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Abstract30

The ecosystem services offered by pollinators are vital for support-31

ing agriculture and ecosystem functioning, with bees standing out as32

especially valuable contributors among these insects. Threats such as33

habitat fragmentation, intensive agriculture, and climate change are34

contributing to the decline of natural bee populations. Remote sens-35

ing could be a useful tool to identify sites of high diversity before36

investing into more expensive field survey. In this study, the ability of37

Unoccupied Aerial Vehicles (UAV) images to estimate biodiversity at38

a local scale has been assessed while testing the concept of the Height39

Variation Hypothesis (HVH). This hypothesis states that the higher40

the vegetation height heterogeneity (HH) measured by remote sensing41

information, the higher the vegetation vertical complexity and the as-42

sociated species diversity. In this study, the concept has been further43

developed to understand if vegetation HH can also be considered a44

proxy for bee diversity and abundance. We tested this approach in 3045

grasslands in the South of the Netherlands, where an intensive field46

data campaign (collection of flower and bee diversity and abundance)47

was carried out in 2021, along with a UAV campaign (collection of true48

color -RGB- images at high spatial resolution). Canopy Height Mod-49

els (CHM) of the grasslands were derived using the photogrammetry50

technique "Structure from Motion" (SfM) with horizontal resolution51

(spatial) of 10 cm, 25 cm, and 50 cm. The accuracy of the CHM52

derived from UAV photogrammetry was assessed by comparing them53

through linear regression against local CHM LiDAR (Light Detection54

and Ranging) data derived from an Airborne Laser Scanner campaign55

completed in 2020/2021, yielding an R2 of 0.71. Subsequently, the HH56

assessed on the CHMs at the three spatial resolutions, using four dif-57

ferent heterogeneity indices (Rao’s Q, Coefficient of Variation, Berger-58

Parker index, and Simpson’s D index), was correlated with the ground-59

based flower and bee diversity and bee abundance data. The Rao’s Q60

index was the most effective heterogeneity index, reaching high cor-61

relations with the ground-based data (0.44 for flower diversity, 0.4762

for bee diversity, and 0.34 for bee abundance). Interestingly, the cor-63

relations were not significantly influenced by the spatial resolution of64

the CHM derived from UAV photogrammetry. Our results suggest65

that vegetation height heterogeneity can be used as a proxy for large-66

scale, standardized, and cost-effective inference of flower diversity and67

habitat quality for bees.68

Keywords: biodiversity, photogrammetry, pollinators, habitat suitabil-69

ity, insect diversity, structural habitat diversity70
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1 Introduction71

In the last decades, we have witnessed a decrease in plant and insect biodi-72

versity in agricultural landscapes, resulting in the loss of benefits for crops73

and humans [31, 28]. The causes of this can be found in changes of land74

use causing habitat loss and fragmentation [27, 69, 76], increasingly inten-75

sive agriculture, and climate change [71]. All these factors have affected the76

presence of particular niches for different types of insects [31]. Yet insect pol-77

linators are essential for the maintenance of wild plant species, contributing78

to cultural ecosystem services and agricultural yields [6, 18]. They play a79

crucial role in the long-term sustainability of plant communities, and their80

loss can lead to a decline in plant diversity, altering vegetation composition81

[84]. The economic value of insect pollinators is immense, with estimates sug-82

gesting that they contribute to global food production worth more than 15083

billion euros per year [21, 20, 54]. Therefore, insect pollinators are essential84

for maintaining the health and productivity of both agricultural and natu-85

ral ecosystems, as well as for ensuring a continued provisioning of ecosystem86

services [30].87

Earth observation and remote sensing data have become valuable tools88

for estimating different aspects of biodiversity worldwide [63, 65]. Significant89

advancements in sensor technology (with increased spatial and spectral res-90

olution) and vectors (able to cover large areas with higher revisit frequency)91

have made remote sensing rapid and cost-effective to obtain extensive envi-92

ronmental data at various temporal and spatial scales [7]. Over the past few93

years, there has been a development of different methods and techniques uti-94

lizing remote sensing data to assess biodiversity at various spatial levels [7].95

Some of these approaches rely on indirect associations between the variability96

of remotely sensed information and species diversity [82, 81]. Notably, recent97

investigations have specifically concentrated on exploring the link between98

LiDAR data and species diversity. This approach, called "Height Variation99

Hypothesis" (HVH), states that, in a considered ecosystem, the higher the100

vegetation height heterogeneity (HH) assessed by LiDAR information, the101

higher the availability of different niches that can host more diverse species.102

Vertical vegetation structure, which encompasses aspects of habitat hetero-103

geneity, plays a critical role in supporting biodiversity. It is considered one104

of the drivers of biodiversity, directly influencing species distribution and105

diversity, population dynamics, and ecological interactions [41]. By provid-106

ing a variety of microhabitats and vertical niches, the vertical vegetation107

structure offers opportunities for different species to find suitable habitats108

and resources, promoting species coexistence and enhancing overall biodi-109

versity. It contributes to ecosystem stability and resilience, making it a key110
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component in conservation and management efforts aimed at preserving and111

enhancing biodiversity in various ecosystems [26]. Torresani et al. [80, 79]112

tested this approach positively in different forested areas using both Airborne113

