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1 Introduction

Graph manifolds have been introduced and classified by Waldhausen in [15] and [16]. They are defined as
compact 3-manifolds obtained by gluing Seifert fibre spaces along toric boundary components; so they can
be described using labelled digraphs, as it will be explained in the next section.

Matveev in [13], see also [11], introduced the notion of complexity for compact 3-dimensional manifolds,
as away tomeasure how “complicated” amanifold is. Indeed, for closed irreducible andℙ2-irreduciblemani-
folds the complexity coincides with the minimum number of tetrahedra needed to construct the manifold,
with the only exceptions of S3,ℝℙ3 and L(3, 1), all having complexity zero. Moreover, complexity is additive
under connected sums and it is finite-to-one in the closed irreducible case. The last property has been used
in order to construct a census of manifolds according to increasing complexity: for the orientable case, up
to complexity 12 in the Recogniser catalogue (see http://matlas.math.csu.ru/?page=search), and for the non-
orientable case, up to complexity 11 in the Regina catalogue (see https://regina-normal.github.io).

Upper bounds for the complexity of infinite families of 3-manifolds are given in [12] for lens spaces, in [10]
for closed orientable Seifert fibre spaces and for orientable torus bundles over the circle, in [5] for orientable
Seifert fibre spaces with boundary and in [2] for non-orientable compact Seifert fibre spaces. All the previous
upper bounds are sharp for manifolds contained in the above cited catalogues. Furthermore, in [7] and [8] it
has been proved that the upper bound given in [12] is sharp for two infinite families of lens spaces. Very little
is known for the complexity of graph manifolds: in [6] and [4] upper bounds are given only for the case of
graphmanifolds obtained by gluing along the boundary two or three Seifert fibre spaces with disk base space
and at most two exceptional fibres.

The main goal of this paper is to furnish a potentially sharp upper bound for the complexity of all closed
connected orientable prime graph manifolds different from Seifert fibre spaces and orientable torus bundles
over the circle. It is worth noting that the upper bounds given in Theorems 1, 2 and 3 are sharp for all 14502
manifolds of this type included in the Recogniser catalogue.

The organisation of the paper is the following. In Section 2 we recall some definitions and results about
complexity and skeletons (Subsection 2.1), graph manifolds (Subsection 2.2) and theta graphs (Subsec-
tion 2.3). In Section 3 we state the results of the paper and in Section 4 we work out the proofs.
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2 Preliminaries
2.1 Complexity and skeletons. A polyhedron P is said to be almost simple if the link of each point x ∈ P can
be embedded into K4, the complete graph with four vertices. In particular, the polyhedron is called simple
if the link is homeomorphic to either a circle, or a circle with a diameter, or K4. A true vertex of an (almost)
simple polyhedron P is a point x ∈ P whose link is homeomorphic to K4. A spine of a closed connected 3-
manifold is a polyhedron P embedded inM such thatM \ P ≅ B3, where B3 is an open 3-ball. The complexity
c(M) of M is the minimum number of true vertices among all almost simple spines of M.

We will construct a spine for a given graph manifold by gluing skeletons of its Seifert pieces. Consider a
compact connected 3-manifold M whose boundary either is empty or consists of tori. Following [9] and [10],
a skeleton of M is a sub-polyhedron P of M such that (i) P ∪ ∂M is simple, (ii) M \ (P ∪ ∂M) ≅ B3, (iii) for
any component T2 of ∂M the intersection T2 ∩ P is a non-trivial theta graph¹. Note that if M is closed then
P is a spine of M. Given two manifolds M1 and M2 as above with non-empty boundary, let Pi be a skeleton
of Mi, for i = 1, 2. Take two components T1 ⊆ ∂M1 and T2 ⊆ ∂M2 such that Pi ∩ Ti = θi and consider a
homeomorphism φ : (T1, θ1) → (T2, θ2). Then P1 ∪φ P2 is a skeleton for M1 ∪φ M2: we call this operation,
as well as the manifold M1 ∪φ M2, an assembling of M1 and M2.

2.2 Graph manifolds. We fix some notation for Seifert fibre spaces. We consider only oriented compact con-
nected Seifert fibre spaces with non-empty boundary, described as S = (g, d, (p1, q1), . . . , (pr , qr), b)where
g ∈ ℤ coincideswith the genus of the base space if it is orientable andwith the opposite if it is non-orientable,
d > 0 is the number of boundary components of S, (pj , qj) are lexicographically ordered pairs of coprime in-
tegers such that 0 < qj < pj for j = 1, . . . , r, describing the type of the exceptional fibres of S and b ∈ ℤ can
be considered as a (non-exceptional) fibre of type (1, b).

Up to fibre-preserving homeomorphism, we can assume (see [3]) that the Seifert pieces appearing in a
graph manifold belong to the set S of the oriented compact connected Seifert fibre spaces with non-empty
boundary that are different from fibred solid tori and from the fibred spaces S1 × S1 × I and N×̃S1 (i.e., the
orientable circle bundle over the Moebius strip N, which will be considered with the alternative Seifert fibre
structure (0, 1, (2, 1), (2, 1), b)).

