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Abstract

In the rapidly evolving field of nanotechnologyapt virus nanoparticles (pVNPSs) are emerging as
powerful tools in diverse applications ranging froramedicine to materials science. The
proteinaceous structure of plant viruses allowsctyesid structure to be modified by genetic
engineering and/or chemical conjugation with naatesprecision. This means that pVNPs can be
engineered to display peptides and proteins on &xéernal surface, including immunodominant
peptides derived from pathogens allowing pVNPsaaed for active immunization. In this
context, pVNPs are safer than VNPs derived from mahan viruses because there is no risk of
infection or reversion to pathogenicity. FurtheremgrVNPs can be produced rapidly and
inexpensively in natural host plants or heterolayproduction platforms.

In this review, we discuss the use of pVNPs fordbkvery of peptide antigens to the host immune
in pre-clinical studies with the final aim of protimg systemic immunity against the corresponding
pathogens. Furthermore, we described the vergatdiliplant viruses, with innate
immunostimulatory properties, in providing a hugegunal resource of carriers that can be used to
develop the next generation of sustainable vaccines

Keywords:
Molecular farming, CVP, eVLP, VLP, vaccine, peptgieduction
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1. Introduction

Many different platforms have been developed indimerging field of nanotechnology, ranging
from synthetic nanomaterials to naturally occurdmgrnanomaterials, the latter including protein
cages and viral nanopatrticles (VNPS).

VNPs are nanomaterials based on viruses [1]. Fromatarials science perspective, VNPs are
interesting because they form self-assembling techires that can easily be produced in milligram
guantities in the laboratory. These naturally odogrnanostructures have many unique properties,
including a quality-control system that guarantied all the particles are monodisperse and nearly
identical in shape and size. These propertiesitreutt to achieve when producing synthetic
nanomaterials. Furthermore, VNPs-based nanomaenalthe result of the assembly of millions of
identical proteins, resulting in a highly definaatigorecise three dimensional structures, with
superior features as a scaffold than syntheticgbest[2]. VNPs also tend to be symmetrical,
polyvalent, soluble in water and stable in aqudmifers, which are attractive features for
biological applications [1].

Virus capsids occur naturally in many differentesiand shapes, including icosahedrons [3], tubes
[4] and filaments[5]. Therefore, VNPs can be destywith similarly diverse forms. However, one
common property shared by all capsids is their gtkapal robustness, reflecting their natural
function to enclose and protect viral nucleic acttdss increasing the resistance of VNPs to
extreme pH and temperatures. But because theytrely composed of protein, VNPs are also
biodegradable and biocompatible. Furthermore, Valessuitable for scaled-up production and
industrial manufacturing, given their inexpensiveduction; in addition, in some cases ,VNPs can
be self-replicating, and this aspect can decrease more their production expenses [2]. Together,
these features make VNPs one of the most advamckdessatile nanomaterials produced by
nature.

Although viral nanotechnology is a novel and emegdield, recombinant virus-based materials
have been used for nearly 50 years as vaccinegereldelivery vectors [6,7]. Several clinical
vaccines are based on VNPs, including the Humaitigayavirus (HPV) vaccines Gardasil

produced by Merck and Cervarix produced by GSK $&veral gene therapies based on
Adenovirus, Adeno-associated virus and Lentivimgsumndergoing clinical trials [9]. For the past

20 years, chemists, materials scientists and eagirfeve developed a range of methodologies that
can be applied to fine-tune and engineer VNPsgdeci$ic applications.

VNPs based on plant viruses (pVNPSs) are partigulagtsatile because they pose no risk of
infection in mammals. In contrast, VNPs based ommalian viruses have the potential to revert
to an infectious form. Experiments in mice have akown that pVNPs have negligible toxicity.
The administration of up to 100 mg {#@articles) per kg body weight has been demonstrated
without adverse effects, Cowpea Clorotic Mottlewgiparticles have been usedifovivo imaging
in a pre-clinical study, demonstrating their abitib spread in mice’s organisms without leaving
trace after 24 hours [10]. Biomaterials derivedrrplant viruses can be delivered intravenously
and do not induce hemolysis or coagulation, ang #ne rapidly cleared from non-target organs
and tissues in a matter of hours [11].

