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Abstract: This study concerns the analysis of the modulation of Chronic Myeloid Leukemia (CML) 1

cell model K562 transcriptome following transfection with the tumor suppressor gene encoding for 2

Protein Tyrosine Phosphatase Receptor Type G (PTPRG) and the treatment with the tyrosine kinase 3

inhibitor (TKI) Imatinib. Specifically, we aimed at identifying genes whose level of expression is 4

altered by PTPRG modulation and Imatinib concentration. Statistical tests as differential expres- 5

sion analysis (DEA) supported by gene set enrichment analysis (GSEA) and modern methods of 6

ontological term analysis are presented along with some results of current interest for forthcoming 7

experimental research in the field of the transcriptomic landscape of CML. In particular, we present 8

two methods that differ in the order of the analysis steps. After a gene selection based on fold-change 9

value thresholding, we applied statistical tests to select differentially expressed genes. Therefore, we 10

applied two different methods on the set of differentially expressed genes. With the first method 11

(Method 1) we implemented GSEA, followed by the identification of transcription factors. With the 12

second method (Method 2), we first selected the transcription factors from the set of differentially 13

expressed genes and implemented GSEA on this set. Method 1 is a standard method commonly 14

used in this type of analysis, while method 2 is unconventional and is motivated by the intention to 15

identify transcription factors more specifically involved to biological processes relevant to the CML 16

condition. Both methods have been equipped by ontological knowledge mining and word cloud 17

analysis, as elements of novelty of our analytical procedure. Data analysis identified RARG and 18

CD36 as a potential PTPRG upregulated genes suggesting a possible induction of cell differentiation 19

toward a erithromyeloid phenotype. The prediction was confirmed at the mRNA and protein level, 20

further validating the approach and identifying a new molecular mechanism of tumour suppression 21

governed by PTPRG in a CML context. 22
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Myeloid Leukemia. 24

1. Introduction 25

Chronic Myeloid Leukemia (CML) is a myeloproliferative disease affecting approx- 26

imately 1 per 200,000 persons per year in industrialized countries. Many treatment im- 27

provements have been achieved recently, especially in the development of new drugs, but a 28

mortality rate of 2-3% per year remains [1,2]. A distinctive feature of CML is the reciprocal 29

translocation, originating in hematopoietic stem cells (HSCs), between the long arms of 30

chromosomes 9 and 22, i.e. t(9;22)(q34;q11.2), which results in the BCR-ABL1 chimeric gene. 31

This genomic aberration generates a new fusion gene, BCR-ABL1, which encodes for a 32

tyrosine kinase held accountable for the neoplastic transformation of these cells by affecting 33

normal cellular pathways essential for tissue homeostasis, and thus causing the alteration of 34

crucial cellular processes, such as apoptosis, cell cycle and autophagy [3,4]. In this context, 35

one primary goal of the research is to identify the regulatory mechanisms antagonizing the 36

kinase activity of BCR-ABL1 and, possibly, of other vital effectors intersecting this pathway 37

as players other than BCR-ABL1 have been involved in the pathogenesis of the disease 38

[5,6]. The natural history of CML, prior to the advent of small molecule protein kinase 39

antagonists, feature a progression from a stable or chronic phase to an accelerated phase, or 40

to a rapidly fatal blast crisis within 3–5 years. Typically blood cells differentiate normally 41

in the stable phase, but not in the blast phase [1]. Protein Tyrosine Phosphatase receptor 42

type G (PTPRG) is a member of the protein tyrosine phosphatase (PTP) family featuring 43

an extracellular and a single transmembrane region and two tandem intracytoplasmic 44

catalytic domains [7]. PTPRG is widely expressed in human tissues [8] and is involved 45

in the regulation of cell growth, differentiation, mitotic cycle, and oncogenic transforma- 46

tion [9,10]. The gene encoding for this phosphatase is located in a chromosomal region 47

