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NECESSARY CONDITION IN A BREZIS-OSWALD-TYPE

PROBLEM FOR MIXED LOCAL AND NONLOCAL OPERATORS

STEFANO BIAGI, DIMITRI MUGNAI, AND EUGENIO VECCHI

Abstract. In this note we complete the study started in [4] providing a full
characterization of the existence of a unique positive weak solution of a p-subli-
near Dirichlet boundary value problem driven by a mixed local-nonlocal opera-
tor.

1. Introduction

Let Ω ⊆ Rn be a bounded open set with sufficiently smooth boundary ∂Ω.
Moreover, let 1 < p < ∞ and s ∈ (0, 1) be fixed. The aim of this short note is to
complete the study started in [4] concerning the optimal solvability of the following
p-sublinear Dirichlet problem

(1.1)


Lp,su = f(x, u) in Ω,

u ≩ 0 in Ω,

u = 0 in Rn \ Ω.

Here, Lp,s is the mixed local and nonlocal quasilinear operator

Lp,s := −∆p + (−∆)sp,

where ∆pu = div(|∇u|p−2∇u) is the usual p-Laplace operator and (−∆)sp denotes
the so-called fractional p-Laplacian in Rn which acts on sufficiently regular func-
tions u and up to a suitable normalizing constant, as follows:

(−∆)spu(x) := 2P.V.

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+ps
dx.

As usual, P.V. denotes the Cauchy principal value.

In order to clearly state the main theorem of this note and to review the results
obtained in [4], it is worth introducing some assumptions and notation.
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The functional setting. To begin with, we fix once and for all the structural
assumptions we require on the nonlinearity f :

(f1) f : Ω× [0,+∞) → R is a Carathéodory function.
(f2) f(·, t) ∈ L∞(Ω) for every t ≥ 0.
(f3) There exists a constant cp > 0 such that

|f(x, t)| ≤ cp(1 + tp−1) for a.e.x ∈ Ω and every t ≥ 0.

(f4) For a.e.x ∈ Ω, the function t 7→ f(x, t)

tp−1
is strictly decreasing in (0,∞).

(f5) There exists ρf > 0 such that

(1.2) f(x, t) > 0 for a.e.x ∈ Ω and every 0 < t < ρf .

We observe that all the assumptions above are trivially satisfied in the particular
case of power-type linearities f(x, u) = uθ, with 0 ≤ θ ≤ p− 1.

Remark 1.1. A few remarks on assumptions (f1)-(f5) are in order.

(1) If compared to the Brezis-Oswald’s paper [7], our assumptions on the nonli-
nearity f are more restrictive: indeed, in [7] is required a one-side sublinear
growth on f , and the sign assumption (f5) is not needed; thus, we can cover
a smaller class of nonlinearities. For instance, the function

f(x, t) = f(t) :=

{
cos(t) if 0 ≤ t ≤ π/2,

−(t− π/2)2 if t ≥ π/2,

does not satisfy assumption (f3) (with p = 2), but it satisfies the one-side
growth condition

f(t) ≤ 1 + t for every t ≥ 0.

Hence, f is an ‘admissible’ nonlinearity in [7], but not for us.

(2) As pointed out in [4], assumption (f5) and the two-side growth condition in
assumption (f3) are technical assumption which permit to overcome the lack
of boundary regularity for Lp,s, which is instead a crucial tool in [7, 11, 12].
Presently, the regularity for Lp,s is deeply investigated, see [1, 2, 3, 8, 10,
9, 13, 14] for the case of weak solutions and [5] for the case of viscosity
solutions; however, the optimal boundary regularity for Lp,s in the context
of weak solutions and a Hopf-type lemma seem lacking. As it will be clear
from the proof of Theorem 1.3, assumptions (f3)-(f5) allows us to set up a
suitable truncation/approximation argument which turns out to be a proper
substitute of a Hopf-type lemma for Lp,s.