The applications of pVNPs can be divided into fkey fields: 1) vaccine development; 2)
engineering targeted imaging and/or therapeutigenets; 3) data storage; and 4) the development
of films and arrays for applications ranging froleatronics to tissue engineering.
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This review focuses on the use of pVNPs for vacdenelopment, describing the main platforms
developed thus far and some examples of active mmation. However, the use of pVNP carriers
for the delivery of drugs and imaging reagentdss a rapidly developing field, particularly foreth
diagnosis and treatment of cancer [1]. A grounddnggexample, in this framework, is the fusion
to the viral capsid of doxorubicin, a chemotherajgeagent. The resulting pVNP displays both
immunotherapeutic and chemotherapeutic effects)tieg effective in the treatment of mice
melanoma [12]. The reader interested in this aneald consult the extensive work of Steinmetz
and colleagues [12-15].

2. The Development of pVNPs-based platformsfor displaying Subunit Vaccines

Unlike attenuated or killed pathogens, subunit wreecomprise only a small antigenic component
of a target pathogen so there is no risk of rewarsd pathogenicity. Subunit vaccine design
requires the selection of an immuno-dominant pegiat is able to induce a strong immune
response which at least partially protects agahespathogen from which the peptide was derived.
Subunit vaccines can be produced in many diffeegptession systems, but one drawback is that
multiple doses are required combined with an edfitbut nontoxic adjuvant to confer an
acceptable level protection. Poor immunogenicity biéen limited the application of subunit
vaccines [16]. This probably reflects the incomplieiiding and/or poor presentation of the antigen
subunits to the immune system. To enhance the imgamcity of subunit vaccines, they can be
combined with stronger adjuvants [17] or displagedh multivalent array on a larger carrier
molecule, such as a pVNP.

The structure of many plant viruses has been savédyh resolution thanks to a combination of
DNA sequence analysis and techniques such as Eryajallography and cryo-electron
microscopy (Table 1). Despite the large size of PgNthe availability of intricate structural
models means that regioselective modification isallg achievable and predictabMiruses can
therefore function as nanoscale scaffolds allovifregmultivalent attachment of functional ligands
at defined positions.

Because pVNPs are genetically encoded biomatehajscan be modified by genetic engineering.
This offers a clear advantage over any synthetiernah because chemical modifications are not
100% efficient. The genetic insertion of heterolegaoding sequences at defined positions within
the genes encoding virus coat proteins allows geptwith diverse biological functions to be
displayed on VNPs, usually on the external surf&a8e20] but also occasionally on the surface of
an internal cavity or lumen [21].

Bioconjugation can be used instead of (or in comioim with) genetic engineering to display not
only peptides but also entire complex proteinsanig molecules and polymers such as nucleic
acids and polyethylene glycol (PEG) on the VNP aef[22—24]. Bioconjugation protocols require
the presence of amino acids with reactive sidenshstich as lysine, cysteine or
aspartate/glutamate, which are accessibh-lydroxysuccinimidyl (NHS) chemistry, Michael
addition to maleimides, and carbodiimide activati@spectively. This allows VNPs to be
functionalized with antibodies, oligonucleotidesppdes, proteins, carbohydrates, fluorescent
reagents and drugs. The bioconjugation with PEGgXample, has the aim to modulate the strong
immune response given from the pVNPs, in ordemjorove their bioavailability,

pharmacokinetics and to selectively target tispR25]. Some viruses are also amenable to
physical modifications. For example, Tobacco mosaies (TMV) can be transformed from its
native rod-shape to a spherical form by increatiiegemperature during particle assembly [26]. It
is know that the shape affects the behavior optiréicles: for example, in tumor homing Potato
Virus X and Cowpea Mosaic Virus showed differerdfpes in bioaccumulation, with the former
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showing a major penetration potential than thefd7]. However, in both conformations, the
highly repeated structure appear to function aathdgen Associated Molecular Pattern, which
allow the design for new immunostimolation systdéarghe treatment of cancer [15].

