

1.0

1.2

b k

0 2 4 6 8

0.4

0.6

0.8

1.0

1.2

b k

Fig. 3. Performance for the discrete simulation study: median (solid) and 95% con!dence interval (dashed) for βk
for the standard model (red), semiparametric model with the penalized complexity prior (green), and parametric
model (blue) for data generated with dependence between exposure, and confounder controlled by βxz and kernel

bandwidth φ. The black lines are the true βx = 0.5.

The results mirror those in the discrete case and therefore the result table is deferred to the
Supplementary Material. The semiparametric method maintains nearly the nominal cover-
age and low bias across all scenarios. The parametric Matérn models have bias and low
coverage for the simulation settings where the data are not simulated with a Matérn covari-
ance. The common range Matérn model dramatically reduces root-mean-square error and
improves coverage compared to the parsimonious Matérn model, but neither is suf!ciently
"exible for these cases.

6. Real data examples

6.1. Analysis of the Scottish lip cancer dataset
All model !ts in this section were carried out using the eCAR package found in R

(R Development Core Team, 2023) that was created to !t the discrete space methods. We
!rst consider the well-known lip cancer dataset, see Fig. 4, available in the R package CAR-
Bayesdata. The data cover n = 56 districts in Scotland. Three variables are recorded
for each district: the recorded number of lip cancer cases, Yi, the expected number of
lip cancer cases computed using indirect standardization based on Scotland-wide disease
rates, Ei, and the percentage of the district’s workforce employed in agriculture, !shing and
forestry, Xi. Since we have non-Gaussian responses, the generalized models presented in the
Supplementary Material are used.
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Fig. 4. Maps for the Scotland lip cancer dataset: (a) standard mortality ratio and (b) mortality rate in the
agriculture, !shing and forestry workforce.

We !t the spatial Poisson regression model Yi | θi
indep∼ Po{Ei exp(θi)}, where θi is the

log relative risk in district i. We model θ = (θ1, …, θn)
T as θ | X ∼ car(β0 + βxX +

0A0TX , σ 2
z , λz). For the parametric approach, we use the same priors as in § 5.1 and, for the

semiparametric model, we employ INLA (Rue et al., 2009) and use the penalized complexity
prior with L = 10 basis functions, chosen via the deviance information criterion; results are
stable for L = {10, 20, 30, 40, 50}. We also !t two standard nonspectral methods where βk
is constant over ωk: a Poisson regression with the percentage of the workforce employed
in agriculture, !shing and forestry as the covariate and a Poisson regression that includes
Leroux conditional autoregressive random effects.

Figure 5 plots the posterior of exp(βk) by the eigenvalue ωk for each model. The stan-
dard methods have positive posterior mean and their 95% intervals exclude 1, indicating a
signi!cant increase in risk for lip cancer for a unit difference in the percentage of the work-
force employed in agriculture, !shing and forestry. The spectral methods, which attempt
to account for spatial confounding, do not agree with the standard methods: the estimated
exp(βk) trends toward 1 for large ωk, meaning that the results of the standard models should
be interpreted with caution because the strength of the relationship between these variables
is weak at the local spatial scale. These results are consistent with a missing confounding
variable with the same large-scale spatial pattern as lip cancer disease and the percentage of
the workforce employed in agriculture, !shing and forestry.

6.2. Analysis of COVID-19 mortality and PM2.5 exposure
Wu et al. (2020) noted that many of the pre-existing conditions that increase the mortality

risk of COVID-19 are connected with long-term exposure to air pollution. They conducted
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Fig. 5. Effect of the percentage of the workforce employed in agriculture, !shing and forestry on lip cancer
in Scotland: posterior mean (solid lines) and 95% credible interval (dashed lines) of exp(βk) for the spectral
parametric model (black), the spectral semiparametric model with L = 10 (green), a Poisson regression on
the percentage of the workforce employed in agriculture, !shing and forestry (red) and a Poisson regression

with residuals modelled as Leroux (blue).

a study and found that a difference of 1 µg/m3 in ambient !ne particulate matter, PM2.5,
is positively associated with a 15% difference in the COVID-19 mortality rate. To further
illustrate our proposed methods, we analyse the data collected by Wu et al. (2020) in an
attempt to estimate the effect of PM2.5 on COVID-19 mortality using spatial methods.

The response is the cumulative COVID-19 mortality counts through May 12, 2020 for
US counties. County-level exposure to PM2.5 was calculated by averaging results from an
established exposure prediction model for the years 2000–16; see Wu et al. (2020) for more
details. Eight counties and 12 Virginia cities were missing from the database, so we imputed
their values using neighbourhood means with neighbours de!ned by counties that share
a boundary. This resulted in mortality counts and PM2.5 measures for n = 3109 coun-
ties; see Fig. 6. In addition to PM2.5 exposure, 20 potential confounding variables, e.g.,
the percentage of the population at least 65 years old, are included in our modelling; see
Wu et al. (2020) for the complete set of potential confounding covariates. For county i,
denote Yi as the number of deaths attributed to COVID-19, Ei as the population, Xi as
the average PM2.5 and Ci as the vector of 20 known confounding variables. Similar to Wu

et al. (2020), we !t a negative-binomial regression model Yi | Xi, Zi, Ci
indep∼ NegBin(ri, pi),