A Seifert fibre space S = (g, d, (p1, q1), . . . , (pr , qr), b) ∈ S, with base space B = p(S), is equipped with
coordinate systems on the toric boundary components, as follows (see [11, p. 422]). Let B be the compact
surface obtained from B by removing the interior of r + 1 disks and denote with c1, . . . , cr+1 the boundary
circles of these disks. Denote with cr+2, . . . , cr+d+1 all the remaining circles of ∂B. Consider an orientable
S1-bundle S over B. In other words S = B × S1, if B is orientable and S = B×̃S1 otherwise. Choose an
orientation for S and a section s : B → S of the projection map p : S → B. On each torus Th = p−1(ch)
choose a coordinate system (μh , λh) taking s(ch) as μh and a fibre p−1({∗}) as λh, for h = 1, . . . , r + d + 1.
The orientations of λh and μh are chosen so that the intersection number of μh with λh is equal to 1 and the
orientation of λh is induced by a fixed orientation of S1 if S = B × S1 and is arbitrarily chosen otherwise. The
manifold S is obtained from S by attaching solid tori Vh = D2

h × S
1 to S via homeomorphisms fh : ∂Vh → Th,

for1 ≤ h ≤ r+1, so that each fh takes themeridian ∂D2
h×{∗} of Vh into a curve of type (ph , qh) for1 ≤ h ≤ r and

into the curve of type (1, b) for h = r+1. Note that also the remaining boundary tori Th, with r+2 ≤ h ≤ r+d+1,
of S still possess coordinate systems (μh , λh).

Consider a finite connected non-trivial digraph G = (V, E), where V is the set of vertices and E is the set of
oriented edges of G. Given e ∈ E denote with ve the starting vertex and with ve the ending one. Let H = ( 0 1

1 0 )
and U = ( 1 0

1 1 ) and associate

∙ to each vertex v ∈ V having degree dv a Seifert fibre space Sv = (gv , dv , (p1, q1), . . . , (prv , qrv ), bv) ∈ S
(i.e., the degree of v is equal to the number of components of ∂Sv);

1 A non-trivial theta graph θ on a torus T2 is a subset of T2 homeomorphic to the theta graph (i.e., the graph with 2 vertices and
3 edges joining them) such that T2 \ θ is an open disk.
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∙ to each edge e ∈ E a matrix Ae = ( αe βeγe δe ) ∈ GL
−
2(ℤ) such that βe ̸= 0 and 0 ≤ εeαe , εeδe < |βe|, where

εe = βe/|βe|. We call a matrix in GL−2(ℤ) normalised if it satisfies these conditions. Moreover,
(i) Ae ̸= ±H when either Sve or Sve is the space (0, 1, (2, 1), (2, 1), −1);
(ii) when |V| = 2, |E| = 1 and S1 = (0, 1, (2, 1), (2, 1), b1), S2 = (0, 1, (2, 1), (2, 1), b2),

(a) if A = ±H then (b1, b2) ̸= (0, 0), (−2, −2);
(b) if A = ±( 1 β

1 β−1 ) with β > 1, then (b1, b2) ̸= (−1, −2);
(c) if A = ±( β−1 β1 1 ) with β > 1, then (b1, b2) ̸= (0, −1).

The graphmanifoldM associated to the abovedata is obtainedbygluing, for each edge e ∈ Ewith starting
vertex ve and ending vertex ve , a toric boundary component of Sve with one of Sve , using the homeomorphism
represented by Ae with respect to the fixed coordinate systems on the tori.² Clearly, M is a closed, orientable
and connected graph manifold. On the other hand, each closed connected orientable prime graph manifold
different from a Seifert fibre space and an orientable torus bundle over the circle can be obtained in this way;
see [3, § 11]. We call G a decomposition graph of M.

If G = (V, E) is a spanning subgraph of a decomposition graph G, we denote byMG the graphmanifold
(with boundary if G ̸= G) obtained by performing only the attachments corresponding to the elements of E.
Remark 1. There is no restriction in assuming that all matrices associated to the edges of a decomposition
graph are normalised: this is because of the following two operations that do not change the resulting graph
manifold (see [3, § 11] and [14]):

1) replacement of the matrix Ae with AeUk and of the parameter bve of the Seifert space Sve with the pa-
rameter bve + k;

2) replacement of the matrix Ae with UkAe and of the parameter bve of the Seifert space Sve with bve − k.
Indeed, given a matrix A = ( α βγ δ ) ∈ GL

−
2(ℤ), let k = −⌊

α
β ⌋ and h = −⌊

δ
β ⌋where ⌊x⌋ denotes the floor of x. Then

the matrix

A = UhAUk = ( α + kβ β
γ + hα + kδ + khβ δ + hβ

)

is normalised. Note that for a normalised matrix A = ( α βγ δ ) the following properties hold:

βγ > 0; if β = ±1 then A = βH; if A ̸= ±H then β/δ > 0.

Moreover A ∈ GL−2(ℤ) is normalised if and only if −A is normalised.

2.3 Theta graphs and Farey triangulation. Consider the upper half-plane model of the hyperbolic planeℍ2

and let 𝔽 be the ideal Farey triangulation; see [1]. The vertices of 𝔽 coincide with the points of ℚ ∪ {∞} ⊂
ℝ ∪ {∞} = ∂ℍ2; the edges of 𝔽 are geodesics inℍ2 with endpoints the pairs a/b, c/d such that ad − bc = ±1,
with ±1/0 = ∞. Let ∆ a

b ,
c
d ,

e
f
be the triangle of the Farey triangulation with vertices a/b, c/d, e/f ∈ ℚ ∪ {∞}

and set ∆+ = ∆∞,0,1, ∆− = ∆∞,0,−1.
Let T2 be a torus. It is a well-known fact that the vertex set of 𝔽 is in bijection with the set of slopes (i.e.,

isotopy classes of non-contractible simple closed curves) on T2 via a/b ↔ aμ + bλ, where (μ, λ) is a fixed
basis of H1(T2). This bijection induces a bijection between the set of triangles of the Farey triangulation and
the set Θ(T2) of non-trivial theta graphs on T2, considered up to isotopy. Indeed, given θ ∈ Θ(T2), consider
the three slopes l1, l2, l3 on T2 formed by the pairs of edges of θ. The triangle associated to θ is ∆l1 ,l2 ,l3 . Note
that this bijection is well defined since the intersection index of li and lj, with i ̸= j, is always ±1.

