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It is a classic result that certain interacting integrable spin chains host robust edge modes known as
strong zero modes (SZMs). In this Letter, we extend this result to the Floquet setting of local quantum
circuits, focusing on a prototypical model providing an integrable Trotterization for the evolution of the
XXZ Heisenberg spin chain. By exploiting the algebraic structures of integrability, we show that an exact
SZM operator can be constructed for these integrable quantum circuits in certain regions of parameter
space. Our construction, which recovers a well-known result by Paul Fendley in the continuous-time limit,
relies on a set of commuting transfer matrices known from integrability, and allows us to easily prove
important properties of the SZM, including normalizabilty. Our approach is different from previous
methods and could be of independent interest even in the Hamiltonian setting. Our predictions, which are
corroborated by numerical simulations of infinite-temperature autocorrelation functions, are potentially
interesting for implementations of the XXZ quantum circuit on available quantum platforms.
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Introduction—It is well-known that certain one-
dimensional quantum spin chains host robust edge modes
known as strong zero modes (SZMs) [1–4]. A SZM is an
operatorΨ localized at the edges of the system, commuting
with the Hamiltonian H in the thermodynamic limit, and
anticommuting with one of its discrete symmetries D. The
existence of such a SZM implies that the entire spectrum of
the Hamiltonian comes in degenerate pairs, corresponding
to eigenstates living in different symmetry sectors.
In the past decade, SZMs have attracted significant

attention [5–14] because their presence leads to remarkable
spectral and dynamical features, such as nonergodic effects
and arbitrarily long coherence times for the edge spins, with
potential applications to quantum-information storage and
processing [15].
A canonical example of SZM is found in the non-

interacting transverse-field Ising model in the ordered
phase, with free open boundary conditions [1]. Although
the edge modes become typically unstable at high temper-
atures when interactions are turned on (while staying stable
at zero temperature [16,17]), their lifetime can be non-
perturbative in the interaction strength [5,6,18–21], yield-
ing long-lived quasistable modes referred to as almost
strong zero modes [5]. In fact, a classic result by Paul
Fendley [4] shows that exact strong zero modes can survive
the presence of integrable interactions, as seen in the XYZ
spin chain, a prototypical model of an interacting, inte-
grable system [22].
The notion of SZMs can be extended to Floquet-driven

systems [23–26]. In this case the structure of edge modes is
known to be richer than in the Hamiltonian setting [27–32],

with the possibility of hosting so-called strong π modes
(SπMs) [9,25]. Denoting by U the Floquet unitary over one
drive cycle, the SZM and the SπM satisfy fΨ0;π;Dg ¼ 0

and Ψ2
0;π ¼ Oð1Þ, while ½Ψ0; U� ≃ 0, fΨπ; Ug ≃ 0, respec-

tively. Both operators give rise to a splitting of the spectrum
into pairs of eigenstates with opposite symmetry [33–35].
Edge modes in interacting Floquet systems have been

studied in different settings, such as in the high-frequency
limit [36] or in the Floquet many-body localization context
[29,37–40]. For nondisordered systems and away from the
high-frequency limit, numerical evidence along with ana-
lytic estimates support that edge modes survive the pres-
ence of interactions over long timescales [9,41,42], but a
natural question is whether exact SZMs (or SπMs) are
possible for interacting integrable Floquet dynamics.
This is the question we tackle in this Letter. We consider

a family of Floquet systems where the cycle operator U is
written in terms of geometrically local two-spin (or two-
qubit) unitaries, called quantum gates, cf. Fig. 1. We focus
on circuits providing a Trotterization for the XXZ
Heisenberg spin chain [43–45], being both integrable
and interacting. These models have recently attracted
significant attention [46–50], both because of their rich
dynamical features [47,50] and due to the possibility of
realizing them on available quantum computers, as already
exemplified in recent experimental work [51–53]. Our
results show that integrable quantum circuits make it
possible to observe exact SZMs in the presence of
interactions.
From the technical point of view, we develop a con-

struction rooted in the structures of integrability [22], which
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is different from previous approaches [4] and thus of
independent interest even in the Hamiltonian setting. In
unpublished work [54], Fendley and Verstraete have found,
for the XYZ Hamiltonian, a family of commuting matrix-
product operators that generate the SZM of [4]. Our
construction is different and makes the precise connection
with integrability explicit: since it is derived from simple
algebraic constraints imposed on the usual transfer matrices
of boundary integrability, we expect it to be naturally
extended to other integrable Hamiltonians or quantum
circuits [55].
The model—We consider a system of L ¼ 2M qubits,

i.e., two-level quantum systems spanned by the basis states
j0i, j1i. The dynamics is discrete, and driven by the unitary
operator U ¼ UeUo, where