where ri is the size parameter and pi the probability of success. Under this model, the mean
is E(Yi | Xi, Zi, Ci) = λi = ri(1 − pi)/pi. We parameterize the model in terms of λi
and ri. The prior is log(ri) ∼ N(0, 10) and the mean is linked to the linear predictor as
log(λi) = log(Ei)+ θi, where θi = βxXi + Zi + C′

iβc, the offset term Ei is the county popula-
tion and βc is a vector of regression coef!cients associated with the confounding variables.
Following the non-Gaussian models in the Supplementary Material, the linear predictor
becomes θ | X ∼ car(β0 + βxX + 0A0TX + βcC, σ 2

z , λz), where C is a design matrix
that includes an intercept term. We !t this model using the parametric and semiparametric
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Fig. 6. (a) Average PM2.5 (µg/m3) over 2000–16 and (b) the log COVID-19 mortality rate through May 12, 2020.
Counties with no deaths are shaded grey.
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Fig. 7. Results for the COVID-19 example: the posterior mean (solid) and 95% credible interval (dashed) of
the mortality rate ratio associated with a difference of 1µg/m3 of PM2.5, exp(βk). Results are for (a) all n =
3109 counties and (b) n = 1977 counties that reported at least 10 con!rmed COVID-19 deaths. The standard
spatial approach refers to a regression model including all confounders and a spatial Leroux model for county

random effects.

approaches detailed in § 4.2 and § 4.3. The negative-binomial model is chosen to mimic the
analysis in Wu et al. (2020). We also considered a binomial and Poisson model and inferences
were relatively unchanged.

We compare our method to a variant of the model employed in Wu et al. (2020), which
we refer to as the standard spatial model, i.e., a negative-binomial regression with all con-
trol variables and county random effects modelled using the Leroux model. Following Wu
et al. (2020), two separate analyses using all n = 3109 counties and n = 1977 counties that
reported at least 10 con!rmed COVID-19 deaths were conducted; this was done to account
for the fact that the size of an outbreak in a given county may be positively associated with
both the COVID-19 mortality rate and PM2.5, thus introducing confounding bias.

Figure 7 displays model !ts using the full and reduced data. The estimated difference in
the COVID-19 mortality rate, associated with a difference of 1µg/m3 of PM2.5, under the
standard spatial model is 16% (95% con!dence interval: 1.08, 1.25), and 12% (95% con!-
dence interval: 1.04, 1.21) in the full and reduced analyses, respectively. The posterior mean
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Spectral adjustment for spatial confounding 19

estimates from the parametric and semiparametric spectral models generally agree with the
standard spatial approach, but the posterior standard deviation is higher for the spectral
methods. In this analysis, the spectral methods support the standard spatial model and serve
as a check of sensitivity to adjustments for missing confounders.

7. Discussion

Our work is the !rst to study the problem of spatial confounding in the spectral domain
and model the coherence between the exposure and the unmeasured spatial confounder. We
provide theoretical results that help understand the study in Paciorek (2010), where exten-
sive simulations illustrate the bias obtained under different combinations of spatial scales
for X and Z. New spectral methods are also proposed to adjust for unmeasured spatial con-
founding variables, and suf!cient conditions are provided to ensure that the exposure effect
is identi!able, including the important case without a nugget effect in the treatment and/or
response variable. These ideas are developed for continuous and discrete spatial domains,
and Gaussian and non-Gaussian data.

We have assumed that X and Z are stationary Gaussian processes in developing our
methodology. Such modelling assumptions often work well with weak nonstationarity. With
strong nonstationarity under model misspeci!cation, we believe that the semiparametric
model is more robust, and that βx estimation will be primarily driven by observations
from the regions that have variations at smaller spatial scales. We recommend gravitating
towards the semiparametric approach. The parametric parsimonious model depends on
scale-invariant coherence between the exposure and the unmeasured confounder; it also
relies on parsimonious parameterization for estimation of α(ω). The semiparametric model
depends on the assumption that their coherence tends to zero for large frequencies. While
neither of these assumptions are empirically veri!able, we believe that the latter assumption
is more reasonable in practice. The semiparametric methods are also easier to implement
computationally as the confounding adjustment takes the form of smoothed covariates;
it is straightforward to pass these constructed variables into standard spatial computing
packages. However, the continuous-space semiparametric model requires numerical approx-
imations to integrals. When the exposure observations are highly spatially irregular, our
implementation in § 3.2 can be problematic. In this case, we recommend seeking other
numerical approximations to integrals.
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Supplementary material

The Supplementary Material includes an extension of the proposed methods to mul-
tiple predictors and non-Gaussian observations, details of the causal assumptions for
the spatial framework, proofs of the lemmas and theorems, prior distributions and
computing details for both discrete and continuous cases, and a results table for the
continuous-space simulation study. The R code is available at https://github.com/
yawenguan/spatial_confounding.
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1. SPATIAL CAUSAL FRAMEWORK