The graph 𝔽∗ dual to 𝔽 is an infinite tree. Given two triangles ∆ and ∆ in 𝔽 the distance d(∆, ∆) between
them is the number of edges of the unique simple path joining the vertices v∆ and v∆ corresponding to ∆ and
∆ in 𝔽∗, respectively. Given two theta graphs θ, θ ∈ Θ(T2) it is possible to pass from one to the other by a

2 If βe = 0 for some Ae, then the gluing map sends a fibre of Sve into a fibre of Sve . This implies that the decomposition of M in
Seifert pieces is not minimal with respect to the number of cutting tori. For the same reason Conditions (i) and (ii) hold (see [3,
p. 279]). Observe that we can assume βe > 0, for any e belonging to a fixed spanning tree of G.
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sequence of flip moves (see Figure 1): the distance on the set of triangles of the Farey triangulation induces a
distance on Θ(T2) such that d(θ, θ) turns out to be the minimal number of flips necessary to pass from θ to
θ; see [10].

Figure 1: Two theta graphs connected by a flip move.

The group GL2(ℤ) acts on ℍ2 as isometries and 𝔽 is invariant under this action: if we associate to a
given triangle ∆ a

b ,
c
d ,

e
f
∈ 𝔽 the matrix ( a c eb d f ), then the group GL2(ℤ) acts on the set of triangles of the Farey

triangulation by left multiplication.
The complexity cA of a matrix A ∈ GL2(ℤ) is defined as

cA = min{d(A∆−, ∆−), d(A∆−, ∆+), d(A∆+, ∆−), d(A∆+, ∆+)}.
Now we state a result about the complexity of normalized matrices. Let S : ℚ+ → ℕ be defined by

S(a/b) = a1 + ⋅ ⋅ ⋅ + ak, where
a
b
= a1 +

1

. . . +
1

ak−1 + 1
ak

is the expansion of the positive rational number a/b as a continued fraction, with a1, . . . , ak > 0.

Lemma 1. Let A = ( α βγ δ ) ∈ GL
−
2(ℤ) be a normalised matrix.

∙ If A = ±H then cA = d(A∆−, ∆−) = d(A∆+, ∆+) = 0.
∙ If A ̸= ±H then cA = d(A∆−, ∆+) = S(β/δ) − 1.

Proof. The first statement is straightforward since ±H∆± = ∆±. To prove the second one let A = ( α βγ δ ) ̸= ±H
and so |β| > 1 (see Remark 1). LetDβ/δ be the set of triangles of the Farey triangulation having a vertex in β/δ.
By [9, Lemma 4.3] we havemin{d(∆, ∆+) | ∆ ∈ Dβ/δ} = S(β/δ) − 1. If A is normalised then

0 < α
γ
<
β + α
γ + δ
<
β
δ
<
β − α
δ − γ

.

Indeed, since αδ − βγ = −1, we have

α
γ
<
α
γ
+

1
δγ
=
αδ + 1
δγ
=
β
δ
.

So,

0 < α
γ
=

α
γ +

α
δ

1 + γδ
<

β
δ +

α
δ

1 + γδ
=
β + α
δ + γ
=

β
γ +

α
γ

δ
γ + 1
<

β
γ +

β
δ

δ
γ + 1
=
β
δ
=

β
γ −

β
δ

δ
γ − 1
<

β
γ −

α
γ

δ
γ − 1
=
β − α
δ − γ

,

where we suppose δ − γ ̸= 0, otherwise the last inequality is straightforward.
ClearlyA∆− = ∆ α

γ ,
β
δ ,

β−α
γ−δ ,A∆+ = ∆ α

γ ,
β
δ ,

β+α
γ+δ and the relative position of the triangles is represented in Figure 2,

where for convenienceweuse the Poincaré diskmodel ofℍ2. All triangles ofDβ/δ different from A∆− and A∆+
are contained in the two hyperbolic half-planes depicted in gray. As a consequence, we havemin{d(∆, ∆+) |
∆ ∈ Dβ/δ} = d(A∆−, ∆+). Since the path in 𝔽∗ going from vA∆+ to v∆− contains vA∆− and v∆+ , we have cA =
d(A∆−, ∆+) = S(β/δ) − 1. 2
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∆+∆−

A∆−

A∆+

β−α
δ−γ

β
δ

β+α
δ+γ

α
γ

1

0

∞

−1

Figure 2: The Farey triangulation in the Poincaré disk model.

3 Complexity upper bounds
In this section we provide an upper bound for the complexity of graph manifolds. The general result is quite
technical since it involves two partial colourings of the decomposition graph. So, before stating it, we deal
with two special classes of graphmanifolds that are interestingby their own. In all cases, the result is achieved
by constructing a spine for a graph manifold: the description of the spines, as well as the proofs of the state-
ments, are postponed in the next section.