Owing to assumption (f4), we then introduce the following functions:

a0(x) := lim
t↓0

f(x, t)

tp−1
a∞(x) := lim

t↑∞

f(x, t)

tp−1
(for x ∈ Ω).

We explicitly observe that, taking into account assumption (f5), the function a0 is
non-negative but possibly unbounded from above in Ω, and even infinite in a non-
null subset of Ω; on the other hand, since the two-side growth condition on f in
assumption (f3) gives∣∣∣∣f(x, t)tp−1

∣∣∣∣ ≤ cp
1 + tp−1

tp−1
≤ 2cp for a.e.x ∈ Ω and t ≥ 1,
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we readily infer that a∞ ∈ L∞(Ω). Summing up, recalling (f4), we have

(1) max{0, a∞(x)} ≤ a0(x) ≤ ∞ for a.e.x ∈ Ω;

(2) a∞ ∈ L∞(Ω).

We now introduce the function space

(1.3) Xp(Ω) :=
{
u ∈W 1,p(Rn) : u ≡ 0 a.e. on Rn \ Ω

}
.

In view of the regularity assumption on ∂Ω, we can identify Xp(Ω) with the space

W 1,p
0 (Ω). Indeed, denoting with 1Ω the indicator function of Ω, we have

(1.4) u ∈W 1,p
0 (Ω) ⇐⇒ u · 1Ω ∈ Xp(Ω).

From now on, we shall tacitly identify a function u ∈ W 1,p
0 (Ω) with its ‘zero-

extension’ û := u · 1Ω ∈ Xp(Ω).

By the Poincaré inequality and (1.4), we get that the quantity

∥u∥Xp :=

(∫
Ω
|∇u|p dx

)1/p

, u ∈ Xp(Ω),

endows Xp(Ω) with a structure of real Banach space, which is actually isometric to

W 1,p
0 (Ω). Moreover, Xp(Ω) is separable and reflexive and C∞

0 (Ω) is dense in Xp(Ω).

The space Xp(Ω) is the right one where solutions can be found, according to the
following definition.

Definition 1.2. Let the above assumptions and notations be in force. We say that
a function u ∈ Xp(Ω) is a weak solution of (1.1) if

(1) for every function φ ∈ Xp(Ω) one has∫
Ω
|∇u|p−2⟨∇u,∇φ⟩ dx

+

∫∫
R2n

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+ps
dx dy

=

∫
Ω
f(x, u)φdx;

(1.5)

(2) u ≥ 0 a.e. in Ω and |{x ∈ Ω : u(x) > 0}| > 0,

where | · | denotes the n-dimensional Lebesgue measure of a measurable set.

The main result. Taking into account all the definitions and notations introduced
so far, we are able to state the main result of this note.

Theorem 1.3. Let Ω ⊆ Rn be a bounded open set with sufficiently smooth boundary
∂Ω. Moreover, assume that f satisfies (f1)–(f5).

Then, if a solution u ∈ Xp(Ω) of (1.1) exists, we have

(1.6) λ1(Lp,s − a∞) > 0.

Following the notation in [4], the number λ1(Lp,s − a∞) in (1.6) is the smallest
eigenvalue of the operator Lp,s − a∞ with nonlocal Dirichlet boundary conditions.
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More explicitly, taking into account that a∞ ∈ L∞(Ω), we have

(1.7) λ1(Lp,s − a∞) := inf
u∈Xp(Ω)

∥u∥Lp(Ω)=1

{
Qp,s(u)−

∫
Ω
a∞ |u|p dx

}
,

where we have introduced the shorthand notation

Qp,s(u) :=

∫
Ω
|∇u|p dx+

∫∫
R2n

|u(x)− u(y)|p

|x− y|n+ps
dx dy, u ∈ Xp(Ω).