3. TheProduction of VLPsand CVPs

The broad class of nanostructures known as pVNR$&ealivided into two subclasses, namely
virus-like particles (VLPs) and chimeric virus peles (CVPs). VLPs do not carry any viral nucleic
acid and are therefore incapable of autonomougegan. They are produced by expressing the
modified coat protein of the virus in heterologaedis, resulting in the production of coat protein
molecules that self-assemble in to a VLP [28].dntcast, CVPs function in much the same way as
the native virus (i.e. they remain replication-catgmt) but they carry additional genetic material
allowing them to display heterologous proteins eptles [28]. VLPs rely on the ability of certain
viruses to self-assemble without any priming fréva viral genetic material whereas CVPs exploit
both the virus coat protein and the genetic mdteftzerefore, VLPs can be produced in various
heterologous expression systems (including bagteugthe titers depend on the efficiency of
expression, whereas CVPs must be produced inrthairal plant hosts or a compatible species but
the titers are often very high due to the intringiglicative ability of the virus.

Whichever strategy is chosen, it is important teuga that the pVNPs assemble correctly even
when the coat protein contains additional peptatpiences and that the peptides displayed on the
surface maintain their biological/immunologicaliaity. This is critical when CVPs are used
because the production method involves replicatianhost plant, and correct particle assembly is
required for infection and systemic spreading. Oinihe major drawbacks of the CVP approach is
the tendency for surface peptides to cause stemitrdnce, thus inhibiting particle assembly [29].
The use of CVPs therefore has four inherent linaitest. First, the characteristics of the foreign
peptide can sometimes affect the infectivity of ires [30,31]. Second, the ability of the chimeric
virus to spread systemically in the whole plants loa inhibited by selectivity between the
recombinant virus RNA and the chimeric coat prof8R], and virus—host interactions [31,33].
Third, in most epitope presentation systems, choroerat proteins do not benefit the virus so
deletions that remove the insert are favored byraaselection [30], causing the CVP to revert to
wild-type after several cycles of infection [31pukth, special structural features of the chimeric
coat protein can affect key domains required feeasbly, preventing it from assembling into virus
particles [34]. One way to overcome the inhibiteffects of inserted peptide sequences is to
generate VNPs that combine some wild-type coaeprstand some fusion proteins, spreading the
displayed peptides further apart. This overcoaitegy has been particularly successful for
Potexviruses and is discussed in more detail below.

Plants offer an attractive system for the productbpVNP-based vaccines owning to their ability
to produce large quantities of the particles at émst, the proper assembly of the particles

in planta, and the low-risk of introducing adventitious hungathogens during production [35]. In
this framework, the Alfalfa Mosaic Virus has beewpleited as an antigen presenting system for the
rabies antigen and used as a candidate to boogaticeation[36].

Plants do not require expensive fermentation taeslifor biomass generation or the construction of
duplicate facilities for scaled-up production. Henplant biomass generation and upstream
processing capacity can be operated and scaledaifiexible, cost-efficient manner that cannot be
easily matched by current fermentation-based tdolgres [37].

A further advantage of plant-based production sgstes that edible plants can be engineered to
produce pVNPs, which can then be administeredyovath minimal processing [38]. This novel



177 and cost-effective approach can be used to edtajplismucosal immunity by oral delivery. Plants
178 can also be used to produce VLPs representing huirarpathogens for active immunization

179 strategies. Examples include the use of plantsddyce VLPs based on HPV and influenza virus at
180 very high titers: chimeric Cucumber Mosaic Viruabeg an Hepatitis C antigen, for example has
181 been proven to be a good candidate as an oralneattrabbits [39].This specific use of plants to