Denote by E the subset of E consisting of the edges associated to ±H (i.e., Ae = ±H) and set E = E \ E.
Given v ∈ V denote by d+v (respectively d−v ) the number of edges of E stating from (respectively ending in)
the vertex v. Moreover, for v ∈ V set hv = 2gv (respectively −gv) if the base space Bv of Sv is orientable
(respectively non-orientable) where gv denotes the genus of Bv.

Finally let fm,M : ℤ→ ℕ defined by

fm,M(b) =
{{{
{{{
{

m − b if b < m
0 if m ≤ b ≤ M
b −M if b > M

,

for m,M ∈ ℤ, m < M, m ≤ 1 and M ≥ −1 (see the graph in Figure 3).

Figure 3: The graph of the function fm,M.
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The first result deals with the case E = 0, i.e., the one concerning manifolds with decomposition graphs
without edges associated to ±H.

Theorem 1. Let M be a graph manifold associated to a decomposition graph G = (V, E) having no edge associ-
ated to the matrices ±H (i.e., E = 0 and E = E). Then
c(M) ≤ 5(|E| − |V| + 1) + ∑

e∈E(S(βe/δe) − 1) + ∑v∈V(3(dv + rv + 2hv − 2) + rv
∑
k=1(S(pk/qk) − 2) + fmv ,Mv (bv)),

where mv = −rv − hv − d−v + 1 and Mv = hv + d+v − 1.
The second case is the one of graph manifolds having a decomposition graph admitting a spanning tree

containing all the edges associated to the matrices ±H. This case seems to be rather technical, but it is quite
interesting since, up to complexity 12, about 99% of all prime graph manifolds belong to this class (they are
exactly 14346 out of 14502). To deal with this case we need to introduce a colouring on the edges of E (that in
this case are all contained in a spanning tree).

Consider Ψ = {ψ : E → {+, −}} and given ψ ∈ Ψ and v ∈ V denote by d+v,ψ (respectively d−v,ψ) the number
of edges of E incident to the vertex v and decorated with + (respectively −).
Theorem 2. Let M be a graph manifold associated to a decomposition graph G = (V, E) such that all the edges
associated to the matrices ±H are contained in a spanning tree of G. Then

c(M) ≤ 5(|E| − |V| + 1) + ∑
e∈E(S(βe/δe) − 1) + ∑v∈V(3(dv + rv + 2hv − 2) + rv

∑
k=1(S(pk/qk) − 2)) +

+min
ψ∈Ψ{∑v∈V fmv ,Mv (bv)}, where mv = −rv − hv − d−v − d−v,ψ + 1 and Mv = hv + d+v + d+v,ψ − 1.

Denote with TG the set of all spanning trees of G and let ϕ : TG → ℕ be the function defined by ϕ(T) =
|(E − ET) ∩ E|, i.e., ϕ counts the number of edges not belonging to T and associated to the matrices ±H. Let
Φ(G) = min{ϕ(T) | T ∈ TG}. The decomposition graphs of the manifolds involved in the previous result are
characterised by the fact that Φ(G) = 0. In the general case, we want to consider the spanning trees that
minimise Φ(G): a spanning tree T ∈ TG is called optimal if ϕ(T) ≤ ϕ(T) for any T ∈ TG, that is if it realises
the minimum of ϕ. We denote the set of optimal spanning trees of G with OG and we decorate the edges
associated to the matrices ±H with two colourings as follows:

ΨT = {ψ : ET → {+, −}}, Ψ T = {ψ : E \ ET → {++, +, +−, −+, −, −−}},
where ET are the edges of E belonging to T. If ET = E (respectively ET = 0) we have Ψ T = 0 (respectively
ΨT = 0). Finally, given ψ ∈ Ψ , ψ ∈ Ψ  and v ∈ V let

∙ d+v,ψ,T and d−i,ψ,T be the numbers of edges in T, incident to v and decorated with + and −, respectively;

∙ d+v,ψ ,T = 2 {e ∈ E \ ET | ve = v, ψ(e) = ++} + {e ∈ E \ ET | ve = v, ψ(e) = +} +
+ {e ∈ E

 \ ET | ve = v, ψ(e) = ++} + 2 {e ∈ E \ ET | ve = v, ψ(e) = +} +
+ {e ∈ E

 \ ET | ve = v, ψ(e) = +−} + {e ∈ E \ ET | ve = v, ψ(e) = −+};
∙ d−v,ψ ,T = 2 {e ∈ E \ ET | ve = v, ψ(e) = −−} + {e ∈ E \ ET | ve = v, ψ(e) = −} +
+ {e ∈ E

 \ ET | ve = v, ψ(e) = −−} + 2 {e ∈ E \ ET | ve = v, ψ(e) = −} +
+ {e ∈ E

 \ ET | ve = v, ψ(e) = −+} + {e ∈ E \ ET | ve = v, ψ(e) = +−}.
We are ready to state the general result.