Extending the notation in § 2.1 of the main document and following the potential outcomes
framework, we define Yi(xi) to be the potential outcome at location si if the treatment at si 25

is xi. Similarly, define Y (x) = {Y1(x1), . . . , Yn(xn)}T as the vector of potential outcomes at
S if treatment x = (x1, ..., xn)T were received. For the potential outcomes to be well defined,
we make the stable-unit-treatment-value assumption (Rubin, 1980), which states that there is no
interference between units and there is a single version of each treatment level. In the spatial
context, the no interference assumption implies that treatment applied at one location does not 30

affect the outcome at other locations.
Following the commonly used spatial regression model in the spatial statistics literature, we

assume a linear additive structural model for the potential outcomes,

Y (x) = �0 + �xx+ �zZ + ", (1)

C� 2017 Biometrika Trust
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where " = ("1, ..., "n)T and "i
iid⇠ Normal(0,�2). The structural coefficient �x determines the

causal relationship of the potential outcome and the treatment, and it is assumed to be spa-35

tially invariant. In this model, we do not specify the interaction of treatment and covariates, and
therefore �x is both the marginal and conditional causal effect of treatment. Our objective is to
estimate �x. Model (1) is also used in Schnell & Papadogeorgou (2020) in a discrete-space case.

To connect the observed and potential outcomes, we make the causal consistency assumption
that the observed outcomes are exactly the potential outcomes for the observed level of treatment40

Xi, Yi = Yi(Xi). For the identifiability of �x, we make the conditional treatment ignorability as-
sumption that X?Y (x) | Z for all x. The latter assumption holds if all factors that are associated
with both the treatment and outcome variables are accounted for in Z. With these assumptions,
the parameter �x in the regression model

Y = �0 + �xX + �zZ + ". (2)

is the same as �x in (1) and thus has a causal interpretation.45

If we observe the confounder Z, then identification and estimation of �x is straightforward
using multiple linear regression. However, we assume that Z is an unmeasured confounder. In the
presence of an unmeasured confounder, �x is not identifiable in general. Therefore, we propose
to exploit the spatial structure of Z to mitigate the effects of this unknown confounder. Although
Z confounds the causal relationship of X and Y in the spatial domain, in § 2.2 of the main text50

we propose assumptions in the spectral domain that identify the causal effect in the presence of
an unmeasured spatial confounder.

2. EXTENSION TO MULTIPLE PREDICTORS

2·1. Parsimonious continuous-space model

In the spatial domain, let X0(s) = Z(s) be the unmeasured confounder and X1(s), ..., Xp(s)55

be the p observed covariates. Given the confounder, the model is Y (s) = �0 +
Pp

j=0 �jXj(s) +
"(s). For frequency !, let X0(!) = Z(!) be the Fourier transform of the unmeasured confounder
and X1(!), ...,Xp(!) be the the Fourier transforms of the measured covariates. In the spectral
domain the joint model in (2) is extended to cov{Xj(!),Xk(!)} = ⌦jk�j�kfjk(!) where ⌦ =
{⌦jk} is a (p+ 1)⇥ (p+ 1) correlation matrix, �j > 0 are standard deviation parameters and60

fjk(!) = fkj(!) are spectral densities. The multivaritate extension of the parsimonious model
in § 2.2 of the main text sets fjk(!) =

p
fj(!)fk(!). This is clearly a valid model because the

(p+ 1)⇥ (p+ 1) covariance of X0(!), ...,Xp(!) is F (!)⌦F (!), where F (!) is diagonal with
jth diagonal element equal �j

p
fj(!), which is positive definite.

Blocking ⌦ to have first row column (1,⌦T
zx) and bottom right p⇥ p matrix ⌦x and marginal-65

izing over X0(!) = Z(!) gives

Y(!)|X1(!), ...,Xp(!)
indep⇠ Normal

2

4
pX

j=1

{�j + ↵j(!)}Xj(!), q0�
2
zfz(!)

3

5 , (3)

where ↵j(!) = {�z
p
fz(!)}{�j

p
fj(!)}�1qjXj(!), (q1, ..., qp) = ⌦T

zx⌦
�1
x and q0 = ⌦zz �

⌦T
zx⌦

�1
x ⌦zx. In the spatial domain this the causal adjustment for covariate j becomes Ẑj =

wjC0jC
�1
jj Xj where Cjk = cov(Xj , Xk) is defined by the Matérn covariance parameters. The
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spatial model is

Y (si) = �0 +
pX

j=1

{Xj(si)�j + Ẑj(si)}+ V (si) + "(si)

where V is a mean-zero Gaussian process with variance �2zqo and Matérn correlation with
smoothness ⌘z and range � and "(s) iid⇠ Normal(0,�2).

2·2. Semi-parametric continuous-space model

Extending the semi-parametric model in § 3.2 to have multiple covariates is straightforward 70

because the method is defined via the conditional distribution of the missing confounder given
the covariates, rather than the joint distribution of the confounder and the covariates. We regress
the confounder onto the p covariates using the additive model

E{Z(!)} =
pX

j=1

↵j(!)Xj(!) =
1

2

pX

j=1

LX

l=1

bjlBl(!)Xj(!).

In this spatial domain this gives

Y (s) = �0 +
pX

j=1

�jXj(s) +
pX

j=1

LX

l=1

�jlẐjl(s) + �(s),

where �(s) is modeled as a Gaussian process and

Ẑjl(s) =
X

!f2F

(2⇡!f )+1Bl(!
f )4F

Z J(!f ||s� s0||)
||s� s0|| X(s0)ds0.