182

183 described elsewhere [40,41].
184
185 4. Platformsfor the production of pVNPs
186 Many different plant viruses have been considesep\dNP platforms, differing in terms of the host
187 species, the format (VLP or CVP) and the numbggegitides that can be displayed per particle
188 (Table 1). Only a few species have been studietkiailed proof-of-concept experiments and five
189 of the most prevalent are discussed below.
190 Tablel: Features of pVNPs for peptide display.
Structural Target peptide Number of
pVNP Resolution insertion peptides/ Host CVP VLP References
point pVNP
Nicotiana
TBSV 29A C-terminus 180 be”mgc'ta”a X X [42-44]
cell/baculovirus
Nicotiana
benthamiana
pB- BC loop Pisum sativum
of the Small .
cp Spinacea
CPMV 2.9A BC-BC" loop 60 vo'.erac‘?a X X [31,45,46]
icia sativa
of the small Vi
. igna
coat protein )
unguiculata
Vigna radiata
Naerminis | 180
CCMV 39 A In P. pastoris (Particles are Plchla_ pa_storls_ X X [47-50]
. formed by 90 | Escherichia coli
into an .
homodimers)
external loo
PLRV . N-terminus . Insect cdlls and : X [51.52]
baculovirus
N-terminus Nicotiana
C-terminus benthamiana
T™MV - > 2100 s X - [53,54]
Surface loop Nicotiana
aa 5-6& excelsiana
JGMV - N-terminus - Escherichia coli - X [55]
C-terminu
PVX - N- terminus 1300 Nlcotla_na - [28,56,57]
benthamiana
Chemical
PhMV 38A conjugationto|  Lys: .160-180 Escherichia coli i X [58,59]
lysine or Cys: 40- 60
cysteint
Up to 2000
copies for the
CVPs. Brassica juncea
. For the VLPs it Nicotiana
Tumyv ) N-terminus depends onthe  benthamiana X X [60]
length of the Escherichia coli
formed
particle:

produce VLP-based vaccines is beyond the scogasofdview but it has been extensively
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12 aa — 187 aa For the VLPs it
C - depends on the
— C-terminus
N-terminus length of the [61-66]
PapMV 27A ; formed Escherichia coli X
N-terminnus articles
12 aa before P
F13
Nicotiana
AltMV 13A C-terminus benthamiana X [67-69]
Portulaca
grandiflora
Nicotiana
35 aa from the benthamiana
BaMV 5.6 A N-terminus Chenopodium [70.71]
quinoa
Nicotiana
AIMV N-terminus tabacum [72-75]
Nicotiana
benthamiana
Nicotiana
benthamiana
CMV 3.2A BH-BI loop 180 Nicotiana X [23,76-78]
tabacumcv
Xhanti
cdmv g'te”“!”us Escherichia coli X [79]
-terminu
AMCV C-terminus 180 Nicotiana [80]
benthamiana
PPV N-terminus N'COt'ar?a [81]
clevandii
PVY N-terminus 200( Escherichia coli X [82]
Nicotiana
CymRSV 280 benthamiana X [83]

TBSV: Tomato Bushy Stunt Viru€PMV: Cowpea Mosaic VirusCCMV: Cowpea Clorotic Mottle Viru®?LRV:
Potato Leafroll VirusTMV: Tobacco Mosaic ViruslGMV: Johnson Grass Mosaic Virddy X: Potato Virus X;
PhMV: Physalis Mosaic VirusTuMV: Turnip Mosaic VirusPapMV: Papaya Mosaic VirugiltMV: Alternanthera
Mosaic Virus;BaMV: Bamboo Mosaic VirusAIMV: Alfalfa Mosaic Virus;,CMV: Cucumber Mosaic ViruCdMV:
Cardamom Mosaic Viru#AM CV: artichoke Mottled Crinkle Virus?PV: Plum Pox VirusPVY: Potato Virus Y;
CymRSV: Cymbidium Ringspot Virus.

4.1 Cowpea mosaic Vvirus

Cowpea mosaic virus (CPMV) has been studied extelysior its biomedical applications in the
fields of cancer, cardiovascular medicine and vaaton [84,85]CPMV has a bipartite RNA
genome and a 28-nm icosahedral capsid comprisirappi@s each of the large (L) and small (s)
coat proteins [86]. CPMV surface chemistry (insashel out) is well understood [87], allowing an
exquisite level of functionalization. Additionallthe large-scale production of pVNPs based on
CPMV can be achieved in its natural host (cowpgna unguiculata) and the model host tobacco
specieNicotiana benthamiana, which is highly scalable and economic.