(3p21-p14.2) frequently deleted in renal cell and lung carcinoma, where PTPRG acts as a 48

tumor suppressor in many cancers [11–14]. Specifically, PTPRG was recognized as having 49

an oncosuppressor function gene and was found downregulated in CML patients. This 50

relevance of this gene to CML has been recently supported by several studies performed in 51

patients and strategies aimed at restoring its expression are expected to benefit the course 52

of the disease by improving drug efficacy or contrasting the emergence of BCR/ABL1 53

mutants [15–17]. 54

Epigenetic events, such as the hyper-methylation of its promoter region as well as 55

intron 1, negatively regulates the transcription of PTPRG, as demonstrated in CML and 56

childhood acute lymphoblastic leukemia [16,18–20]. Re-expression of this protein occurs in 57

leukocytes (especially neutropils) of CML patients following targeted therapy [18]. Once 58

activated, PTPRG can reduce the phosphorylation level of BCR-ABL1 and some of its key 59

targets, such as CRK-L and STAT512. We found that, in CML cells, PTPRG expression 60

inversely correlates with BCR/ABL1 expression and activation, both in cell lines and 61

primary cells models following pathways that include beta catenin [21] and possibly others 62

are currently under investigation [17,20,21]. 63

Our study focuses on the detection of genes and gene pathways in protein-protein 64

interaction networks (commonly considered a proxy of gene network) that are most likely 65

affected by the state of the gene coding for PTPRG and by the treatment a prototype tyrosine 66

kinases inhibitor (TKI), Imatinib, in K562 cell line overexpressing the enzymatic active and 67

enzymatic dead PTPRG. Tyrosine kinases phosphorylate proteins on tyrosine residues, 68

producing a biologic signal that also influences many aspects of cellular functions including 69

cell growth, proliferation, differentiation, and death. PTPs act as natural modulators 70

of TKI signaling and it is well known how inhibition of TKI represents a strategy to 71

disrupt signalling pathways that promote neoplastic growth and survival in haematologic 72
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malignancies and likely in other neoplasia as well. In order to identify responsive genes 73

we implemented two analytical pipelines hereafter referred to as Method 1 and Method 2. 74

On the set of differentially expressed genes we applied two methods of analysis. With the 75

first method (Method 1) we implemented Gene Set Enrichment Analysis (GSEA), followed 76

by the identification of transcription factors. With the second method (Method 2), we first 77

selected the transcription factors (TFs) from the set of differentially expressed genes and 78

implemented GSEA on this set. Method 1 is a standard method commonly used in this 79

type of analysis, while Method 2 is unconventional and is motivated by the intention to 80

identify transcription factors more specifically involved to biological processes relevant 81

to the CML condition. In Method 1, due to a larger gene universe, we expect the set of 82

transcription factors selected upstream of the GSEA to be either larger or related to the 83

known role of PTPRG as modulator of hematopoietic cell differentiation [10]. 84

2. Materials and methods 85

In this section, we report on the methods and materials relevant to the experimental 86

activity of data collection, while we devote the next section to the description of methods 87

pertinent to the computational analysis of data 88

2.1. Cell lines 89

The human K562 chronic myeloid leukemia clones expressing full-length PTPRG, 90

empty vector and inactive mutant holding a mutation on the catalytic domain D1028A 91

were previously described [18] and were cultured in RPMI medium supplemented with 92

1% L-glutamine 100X (Biowest), 10% fetal bovine serum (FBS, Euroclone) and the selective 93

agent G418 0,=.5 mg/mL (Sigma) at 37◦ C in an humidified incubator with 5% CO2. 94

2.2. Quantitative Real-Time Polymerase Chain Reaction 95

Total RNA was extracted from the K562 cell lines using Qiagen RNeasy Kit according to 96

the manufacturer’s protocol. Complementary DNA was synthesized using the PrimeScript 97

RT reagent Kit (TAKARA BIO INC.) and the quantitative real-time polymerase chain 98

reaction (qRT-PCR) was performed using TB Green Premix Ex taq (TAKARA BIO INC.). 99

Each sample was run in triplicate and 3 ng complementary DNA was used for each reaction. 100

The sequences of gene-specific primers used are listed in Table 1. The fold changes in mRNA 101

levels of transcription factors (TF-DEGs) between K562 cell line expressing PTPRG and 102

control group were determined using the 2−∆∆CT method with GAPDH used as the 103

internal control for normalization. Prism (GraphPad Software) was used for statistical 104

analyses and the Student’s t-test was used to determine statistically significant differences 105

between groups. 106

PRIMER Forward Reverse
MECP2 CGTGAAGGAGTCTTCTATCCGA GCTTCACCACTTCCTTGACC
TFAP2C ATTCGCAAAGGTCCCATTTCC GGCATTTAAGCATTCAGGTGG
RARG GCAAGTATACCACGAACTCCAG ACGCAGCATCAGGATATCTAGG
TRPS1 CAAACAAGAAGCAAATCACCTG GTGTGCTCTCCTGTAGTGTC
SMAD1 TCCTTCCAACAATAAGAACCGT CTACTGTCACTAAGGCATTCG
CD36 TTTGGCTTAATGAGACTGGGAC ACAAACATCACCACACCAACAC

Table 1. Sequences of gene-specific primers used in this study.