As in the univariate case, �j can be interpreted as the causal effect under the assumption that
↵j(!) ! 0. 75

2·3. Parsimonious conditional autoregressive model

In the discrete domain with multiple predictors, the oracle model is Y ⇠ Normal(�0 +Pp
j=1 �jXj + Z,�2In⇥n). Assuming marginal distribution Xj ⇠ CAR(0,�2j ,�j) and Z ⇠

CAR(0,�2z ,�z), parsimonious joint distributions in § 4.2 of the main text and following the ideas
above in the extension of the parsimonious Matérn to the case of multiple predictors, the marginal
distribution of Y over Z is

Y |X,V ⇠ Normal

0

@�0 +
pX

j=1

�jXj +
pX

j=1

�Aj�
TXj + V,�2In⇥n

1

A ,

where Aj is diagonal with kth diagonal element ↵j(!k) =
wj�z�j�1(1� �j + �j!k)1/2(1� �z + �z!k)�1/2 and V ⇠ CAR(0, q0�2z ,�z).

2·4. Semi-parametric conditional autoregressive model

Extending the semi-parametric model in § 4.3 of the main text to the multivariate case fol-
lows the same steps as the semi-parametric model for continuous space above. In the spectral
domain with Z⇤ = �Z and X⇤

j = �Xj , a natural extension to the semi-parametric conditional
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autoregressive model for the missing confounder is

Z⇤
k |X⇤

1k, ...X
⇤
pk

indep⇠ Normal

0

@
pX

j=1

↵j(!k)X
⇤
j ,

�2Z
1� �z + �z!k

1

A .

Defining �j(!) = �j + ↵j(!) =
PL

l=1Bl(!)bjl, gives the spatial model80

Y |X,V ⇠ Normal

0

@�0 +
pX

j=1

LX

l=1

Ẑjlbjl + V,�2In

1

A . (4)

where V ⇠ CAR(0,�2z ,�z). Under the assumption that ↵j(!n) = 0, we summarize the causal
effect of the jth covariate using the posterior of �j =

PL
l=1Bl(!n)bjl.

3. GENERALIZED LINEAR MIXED SPATIAL MODELS

Many of the methods proposed for continuous and discrete domains can be applied to
non-Gaussian data using the generalized linear mixed modeling framework. Let g{E(Yi |85

Xi, Zi)} = ✓i = �xXi + Zi for link function g. Our general approach is to build a joint
model for (Xi, Zi), and then compute the conditional distribution of ✓ = (✓1, ..., ✓n)T

given X . For the continuous spatial domain, the conditional distribution is ✓ | X ⇠
Normal

⇣
�0 + �xX + Ẑ,⌃z � ⌃zx⌃�1

x ⌃T
zx

⌘
. Then for the continuous spatial domain, a bi-

variate Matérn model or the semi-parametric model in § 3 of the main text can be used. For90

the discrete spatial domain, the parsimonious bivariate conditional autoregressive model gives
✓ | X ⇠ CAR(�0 + �xX + �A�TX, (1� ⇢2)�2z ,�z). Or we can use the semi-parametric model
in § 4 of the main text which gives ✓ | X ⇠ CAR

⇣
�0 +

PL
l=1 Ẑlbl,�2z ,�z

⌘
.

Unlike for Gaussian data, the MCMC cannot proceed in the spectral domain and matrix mul-
tiplication �A�TX = �AX⇤ is required when updating the parameters in ↵(!k). For the semi-95

parametric model much of the computational burden can be shouldered outside the MCMC loop
by precomputing matrices �A�TX =

PL
l=1 Ẑlbl. After this computation, the method can be fit

using standard software for spatial generalized linear models such as INLA or OpenBUGS, and
the posterior of �x =

PL
l=1Bl(!n)bl summarizes the exposure effect.

4. PROOFS100

4·1. Proof of Theorem 1: Identification under the parsimonious model

The joint model

Y(!)|X (!)
indep⇠ Normal

( 
�x + ⇢

�z
p

fz(!)

�x
p
fx(!)

!
X (!), (1� ⇢2)�2zfz(!) + �2

)

X (!)
indep⇠ Normal

�
0,�2xfx(!)

 

is defined by parameters ✓ = {�x, ⇢,�x,�z,�, Fx, Fz} where Fj = {fj(!);! 2 R2} andR
fj(!)d! = 1 for j 2 {x, z}. Define E{Y(!)|X (!)} = µy(!; ✓), var{Y(!)|X (!)} =

⌧2y (!; ✓) and var{X (!)} = ⌧2x(!; ✓).105

Denote ✓(j) = {�(j)x , ⇢(j),�(j)x ,�(j)z , F (j)
x , F (j)

z }. The parameters ✓ are identified if and only if
µy(!; ✓(1)) = µy(!; ✓(2)), ⌧2y (!; ✓(1)) = ⌧2y (!; ✓

(2)) and ⌧2x(!; ✓(1)) = ⌧2x(!; ✓
(2)) for all ! im-
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plies that ✓(1) = ✓(2). First assume that ⌧2x(!; ✓(1)) = ⌧2x(!; ✓
(2)) for all !. Since