4.2 Potato virus X

Potato virus X (PVX) is the type member of the Reteis genus. It has a positive-sense RNA
genome and forms filamentous and flexible rod-pketicles measuring 515 nm in length and 13
nm in diameter, comprising 1270 identical 25-kDatgarotein subunits. The monopartite genome
has a 5' cap and 3' poly(A) tail and it containg fnajor open reading frames (ORFs) encoding
proteins for viral replication, movement and assgn®RF5 encodes the coat protein, which is
also required for cell-to-cell and long-distanceverment [88]. The N-terminal part of the coat
protein is exposed on the surface so most peptidgetayed by PVX-based pVNPs have been
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introduced by N-terminal fusion to the coat prot&f]. PVX naturally replicates in many
solanaceous species addbenthamiana plants are particularly susceptible to mechanical
inoculation, producing milligram quantities of peles from 1 g of infected leaf material. Infectsou
cDNA clones of PVX genomic RNA are available andeje&e modification protocols have been
established for the production of CVPs. HoweverXR¥dat protein subunits have not yet been
shown to assemble into filamentous VLPs in the ats®f RNA eithern vivo orin vitro. Whereas
genetic modification of PVX is well establishedgafical bioconjugation methods are inefficient
(21-86% depending on the conjugation strategy hadize of the target molecule) [25, 26]. PVX
has been investigated for various applicationsirgnfyjom vaccination to in vitro and in vivo
diagnosis [12, 27, 28]. PVX virion assembly is s&wes to steric hindrance, so the characteristics o
displayed peptides and their impact on the fimaicttire have been studied in detail, revealing that
peptide sizes, pl and the presence of specific aaands play crucial roles [30,93-95]. In order to
overcome size-limitation problems, an alternatmeercoat’ strategy was developed to improve the
stability of chimeric particles based on the usthefFoot and mouth disease virus (FMDV) 2A co-
translational dissociation sequence, allowing thuaneous production of both wild-type coat
proteins and fusion proteins that can assemblestiatole particles without steric hindrance at the
most effective wild-type: fusion protein ratio [96]

4.3 Tobacco mosaic virus

The TMV coat protein gene provides various possigd for the insertion of heterologous
sequences. The N-terminus has been used succg$2@)ibut the C-terminus is a much more
common fusion site [97-99]. The latter can be acdeoy fusion to threonine-158 at the extreme
C-terminus or insertion into the surface loop bemveerine-154 and glycine-155 [32]. Both
strategies produce viable and stable chimericqesti It is unclear whether the four C-terminal
amino acids are required for the efficient systemayement of recombinant viruses and the
assembly of chimeric particles. In infected tobaglamts, the viral coat protein may account for up
to 7% of total host cell protein and can be egsilgified from plant tissue in the form of VNPs.
Several heterologous proteins and short peptides Ieen expressed in TMV as coat protein
fusions without affecting viral replication and assbly [101-105].

4.4 Bamboo mosaic virus

Bamboo mosaic virus (BaMV) is related to PVX and haimilar capsid and genome [102-105].
However, it has a broader host range, infecting badbnocotyledonous and dicotyledonous plants
[101]. BaMV is not a pathogen in most crops andefuge may be ecologically safer for field use
than other pVNPs [101]. A novel transgenic cellpgrssion culture system has recently been
developed, which continually produces self- repgirgaBaMV CVPs as well as coat proteins that
self-assemble into VLPs displaying target epitdd€$]. The size of the epitope presented by
BaMV-based CVPs is limited to 37 amino acids [&0l¢g similar size constraints have been
reported for other viruses [97,107-109]. As for B\We FMDV 2A co-translational dissociation
sequence may therefore provide a solution to tiedlenge [93].

4.5 Papaya mosaic virus

Papaya mosaic virus (PapMV) is another Potexvisity, a similar genome structure to PVX and
BaMV. It has a filamentous capsid, 500 nm in lereytd 14 nm in diameter. PapMV coat proteins
have been expressedEncoli and showed the capacity of self-assemble into VIRe coat

protein has been separated from the genomic RNthdgegradation of purified virus particles
using acetic acid, thus facilitating vitro assembly. The extracted coat protein formed ataaf
aggregates that included a disk-like helical strrgtsimilar in architecture to the native virus
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particle but comprising only 18—-20 subunits. Funthere, the addition of genomic RNA to the
isolated disks triggered the vitro assembly of long rod-shaped particles similah®wild-type
virus [67,110].