Laser Scanning (ALS, where the LiDAR sensor is mounted on an aircraft)114

and space-borne GEDI (Global Ecosystem Dynamics Investigation) LiDAR115

data [16, 14, 34, 53] for the assessment of tree species diversity. Tamburlin et116

al. [72] also tested the methodology in forested areas using ALS LiDARdata,117

showing that the Canopy Height Model (CHM) is the most appropriate Li-118

DAR metric for an accurate estimation of vegetation height heterogeneity119

and inference of species diversity. The approach has been used not only to120

assess vegetation diversity but also to estimate animal diversity, different121

studies showed that the variability in habitat structure has a significant ef-122

fect on the bird diversity in both agricultural and forest ecosystems [2, 43].123

However, there is limited research specifically on the correlation between veg-124

etation structure and insect diversity, particularly at a fine scale observed in125

grasslands.126

In this paper, we aim to test this approach in a grassland ecosystem to127

understand if the vegetation grassland HH assessed through remote sensing128

techniques can be considered a proxy for flower diversity and subsequently129

for bee diversity and abundance. As grassland vegetation structures occur130

at very fine spatial scales, there is a need for structural information at a131

very high spatial resolution. While there have been a few studies [40] explor-132

ing the use of LiDAR for grassland characterization, the limited available133

evidence introduces uncertainty regarding its effectiveness in this context.134

Furthermore ALS data depend on a dedicated aircraft campaign, and for135

this reason, they might be relatively expensive. Furthermore, while ALS136

data depend on a dedicated aircraft campaign and may involve higher costs,137

operational testing of our hypothesis on Unoccupied Aerial Vehicles (UAVs)138

data might provide a practical and scalable approach. The recently devel-139

oped technology centered around these new vectors, specifically photogram-140

metry that employs structure-from-motion algorithms, has resulted in the141

creation of highly precise orthomosaics and 3D information across vast areas142

at a relatively low expense, with spatial resolutions ranging from centime-143

ters to millimeters suitable to derive information on vegetation structure [1].144

Previous researches [77, 33, 38, 9, 10] has demonstrated that UAV imagery145

can be utilized to gauge vegetation attributes, including diversity, species,146

and plant species distribution, as well as to map and track invasive species.147

In this context, our prior study [77] established, in the same study area, a148

positive correlation between flower cover, estimated through UAV images,149

and bee diversity, further emphasizing the versatility of UAV technology in150

understanding and quantifying key ecological relationships.151
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The aim of this study is to test whether we can estimate flower diversity152

and bee abundance and diversity by testing the Height Variation Hypothesis153

in as highly dense and fine structured ecosystem such as grasslands by us-154

ing 3D information derived with photogrammetric analysis using UAV RGB155

(true-colored) images at high spatial resolution (Figure 1). Specifically, we156

assessed the HH with four different heterogeneity indices (Rao’s Q, Coeffi-157

cient of Variation - CV -, Berger-Parker index and Simpson’s D index) using158

CHM data derived from UAV photogrammetric analysis previously validated159

with local ALS LiDARdata. Successively, we correlated the derived HH with160

field-derived flower and bee diversity (species richness) and abundance. Fi-161

nally, we investigated the influence of varying spatial resolutions (10 cm, 25162

cm, and 50 cm) on the observed relationships. Our study focuses on grass-163

lands located in the southeastern region of the Netherlands, which exhibit a164

range of management intensities, resulting in varying degrees of flower cover.165
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Figure 1: A graphical summary of the main expectations of this study. Grass-
land ecosystems with high HH (assessed through CHM derived by UAV pho-
togrammetric images) with a complex vertical structure (seen from the side
in the upper figure and from above in the lower figure) and high environmen-
tal heterogeneity are expected to have a high flower diversity and high bee
diversity and abundance (figure on the left). On the other hand, grassland
areas with low HH might have lower flower diversity and bee diversity and
abundance (figure on the right).
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2 Materials and Methods166

2.1 Study areas167

The study areas (approximately 70 km2 with elevations ranging from 70 to168

171 m asl) are located in the southeast of the Netherlands, near the village169

of Gulpen (Fig. 2). Thirty grasslands representing a range of land use inten-170

sities, from nutrient-poor, biodiversity-rich semi-natural grasslands to inten-171

sively fertilized areas, were chosen in order to test the proposed approach.172

Management of the grasslands included mowing (16 sites), grazing (10 sites)173

and mixed regimes (4 sites), ranging in intensity from one to five uses per174

year (details in Appendix Table 1). Data collection for this study took place175

before the first cut but extensive grazing (<2 LSU/ha) had occurred at most176

grazed plots. Percent herb cover ranged from 0.1% to 69%, with the most177

dominant species in terms of flower cover being Ranunculus repens, R. acris178

and R. bulbosus, Leucanthemum vulgare, Trifolium pratense, Bellis perennis179

and Taraxacum sp. (all >5% of the total flower area over all transects). The180

study areas are part of the experimental biodiversity area network of the181

EU Showcase project https://showcase-project.eu/. By selecting semi-182

natural, extensively utilized, and intensely managed grasslands from diverse183

regions, we reduced spatial clustering of distinct grassland types.184

Figure 2: The study areas located in the Southeast of the Netherlands.
The 30 plots transects within each study area are indicated by yellow dots
(Basemap: Google Earth map as of August 2022).
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2.2 Field data185