Ue ¼ V12V34…VL−1;L; ð1aÞ

Uo ¼ V1V23…VL−2;L−1VL: ð1bÞ

The two-qubit unitary gates are parametrized as [43,44]

V ¼ e−i
τ
4
½σx⊗σxþσy⊗σyþΔ̃ðσz⊗σz−1Þ�; ð2Þ

while the matrices V1 and VL are single-qubit unitary gates
acting on the edge qubits. A pictorial representation of the
quantum circuit is displayed in Fig. 1.
Contrary to previous work, we are interested in open

boundary conditions. There are different choices for the
operators V1 and VL that preserve the integrability of the
operator U. We focus on the simplest case where the left
boundary condition is free, i.e., we set V1 ¼ 1. Usually,
SZMs are discussed in the limit of a semi-infinite chain [4],
where the choice of the right boundary condition becomes
immaterial. Here, however, we construct an exact zero
mode for a finite size system by fine-tuning the right
boundary condition. Anticipating our result, we will show
that an exact SZM exists for finite system sizes when

VL ¼ N −1

 
sinh

�
σηþ i x

2

�
0

0 sinh
�
ση − i x

2

�!; ð3Þ

where σ ¼ �1 is fixed, N ¼ sinh½ηþ iðx=2Þ� sinh½η −
iðx=2Þ� is a normalization factor, while η and x are related
to Δ̃, and τ in (2) by

cosh η ¼ sin Δ̃τ
2

sin τ
2

; sin x ¼ − sinh η tan
τ

2
: ð4Þ

We consider η; x∈R, corresponding to the “gapped phase”
of the model [44]. The name refers to the fact that the
structure of the conserved charges is the same as the gapped
XXZ Hamiltonian [50], as well as the classification of
Floquet eigenstates in terms of “Bethe strings” [48].
Similar to the Hamiltonian case [4], we will find that

SZMs exist in the “gapped phase” of the quantum-circuit
model [44,50], to which the rest of this Letter is restricted.
The continuous-time limit can be recovered by x → 0, that
is τ → 0, yielding

H ¼
XL−1
i¼1

½σxi σxiþ1 þ σyi σ
y
iþ1 þ cosh ηðσziσziþ1 − 1Þ�

þ h1σ
z
1 þ hLσ

z
L; ð5Þ

where h1 ¼ 0, hL ¼ σ cosh η. (5) is the XXZ Hamiltonian
in the gapped phase, with boundary fields h1; hL.
Commuting transfer matrices—In order to construct the

SZMs, we follow an original strategy, making use of
algebraic tools from integrability. The idea is to embed
the SZMs in a family of commuting transfer matrices with
open boundary conditions [56–59], which are written as a
trace over some auxiliary qubit “0”,

TðuÞ ¼ tr0
�
Kþ

0 ðuÞT0ðuÞK−
0 ðuÞT̂0ðuÞ

�
; ð6Þ

T0ðuÞ ¼ R01ðuþ ξ1Þ…R0Lðuþ ξLÞ; ð7Þ

T̂0ðuÞ ¼ RL0ðu − ξLÞ…R10ðu − ξ1Þ; ð8Þ

where the operators RijðuÞ acting on the qubits i and j,
are called R matrices. In the computational basis
fj0; 0i; j0; 1i; j1; 0i; j1; 1ig they take the form

RðuÞ ¼

0BBBBB@
1 0 0 0

0
sinhðuÞ

sinhðuþηÞ
sinh η

sinhðuþηÞ 0

0 sinh η
sinhðuþηÞ

sinhðuÞ
sinhðuþηÞ 0

0 0 0 1

1CCCCCA; ð9Þ

where u is the so-called spectral parameter, which can be
thought of as controlling the space and time anisotropy of
the interaction and allows to tune from a continuous-time
Hamiltonian dynamics to a circuitlike geometry. It is