2.3. Flow Cytometry Analysis 107

The K562 cell lines (5×105 cells) were harvested, washed in FACS buffer (PBS sup- 108

plemented with 2% FBS and 2 mM EDTA) and centrifuged at 1200 rpm for 5 min at room 109

temperature. The cell suspensions (100µL) were plated in 96 well plate and 2uL anti-CD36 110

(V450 mouse 2-Human CD36; cat.no. 561535; BD Biosciences) were added. The samples 111

were incubated in the dark for 1h at 4◦C, washed again with FACS buffer and centrifugated 112
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(1200 rpm for 5 min). FACS buffer (150 µl) was added to the cell pellet, and the samples 113

were analyzed using MACSQuant R© Analyzer 10 Flow Cytometer (Miltenyi Biotec). The 114

data was analyzed with FlowJoTM v10.8.1 software and the fraction of positively stained 115

cells (CD36+) was determined as the percentage of live population stained with Propidium 116

Iodide (PI). 117

2.4. Data collection 118

The RNAs from the samples were hybridized on Agilent whole human genome oligo 119

microarray (#G4851A, Agilent Technologies, Palo Alto, CA). This microarray consists of 120

60-mer DNA probes synthesized with SurePrint technology, covering 60,000 unique human 121

transcripts. One-color gene expression was performed according to the manufacturer’s 122

procedure. Briefly, total RNA fraction was obtained from samples by using the Trizol 123

Reagent (Invitrogen). RNA quality was assessed by the use of Agilent 2100 Bioanalyzer 124

(Agilent Technologies). Low quality RNAs (RNA integrity number below 7) were excluded 125

from microarray analyses. Labeled cRNA was synthesized from 100 ng of total RNA using 126

the Low Imput Quick-Amp Labeling Kit, one color (Agilent Technologies) in the presence 127

of cyanine 3-CTP. Hybridizations were performed at 65◦C for 17 hours in a rotating oven. 128

Images at 3um resolution were generated by Agilent scanner and the Feature Extraction 129

10.7.3.1 software (Agilent Technologies) was used to obtain the microarray raw-data. 130

Microarray results were then analyzed by using the GeneSpring GX 11 software 131

(Agilent Technologies). Data transformation was applied to set all the negative raw values 132

at 1.0, followed by a normalization on the 75th percentile. A filter on low gene expression 133

was used to keep only the probes expressed in at least one sample (flagged as Marginal or 134

Present). 135

The data used in this study derive from the above-mentioned analysis carried out 136

by microarray hybridization of the CML cell transcriptome (K562) in different conditions. 137

The cells were transfected with full-length PTPRG and compared to several controls: cells 138

transfected with the empty vector, cells transfected with PTPRG inactive mutant holding a 139

mutation on the catalytic domain (D1028A), and cells treated with Imatinib targeting the 140

oncogene BCR/ABL1. We integrated the data relating to gene expression with then gene 141

ontology and protein-protein network data. We investigated 142

• the effect of the PTPRG expression and its activation status, 143

• the impact of PTPRG expression (both active or inactive) in the presence of TKI, 144

hereafter called with its clinical name Imatinib. 145

• and the effect of Imatinib in combination with functional or mutant PTPRG expression. 146

For this purposes, we developed ad-hoc methods to identify differentially expressed 147

genes, with a particular focus on gene coding for transcription factors. This class of genes 148

was selected as they are known to act as master genes activating cell programs that include 149

key features such as cell differentiation and proliferation other than controlling genes 150

essential for the ontogenesis and maintenance of the normal hematopoietic system, other 151

than being involved in the pathogenesis of leukemia [22]. 152

3. Computational analysis 153

We implemented first differential gene expression analysis, and then gene ontology 154

enrichment analysis of the identified differentially expressed genes (DEGs). Differential 155

expression analysis (DEA) is a single-gene technique performed to identify differentially 156

expressed genes (DEGs), namely genes whose expression levels vary significantly under 157