2.2.1 Collection186

In each study area, a transect measuring 150 m by 1 m was established187

and divided into three equal sections of 50 m. These transects were visibly188

marked with Ground Control Points (GCP) plates that could be identified189

by UAV imagery. GCP were positioned from the edge to the center of the190

grassland, covering differences in elevation heterogeneity within the grass-191

land helping successively to find our sampling locations on the images. To192

ensure a sampling of distinct bee populations, adjacent transects were gen-193

erally separated by distances greater than 500 m [56]. Previous studies [56]194

have shown that, although large-bodied bees like bumblebees can forage at195

distances of a few kilometers, their primary foraging distances are shorter,196

typically ranging between 250 m and 550 m. Smaller wild bees tend to for-197

age even closer to their nests. Along each transect, surveys were conducted198

for both bees and flowers. Transect walks, a standard method for studying199

plant-pollinator associations, were used to count both wild bees and honey-200

bee (Apis mellifera) [83]. The transects were surveyed by two observers who201

counted all bees within a meter in front of them while slowly walking along202

the transect for 15 min, excluding the time required for handling caught203

specimens. Species were identified using identification keys specific to Dutch204

Apidae [17, 46, 47]. While distinctive species could be identified in the field,205

other specimens were collected and identified in the laboratory using stereo-206

microscopes and, in some cases, expert consultation. Flower surveys were207

conducted in each transect, generally on the same day as the bee surveys,208

following the methodology described by Scheper et al. [70]. However, due to209

logistical constraints, some grasslands were surveyed one or two days before210

or after the bee surveys. Subsequent to the bee surveys, flower surveys were211

conducted in each transect at which the number of flowers within the 150 m212

x 1 m transect was counted per species [70]. Hence, only flowering species213

richness was recorded and abundance was measured in terms of flowering.214

Flower surveys were generally conducted on the same day as the bee sur-215

veys, but due to logistical constraints, some grasslands were surveyed one or216

two days before or after the bee surveys (details in Appendix Table 1). The217

surveys were conducted between May 12th and 31st, 2021, from 10 a.m. to218

5 p.m., under favorable weather conditions, which included dry conditions,219

more than 50% sunlight, temperatures of at least 15 degrees Celsius, and220

wind speeds below 2 Beaufort.221
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2.2.2 Ground-based diversity indices222

The ground-based flower diversity was calculated using the species richness,223

namely the number of different flower species per plot transect. Also for the224

characterization of bee diversity, we relied on species richness. Bee abundance225

was defined as the total number of bees counted along each transect.226

2.3 UAV Data Acquisition and Data Processing227

The UAV data were acquired simultaneously with the field survey between228

May 12th and 31st, 2021. A RGB Zenmuse X5 camera (16.0 MP, 17.3 x229

13.0 mm sensor) with an integrated RTK GPS was carried by the UAV "DJI230

Matrice 210 RTK". To simplify the production of the final point cloud and231

the digital elevation model, the images were taken at an overlapping rate of232

80%. All flights were conducted at a height of approximately 20 m above the233

ground. The average spatial resolution of the resulting UAV images is 0.5234

cm.235

The Agisoft Metashape Professional Edition software was used to analyze236

and process the UAV images following three main procedural stages: image237

alignment, dense point cloud creation, and inference of the digital elevation238

model. In the first step, set with "high" accuracy, the software extracted239

features within the images and matched them to produce a sparse 3D point240

cloud. At this stage, the software automatically detected the precise fea-241

tures of the GCP and extracted the GPS coordinates for each of them. We242

maintained the "high" accuracy setting during the construction of the dense243

point cloud, which was subsequently exported as a LAS file. The mean point244

density for all 30 areas was 700 points/m2 while the vertical resolution was245

around 15 mm. The Digital Surface Model (DSM) was derived at different246

spatial resolutions (10 cm, 25 cm, and 50 cm) using the "dsmtin" algorithm247

of the "rasterize_canopy" function of the R package "lidR" [68]. This algo-248

rithm uses the Delaunay triangulation method to connect the points in the249

point cloud, forming a network of non-overlapping triangles. The resulting250

triangular irregular network (TIN) represents the surface, and rasterization251

is then applied to convert this TIN into a gridded DSM, providing a compre-252

hensive representation of the terrain and vegetation structure. The Digital253

Terrain Model (DTM) was derived using the same function but with a prior254

filtering of the point cloud, selecting the lowest points every 50 cm. Finally,255

the CHM was derived by taking the difference between the DSM and DTM.256

The decision to set the finest spatial resolution at 10 cm was primarily driven257

by computational considerations.258
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2.4 Heterogeneity index259