R
⌧2x(!; ✓)d! =

�2x, we must have �(1)x = �(2)x . This clearly implies that F (1)
x = F (2)

x , and thus the parameters
in the marginal distribution of X are identified. Applying similar arguments to the ⌧2y (!; ✓) 110

shows that ⌧2y (!; ✓(1)) = ⌧2y (!; ✓
(2)) for all ! implies that F (1)

z = F (2)
z , {1� (⇢(1))2}(�(1)z )2 =

{1� (⇢(2))2}(�(2)z )2 and �(1) = �(2).
The remaining parameters are identified by µy(!; ✓). If we assume µy(!; ✓(1)) = µy(!; ✓(2))

for all ! and apply previous identifiability results that show F (1)
x = F (2)

x , �(1)x = �(2)x and
F (1)
z = F (2)

z , then the assumption that fx(!) 6= fz(!) for some ! implies that �(1)x = �(2)x and 115

⇢(1)�(1)z = ⇢(2)�(2)z . Combined with the result that {1� (⇢(1))2}(�(1)z )2 = {1� (⇢(2))2}(�(2)z )2,
we have ⇢(1) = ⇢(2) and �(1)z = �(2)z .

4·2. Proof of Lemma 1: Oracle confounder adjustment

We derive the oracle confounder adjustment for a given projection operator ↵(!). If the inverse
Fourier transform of ↵(!) has a closed-form denoted by K(s� s0), then 120

Ẑ(s) =

Z

R2
exp(i!T s)Ẑ(!)d!

=

Z

R2
exp(i!T s)↵(!)X (!)d!

=

Z

R2
exp(i!T s)↵(!)


1

(2⇡)d

Z

R2
exp(�i!T s0)X(s0)ds0

�
d!

=
1

(2⇡)d

Z

R2

Z
exp(i!T (s� s0))↵(!)d!

�
X(s0)ds0

=
1

(2⇡)d

Z

R2
K(s� s0)X(s0)ds0.

4·3. Proof of Theorem 2: Parameter identification for the bivariate Matérn model

The parameters that define the marginal distribution of X , �x, ⌫x and �, are identified fol-
lowing the arguments in supplementary material § 4·1. Therefore, we assume they are fixed and
known in this section. For the bivariate Matérn model, define E{Y(!)|X (!)} = µ(!; ✓) and
V{Y(!)|X (!)} = ⌧2(!; ✓), where ✓ = {�x, ⇢, ⌫z, ⌫xz,�z} are the remaining unknown param- 125

eters. Defining � = (1 + �2||!||2)�1, the mean and variance are

µ(!; ✓) =

✓
�x + ⇢

�z⌫xz
�x⌫x

�⌫xz�⌫x

◆
X (!)

⌧2(!; ✓) = �2z⌫z�
2�⌫z+1


1� ⇢2

⌫2xz
⌫x⌫z

�2⌫xz�⌫x�⌫z

�
.

Denote ✓(j) = {�(j)x , ⇢(j), ⌫(j)z , ⌫(j)xz ,�
(j)
z }. The parameters ✓ are identified if and only if

µ(!; ✓(1)) = µ(!; ✓(2)) and ⌧2(!; ✓(1)) = ⌧2(!; ✓(1)) for all ! implies that ✓(1) = ✓(2).
Now assume that µ(!; ✓(1)) = µ(!; ✓(2)) and ⌧2(!; ✓(1)) = ⌧2(!; ✓(2)) for all !. By assump-

tion, ⌫xz � ⌫x > 0, 2⌫xz � ⌫x � ⌫z > 0 and ⇢2⌫2xz(⌫x⌫z)�1 < 1. Therefore, µ(!; ✓)/X (!) ! 130

�x, and therefore �(1)x = �(2)x = �⇤x. Considering µ(!; ✓j)/X (!)� �⇤x over ! we have ⌫(1)xz =

⌫(2)xz = ⌫⇤xz and ⇢(1)�(1)z = ⇢(2)�(2)z . Turning to the variance terms, for large ! we have
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⌧2(!; ✓) ⇡ �2z⌫z�
2�⌫z+1. Therefore ⌫(1)z = ⌫(2)z and [�(1)z ]2⌫(1)z = [�(2)z ]2⌫(2)z , and thus and

�(1)Z = �(2)Z . Finally, since ⇢(1)�(1)Z = ⇢(2)�(2)Z from above we have ⇢(1) = ⇢(2), and thus ✓1 = ✓2.

4·4. Proof of Theorem 3: Parameter identification for the parsimonious CAR model135

We aim to establish that the parameters ✓ = {�x,�2, ⇢,�x,�z,�2x,�2z} found in the joint
model for (Y ⇤, X⇤) that is partially described in equation (13) of the main text are identifiable.
Here we will denote the joint model using p(Y ⇤, X⇤|✓). As before, to establish identifiability we
need to show that p(Y ⇤, X⇤|✓(1)) = p(Y ⇤, X⇤|✓(2)) , ✓(1) = ✓(2). Note that we can express the
joint model after setting �0 = 0 w.l.o.g. in the following way140

p(Y ⇤, X⇤|✓) = p(Y ⇤|X⇤, ✓)p(X⇤|✓)

= Nn(Y
⇤;�xX

⇤ + ⇢
�z
�x

AX⇤,�2z(1� ⇢2){(1� �z)In⇥n + �zW}�1 + �2In⇥n)⇥

Nn(X
⇤; 0,�2x{(1� �x)In⇥n + �xW}�1).