Remark 1.4. Since a∞ ∈ L∞(Ω), we know from [4, Prop. 5.1] that the infimum
in (1.7) is actually achieved, so that λ1(Lp,s − a∞) ∈ R. Moreover, there exists a
unique non-negative function u0 ∈ Xp(Ω) such that ∥u∥Lp(Ω) = 1 and

λ1(Lp,s − a∞) = Qp,s(u0)−
∫
Ω
a∞ up0 dx.

The relevance of Theorem 1.3 becomes clear if we combine this theorem with
the main result obtained in [4], which is the following.

Theorem 1.5 ([4, Thm. 1.2]). Let Ω ⊆ Rn be a bounded open set with sufficiently
smooth boundary ∂Ω. Assume that f satisfies (f1)–(f5).

Then, the following assertions hold.

(1) If a solution to (1.1) exists, it is unique, bounded and positive in Ω.

(2) There exists a solution to (1.1) if

λ1(Lp,s − a0) < 0 < λ1(Lp,s − a∞).

Moreover, if a solution to (1.1) exists, then

λ1(Lp,s − a0) < 0.

(3) In the linear case p = 2, there exists a solution to (1.1) if and only if the
following condition is satisfied

λ1(L2,s − a0) < 0 < λ1(L2,s − a∞).

Clearly, Theorem 1.5 provides a complete characterization for the unique solv-
ability of (1.1) in the linear case p = 2. By combining Theorem 1.5-(1) with our
Theorem 1.3, we are able to close the gap: indeed, we derive that the condition

λ1(Lp,s − a0) < 0 < λ1(Lp,s − a∞),

is both necessary and sufficient for the (unique) solvability of (1.1). This gives
an extension of the classical result by Brezis-Oswald [7] and in particular of its
extension to the quasilinear case [11].

Remark 1.6. Some remarks concerning Theorem 1.5 are in order.

(1) The positivity property in assertion (1) is a consequence of the Strong
Maximum Principle for the equation

Lp,su = f(x, u)

proved in [4, Thm. 3.1]. As pointed out in [4, Rem. 3.4], this result holds
for any nonlinearity f satisfying the following properties:

(a) f(x, 0) ≥ 0 for a.e.x ∈ Ω;

(b) f(x, t) ≥ −cf tp−1 for a.e.x ∈ Ω and every 0 < t < 1;

(c) |f(x, t)| ≤ cp(1 + tp−1) for a.e.x ∈ Ω and every t ≥ 1.
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In particular, the sign assumption (f5) is not necessary for the strong max-
imum principle.

(2) As for the case of a∞, the number λ1(Lp,s − a0) appearing in Theorem 1.5
indicates the smallest eigenvalue of the operator Lp,s − a0 with nonlocal
Dirichlet boundary conditions. However, since the map a0 is non-negative
but possibly unbounded from above or infinite, we define (see [4, 7])

λ1(Lp,s − a0) := inf
u∈Xp(Ω)

∥u∥Lp(Ω)=1

{
Qp,s(u)−

∫
{u̸=0}

a0 |u|p dx
}
.

We point out that, in this case, we can have λ1(Lp,s − a0) = −∞.

2. Proof of Theorem 1.3

We now turn to prove Theorem 1.3.

Proof of Theorem 1.3. Let u ∈ Xp(Ω) be a (weak) solution of problem (1.1), ac-
cording to Definition 1.2. On account of [4, Thm. 4.1], we know that u is globally
bounded in Ω; thus, setting M := ∥u∥L∞(Ω) + 1 > 1, we can define

a : Ω → R, a(x) :=
f(x,M)

Mp−1
.