HH was calculated using the CHM at different spatial resolutions (10 cm, 25260

cm, and 50 cm) with four different heterogeneity indices: Rao’s Q index, the261

CV, the Berger-Parker index, and the Simpson’s D index [64].262

The Rao’s Q index, originally developed by Rao [55], was later recom-263

mended by Botta-Dukát [5] as a functional diversity index in ecology. Sub-264

sequently, Rocchini et al. [62] introduced this measure as a heterogeneity265

index for remote sensing data, employing the following equation 1:266

Q =
N∑

i,j=1

dij × pi × pj (1)

where:267

Q = Rao’s Q index, used in remote sensing application268

pi = pj = 1/N = relative abundance of pixel i, j in a selected area (i.e.269

in our case, raster over the transects) composed of N pixels270

dij = distance/dissimilarity between pixel i and j (dij = dji and dii = 0)271

We determined dij as the Euclidean distance using a solitary layer (CHM272

raster).273

The CV, widely employed as a measure of heterogeneity in various eco-274

logical studies [22, 35], is calculated using the following equation 2:275

CV = (SD/x)× 100 (2)

where:276

CV= Coefficient of Variation277

SD= Standard Deviation of the pixel values within a selected area278

x = mean of the pixel values within a selected area279

The Berger-Parker index is often used as a heterogeneity index in eco-280

logical studies and also with remote sensing data, it provides a measure of281

species/pixel dominance within a given community/data-set [86]. It has been282

calculated using the following equation 3:283

BP =
nmax

N
(3)

where:284
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BP is the Berger-Parker heterogeneity index285

- nmax is the abundance of the most dominant pixel value in the data-set286

- N is the total abundance of all pixels in the data-set.287

The Simpson’s D index is a diversity assessment measure frequently em-288

ployed in ecology [33, 13]. It can also serve as a heterogeneity measure with289

remote sensing data, relying solely on the relative abundance of pixels within290

the specific plot or area [64]. It is calculated as (equation 4):291

D =
n∑

i=1

p2i (4)

where:292

D = Simpson index293

n= total number of pixel’s value294

pi = relative abundance of a pixel value in a CHM raster plot295

2.5 Validation of the UAV DTM and CHM296

DSM and DTM with a spatial resolution of 50 cm derived from local LiDAR297

data collected by an ALS LiDARcampaign carried out between 2020 and 2022298

(AHN4 data-set, freely available for download here: https://geotiles.nl/)299

were used to validate the UAV digital models. The LiDAR flight was conducted300

on February 18th, 2021.DSM and DTM with a spatial resolution of 50 cm301

derived from local Li-DAR data collected as part of an national ALS LiDAR302

campaign carried out between 2020 and 2022 (AHN4 data-set, freely available303

for download here: https://geotiles.nl/) were used to validate the UAV digi-304

tal models. AHN datasets are systematically gathered every few years for all305

of the Netherlands, by multiple operators and sensors, where the exact spec-306

ifications may vary over time and space. AHN4 pointclouds have a vertical307

resolution of 13 mm and a density of 10-14 point/m2. In our study area, the308

LiDAR flight for AHN4 was conducted on February 18th, 2021. During this309

season, the grassland vegetation is very low, resulting in the DSM and DTM310

having equal elevations, effectively yielding a CHM value of zero. For this311

reason, we decided to validate the UAV-DTM with the LiDAR-DTM using312

10 random points within each study area (300 points in total). Additionally,313

we validated the CHM over multi-annual visible vegetation-patch (e.g., small314
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shrubs) that could be visible in both the UAV-CHM and LiDAR-CHM. We315

randomly selected a point over each multi-annual visible vegetation for each316

study area (29 points in total) and correlated the digital models using linear317

regression.318

For both the DTM and CHM, the coefficient of determination (R2) was319

used to estimate the goodness of fit of the model, while the P value was used320

to measure its statistical significance.321

2.6 Workflow322

The approach proposed in this study is summarized in Figure 3. Firstly323

(point 1), we validated the UAV DTM and CHM with DTM and CHM de-324

rived from the local ALS LiDARdata. Then (point 2), for each transect, we325

estimated HHs using the UAV CHM data at different spatial resolutions (10326

cm, 25 cm, and 50 cm) with four different heterogeneity indices (Rao’s Q327

index, CV, Berger-Parker index and Simpson’s D index). Subsequently, we328

performed linear regression analyses to correlate the HHs with the ground-329

based flower and bee diversity and bee abundance. The coefficient of deter-330

mination (R2) was used to estimate the goodness of fit of the model, while331

the P value was used to measure its statistical significance.332

Figure 3: The image shows the workflow of the proposed approach.
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3 Results333

The validation of the DTM derived from UAV photogrammetry with local334

ALS DTM LiDAR data (AHN4 data-set) at a spatial resolution of 50 cm335

is shown in Figure 4. The linear regression analysis yielded a positive rela-336

tionship and strong correlation between the two variables. The correlation337

between the two variables is significant (p-value < 0.05), with a goodness of338

fit of 0.98. The UAV-derived DTM tends to be higher than the LiDAR DTM339

with a systematic average offset of 44 m (calculated as the difference of the340

mean’s datasets).341

Figure 4: The validation of the DTM derived from UAV photogrammetry
with the local LiDAR DTM AHN4 is shown with the blue line.

The validation of the CHM derived from UAV photogrammetry with lo-342

cal ALS CHM LiDAR data (AHN4 data-set) at a spatial resolution of 50343

cm is shown in Figure 5. Similar to the DTM, the linear regression analysis344

shows a positive relationship, and the UAV CHM tends to overestimate the345

LiDAR CHM with an offset of 1,002 m. This offset may be attributed to346

various factors, including seasonality differences (LiDAR data were collected347

in February during the leaf-off season, while photogrammetric data were ac-348

quired in early spring in May), data processing (methodological distinction349
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arises from the inability to directly calculate the DTM with photogramme-350

try that was derived from the DSM) and differences in the used processing351

algorithms employed for DTM and DSM assessment. Despite the presence352

of this offset, the correlation between the two variables remains statistically353

significant (p-value < 0.05), and the linear model exhibits a commendable354

goodness of fit at 0.71.355

Figure 5: Validation of the CHM derived from UAV photogrammetry with
the local LiDAR CHM AHN4.