FIG. 1. Pictorial representation of the quantum circuits con-
sidered in this Letter. Time runs upward and lower (upper) lines
correspond to input (output) degrees of freedom. Each time cycle
consists of two time steps where the two-qubit gates couple
qubits ð2j; 2jþ 1Þ and ð2jþ 1; 2jþ 2Þ, respectively (in the
picture, we chose L ¼ 8 sites and t ¼ 2).
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convenient to represent the transfer matrix using common
tensor-network conventions [60], cf. Fig. 2. In this notation,
each operator is viewed as a multi-index tensor and
represented by a box with multiple legs. One also makes
a distinction between physical indices, corresponding to the
physical degrees of freedom, and auxiliary ones. For
example, the R matrices are four-tensors with four legs,
two physical and two auxiliary ones (one pair for each of
the local spaces it acts on). Finally, joined legs in Fig. 2
correspond to pairs of sums over indices [60].
The parameters ξj play the role of spatial inhomogene-

ities, while matrices K�ðuÞ are known as reflection
matrices. We will restrict to the case where they are
diagonal, taking the form

K�ðuÞ ¼ Kðuþ η=2� η=2; ξ�Þ; ð10Þ

Kðu; ξÞ ¼
�
sinhðξþ uÞ 0

0 sinhðξ − uÞ

�
; ð11Þ

where the parameters ξ� will be specified below. This
choice of the R and K matrices ensures that they satisfy the
Yang-Baxter [61] and the reflection (or boundary Yang-
Baxter) equations [56], respectively. As a result, transfer
matrices associated with different spectral parameters u
commute, ½TðuÞ; TðvÞ� ¼ 0.
In order to make connection with the circuit described

above, we need to specify the value of the parameters ξ�
and ξj. More explicitly, we set

ξþ ¼ i
π

2
; ξ− ¼ ση; ξj ¼ ð−1Þj ix

2
: ð12Þ

It is a simple exercise [62] to see that the operator TðuÞ
evaluated at a special value of the spectral parameter u ¼
ix=2 reduces, up to a proportionality factor, to the brick-
work circuit generator U (see Ref. [43] for an analogous
construction in the periodic case).
Note that the continuous-time limit corresponds to

x ¼ 0. In this case, the transfer matrix Tð0Þ is proportional

to the identity, but the XXZ Hamiltonian (5) can be
generated by the logarithmic derivative [22,62]

Tð0Þ−1T 0ð0Þ ¼ 1

sinh η

�
H −

1

cosh η
1

�
: ð13Þ

The zero mode—Both in the circuit and Hamiltonian
cases, the generator of the dynamics (that is, respectively,U
or H), commutes with the continuous family of transfer
matrices TðuÞ. Indeed, the latter generate the set of
homogeneous local conserved operators, or charges, which
are the hallmark of integrability [22].
Note, however, that TðuÞ are not themselves local

operators: in order to generate the local charges one needs
to take logarithmic derivatives of them. In the continuous-
time limit, for instance, the first-order one yields the
Hamiltonian, cf. (13), while additional charges are obtained
by higher-order derivatives. Crucially, such derivatives
must be taken at the spectral parameter u ¼ 0, where
(SI.5) holds. Indeed, it is this regularity condition which
ensures locality [22].
Our construction relies on a different mechanism, and as

a consequence, yields a distinct family of conserved
quantities. Contrary to the standard charges, the latter
are (quasi)localized at the left boundary of the system
and, as we will show, feature the SZM. The idea, which is
one of the main technical contributions of our Letter, is to
take the derivatives around the point u ¼ iπ=2, instead of
u ¼ 0. In this case, the regularity condition (SI.5) is
replaced by

Rj0

�
iπ
2
� ix

2

�
σz0R0j

�
iπ
2
∓ ix

2

�
¼ σz0; ð14Þ

which we write pictorially as

ð15Þ

Exploiting the form of the boundary matrices K�, (14)
allows one to show that the derivatives of the transfer
matrix at u ¼ iπ=2 are localized near the left boundary. As
we discuss in the Supplemental Material (SM) [62], the
underlying mechanism is simple and can be illustrated
graphically by repeated use of (15). Therefore, it is
natural to conjecture that the SZM can be defined as the
derivative