Theorem 3. Let M be a graph manifold associated to a decomposition graph G = (V, E). Then

c(M) ≤ 5(|E| − |V| + 1) + Φ(G) + ∑
e∈E(S(βe/δe) − 1) + ∑v∈V(3(dv + rv + 2hv − 2) + rv

∑
k=1(S(pk/qk) − 2)) +

+ min
T∈OG
{ min
ψ∈ΨT ,ψ∈Ψ 

T

{∑
v∈V fmv ,Mv (bv)}},

where mv = −rv − hv − d−v − d−v,ψ,T − d−v,ψ ,T + 1 and Mv = hv + d+v + d+v,ψ,T + d+v,ψ ,T − 1.
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If, as in case of Theorem 2, there exists a spanning tree containing all the edges associated to ±H, then
clearlyΦ(G) = 0,Ψ  = 0 and ET = E, so the formula of the previous theorem reduces to the one of Theorem 2.

The sharpness of the previous upper bound in all known cases justifies the following

Conjecture. The upper bound given in Theorem 3 is sharp for all closed connected orientable prime graph
manifolds.

4 Construction of the spines and proofs of the results
The aimof this section is to prove the results stated Section 3. In all cases the result is achievedby constructing
a spine for a graph manifold starting from skeletons of its Seifert pieces. The construction of these skeletons
is essentially the one described in [2], specialised to our case (i.e., orientable Seifert manifolds) and adapted
to take care of the fact that the boundary components of the Seifert pieces will be glued together to obtain a
closed graph manifold. Anyway, for the sake of the reader we recall, in the next subsection, how to construct
a skeleton for the Seifert pieces. The construction and the number of true vertices of the resulting skeletons
depend on some choices: we explain in the proofs of the theorems (see Sections 4.2, 4.3 and 4.4) how to fix
them in order to minimise the number of true vertices of the spine.

4.1 Skeletons of Seifert pieces. Consider a Seifert manifold S = (g, d, (p1, q1), . . . , (pr , qr), b) ∈ S. Let
S0 = (g, d, (p1, q1), . . . , (pr , qr), 0) and let S0 = (g, d + r + 1, 0) be the space obtained from S0 by removing
r+1 open fibred solid tori (with disjoint closures) which are regular neighbourhoods of the exceptional fibres
of S0 and of a regular fibre of type (1, 0) contained in int(S0). Then S0 \ int(S0) = Φ0 ⊔ Φ1 ⊔ ⋅ ⋅ ⋅ ⊔ Φr, where
Φk (respectively Φ0) is a closed solid torus having the k-th exceptional fibre (respectively a regular fibre) as
core. Let p0 : S0 → B0 and p : S → B be the projection maps and set s = d + r. Note that if g ≥ 0 (respectively
g < 0) then B0 = p0(S0) is a disk with 2g + s orientable (respectively −g non-orientable and s orientable)
handles attached. We recall from Section 3 that h = 2g if g ≥ 0 and h = −g if g < 0.

Let D = p0(Φ0) and let A0 be the union of the disjoint arcs properly embedded in B0 depicted by thick
lines in Figure 4. Then A0 is non-empty and is composed of h edges with both endpoints in ∂D and s edges
with an endpoint in ∂D and the other one in a different component of ∂B0. By construction, B0 \ (A0 ∪ ∂B0)
is homeomorphic to an open disk and the number of points of A0 belonging to ∂D is at least three, since the
conditions on the class S ensure that s + 2h > 2.

∂D

∂B0

c1

cr

Figure 4: The set A0 ⊂ B0 \ int(D), with ck = p0(∂Φk).
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Let s0 : B0 → S0 be a section of p0 restricted to S0. If b ̸= 0, it is convenient to replace the fibre of type
(1, b)with |b| fibres of type (1, sign(b)). In this way the manifold S is obtained from S0 by removing |b| open
trivially fibred solid tori (with disjoint closures) int(Φ1), . . . , int(Φ|b|), each being a fibre-neighbourhood of
regular fibres ϕ1, . . . ϕ|b| contained in int(S0), and by attaching back |b| solid tori D2 × S1 via homeomor-
phisms ψl : ∂(D2 × S1)→ ∂Φl such that ψl(∂D2 × {∗}) is a curve of type (1, sign(b)) on ∂Φl , with respect to
a positive basis (μl , λl) of H1(∂Φl ), where μl = s0(p0(∂Φl )) and λl is the fibre over a point ∗ ∈ p0(∂Φl ), for
l = 1, . . . , |b|. Referring to Figure 5, it is convenient to take the fibre ϕl corresponding to an internal point
Ql of A0 and to suppose that p0(Φl ) is a “small” disk intersecting the component δl of A0 containing Ql in
an interval and being disjoint from ∂B0 and from the other components of A0. In this way δl \ int(p0(Φl ))
is the disjoint union of two arcs δl and δl . Let A = A0 \ ∪ |b|l=1int(p0(Φl )) and note that p and p0 coincide on
S0 \ ∪ |b|l=1int(Φl ).