PapMV nanopatrticles can be used as an adjuvanigmie the performance of vaccines [111] and
cancer immunotherapy [112], or as a vaccine platfirtrigger an immune response against specific
peptide antigens [113]. In order to prevent longtes interfering with the self-assembly of VLPs
[49], a novel system was developed by coupling ideptto already self-assembled nanoparticles
using the bacterial transpeptidase sortase A [62,10

5. Development of pVNP Vaccines Displaying Antigenic Peptides

Many plant viruses have been used to display hiegoas peptides for the development of vaccine
candidates intended for active immunization. Softaese candidates have been testadgtro and
others have progressed to pre-clinical studies.athéevements of these investigations and the
properties of the pVNPs and displayed peptidesanmemarized in Table 2. Interestingly, 10 of 36
studies demonstrated that the ability of pVNPsthuce an immunological response against the
target peptide conferred protection against theesponding pathogen in subsequent challenge
experiments. In some studies, pVNPs were eventaldenfer partial cross-protection against
related pathogens [98].

Figurel.
« PapMV
Intradermal - VY
W intraderma
oo ! PhMV
~
o0 .
» Intramuscular £ cmv
B - PVX
2, .
Subcutaneous 2 TBSV
1 AlMV
= Intraperitoneal « CPMV
* Tumv
' -
Escherichia Nicotiana Nicotiana Vigna Arabidopsis
coli benthamiana  tabacum uguinculata thaliana

Expression platform

Figure 1. The production of pVNPs for pre-clinical developmheA: The yields of pVNPs achieved in different
production platforms. B: Relative frequency of difint administration routes for pVNPs in pre-claistudies.

In most cases the administration route was par@ntgth a high proportion of subcutaneous
injections (Figure 1A). The pVNPs were always adstered in two or three doses. The average
yield of the pVNPs was strongly dependent on whichs was used and which target peptide was
displayed, resulting in a broad distribution (FigdB). The yields of pVNPs are also dependent the
position of the heterologous peptide on the vimaface, a property that also affects the
immunological properties of the pVNP [114].

Table 2: Survey of pVNHn vitro tests and pre-clinical studies.