Here Nn(·; ,m, V ) denotes a n dimensional multivariate density function with n-dimensional
mean vector m and n⇥ n-dimensional covariance matrix V , and, as before, A is a diagonal145

matrix whose ith diagonal entry is (1� �x + �x!i)1/2(1� �z + �z!i)�1/2. Note that we can
establish identifiability by way of the mean structure, covariance structure, or both from the joint
model. Since p(X⇤|✓) is simply a Leroux model and its parameters are known to be identifi-
able we have that �2x and �x are both identifiable. Thus, we focus on (�x,�2, ⇢,�z,�2z). It is
straightforward to see that150

p(Y ⇤|X⇤,�x,�
2(1), ⇢,�x,�z,�

2
x,�

2
z) = p(Y ⇤|X⇤,�x,�

2(2), ⇢,�x,�z,�
2
x,�

2
z) , �2(1) = �2(2)

which implies that �2 identifiable.

Next since matrix inverse is a bijection we can work with ��2
z (1� ⇢2)�1{(1� �z)In⇥n +

�zW} which can be expressed as ��2
z (1� ⇢2)�1In⇥n + ��2

z (1� ⇢2)�1�z(W � In⇥n). Letting155

⌧ = ��2
z (1� ⇢2)�1 and we have

⌧ (1)In⇥n + ⌧ (1)�(1)z (W � In⇥n) + �2In⇥n � {⌧ (2)In⇥n + ⌧ (2)�(2)z (W � In⇥n) + �2In⇥n} = 0

, {�2 + ⌧ (1) � (�2 + ⌧ (2))}In⇥n + (⌧ (1)�(1)z � ⌧ (2)�(2)z )(W � In⇥n) = 0

, (⌧ (1) � ⌧ (2)) + (⌧ (1)�(1)z � ⌧ (2)�(2)z )(!i � 1) = 0 8 !i

, ⌧ (1) � ⌧ (2) = 0 and ⌧ (1)�(1)z � ⌧ (2)�(2)z = 0.160

Now (⌧ (1) � ⌧ (2)) = 0 establishes ⌧ (1) = ⌧ (2) and ⌧ (1) = ⌧ (2) along with ⌧ (1)�(1)z � ⌧ (2)�(2)z =

0 establishes �(1)z = �(2)z . Thus, ⌧ and �z are identifiable. In summary, to this point, we have
shown that �x, �z , �2x, �2 and ⌧ are all identifiable. We now show that �x and ⌘ = ⇢�z are
identifiable. Note that

�xX
⇤ + ⇢

�z
�x

AX⇤ =

✓
�xIn⇥n +

⌘

�x
A

◆
X⇤.165
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Thus, we can focus on �xIn⇥n + ⌘
�x
A such that

(�(1)x In⇥n +
⌘(1)

�x
A)� (�(2)x In⇥n +

⌘(2)

�x
A) = 0

, (�(1)x � �(2)x )In⇥n + (⌘(1) � ⌘(2))
1

�x
A = 0

, (�(1)x � �(2)x ) + (⌘(1) � ⌘(2))
1

�x

r
1� �x + �x!i

1� �z + �z!i
= 0 8 !i

, (�(1)x � �(2)x ) = 0 and (⌘(1) � ⌘(2)) = 0, 170

establishing the identifiability of �x and ⌘ = ⇢�z . Now since ⌧ = ��2
z (1� ⇢2)�1 and ⌘ = ⇢�z ,

are identifiable, then so to are ⇢ and �2z where ⇢ =
p
⌘2(⌧�1 + ⌘2)�1 and �2z = ⌧�1 + ⌘2.

5. SAMPLE DATASETS FOR THE SIMULATION STUDY

Supplementary material Figure 1 plots a dataset from each simulated scenario in § 6.1 of
the main text to illustrate the spatial dependence of each variable and the relationships between 175

variables.

6. PRIOR DISTRIBUTIONS AND COMPUTATIONAL DETAILS FOR DISCRETE CASES

For the Gaussian responses in the simulation study, the variances in the standard and para-
metric models are parameterized as �2z = ⌧2r and �2 = ⌧2(1� r) and the priors are �0,�x ⇠
Normal(0, 100), ⌧2 ⇠ InvGamma(0.1, 0.1) and r,�z ⇠ Uniform(0, 1). For the parsimonious bi- 180

variate conditional autoregressive model we fix �x = 1 and select priors �x ⇠ Uniform(0,�z)
and ⇢ ⇠ Uniform(�1, 1).