δ′l δ′′lδl

Ql

p0(Φ′
l)

A0 A A

Figure 5: The set A ⊂ B0.
Let ̄s : (B0\(⋃|b|l=1 int(p0(Φl ))))∪D → S be a section of p restricted to p−1((B0\(⋃|b|l=1 int(p0(Φl ))))∪D) and

consider the polyhedron P = Im( ̄s) ∪ p−1(A) ∪ ∂Φ0⋃|b|l=1(∂Φl ∪ψl (D2 × {∗})) ⊂ S. As represented in the central
picture of Figure 6, the set int( ̄s(A)) is a collection of quadruple lines in the polyhedron (the link of each point
is homeomorphic to a graph with two vertices and four edges connecting them), and a similar phenomenon
occurs for ̄s(∂D \ A). Therefore we change the polyhedron P performing “small” shifts by moving in parallel
the disk ̄s(D) along the fibration and the components of p−1(A) as depicted in the left and right pictures of
Figure 6. It is convenient to think of the shifts of p−1(A) as performed on the components of A. Moreover, the
shifts on δl and δl can be chosen independently.

s̄(B′0)

p−1(A)

Figure 6: The two possible shifts on a component of p−1(A).
As shown by the pictures, the shift of any component of p−1(A)may be performed in two different ways

that are not usually equivalent in terms of complexity of the final spine. On the contrary, the two possible
parallel shifts for ̄s(D) are equivalent as is evident from Figure 7, which represents the torus ∂Φ0. Let

P = ̄s(B0 \ ( |b|⋃
l=1 int(p0(Φl )))) ∪ D ∪ W ∪ ∂Φ0 |b|⋃l=1(∂Φl ∪ψl (D2 × {∗}))

be the polyhedron obtained from P after the shifts, where D and W are the results of the shifts of ̄s(D) and
p−1(A), respectively.

It is easy to see that P ∪ ∂S⋃rk=1 ∂Φk is simple, P intersects each component of ∂S and each torus ∂Φk
in a non-trivial theta graph and the manifold S \ (P ∪ ∂S⋃rk=1 Φk) is the disjoint union of |b| + 2 open balls.
So in order to obtain a skeleton P for S \ (⋃rk=1 int(Φk)) it is enough to remove a suitable open 2-cell from the
torus T0 = ∂Φ0 and one from each torus Tl = ∂Φl , for l = 1, . . . , |b|, connecting in this way the balls.
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The graph Γl = Tl ∩ ( ̄s(B0 \ int(p0(Φl ))) ∪ W ∪ ψl(∂D2 × {∗})) (respectively Γ0 = T0 ∩ ( ̄s(B0) ∪ D ∪ W))
is cellularly embedded in Tl (respectively T0) and its vertices with degree greater than 2 are true vertices of
P ∪ ∂S ∪ rk=1 ∂Φk: we will remove the region Rl (respectively R0) of Tl \ Γl (respectively T0 \ Γ0) having in the
boundary the greatest number of vertices of Γl, for l = 1, . . . , |b| (respectively Γ0).

Referring to Figure 7, the graph Γ0 is composed of two horizontal parallel loops ξ = ∂( ̄s(D)) and ξ  = ∂D,
and an arc with both endpoints on ξ for each boundary point of A belonging to ∂D. Changing the shift of a
component of A has the same effect as performing a symmetry along ξ of the correspondent arc(s). A region of
T0 \Γ0 has 4 or 6 vertices when the non-horizontal arcs belonging to its boundary are not parallel or 5 vertices
otherwise. So, except for the case where all the arcs are parallel there is always a region with 6 vertices.

ξ = s̄(∂D)

ξ′

Figure 7: A fragment of the graph Γ0 embedded in ∂Φ0.
When b ̸= 0, the graph Γl, for l = 1, . . . , |b|, is depicted in Figure 8 (respectively Figure 9) for a fibre of

type (1, 1) (respectively (1, −1)), just labelled by + (respectively −) inside the disk. If we take for δl and δl
the shifts induced by that of δl, then we can choose as region Rl the gray one, containing in its boundary all
vertices of Γl belonging to ∂Φl except one (the thick points in the first two pictures). On the contrary, if one
of the two shifts is changed as in the third draw of Figures 8 and 9, then Rl can be chosen containing in its
boundary all the vertices of Γl belonging to ∂Φl .

We remark that changing the shift of a component of A changes the intersection between the correspond-
ing element of W and ∂S (which is a non-trivial theta graph) by a flip move (see Figure 1). We denote with
P the skeleton obtained by removing the regions R0 and Rl from P, for l = 1, . . . , |b|.

In order to construct a skeleton for Φk for k = 1, . . . , r, consider the skeleton PF depicted in Figure 10: it
is a skeleton for T2 × [0, 1] with one true vertex and such that θ0 = PF ∩ (T2 × {0}) (the graph in the upper
face) and θ1 = PF ∩ (T2 × {1}) (the graph in the bottom face) are two theta graphs differing for a flip move.
Denote with Θpk/qk the subset of Θ(T2), consisting of the theta graphs containing the slope corresponding to
pk/qk ∈ ℚ∪ {∞}. Let θpk/qk be the theta graph inΘpk/qk that is closest to θ+. The skeleton Xk forΦk is obtained
by assembling several skeletons of type PF connecting the theta graph P ∩ Φk to a theta graph which is one
step closer to θ+ than θpj/qj , with respect to the distance on Θ(T2); see [5]. The number of the required flips is
either S(pj , qj) − 2 or S(pj , qj) − 1 depending on the shift chosen for the corresponding component of A used
in the construction of the skeleton P. We call the shift regular in the first case and singular in the second one
(see Figure 11).

The skeleton PS of S is obtained by assembling P with Xk, via the identity, for k = 1, . . . , r.
4.2 Proof of Theorem 1. Here we prove our first result. To begin with we need to discuss how to fix the
choices in the construction of the skeleton PS previously described, when the Seifert fibre space S =
(g, d, (p1, q1), . . . , (pr , qr), b) is a piece of a graph manifold having all gluing matrices different from ±H.
According to the notation introduced at the beginning of Section 3, we have d = d+ + d− since E = 0.
Remark 2. Let θ+ and θ− be the theta graphs corresponding, respectively, to ∆+ and ∆− in the Farey triangu-
lation. The intersection of each boundary component of S with the skeleton PS is either θ+ or θ−, depending
whether the shift of the corresponding component δ of A has been chosen as depicted in the left or right part
of Figure 12, respectively.