Figure 6 shows a study area with two different vegetation structure. In356

the middle of the figure is shown a stripe of grass characterized by a higher357

vegetation structure complexity and high HH while on the side grassland358

with low HH. Sub-figure A shows the RGB image, sub-figure B the CHM359

derived from the photogrammetric point cloud showed in sub-figure C.360
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Figure 6: A study area displaying two distinct vegetation structures. The
image highlights a central grassy strip, characterized by a higher complexity
in vegetation structure and high HH values. Adjacent to it is a grassland
area with lower HH values. Sub-figure A showcases the RGB image, while
sub-figure B showcases the CHM derived from the photogrammetric point
cloud featured in sub-figure C. Two transects (in red) characterized by dif-
ferent height heterogeneity. Sub-figure A shows a CHM of a transect char-
acterized by high height heterogeneity (heterogeneous CHM ranging from 0
to 0.3 m), while sub-figure B shows a transect with low height heterogeneity
(homogeneous CHM with values ranging from 0 m to 0.1 m).

The correlation between the flower diversity and calculated HH with dif-361

ferent heterogeneity indices (Rao’s Q index, CV, Berger-Parker, and Simp-362

son’s D) using the CHM at 10 cm, 25 cm, and 50 cm derived from UAV363

photogrammetry is shown in Figure 7. All the correlations are positive and364

significant, except when the HH was calculated with the Berger-Parker index365

using a CHM of 10 cm and 50 cm. The highest R2 values were obtain when366

the HH was calculated with the Rao’s Q index. In this case, the coefficient of367

determination range between 0.41 (UAV CHM spatial resolution of 10 cm)368

and 0.44 (UAV CHM spatial resolution of 25 cm).369
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Figure 7: Correlation between the ground-based flower diversity and the HH
calculated with the four heterogeneity indices (Rao’s Q, CV, Berger-Parker
and Simpson’s D ) derived from UAV CHM at 10 cm, 25 cm and 50 cm

Figure 8 shows the correlation between the bee abundance and the HH370

calculated with different heterogeneity indices (Rao’s Q index, CV, Berger-371

Parker, and Simpson’s D) using the CHM at 10 cm, 25 cm, and 50 cm derived372

from UAV photogrammetry. In this case, the correlations are all positive, and373

significant only when the HH was calculated with the Rao’s Q and Simpson’s374

D indices. Generally, the R2 values are lower than the ones derived from the375

correlation between HH and flower diversity. Higher R2 are associated with376

HH calculated using the Rao’s Q index. The coefficient of determination377

ranges between 0.31 (UAV CHM spatial resolution of 25 cm) and 0.34 (UAV378

CHM spatial resolution of 50 cm).379
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Figure 8: Correlation between ground-based bee abundance and HH calcu-
lated with the four heterogeneity indices (Rao’s Q, CV, Berger-Parker, and
Simpson’s D) derived from UAV CHM at 10 cm, 25 cm, and 50 cm.

Finally, the correlation between bee diversity and HH calculated with dif-380

ferent heterogeneity indices (Rao’s Q index, CV, Berger-Parker, and Simp-381

son’s D) using the CHM at 10 cm, 25 cm, and 50 cm derived from UAV382

photogrammetry is shown in Figure 9. Also in this case, positive correla-383

tions persist, with the Rao’s Q index yielding the highest R2 values, while384

the Simpson’s D index shows a comparatively modest correlation with HH.385

They are significant, except when the HH was calculated with the Berger-386

Parker index (with CHM at 10 cm and 50 cm).387
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Figure 9: Correlation between ground-based bee diversity and HH calculated
with the four heterogeneity indices (Rao’s Q, CV, Berger-Parker, and Simp-
son’s D) derived from UAV CHM at 10 cm, 25 cm, and 50 cm.

4 Discussion388

This paper introduces a new approach to estimate flower diversity, which389

can be used as an indicator of bee abundance and diversity in grassland390

ecosystems. Our study builds upon previous studies [77] that identified391

UAV images, analyzed through various machine learning algorithms, as a392

reliable proxy for bee diversity and abundance. However, with this inno-393

vative HVH approach, we delve deeper into unraveling the intricate rela-394

tionship between grassland structural heterogeneity and its impact on bee395

diversity. The method utilizes UAV RGB images to create a 3D model of the396

vegetation structure through photogrammetric analysis. By applying differ-397

ent heterogeneity indices, we derived information on vegetation HH, which398

showed a positive correlation with ground-based measures of flower diver-399

sity, bee diversity, and bee abundance. These findings serve as a proof of400

concept, demonstrating the potential of UAV imagery to accurately evaluate401

the habitat structure as a crucial element of grassland habitat quality for402

bees. The findings of this study provide valuable insights into the use of403

18



UAV imagery and HH in estimating biodiversity at a local scale, specifically404

in grassland ecosystems. The results indicate that vegetation height hetero-405

geneity, as measured through UAV-derived CHMs, can serve as a proxy for406

flower diversity and, consequently, bee diversity and abundance.407

4.1 Height Variation Hypothesis in grassland ecosys-408

tem: Advantages, Contrasts, and Ecological Impli-409

cations410

The proposed approach relies on the theory behind the HVH which, unlike411

its counterpart (the Spectral Variation Hypothesis -SVH-), offers several sig-412