Owing to assumption (f4), it is readily seen that a ∈ L∞(Ω); as a consequence, we
know from [4, Prop. 5.1] that the eigenvalue problem

(2.1)


Lp,sv − a(x)|v|p−2v = λ|v|p−2v in Ω,

v ̸≡ 0 in Ω

v = 0 in Rn \ Ω,

admits a smallest eigenvalue, say µ ∈ R, whose associated eigenfunctions are glob-
ally bounded and do not change sign in Ω. We then choose an eigenfunction

ψ0 ∈ Xp(Ω) ∩ L∞(Ω), ψ0 ≩ 0

for (2.1) relative to µ, and we claim that the following inequality holds.∫
Ω

[(f(x, u)
up−1

− a(x)
)
− µ

]
(up − ψp

0) dx ≥ 0.(2.2)

Taking this claim for granted for a moment, we can complete the proof of the
theorem. In fact, since also the function ψk = kψ0 (with k > 0) is a non-negative
and bounded eigenfunction for (2.1) relative to µ, from (2.2) we infer that

(2.3)

∫
Ω

[(f(x, u)
up−1

− a(x)
)
− µ

]
(up − kpψp

0) dx ≥ 0 ∀ k > 0.

On the other hand, by assumption (f4) and the very definition of a, we have

f(x, u)

up−1
− a(x) > 0 a.e. in Ω.

Thus, by combining this last inequality with (2.3) (and taking into account that
ψ0 > 0 in Ω by the Strong Maximum Principle [4, Thm. 3.1]), we infer that

(2.4) µ > 0.
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With (2.4) at hand, it now suffices to proceed as in [7]: using again (f4), we readily
see that a > a∞ a.e. in Ω; this, together with the definition of λ1(Lp,s − a∞) and
the variational characterization of µ (see [4, Eq. (5.2)]), implies that

λ1(Lp,s − a∞) ≥ inf
u∈Xp(Ω)

∥u∥Lp(Ω)=1

{
Qp,s(u)−

∫
Ω
a(x) |u|p dx

}
= µ > 0,

which is exactly what we wanted to prove. Hence, we are left to prove (2.2). To
this end, we exploit an approximation argument already used in [4] and originally
introduced in [6] to study purely nonlocal problems at critical growth.

First of all, we arbitrarily fix ε > 0 and we define

φ1,ε := r1,ε − u, φ2,ε := r2,ε − ψ0,

where

r1,ε :=
ψp
0

(u+ ε)p−1
, r2,ε :=

up

(ψ0 + ε)p−1
.

Taking into account that u, ψ0 ∈ Xp(Ω), u, ψ0 ≥ 0 a.e. in Ω and that u, ψ0 are
globally bounded in Ω, we readily infer that

φi,ε ∈ Xp(Ω) for every ε > 0 and i = 1, 2.

Hence, using φ1,ε, φ2,ε as test functions in (1.5) for u and ψ0, respectively, and
adding the resulting integral identities, we obtain∫

Ω
|∇u|p−2⟨∇u,∇φ1,ε⟩ dx+

∫
Ω
|∇ψ0|p−2⟨∇ψ0,∇φ2,ε⟩ dx

+

∫∫
R2n

Jp(u(x)− u(y))(φ1,ε(x)− φ1,ε(y))

|x− y|n+ps
dx dy

+

∫∫
R2n

Jp(ψ0(x)− ψ0(y))(φ2,ε(x)− φ2,ε(y))

|x− y|n+ps
dx dy

=

∫
Ω

(
f(x, u)φ1,ε + (a(x) + µ)ψp−1

0 φ2,ε

)
dx,

(2.5)

where we have used the notation Jp(t) := |t|p−2t (for t ∈ R). Now, a direct com-
putation based on the very definition of φi,ε, gives∫

Ω
|∇u|p−2⟨∇u,∇φ1,ε⟩ dx+

∫
Ω
|∇ψ0|p−2⟨∇ψ0,∇φ2,ε⟩ dx

= −
∫
Ω
Ap

(
∇u, u

ψ0 + ε
∇ψ0

)
dx−

∫
Ω
Ap

(
∇ψ0,

ψ0

u+ ε
∇u

)
dx,

where we have set

Ap(v, w) := |v|p + (p− 1)|w|p − p|w|p−2⟨v, w⟩ (for v, w ∈ Rn).
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As a consequence, since Ap(v, w) ≥ 0 for every v, w ∈ Rn (see, e.g., [4, Lem. 4.4]),
identity (2.5) boils down to∫