We always choose these shifts such that exactly d+ (respectively d−) components have θ− (respectively
θ+) as intersection with PS. Suppose thatm ≤ b ≤ M, wherem = −r − h − d− + 1 andM = h + d+ − 1. If b ≤ −1
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∂D2 × {∗}

∂D2 × {∗}

s̄(B′)

s̄(B′)
δ′l δ′′l

δ′l δ′′l

∂D2 × {∗}

s̄(B′)
δ′l

δ′′l

∂D2 × {∗}
s̄(B′)

δ′l

δ′′l

p(Φ′
l)

p(Φ′
l)

p(Φ′
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p(Φ′
l)

+
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+
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Figure 8: The graph Γl, with b > 0, embedded in Tl = ∂Φl with different choices of the shifts for δl and δl .
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δ′l δ′′l
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p(Φ′
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−

−

−

−
∂D2 × {∗}

∂D2 × {∗}

∂D2 × {∗}

∂D2 × {∗}

Figure 9: The graph Γl, with b < 0 embedded in Tl = ∂Φl with different choices of the shifts for δl and δl .
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Figure 10: A skeleton for T2 × [0, 1] connecting two theta graphs differing by a flip move.

(pk, qk)

∂D ∂D

(pk, qk)

p(∂Φk) p(∂Φk)

Figure 11: Regular shift (on the left) and singular shift (on the right).

∂D ∂D

p(∂S) p(∂S)

Figure 12: The two possible choices for the shift corresponding to components of ∂S.

we can choose p0(Φ1), . . . , p0(Φ|b|) as |b| disks between those marked with − in Figure 13. In this way: (i) we
can remove a region from T0 containing 6 vertices of Γ0, (ii) we can remove from Tl a region Rl containing in
its boundary all the vertices of the graph Γl (as in the third drawing of Figure 9), for each l = 1, . . . , |b|, and
(iii) we can take all regular shifts in the skeletons Xk corresponding to the exceptional fibres, for k = 1, . . . , r.
If b = 0we do not have to remove any regular neighbourhoodΦl of regular fibres but still (i) and (iii) hold. An
analogous situation happens if b ≥ 1, but in this case in order to satisfy (i), (ii) and (iii) the fibres of type (1, 1)
correspond to some of the disks marked with + in Figure 14. As a result, when m ≤ b ≤ M the polyhedron PS
has 3(d + r + 2h − 2) +∑rk=1(S(pk/qk) − 2) true vertices.

If b < m ≤ 0 (respectively b > M ≥ 0) then (i) and (iii) hold and there are exactlym−b (respectively b−M)
tori in which we remove a region Rl containing in its boundary all the vertices of Γl except one (see the first
two pictures of Figure 8 and 9). Finally, if either b < m = 1 or b > M = −1 then (i) does not hold so we remove
a region from T0 containing 5 vertices of Γ0. Moreover, there are exactly |b| tori in which we remove a region
Rl containing all the vertices of Γl except one and (iii) holds. Summing up, if b < m (respectively b > M) then
the number of true vertices of PS increases by m − b (respectively b −M) with respect to the case m ≤ b ≤ M.

As a consequence, PS has 3(d + r + 2h − 2) +∑rk=1(S(pk/qk) − 2) + fm,M(b) true vertices.
Now let T = (V, ET) be a spanning tree of G and consider the graphmanifoldMT (with boundary if T ̸= G).

We will construct a skeleton PMT for MT by assembling skeletons of its Seifert pieces (constructed as above)
with skeletons of thickened tori corresponding to edges of T. More precisely, for each e ∈ ET let Te ⊂ ∂Sve
and Te ⊂ ∂Sve be the boundaries attached by Ae. We construct a skeleton PAe for Te × I, and assemble PSve
with PAe using the map Ae : Te → Te = Te × {0} and PAe with PSve with the identification Te × {1} = Te .
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Figure 13: An optimal choice for the shifts corresponding to (1, −1)-fibres, when b = m ≤ 0.
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Figure 14: An optimal choice for the shifts corresponding to (1, 1)-fibres, when b = M ≥ 0.
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Given e ∈ ET , let θe be the theta graph corresponding to Ae∆−. We construct the skeleton PAe by assem-
bling flip blocks (see Figure 10) so that (i) PAe ∩ (Te × {0}) = θe and (ii) PAe ∩ (Te × {1}) = θ+. By Lemma 1 we
have cAe = d(Ae∆−, ∆+) = S(βe/δe) − 1, so the number of flip blocks required to construct PAe , as well as the
number of true vertices of PAe , is S(βe/δe) − 1.