nificant advantages. Being based on vertical structural heterogeneity, the413

HVH is not susceptible to certain factors such as the spectral resolution of414

the optical images [60, 45], by noise introduced by the soil properties which415

can negatively affect the accuracy of biodiversity assessments [22] and by the416

atmospheric conditions such as haze, aerosols, and cloud cover [61].417

This study represents the first validation of the HVH with UAV images,418

the results showed that the use of the photogrammetric analysis offer significant419

advantages for biodiversity assessment also in grasslands. This study pro-420

vides a novel application of the HVH with UAV images in grasslands. The421

results indicate the potential of photogrammetric analysis for biodiversity as-422

sessment in grasslands, contributing to the understanding of vegetation struc-423

ture and its relationship with biodiversity. As shown in other studies [50, 85],424

the high-resolution cameras mounted to UAVs allow capturing of detailed im-425

ages, enabling the assessment of fine-scale heterogeneity of intensively and426

extensively managed grasslands. The proposed approach highlights the ca-427

pability of UAVs to assess grassland vegetation structure and heterogeneity,428

providing detailed information about the vertical complexity and variability429

of the vegetation, critical information for understanding ecosystem dynamics,430

biodiversity, and habitat suitability for various organisms [50].431

Other approaches have been developed to assess these aspects by us-432

ing UAV data; recent studies for example focused on the evaluation of flower433

abundance as a proxy for diversity and abundance of bees [77, 11]. These ap-434

proaches often rely on machine learning algorithms, which necessitate metic-435

ulously curated and representative training data-sets that, due to their time-436

consuming and resource-intensive nature, can potentially hinder scalability437

and applicability in certain contexts [8]. Moreover, the representativeness438

of the training data-set is critical to ensure the generalizability of the algo-439

rithm’s performance. These challenges can impede the scalability and appli-440

cability of machine learning-based approaches under conditions, where there441
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are no comprehensive and diverse training data-sets [74]. Furthermore, ma-442

chine learning algorithms may exhibit limitations in their ability to capture443

the full complexity of ecological dynamics. They rely on patterns and asso-444

ciations learned from the training data-sets, which may not encompass the445

entirety of the intricate relationships within an ecosystem. Consequently, the446

predictive power of machine learning models may be limited when confronted447

with novel or complex ecological scenarios that deviate from the patterns rep-448

resented in the training data-set [48].449

The findings obtained by our analytical approach hold significant rele-450

vance for ecological studies for multiple reasons. Understanding the vertical451

complexity and variability of grassland vegetation provides insights also into452

habitat heterogeneity and resource availability for various organisms, includ-453

ing plants, insects, birds, and small mammals [24, 3, 49]. Different species454

have specific habitat preferences and requirements based on their vertical455

distribution within the grassland. Assessing grassland structure helps to456

understand the composition, distribution, and abundance of species within457

the ecosystem [52]. It would be intriguing to explore whether there exists a458

correlation between grassland structure and the various ecosystem processes459

and services such as nutrient cycling, carbon storage, water infiltration, and460

energy fluxes. If such a correlation is found, our approach could be uti-461

lized to achieve more precise mapping of these significant ecosystem services,462

surpassing the current methods employed. Additionally, the information on463

grassland structure can be integrated with other environmental data, such as464

soil properties and landscape features, to gain a more holistic understanding465

of the ecological dynamics and drivers in grassland ecosystems [67]. Further-466

more, the proposed approach could be used to assess changes in grassland467

structure as a results of land management practices, ecological succession,468

and of the impacts of disturbances such as grazing, fire, or land-use changes.469

Monitoring and understanding these structural changes are essential for ef-470

fective conservation and management of grassland ecosystems [32, 25, 15].471

4.2 UAVs in Bee Habitat Monitoring: Challenges and472

Prospects473

UAV-based methods have emerged as promising tools for monitoring habitat474

quality for bee pollinator communities, primarily due to their affordability475

[23]. These methods allow different operators, including researchers, farmers,476

and ecologists, to acquire high spatial resolution data from various sensors477

simultaneously, covering extensive areas within a short time of data collec-478

tion. Furthermore, the "on-demand" approach facilitated by UAVs enables479
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capturing specific stages of vegetation phenology, such as flowering time, par-480

ticularly in regions characterized by high cloud cover [44, 12]. These capabil-481

ities provide valuable insights into the temporal dynamics of plant-pollinator482

interactions. However, despite their potential, several challenges must be ad-483

dressed before UAV-based methods can be routinely deployed at large spatial484

scales. Challenges arising may involve issues related to data processing, sen-485

sor calibration, image analysis algorithms, and the development of standard-486

ized protocols to ensure data comparability and reliability. Overcoming these487

hurdles will be crucial for realizing the full potential of UAV-based approaches488