different experimental conditions. Gene set enrichment analysis (GSEA) is a computational 158

method applied to get biological insights from gene expression data. It is typically used 159

to examine a given subset of interesting genes stemming from previous analyses versus 160

an extensive reference set referred as gene universe. Unlike single-gene techniques, GSEA 161

aims at identifying statistically significant groups of functionally-related genes by relying 162

on current knowledge for data classification. For theoretical in-depth analyses about GSEA 163
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refer to [23]. Depending on the specific biological question that is designed to tackle, several 164

databases can be employed to investigate a priori gene functional groupings. 165

3.1. Differential gene expression analysis 166

In this study, differential gene expression analysis was performed to detect DEGs 167

between two groups: control and the phosphatase inactive mutant D1028A [18] samples 168

considered as the untreated group (4 replicates) and the treatment group referred to PTPRG 169

expressing samples (2 replicates). Differential expression analysis was conducted on log2- 170

trasformed data using the Bioconductor/R package limma (Version 3.12) [24]. Both the 171

empirical Bayes correction on the variances and the multi-testing Bonferroni-Hochberg 172

correction on p-values were selected. 173

Among the set of differentially expressed genes we focused on transcription factors 174

(TF-DEGs). Indeed, the identification of the TF-DEGs responsive to the treatments would 175

allow to identify the active drivers turning specific genes (possibly involved in the onset 176

and progression of CML) "on" or "off", or boosting/repressing the gene’s transcriptions. 177

3.2. Gene Ontology enrichment analysis of DEGs 178

In this study, gene ontology enrichment analysis of the DEGs relied on the Gene 179

Ontology (GO) system of classification [25] and in particular on the GO domain referred to 180

biological processes. Therefore, over-representation of GO terms pertinent to the DEGs pre- 181

viously identified has been tested to reveal associations with disease phenotypes. Instead 182

of investigating the results of GSEA applied to the whole set of DEGs, we focused on the 183

transcription factors (TFs) detected as DEGs (TF-DEGs). 184

The analysis on transcription factors was carried out by applying two different GSEA 185

methods implemented by the Bioconductor/R package topGO (version 3.12) [26]. Both 186

methods combine a classical enrichment analysis with the Kolmogorov-Smirnov statistic 187

test (runTest function with input parameters "algorithm = classic" and "statistic = ks"). This 188

particular setting was selected for two reasons. 189

1. The methods compute the significance of a node independently from its neighbouring 190

nodes [27]. This means that if a GO term contains the same genes as one of its children, 191

then the traditional method give the children the same score. While this setting could 192

cause data redundancy, on the other hand, by not discarding any GO term based 193

on parent-child relationships, it allows keeping valuable information that can be 194

exploited later on to investigate associations and dependencies between GO terms. 195

2. The Kolmogorov-Smirnov statistic computes enrichment based on gene scores [25]. 196

Hence, it is possible to take full advantage of the information obtained by DEA by 197

ranking genes according to their adjusted p-values. 198

These two considerations lead to two methods, hereafter referred to as Method 1 (cor- 199

responding to consideration 1) and Method 2 (corresponding to consideration 2) which are 200

outlined in more detail in Figure 1. Both methods were developed on two separate streams 201

to discriminate between GO terms associated with up-regulated and down-regulated 202

genes, respectively. In this regard, the procedure returned a total of four lists of significant 203

GO terms split in two methods and subsequently in two modalities (up-regulated and 204

down-regulated). The output lists of significant GO terms obtained were analysed on a 205

textual content level and compared modality-wise with the aim of extracting text-based 206

insights that could guide the reader searching GO terms relevant to the case study and 207

discriminating between the two methods at a glance. In these regards, a graphical tech- 208

nique was developed based on word clouds for visual representation and GSEA rankings 209

for computing single-word significance. Specifically, the technique was based on the R 210

packages wordcloud [28] and tm [29]. Its main steps are outlined in Figure 7. 211

The word clouds and the correlation plots were used to inspect the lists of significant 212