ΨðxÞ ¼ iN ðxÞ
2sinh2η

T 0ðiπ=2Þ; ð16Þ

FIG. 2. The transfer matrix TðuÞ of (6). The qubits i ¼ 1…L
correspond to the vertical lines from left to right, while the
horizontal lines are associated with an auxiliary two-dimensional
Hilbert space. The blue boxes are four-leg tensors acting as (9)
with argument uþ ξi (top row) or u − ξi (bottom row), while the
yellow boxes are matrices acting as (10) on the auxiliary space.
Choosing the parameters as in (12), the transfer matrix coincides
with the evolution operator U for the quantum circuit.
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where N ðxÞ ¼ cosh½ηþ ðix=2ÞÞ coshðη − ðix=2Þ�=cosh2η
is a normalization constant introduced for later conven-
ience. In the rest of this Letter we will show the validity of
this conjecture.
Before proceeding, it is important to note that the right-

hand side of (16) can be made more explicit. The derivation
is technically involved and is carried out in the SM [62],
while here we only report the final result. Introducing

the auxiliary functions taðxÞ ¼ ð−1Þa tanh η tanhðix=2Þ,
ΔðxÞ ¼ fcosh½ηþ ðix=2Þ� cosh½η − ðix=2Þ�=cos2ðx=2Þg1=2
and

eσzb ≔ � σzb if b ≤ L

N ðxÞσ if b ¼ Lþ 1
ð17Þ

we can rewrite

ΨðxÞ ¼
XbL=2c
S¼0

X
fag2S;b

1

ΔðxÞ2b−2
�YS

s¼1

ha2s−1a2si
� eσzb þ XbL=2c

S¼1

X
fag2S

1

ΔðxÞ2a2S
�YS−1

s¼1

ha2s−1a2si
�
ha2S−1a2Si; ð18Þ

where haa0i ¼ −2fsinh2η=½cos2ðx=2Þ�ghaa0iþ, and haa0i ¼ −ta0 ðxÞΔðxÞ2haa0i−, with the brackets haa0i� defined as

haa0i� ¼ ðcosh ηÞa0−a
�
σþa

� Y
a<k<a0

ð1þ tkðxÞσzkÞ
�
σ−a0 � σ−a

� Y
a<k<a0

ð1 − tkðxÞσzkÞ
�
σþa0
�
: ð19Þ

In (18) the outer sum is over all sets of integers
0 < a1 < … < a2S < b ≤ Lþ 1, while the inner sum is
over all sets of integers 0 < a1 < … < a2S ≤ L.
Equation (18) is the first main result of our Letter. In the

following, we will claim that this operator is a genuine
SZM for the quantum-circuit dynamics. Note that, in the
limit x → 0, we recover the exact expression obtained by
Paul Fendley in Ref. [4] using a different derivation.
Properties of the SZM—It follows from our previous

discussion that ΨðxÞ commutes with the Floquet operator
U. In order to show that it is a genuine SZM, we need to
verify the following properties [4]: (i) it anticommutes with
the Z2 symmetry X ¼Qj σ

x
j ; (ii) it squares to 1, i.e.,

Ψ2ðxÞ ∝ 1, in the thermodynamic limit; (iii) it is quasilo-
calized at the boundary of the chain.
First, it is easy to see that, similar to the Hamiltonian case

[4], anticommutation with the Z2 symmetry holds in the
thermodynamic limit (as for finite L it flips the value of
the boundary spin σ). Conversely, properties (ii) and
(iii) require a more technical analysis. This is reported in
the SM [62], where we prove that they are satisfied. We
stress that the transfer matrix representation makes our
derivations relatively simple [63–65]. In addition, having
expressed the SZM in terms of standard objects from
integrability, we expect that our constructions and deriva-
tions may be readily extended to more general spin chains
and quantum circuits [62].
Physical consequences of the SZM—As we have men-

tioned, the existence of SZMs has important consequences
for the system dynamics. In particular, it is expected that
edge dynamical correlation functions do not decay in the
large-time limit. We provide numerical evidence that
this is indeed the case for the XXZ integrable quantum
circuit.