in ecological research and monitoring. Addressing these challenges paves the489

way for a visionary application, where UAVs, equipped with advanced sen-490

sors, facilitate large-scale macroecological studies. This approach enables491

real-time data acquisition, enhancing our understanding of spatial patterns,492

biodiversity dynamics, and ecosystem processes across diverse landscapes.493

The impact of the spatial resolution of UAV data on the correlation be-494

tween grassland structural metrics (such as HH) and flower and bee diversity,495

as well as bee abundance was investigated in this study. Based on our re-496

sults, the spatial resolution of UAV data does not play a critical role in the497

correlations between vegetation assessment variables (such as flower diver-498

sity, bee abundance, and bee diversity) and HH calculated using different499

heterogeneity indices. The correlations between these variables remain pos-500

itive and significant across different spatial resolutions (10 cm, 25 cm, and501

50 cm) derived from UAV photogrammetry. This finding aligns with the502

results reported in several other studies examining the influence of spatial503

resolution on vegetation assessment using UAV imagery. For instance, [37]504

demonstrated that species classification in a heterogeneous grassland using505

high spatial resolution UAV imagery was not significantly affected by spatial506

resolution. Similarly, the impact of spatial resolution on the classification507

of vegetation types in highly fragmented planting areas based on UAV hy-508

perspectral images was found to be limited [36]. Different studies [29, 11]509

highlighted that the use of micro-UAV with relatively low spatial resolution510

still provide valuable information for assessing vegetation structure and for511

long-term monitoring purposes. On the other hand, it is important to note512

that the relationship between the high spatial resolution of optical remote513

sensing data and its correlation with ground-based ecological data is a com-514

plex matter [42]. Different studies [77, 60, 66] have shown that higher spatial515

resolution can lead to higher correlations with ground-based data. It is rec-516

ognized that images with coarse spatial resolution may integrate the spectral517

signature of various vegetation elements, making it challenging to identify518

boundaries between spatial entities and potentially resulting in mixed sig-519

nals at the pixel scale [45, 19]. These results imply that drone flights can520
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also be conducted at higher altitudes and thus cover larger areas in a single521

flight (at a lower spatial resolution), enabling more efficient data collection.522

4.3 Insights from Heterogeneity Indices523

Regarding the evaluation of the use of different heterogeneity indices, our524

results demonstrated the usefulness of the Rao’s Q index in assessing the525

vegetation HH across plots areas of intensive and extensive grassland man-526

agement. This heterogeneity index, widely used as a spectral heterogeneity527

index in studies on SVH [39, 62, 75, 51] offers the advantage of coupling528

both the relative abundance and the pixel values (as quantified by the Eu-529

clidean distance between the pixel values) [78], thus capturing the complete530

structural information derived from the heterogeneity of the photogrammet-531

ric outcomes. This index, when applied with a single layer or raster as in532

our study, can effectively serve as a proxy for heterogeneity by narrowing it533

down to variance using half of the squared Euclidean distance (1/2 d2ij) (for534

further details on the mathematical characteristics of Rao’s Q, we refer to535

[62, 57, 59, 58]). On the other hand, other indices evaluated in our work,536

proved rather inefficient in assessing HH: the CV rely only on the distance537

between the pixel values while the Simpson’s D and the Berger-Parker index538

rely solely on the relative abundance of CHM pixels within a specific raster or539

an area of interest [62]; given the exceptional precision of our photogrammet-540

ric point cloud, approximately 15 mm, the likelihood of distinct pixels sharing541

identical values is for this reason significantly minimized. Consequently, they542

fail to adequately characterize the entire heterogeneity of vegetation heights,543

which depend on both the actual values of vegetation height and their distri-544

bution and relative frequency. One concern in this study revolves around the545

utilization of the CHM as the sole metric for assessing the HH, without con-546

sidering other metrics or additional digital layers, such as optical data that547

might be related to vegetation structure. The decision to focus solely on the548

CHM had two main reasons. Firstly, the primary objective of this study was549

to investigate the feasibility of utilizing RGB UAV images to assess vege-550

tation structure complexity for estimating HH and flower and bee diversity551

and bee abundance. Secondly, choice was guided by the findings of Tam-552

burlin et al. [72], who, testing the HVH with LiDAR data, evaluated various553

LiDAR metrics (such as entropy and standard deviation of point cloud dis-554

tribution, percentage of returns above mean height) for HH estimation and555

demonstrated that the CHM was the most effective metric to characterize556

vegetation HH.557

Another concern that could arise is related to the accuracy of the UAV558

derived CHM. While the CHMs derived from UAV photogrammetry showed559
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a robust correlation with local CHM LiDAR data, there may still be some560

differences in accuracy and precision. We acknowledge that photogramme-561

try techniques may not capture true ground points accurately, especially in562

areas with dense and short grass. One possible way to enhance the precision563

of our approach could be the utilization of LiDAR technology mounted on564

UAVs that can provide more precise and detailed measurements of vegetation565

structure and topography [4], offering valuable information on floral resources566

and bee foraging habitats. However, it is worth noting that LiDAR-equipped567

UAVs are currently considered expensive, which can limit their widespread568

use. Furthermore recent studies indicate that these systems may not neces-569

sarily exhibit significantly improved performance in acquiring accurate DSMs570

within closed vegetation canopies [73]. It is important to clarify that our pri-571

mary interest lies in assessing the vertical variation within the point cloud572

rather than obtaining absolute values for ground surface measurements. To573

address this concern, we employed a methodology focused on analyzing the574

amount of variation in vertical points rather than relying on precise ground575

measurements, allowing to evaluate the relative differences in elevation val-576

ues between different areas, which can still provide valuable insights into the577

landscape dynamics and terrain characteristics.578

5 Conclusions579

This study demonstrates the potential of UAV imagery and the HVH con-580

cept for estimating biodiversity at a local scale in grassland ecosystems. The581

results suggest that vegetation HH, as assessed through UAV-derived CHMs,582

can serve as a reliable proxy for flower diversity, bee diversity, and abundance.583