In the parsimonious bivariate conditional autoregressive model we used the following pri-
ors for the variance components �2 ⇠ Gamma(1, 1), �2x ⇠ InvGamma(1, 1), and ⌧ = �2z(1�
⇢2) ⇠ Gamma(1, 1) where both the Gamma and Inverse Gamma distributions are parameter- 185

ized using shape and rate. For spatial dependence parameters we used �z ⇠ Uniform(0, 1)
and �x ⇠ Uniform(0,�z) (although we also ran simulation with �x ⇠ Uniform(0, 1) and re-
sults where similar). Finally for the regression type parameters we use �x ⇠ N(0, 100) and
 = ⇢�z(�x)�1 ⇠ N(0, 100). To improve mixing (�, ) were updated in a blocked Gibbs step.
Apart from �2x, all other parameters were updated with a random walk Metropolis step using a 190

Gaussian distribution to generate candidate values.
For the semi-parametric models with L > 1 we use the CAR prior for b given in § 3.2 of

the main text with either a penalized complexity prior (PCP; Simpson et al., 2017) or R2 prior
(Zhang et al., 2020) for �2b , as described below. The semi-parametric CAR model in § 4.3 of
the main text is Y |V ⇠ Normal(�0 + �xX + Z̃b+ V,�2In). To set priors, we parameterize the
covariance parameters as �2z = ⌧2c(�z)r and �2 = ⌧2(1� r) for c(�z) = n/

Pn
k=1 fz(!k) and

r 2 (0, 1). Under this parameterization, the total over space error variance is

Trace{cov(V ) + �2In} = ⌧2nr + ⌧2n(1� r) = ⌧2n,

and thus ⌧2 controls the overall variance and r is the proportion of variance attributed to the spa-
tial component of the error. Also, assume the prior for the adjustment coefficients b is normal with
mean zero and precision ��2

b ⌦, where ⌦ has diagonal elements Nl and (j, l) off-diagonal element
�I(|j � l| = 1). The first is the penalized complexity prior (PCP; Simpson et al., 2017) on the 195
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(c) � = 2 and �xz = 1
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(d) � = 2 and �xz = 2

10 20 30 40

10
20

30
40

Z

−4

−2

0

2

4

6

10 20 30 40

10
20

30
40

X

−2

0

2

4

10 20 30 40

10
20

30
40

Y

−2

0

2

4

Fig. 1. Simulated data in discrete space: Realizations
from the discrete-space simulation’s data-generating pro-
cess for different kernel bandwidth (�) and strength of ex-

posure/confounder dependence (�xz).
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standard deviation �b, i.e. �b ⇠ Exponential(⇠) with scale parameter ⇠ = � log(0.01)0.31/U ,
with U = 0.5; this choice sets the marginal standard deviation for b approximately equal to 0.5,
following the rule of thumb proposed by Simpson et al. (2017). The PCP shrinks the model
to the simpler base model without a confounder adjustment. The second is based on the R2D2
prior of Zhang et al. (2020). The variance is written �2b = ⌧2�2R where the prior density for �2R 200

is f(�2R) / (�2R + 1)�2, which induces a Uniform(0,1) prior on the proportion of variance ex-
plained by the confounding adjustment, Trace{cov(Z̃b)}/Trace{cov(Z̃b) + cov(V ) + �2I} =
�2R/(�

2
R + 1), and in this sense balanced the prior evenly over negligible to complete confound-

ing adjustment. The priors for the remaining parameters are the same for the standard model.
Finally, when fitting the semi-parametric CAR model to the lip cancer and covid data in § 205

7.1 and § 7.2 of the main text, we exploit the default implementation available in INLA which
runs very fast; this is based on the original parameterization of the semi-parametric, i.e. ✓|X ⇠
CAR

⇣
�0 +

PL
l=1 Ẑlbl,�2z ,�z

⌘
. Priors are as follows: PCP on �2z , i.e. �z ⇠ Exponential(⇠),

with scale parameter ⇠ = � log(0.01)0.31; PCP on the variance of the adjustment coefficients
b, i.e. �b ⇠ Exponential(⇠), with scale parameter ⇠ = � log(0.01)0.31/0.1, and logit(�z) ⇠ 210

Normal(0, 10).

7. PRIOR DISTRIBUTIONS AND COMPUTATIONAL DETAILS FOR CONTINUOUS CASES

7·1. Common range Matérn.

To ensure that all parameters are identifiable, we fit the Matérn model of Gneiting et al.
(2010) with common range �x = �z = �xz = �, and additional constraints of ⌫xz > ⌫x and 215

2⌫xz � ⌫x + ⌫z . With these constraints, the maximum for the term ⇢2fxz(!)2/{fx(!)fz(!)}
in (4) is obtained at ! = 0 with value ⇢2⌫2xz/(⌫x⌫z), hence the Matérn model with the identifia-
bility parameter constraints is valid if |⇢| < p

⌫x⌫z/⌫xz . We use the R package GpGp (Guinness
& Katzfuss, 2020) to estimate �x, ⌫x and �2x by fitting a spatial regression model with Matérn co-
variance function to the exposure. The estimated values are plugged into the conditional bivariate 220

Matérn model

Y = X�x + ⇢�zRzxR̂
�1
x X + � (5)

where R̂x is the correlation matrix for X computed from the Matérn correlation function
with plug-in values of �̂x, ⌫̂x, and Rzx is the cross-correlation matrix between Z and X
determined by parameters ⌫xz and the common range � = �̂x. To reduce computation cost
⌃̂�1
x X can be pre-computed to avoid repetitive evaluation of matrix inversion inside the 225