Ω

(
f(x, u)φ1,ε + (a(x) + µ)ψp−1

0 φ2,ε

)
dx

≤
∫∫

R2n

Jp(u(x)− u(y))(r1,ε(x)− r1,ε(y))

|x− y|n+ps
dx dy

+

∫∫
R2n

Jp(ψ0(x)− ψ0(y))(r2,ε(x)− r2,ε(y))

|x− y|n+ps
dx dy

−
∫∫

R2n

|u(x)− u(y)|p

|x− y|n+ps
dx dy −

∫∫
R2n

|ψ0(x)− ψ0(y)|p

|x− y|n+ps
dx dy

=: I1,ε + I2,ε − J1 − J2,

(2.6)

We now aim at passing to the limit as ε→ 0+ in the above (2.6).

To this end, we first remind the following discrete Picone inequality: for every
fixed p ∈ (1,+∞) and every a, b, c, d ∈ [0,+∞) with a, b > 0, one has

Jp(a− b)

(
cp

ap−1
− dp

bp−1

)
≤ |c− d|p

(for a proof see, e.g., [6, Prop. 2.2]). By using this inequality, we have

(i) Jp(u(x)− u(y))(r1,ε(x)− r1,ε(y)) ≤ |ψ0(x)− ψ0(y)|p;
(ii) Jp((ψ0(x)− ψ0(y))(r2,ε(x)− r2,ε(y)) ≤ |u(x)− u(y)|p.

Hence, we can apply the Fatou lemma for the integrals I1,ε, I2,ε, obtaining

lim sup
ε→0+

(
I1,ε + I2,ε − J1 − J2

)
≤

∫∫
R2n

Jp(u(x)− u(y))

|x− y|n+ps

(
ψp
0

up−1
(x)− ψp

0

up−1
(y)

)
dx dy

+

∫∫
R2n

Jp(ψ0(x)− ψ0(y))

|x− y|n+ps

(
up

ψp−1
0

(x)− up

ψp−1
0

(y)

)
dx dy

−
∫∫

R2n

|u(x)− u(y)|p

|x− y|n+ps
dx dy −

∫∫
R2n

|ψ0(x)− ψ0(y)|p

|x− y|n+ps
dx dy

=: κ(u1, u2, p),

(2.7)

where κ(u1, u2, p) ∈ [−∞, 0] again by the discrete Picone inequality (here, to give
a meaning to the integrals when x or y are not in Ω, we have tacitly set 0/0 = 0).

We now turn our attention to the left hand side of (2.6). Taking into account
the very definition of φi,ε, we first write∫

Ω

(
f(x, u)φ1,ε + (a(x) + µ)ψp−1

0 φ2,ε

)
dx

=

∫
Ω
f(x, u) r1,ε dx+

∫
Ω
(a(x) + µ)ψp−1

0 r2,ε dx

−
∫
Ω
f(x, u)u dx−

∫
Ω
(a(x) + µ)ψp

0 dx

=: A1,ε +A2,ε − B1 − B2.
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Moreover, recalling the value ρf > 0 in (1.2), we further split A1,ε as

A1,ε =

∫
{u<ρf}

f(x, u) r1,ε dx+

∫
{u≥ρf}

f(x, u) r1,ε dx =: A′
1,ε +A′′

1,ε.

Now, by assumption (f3), for every ε > 0 we have

|f(x, u) r1,ε| · 1{u≥ρf} ≤ cp
(
1 + ρ1−p

f

)
ψp
0 ≡ cp,f ψ

p
0 ;

on the other hand, since a ∈ L∞(Ω), we have∣∣(a(x) + µ)ψp−1
0 r2,ε

∣∣ ≤ ∣∣∥a∥L∞(Ω) + µ
∣∣up ≡ c up.