The use of UAVs, with the ability to assess species diversity and provide584

information on grassland structure, offers a cost-effective and standardized585

approach to monitor and manage grassland ecosystems, providing valuable586

information for conservation efforts and advancing ecological research. While587

our study serves as an initial application, further analysis in diverse grassland588

areas using various heterogeneity indices is necessary to establish the gener-589

alizability of the approach. Additionally, this approach could be extended to590

assess biodiversity not only of bees but also of other insects such as spiders or591

butterflies. Further analysis could focus on integrating optical information,592

such as flower cover estimation, or spectral variability data, with structural593

information from UAVs enhancing the depth of biodiversity characterization.594

We propose that ecologists, botanists, and farmers can employ our approach,595

utilizing UAV images and photogrammetric analysis in order to assess habi-596

tat heterogeneity, as a preliminary analysis for the estimation of bee diversity597
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and abundance.598
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Moudrỳ, V., et al. The relationship between spectral and plant813

diversity: Disentangling the influence of metrics and habitat types at the814

landscape scale. Remote Sensing of Environment 293 (2023), 113591.815

[52] Petermann, J. S., and Buzhdygan, O. Y. Grassland biodiversity.816

Current Biology 31, 19 (2021), R1195–R1201.817

[53] Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A.,818

Hansen, M. C., Kommareddy, A., Pickens, A., Turubanova,819

S., Tang, H., Silva, C. E., et al. Mapping global forest canopy820

height through integration of gedi and landsat data. Remote Sensing of821

Environment 253 (2021), 112165.822

[54] Potts, S. G., Ngo, H. T., Biesmeijer, J. C., Breeze, T. D.,823

Dicks, L. V., Garibaldi, L. A., Hill, R., Settele, J., and Van-824

bergen, A. The assessment report of the intergovernmental science-825

policy platform on biodiversity and ecosystem services on pollinators,826

pollination and food production.827

[55] Rao, C. R. Diversity and dissimilarity coefficients: a unified approach.828

Theoretical population biology 21, 1 (1982), 24–43.829

[56] Redhead, J. W., Dreier, S., Bourke, A. F., Heard, M. S., Jor-830

dan, W. C., Sumner, S., Wang, J., and Carvell, C. Effects of831

30



habitat composition and landscape structure on worker foraging dis-832

tances of five bumble bee species. Ecological Applications 26, 3 (2016),833

726–739.834

[57] Ricotta, C. Additive partitioning of rao’s quadratic diversity: a hier-835

archical approach. Ecological Modelling 183, 4 (2005), 365–371.836

[58] Ricotta, C., Pavoine, S., Bacaro, G., and Acosta, A. T. Func-837

tional rarefaction for species abundance data. Methods in Ecology and838

Evolution 3, 3 (2012), 519–525.839

[59] Ricotta, C., and Szeidl, L. Towards a unifying approach to diver-840

sity measures: bridging the gap between the shannon entropy and rao’s841

quadratic index. Theoretical population biology 70, 3 (2006), 237–243.842

[60] Rocchini, D. Effects of spatial and spectral resolution in estimat-843

ing ecosystem α-diversity by satellite imagery. Remote sensing of844

Environment 111, 4 (2007), 423–434.845

[61] Rocchini, D., Chiarucci, A., and Loiselle, S. A. Testing the spec-846

tral variation hypothesis by using satellite multispectral images. Acta847

Oecologica 26, 2 (2004), 117–120.848

[62] Rocchini, D., Marcantonio, M., and Ricotta, C. Measuring849

rao’s q diversity index from remote sensing: An open source solution.850

Ecological indicators 72 (2017), 234–238.851

[63] Rocchini, D., Santos, M. J., Ustin, S. L., Féret, J.-B., As-852

ner, G. P., Beierkuhnlein, C., Dalponte, M., Feilhauer, H.,853

Foody, G. M., Geller, G. N., et al. The spectral species concept854

in living color. Journal of Geophysical Research: Biogeosciences 127, 9855

(2022), e2022JG007026.856

[64] Rocchini, D., Thouverai, E., Marcantonio, M., Iannacito,857

M., Da Re, D., Torresani, M., Bacaro, G., Bazzichetto, M.,858

Bernardi, A., Foody, G. M., et al. rasterdiv—an information859

theory tailored r package for measuring ecosystem heterogeneity from860

space: To the origin and back. Methods in ecology and evolution 12, 6861

(2021), 1093–1102.862

[65] Rocchini, D., Torresani, M., Beierkuhnlein, C., Feoli, E.,863

Foody, G. M., Lenoir, J., Malavasi, M., Moudrỳ, V., Šímová,864
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