By Remark 2, we can construct the skeleton PSv having 3(dv+ rv+2hv−2)+∑
rv
k=1(S(pk/qk)−2)+ fmv ,Mv (bv)

true vertices. So PMT has

∑
e∈ET(S(βe/δe) − 1) + ∑v∈V(3(dv + rv + 2hv − 2) +

rv
∑
k=1(S(pk/qk) − 2) + fmv ,Mv (bv))

true vertices.
For each e ∈ E \ ET , the matrix Ae identifies two boundary components of MT . Denote with MT∪e the

resulting manifold. Construct PAe such that (i) PAe ∩ (Te × {0}) = θe and (ii) PAe ∩ (Te × {1}) = θ, where
θ is at distance one from θ+ and is closer to θe than θ+. The graphs θ and θ+ differ for a flip, since they
correspond to adjacent triangles, and therefore, as shown in Figure 15, we have i(θ, θ+) = 2, where i( ⋅ , ⋅ )
denotes the geometric intersection (i.e., the minimum number of intersection points up to isotopy). Consider
the polyhedron PMT ∪PAe ∪ (Te ×{1}): it is a skeleton for PMT∪e. Since PAe consists of S(βe/δe)−2flip blocks and
the graph θ+ ∪ θ has 6 vertices of degree greater than 2, the new polyhedron has 5+ S(βe/δe)−1 true vertices
more than PMT . By repeating this construction for any e ∈ E \ ET and observing that |E \ ET | = |E|− |V|+ 1we
get the statement.

Figure 15: The two intersections of two theta graphs differing by a flip move.

4.3 Proof of Theorem 2. As in the proof of Theorem 1, we start by constructing a skeleton PMT for the graph
manifold MT (with boundary if T ̸= G). By Lemma 1 we have 0 = c±H = d(±H∆−, ∆−) = d(±H∆+, ∆+), so
whenever e ∈ ET = E, no flip block is required in PAe and we can assemble directly PSve with PSve . So, if Te
and Te denote, respectively, the boundary components of Sve and Sve glued by Ae, we require that either (i)
PSve ∩ Te = θ+ and PSve ∩ Te = θ+ or (ii) PSve ∩ Te = θ− and PSve ∩ Te = θ−.

In order to take care of these two possibilities we use a function ψ : E → {+, −}. If the shifts in the
construction of PSve and PSve are chosen so that (i) holds (respectively (ii) holds) set ψ(e) = − (respectively
ψ(e) = +). Following the construction of Remark 2,with d+ = d+v +d+v,ψ and d− = d−v +d−v,ψ, we obtain a skeleton
PSv with 3(dv + rv +2hv −2)+∑

rv
k=1(S(pk/qk)−2)+ fmv ,Mv (bv) true vertices. Thus theminimum number of true

vertices of the skeleton PMT of MT is ∑e∈ET (S(βe/δe) − 1) + ∑v∈V(3(dv + rv + 2hv − 2) + ∑rvk=1(S(pk/qk) − 2))
+minψ∈Ψ {∑v∈V fmv ,Mv (bv)}.

Since all the matrices associated to the edges e ∉ ET are different from ±H, starting from PMT we can
construct a spine for M as described in the proof of Theorem 1. This concludes the proof.

4.4 Proof of Theorem3. Let T = (V, ET) ∈ OG. Givenψ ∈ ΨT , we construct a skeleton PMT forMT as described
in the proof of Theorem 2. If e ∈ E \ ET , then Ae = ±H and it glues together two toric boundary components
Te ⊂ ∂Sve and Te ⊂ ∂Sve of MT .
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Let (θe , θe ) = (PSve ∩ Te , PSve ∩ Te ). Since Ae∆± = ∆± and i(θ+, θ+) = i(θ−, θ+) = i(θ−, θ−) = 2, we
have to consider all possible cases of θe , θe ∈ {θ+, θ−}. If (θe , θe ) = (θ+, θ−) (respectively (θe , θe ) = (θ−, θ+))
then we define ψ(e) = −+ (respectively ψ(e) = +−). If (θe , θe ) = (θ+, θ+) or (θe , θe ) = (θ−, θ−) we can
use Remark 1 in order to obtain a better estimate for c(M). Indeed, if we replace the matrix Ae with AeU∓1
(respectively U±1Ae), then bve (respectively bve ) is replaced with bve ∓ 1 (respectively bve ∓ 1), but anyway
i(θ−, θ−) = i(θ− , θ−) = i(θ+, θ+) = i(θ+ , θ+) = 2, where θ−, θ− , θ+, θ+ are the theta graphs associated to the
triangles AeU−1∆−, UAe∆−, AeU∆+, U−1Ae∆+, respectively. Indeed, AeU−1∆−, UAe∆− are adjacent to ∆− and
AeU∆+, U−1Ae∆+ are adjacent to ∆+. More precisely, if we take (θe , θe ) = (θ−, θ−) and replace Ae with AeU−1
(respectively UAe) we set ψ(e) = ++ (respectively ψ(e) = +), while if we take (θe , θe ) = (θ+, θ+) and replace
Ae with AeU (respectively U−1Ae) we set ψ(e) = −− (respectively ψ(e) = −). As a result, the skeleton PMT

determined by ψ ∈ ΨT and ψ ∈ Ψ T has
∑
e∈ET (S(βe/δe) − 1) + ∑v∈V(3(dv + rv + 2hv − 2) +

rv
∑
k=1(S(pk/qk) − 2)) + ∑v∈V fmv ,Mv (bv)

true vertices.
A spine for M is given by the union of PMT with: (i) the skeleton PAe ∪ Te × {1} described in the proof of

Theorem 1 and having 5 + (S(βe/δe) − 1) true vertices for each e ∈ E \ ET , and (ii) the torus Te , containing
6 true vertices for each e ∈ E \ ET . Since |E \ ET | + |E \ ET | = |E \ ET | = |E| − |V| + 1 and |E \ ET | = Φ(G)we
get the statement.
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