PVNP Target Peptide Host Pre-clinical and in vitro studies References




Human vascular

TuMV endothelial growth factor] Arabidopsisthaliana Immunogenicity in mice [60]
receptor 3 (VEGF-3)
TMV MZQ epltope’ from N|oot|a_na Immunogenicity in vitro [115]
influenze benthamiana
Nicotiana tabacum,
T™MV Two peptides of CRPV Nicotiana Immunogenicity and challenging in rabbits [98]
benthamiana
T™V Peptide F20 (V141-P16( Nicotiana tabacum Immunogenicity in guinea pigs and swine and [107]
of FMDV VP1) cv. Samsun challenging
Peptide 9-14mer
(TDAYNQKLSERRAN) o
T™MV of outer membrane (OM Nicotiana tab'?‘cum Immunogenicity and challenging in mice [99]
. cv. Xanthi
protein F of
Pseudomonas aerugin:
TMV-U1 M2(—:‘_ epltope’ from lethna Immunogenicity in BALB/c mice, virus [116]
influenze benthamiana challenging protectic
Nicotiana
BaMV EMDV-VP1 benthama_na, Immunogenlmt_y in rr_]ale and_ swine and [70]
Chenopodium challenging with the virus
quinoa
Nicotiana
BaMV WIBDV benthamqna, Immurjogemcny, challenglng _W|th _the virus and [117]
Chenopodium immunohistochemistry in chickens
quinoa
PVX l:rlc\)/mELII:’(}:<0W;f‘)t?e?r:tc()pe) Nicotiana immunogenicity in mice [118]
gy 4? ap benthamiana 9 Y
HPV-16 L2 minor capsid I
. . . Nicotiana S .
PVX protein (amino acids 108} ; Immunogenicity in mice [119]
120 benthamiana
H-2Db-restricted epitope]
PVX ASNENMETM of lethna Immunogenicity in C57BL/6J female mice [28]
influenza A virus benthamiana
nucleoprotein (NF
D2 peptide from Nicotiana
PVX S aureus bronectin- " Immunogenicity in mice and rats [120]
-~ . benthamiana
binding protein (FnBF
D2 peptide from Nicotiana
CPMV S aureus bronectin- " Immunogenicity in mice and rats [120]
— : benthamiana
binding protein (FnBF
14 amino acid NIm-1A
CPMV epitope from human Vigna unguicul ata Immunogenicity [114]
rhinovirus 14 (HR\-14)
Linear epitope from the
CPMV VP.2 capS|d'p_rot¢|n of Vigna unguiculata Immunization of minks and challenging [121]
mink enteritis virus
(MEV)
Peptide derived from the Immunogenicity in dogs and challenging with the
CPMV VP2 capsid protein of Vigna unguiculata 9 Y v%’us 9ing [122]
canine parvovirus (CP'
aa731- 752 of the gp41 df . immunogenicity in mice C57/BL6 (H-2b),
CPMV HIV I strain IlIB Vigna unguiculata BALBJ/c (H-2d) mice [123]
HIV-1 2F5 epitope Nicotiana
AMCV (2F5e benthamiana ELISA [80]
Chimeric peptide
representing rabies G —_— Immunogenicity and challenging with the virus
AIMV (amino acids 253-275) Nlc?:t\l/ansa tab?]cum and Immunogenicity in humans of experimentg [72]
and N (amino acids 404+ ' plant virus-based rabies vaccine consumed in food
418) protein
V3 loop of the HIV-1 Nicotiana S
AIMV MN isolate (MNV3) benthamiana Immunogenicity in mice [73]
21-mer peptide
AIMV repref;&tig%irptlﬁg acids Nicotiana tabacum immunogenicity in vivo in non-human primateg [74]
respiratory syncytial cv. Samsun and in vitro in human dendritic cells
virus (RSV) G protei
Small loop 15 amino acig
epitope from domain 4 o I
AIMV the Bacillus anthracis N|C(‘):t\|/ansa tabarllcum Immunogenicity in Balb/c mice [75]
protective antigen (PA- '
D4s)
Hepatitis C virus (HCV) - . Immunogenicity in C3H/HeJ and Balb/c mice and
PapMV E2 epitop Escherichia coli in human [63]
PapMV M2e influenza epitope Escherichia coli Immunogenicity I\:]vii/\thzci:r:)lce and challenging [124]
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PapMV M2e influenza epitog Escherichia coli Immunogenicity in Balb/c mic [64]
HA11 peptide - . S .
PapMV . ; Escherichia coli Immunogenicity in Balb/c mice [61]
influenza peptid
TBSV 16 amino apld epltqpes gf  Insect ce'lls and Immunogenicity in Balb/c mice [125]
ricin toxin A chair baculovirus
13-amino-acid peptide
derived from the V3 loop
of human Nicotiana S
TBSV immunodeficiency virus benthamiana Immunogenicity in mice (126]
(HIV-1) glyco- protein
120 (gp12C
IGMV 21 aonfﬂlt?]z igpc)jarr)]iztelzde A Escherichia coli Immunogenicity in FVB/Q mice and challenge with [55]
R the virus
encephalitis virus (JEV
FMDYV infection-related Immunogenicity in cattle, buffalo, sheep, pig
PhMV B-cell epitopes of NSPs Escherichia coli sampleé ’ ' [127]
3A, 3B and 3I
17 amino acid (aa)
neutralizing epitope of
NDV’s fusion (F) protein
(aa 65— 81), 8 aa
neutralizing epitope of
the NDV hem- Nicotiana s :
MV agglutinin-neuraminidase benthamiana Immunogenicity in chickens (7]
(HN) protein (aa 346—
353), and the same
epitopes fused together ip
a tandem F—HN
construct
CMV F’eptlgr%girijg;/ (eRnE\)/eIope Nicotiana tatt:acum Immunogenicity iE rabbits, in vitro studies in [76]
mimotope) cv. Xanthi umans
PVY PreSlor rubredoxil Escherichia coli Immunogenicity in Balb/c mic [82]
Kennedy peptide and the
CdMV 2F5 and 4E10 epitopes qf  Escherichia coli Immunoreactivity with HIV patient sera [79]
gp41 ofHIV.
PPV c;/r':r? ecsgf\lg\ffrrﬁf('gg C’I‘é\ﬁ;ﬁ Immunogenicity in mice and rabbits [81]