Thus, we can then apply the Dominated Convergence theorem, obtaining

A′′
1 := lim

ε→0+
A′′

1,ε =

∫
{u≥ρf}

f(x, u)

up−1
ψp
0 dx ∈ R and

A2 := lim
ε→0+

A2,ε =

∫
Ω
(a(x) + µ)up dx ∈ R.

(2.8)

Hence, it remains to study the behavior of A′
1,ε when ε→ 0+.

First of all, using (1.2) and the fact that r1,ε is nonnegative and monotone in-
creasing with respect to ε, we can apply the Beppo Levi theorem, obtaining

A′
1 := lim

ε→0+
A′

1,ε =

∫
{u1<ρf}

f(x, u)

up−1
ψp
0 dx ∈ [0,+∞].(2.9)

On the other hand, going back to estimate (2.6) and taking into account the very
definitions of the integrals A′

1,ε,A
′′
1,ε,A2,ε,Bi, we get

0 ≤ A′
1,ε ≤

(
I1,ε + I2,ε − J1 − J2

)
+B1 +B2 −A′′

1,ε −A2,ε.

Then, by letting ε→ 0+ with the aid of (2.7)–(2.8), we obtain

0 ≤ A′
1 ≤ κ(u1, u2, p) + B1 +B2 −A′′

1 −A2,

from which we derive at once that

(2.10) κ(u1, u2, p) > −∞ and A′
1 < +∞.

Gathering (2.8)–(2.9), and taking into account (2.10), we finally have

lim
ε→0+

(∫
Ω

(
f(x, u)φ1,ε + (a(x) + µ)ψp−1

0 φ2,ε

)
dx

)
= lim

ε→0+

(
A′

1,ε +A′′
1,ε +A2,ε − B1 − B2

)
=

∫
Ω

(f(x, u)
up−1

ψp
0 + (a(x) + µ)up − f(x, u)u− (a(x) + µ)ψp

0

)
dx

= −
∫
Ω

(f(x, u)
up−1

− (a(x) + µ)
)
(up − ψp

0) dx.

(2.11)

With (2.7) and (2.11) at hand, we can easily conclude the proof of the theorem.
Indeed, using these cited identities we can let ε→ 0+ in (2.6), obtaining

−
∫
Ω

(f(x, u)
up−1

− (a(x) + µ)
)
(up − ψp

0) dx ≤ κ(u1, u2, p) ≤ 0.

This is exactly the claimed (2.2), and the proof is now complete. □
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Remark 2.1. By carefully scrutinizing the proof of Theorem 1.3, it is clear that
the regularity of ∂Ω plays an effective role only in (1.4). Following [3], it would be
also possible to look for solutions in the function space

X 1,p
0 (Ω) := C∞

0 (Ω)
∥·∥W1,p(Rn) ⊆W 1,p(Rn),

On the other hand, since our techniques do not rely on the regularity up the boun-
dary for Lp,s nor on an Hopf-type lemma (which are not available, as far as we
know), they are also independent of the regularity of ∂Ω; hence, Theorems 1.3-1.5

hold for any bounded open set, by replacing Xp(Ω) with the space X 1,p
0 (Ω). In

this perspective, our assumptions (f3)-(f5) can be viewed as the price to pay for
considering general open sets (differently to case considered in [7]).

We also point out that a related approach could be used for the case of p-sublinear
nonlocal problems with Robin nonlocal boundary conditions as considered in [15],
once proved that solutions are bounded.

Acknowledgements

The authors are grateful to the anonymous referees for carefully checking the
manuscript and for giving valuable improvements.

References

[1] S. Biagi, S. Dipierro, E. Valdinoci and E. Vecchi, Mixed local and nonlocal elliptic
operators: regularity and maximum principles, Comm. Partial Differential Equations 47(3),
(2022), 585–629. 2

[2] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A quantitative Faber-Krahn inequality
for some mixed local and nonlocal operators, to appear in J. Anal. Math. 2

[3] S. Biagi, S. Dipierro, E. Valdinoci and E. Vecchi, A Hong-Krahn-Szegö inequality for
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