MCMC algorithm. We specify a joint prior for the spatial parameters ⇢, ⌫z and ⌫xz , with
⇡(⇢, ⌫z, ⌫xz) = ⇡1(⇢|⌫z, ⌫xz)⇡2(⌫z|⌫xz)⇡3(⌫xz) where ⇡1 ⇠ Unif(-

p
⌫x⌫z/⌫xz ,

p
⌫x⌫z/⌫xz),

⇡2 ⇠ Unif(0,2⌫xz � ⌫x) and ⇡3 is a half Cauchy distribution with mean ⌫x and variance 1000.
This specification will ensure that all parameter constrains are met. To complete specification of
the hierarchical model, we use an exponential distribution with rate parameter 1 for the sum of 230

variances �2z + �2, a uniform prior for the signal to noise ratio �2z/(�2z + �2), and a normal prior
with mean 0 and variance 100 for the causal effect �x. The model is fit using Metropolis-Hastings
within Gibbs algorithm with a block update for the spatial parameters.

7·2. Parsimonious Matérn.

The estimation of the conditional model in supplementary material (5) simplifies to the es- 235

timation of parameters {�x,�z,�, ⇢, ⌫z}. Priors similar to the common range Matérn model
are assigned for �x and ⇢. We use an exponential prior with rate parameter 1 for the sum
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�2z(1� ⇢2) + �2, and a uniform prior for the signal ratio �2z(1� ⇢2){�2z(1� ⇢2) + �2}�1. A
joint prior is used for ⇢, ⌫z to ensure |⇢|  2

p
⌫x⌫z/(⌫x + ⌫z) is ⇡(⇢, ⌫z) = ⇡1(⇢|⌫z)⇡2(⌫z)

where ⇡1 ⇠ Unif
�
�2

p
⌫x⌫z/(⌫x + ⌫z), 2

p
⌫x⌫z/(⌫x + ⌫z)

�
and ⇡2 is a half Cauchy distri-240

bution with mean ⌫x and variance 1000.

8. TABLES

Table 1. Continuous-space simulation study comparing four methods: The standard Matérn

model with ⇢ = 0 and thus no confounding adjustment (Standard), the bivariate Matérn model

with common range (Common range), the parsimonious Matérn model (Parsimonious) and the

semi-parametric model (Semiparametric). Data are generated with dependence between expo-

sure and confounder controlled by �xz and kernel bandwidth �. All results are multiplied by

100.

Scenario Method � �xz RMSE Bias SD Coverage
1 Standard - 0 4.6 ( 0.4) 0.1 ( 0.5) 4.6 ( 0.0) 96.0 ( 2.0)

Common range 14.3 ( 2.0) -3.9 ( 1.4) 13.0 ( 0.7) 94.9 ( 2.2)
Parsimonious 33.2 ( 3.6) -6.5 ( 3.3) 34.7 ( 1.2) 90.9 ( 2.9)

Semiparametric 6.9 ( 0.5) 0.5 ( 0.7) 6.9 ( 0.1) 94.9 ( 2.2)

2 Standard 1
15 1 13.0 ( 0.5) 11.8 ( 0.5) 4.9 ( 0.0) 35.0 ( 4.8)

Common range 26.2 ( 1.9) -20.8 ( 1.6) 15.1 ( 0.6) 68.0 ( 4.7)
Parsimonious 82.6 ( 3.1) -77.1 ( 3.0) 31.9 ( 1.0) 7.0 ( 2.6)

Semiparametric 7.4 ( 0.6) 0.3 ( 0.7) 6.9 ( 0.1) 93.0 ( 2.6)

3 Standard 1
15 2 17.9 ( 0.5) 17.2 ( 0.5) 5.2 ( 0.0) 8.0 ( 2.7)

Common range 50.6 ( 2.6) -45.2 ( 2.3) 21.4 ( 0.8) 27.0 ( 4.5)
Parsimonious 116.4 ( 3.5) -110.8 ( 3.6) 35.3 ( 1.2) 0.0 ( 0.0)

Semiparametric 6.7 ( 0.4) 0.1 ( 0.7) 6.9 ( 0.1) 95.0 ( 2.2)

4 Standard 2
15 1 5.9 ( 0.5) 3.2 ( 0.5) 4.7 ( 0.0) 90.0 ( 3.0)

Common range 15.4 ( 1.5) -10.6 ( 1.1) 10.9 ( 0.6) 82.0 ( 3.9)
Parsimonious 49.2 ( 4.4) -34.8 ( 3.5) 33.3 ( 1.0) 76.0 ( 4.3)

Semiparametric 6.8 ( 0.5) 0.4 ( 0.7) 6.9 ( 0.1) 95.0 ( 2.2)

5 Standard 2
15 2 7.3 ( 0.5) 4.7 ( 0.6) 4.8 ( 0.0) 77.0 ( 4.2)

Common range 16.3 ( 1.2) -12.2 ( 1.1) 9.4 ( 0.4) 70.0 ( 4.6)
Parsimonious 63.0 ( 3.9) -54.7 ( 3.1) 28.8 ( 1.2) 30.0 ( 4.6)

Semiparametric 7.9 ( 0.5) -0.8 ( 0.8) 6.9 ( 0.1) 90.0 ( 3.0)

RMSE, root-mean-squared error; SD, average posterior standard deviation; Cov, coverage of 95% posterior intervals.
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