We consider the infinite-temperature dynamical correla-
tion function

CðtÞ ¼ Tr½σz1ðtÞσz1ð0Þ�
2L

; ð20Þ

where t is discrete time. Heuristically, consider
σz1 ¼

P
j cjOj, where Oj is an orthogonal ope-

rator basis, satisfying Tr½O†
jOk�=2L ¼ δj;k. Choosing

O1 ∝ ΨðxÞ, one has CðtÞ ¼ jc1j2 þ fðtÞ, where
fðtÞ ¼Pj;k>1 cjckTr½ðU†ÞtOjUtOk�. Denoting

f̄ ¼ lim
N→∞

1

N

XN
t¼1

fðtÞ; ð21Þ

and assuming that f̄ vanishes in the thermodynamic limit,
we obtain the prediction

lim
L→∞

C̄ ¼ Tr½ΨðxÞσz1�
2L=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ΨðxÞ2�

p ¼ sinh2η

cð−ÞðηÞcðþÞðηÞ ; ð22Þ

with cð�ÞðηÞ ¼ coshðη� ix=2Þ, and where the second
equality follows from (18), cf. [62].
The assumption that f̄ vanishes in the thermodynamic

limit is reasonable provided that there are not any additional
edge modes independent of ΨðxÞ. Other local conserved
quantities may have nonzero overlap with σz1, but the
latter are expected to vanish in the thermodynamic
limit. For instance, defining the (normalized) local charge
Sz ¼ ð1= ffiffiffiffi

L
p ÞPj σ

z
j, so that Tr½S2z �=2L ¼ 1, we have

Tr½Szσz1� ¼ 1=
ffiffiffiffi
L

p
.

We have performed extensive numerical calculations to
test the decay ofCðtÞ and the validity of our prediction (22).
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We used an efficient numerical approach based on quantum
typicality [66,67] to simulate CðtÞ for system sizes and
times up to L ¼ 24 and t ¼ 103, respectively. For small
sizes we have checked the validity of our approach against
exact numerical computations.
After a transient time, we found that CðtÞ approaches a

plateau, with small persisting fluctuations. For each L, we
have estimated the late time average C̄L and found, roughly,
C̄L ∼ aþ b=L for large L. By means of a numerical fit, we
have finally estimated the large-L limit and repeated this
whole procedure for different values of the circuit param-
eters, Δ̃ and τ. An example of our results is reported in
Fig. 3. Our data show very clearly that C̄ does not vanish in
the thermodynamic limit, and we obtained quantitative
agreement with the prediction (22). We have found that the
discrepancy between the analytic and numerical results
increases as we move closer to the transition from the
“gapless” to the “gapped” phases [50], and interpret these
discrepancies as arising from finite-size effects.

While exact SZMs are expected to be a feature of
integrable systems, it was observed in the Hamiltonian
case that approximately conserved SZMs persist in the
absence of integrability, resulting in exponentially long-
lived correlations [5]. We check here that this feature
extends to the Floquet setting: studying the quantity
CðtÞ in the presence of integrability-breaking disorder,
we indeed observe the presence of long-lived correla-
tions [62].
Outlook—We have constructed an exact SZM operator

for a class of integrable, interacting Floquet dynamics
consisting of local quantum circuits. We showed by
numerical computations that the presence of the SZM
can be detected by probing the boundary dynamical
correlation functions, making our results potentially rel-
evant for present-day implementation of integrable quan-
tum circuits [51–53]. Our Letter opens several directions
for future studies. First, it would be very interesting to
investigate the presence of SπMs in the context of inte-
grable quantum circuits, and to understand whether they
can be constructed using techniques similar to those
presented here. Second, our approach is based on standard
algebraic Bethe ansatz techniques that we believe could be
extended to more general models. It would be interesting,
for instance, to study local quantum circuits such as those
constructed in [68], or which are obtained by Trotterizing
SUðNÞ-invariant spin chains and their deformations. Third,
we could use our construction to illuminate the effect of
SZMs or SπMs on the Bethe ansatz spectrum of the
considered models [69–71]. We leave these questions for
future work.
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