The dose of pVNP administered in each pre-clinstadly strongly depended on the animal model,
ranging from 0.5 to 400 pg/dose. In most casesdanvant was also administered, with incomplete
Freund’s adjuvant and aluminum hydroxide the madely used. The pre-clinical studies were
mainly structured as a comparison between animed$ed with pVNPs displaying the target
peptide and a placebo group in which animals wesdd with wild-type pVNPs lacking the
displayed peptide. In a small number of casesexiperimental design also included a control
group treated with the synthetic peptide. In theeggeriments, the quantity of peptide displayed by
the pVNP was lower that the dose used for the gjiatipeptide. Only one study included a control
group in which the pVNPs were administered withauiadjuvant [28]. This revealed that pVNPs
administered with an adjuvant treatment achievedytieatest level of protection, and that pVNPs
without adjuvant conferred the same protectivectfds the synthetic peptide administered with the
adjuvant. In other studies, the use of the synthpptide as a comparator was limited to indirect
ELISA tests to detect the presence of specifidadies [60,123]. Overall, these studies indicate
that pVNPs can act as both as a carrier and anaajuprobably reflecting the particulate and
repetitive nature of the virion [128].

The particulate nature of VLPs and CVPs also alltves to induce potent T-cell responses by
interacting with antigen-presenting cells (APCspexially dendritic cells (DCs) [129]. Cytotoxic T
cells do not recognize native antigens, but aneated by processed peptides derived therefrom
presented in association with MHC class | molec[d188]. The best way to induce T-cell
activation by vaccination is to mimic the procefa oatural infection, including the recognition,
uptake, and processing of particulate antigenstlamgresentation of processed peptides to
cytotoxic T cells in order to activate them anddger their proliferation [131]. DCs can efficiently
carry out these processes by (i) taking up antigetise cytosol and presenting processed peptide
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antigens on MHC class | molecules or receptorsrbgszpresentation, and (ii) by presenting the
peptides on MHC class Il molecules as part of thsstcal antigen-processing pathway [131].
Thus, in addition to stimulating helper T cells, ®€an also stimulate the conversion of naive T
cells into cytotoxic T lymphocytes (CTLs), whichosequently eliminate intracellular pathogens or
cancer cells via the presentation of antigens orC\Mtass | molecules, effectively bridging innate
and acquired immunity. DCs preferentially take aptisulate antigens by phagocytosis or
macropinocytosis if the particle diameter is 20—864) the size range of most viruses [132].
Therefore, pVNPs are the ideal size for DC and oyatage uptake and antigen processing to
initiate antigen cross-presentation. Due to thé laignsity of epitopes on their surface, the uptake
of a single pVNP feeds thousands of epitopes méqtrocessing and presentation machinery of
APCs, further enhancing their ability to stimul&t€Ls.

The presence of pVNPs can also directly activatelB, leading to high antibody titers and long-
lasting B-cell memory, even in the absence of aaljis. Like mammalian viruses, the quasi-
crystalline surface of pVNPs with arrays of repetitepitopes is a prime target for B-cell
recognition [133] and can efficiently crosslink gpe-specific immunoglobulins on the cell
surface. Particulate antigens with repetitive g@®spaced at 5-10-nm intervals may be unique to
microbial surfaces, and vertebrate B cells haveetbee evolved to specifically recognize and
respond vigorously to these types of antigens [1BH¢ oligomerization of immunoglobulins in
this manner forms a strong activation signal teatt to B-cell proliferation and migration, the
upregulation of MHC class Il molecules, T helpédr aetivation, IgM and IgG production and
secretion, and the generation of long-lasting mgrBocells [133]. An advantage of CVPs over
VLPs is that the viral RNA may trigger Toll-likeaeptor 7 on antigen-presenting cells, hence
boosting the immune response like an adjuvant [135]

Another characteristic of pVNPs is that certaimphlruses (e.g. PapMV) are inherently highly
immunogenic, triggering a strong humoral respormgserst the coat protein. However, pre-existing
antibodies recognizing virus coat do not appeaiffiect the ability of pVNPs to boost the humoral
response toward heterologous antigens displayedennsurface [124].
In summary, pVNPs can be used to carry immunodamipeptides for active immunization
strategies, and their intrinsic properties, sucthasability to display arrays of antigens on a
scaffold with a repetitive structure, may help torpote their immunological efficacy.
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