GO terms returned by the two methods, compare the different results and carry out in- 213

depth analyses on a specific subset of labels. In this regard, significant GO terms - and 214
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hence biological processes - plausibly correlated with CML have been selected and further 215

examined at a single-gene level to implement the following objectives. 216

1. To compare the informative content of the labels to optimize the identification of 217

genes relevant to CML. More generic and high-level labels were discarded in favour 218

of more CML-specific ones. 219

2. To extend the analysis from TF-DEGs to their partners in the gene networks to gain 220

biological insights on gene-gene interactions and better understand the impact of the 221

treatment on the network topology. 222

4. Validation 223

Genes with adjusted p-value < 0.05 and |log2FoldChange| > 0.1 were considered to 224

be differentially expressed. Based on these criteria, 384 genes have been selected as DEGs: 225

115 were up-regulated and 269 were down-regulated (see Figure 4). 226

In the set of genes scoring positively to the fold change test, we have identified 43 227

differentially expressed transcription factors (TF-DEGs), of which 24 are down-regulated 228

and 19 are up-regulated (see Figure 1). The top 5 down-regulated TF-DEGs are ARNTL2, 229

ZNF563, KLF7, TRPS1 and LHX2 while the top 5 up-regulated are ZNF90, ZNF492, HOXD9, 230

MECP2 and. We then proceeded to validation of gene expression by quantitative RT-PCR 231

on an independent set of samples. We selected a group of up and down-regulated genes 232

based on microarray data and performed QPCR validation. Figure 2 shows the results of 233

the analysis providing confirmation of the microarray analysis. 234

DEA and GSEA performed on the TF-DEGs bring to our attention a set of up and 235

down-regulated genes that become part of a complex network reflecting on cell phenotype. 236

Transcription factors recognize and bind to consensus sequence elements that are specific 237

for each transcription factor, and the transcription factors then regulate downstream gene 238

expression. We then proceeded to evaluate the phenotypic consequences of this regula- 239

tion and focused on the upregulation of RARG, a gene belonging to the nuclear receptor 240

superfamily, sharing 90% homology with retinoic acid receptor α (RARα) and retinoic 241

acid receptor β (RARβ), appears crucial for hematopoietic development [30] and erythroid 242

differentiation program. Indeed Walkley et al. [30], showed that RARγ null mice exhibit a 243

considerable increase in granulocytes in the peripheral blood (PB), in the bone marrow (BM) 244

and spleen, developing a myeloproliferative-like syndrome and displaying reduction in the 245

megakaryocyte– erythroid progenitor fraction thus altering homeostatic bone marrow ery- 246

thropoiesis. Although the effect in mice appear to be the result of an erythroid cell extrinsic 247

role (i.e. alteration of bone marrow microenvironment), a role in stress erythropoiesis or 248

non-homeostatic erythroid demand was not excluded [30,31]. Therefore, upregulation of 249

RARG might imply an increased propensity to erythroid differentiation in hemopoietic 250

cells, a prediction that we verified and confirmed in the same cell model (Figure 5). As 251

we noticed that, starting from 0.125µM IMA, the cells seem to have reached the maximum 252

capability to produce Haemoglobin, we decided to pool these data and perform statis- 253

tical analyses, such as an estimation plot (Figure 4). The statistical analyses confirmed 254

the change in the differentiation program toward erythroid lineage . Furthermore CD36, 255

expressed by committed erythroid progenitors that is expressed continuously on normal 256

immature erythroblasts [32] appears one of the genes more strongly upregulated, further 257

suggesting erythroid differentiation is modulated by PTPRG expression. We confirmaed 258

CD36 upregulation both at the mRNA (Figure 2) and protein level in both resting condition 259

and upon overnight treatment with IMA 5µM (Figure 3). 260

This relevance of this gene to CML has been recently supported by several studies 261

performed in patients [15,16,20,21,33] and strategies aimed at restoring its expression are 262

expected to benefit the course of the disease by improving drug efficacy or contrasting the 263

emergence of BCR/ABL1 mutants. 264
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5. Identification of molecular pathways 265

As a result of GSEA, the TF-DEGs identified by Method 1 and 2 are represented in 266

Figure 6. The TF-DEGs associated to GO terms stemming from Method 2 are contained in 267

the set returned by Method 1. Figure 8 shows the bar plots of the distributions of p-values 268

returned by Method 1 and 2. The plots show significant differences between the two 269

methods: Method 1 returns larger sets of GO terms with low p-values frequencies (less 270

than 6% for both up-regulated and down-regulated genes). On the other hand, Method 271

2 returns smaller sets of GO terms characterized by frequencies that reach up to 20%. In 272

this regard, Unlike Method 1, Method 2 shows fewer significant GO terms distributed in 273

more densely populated and separated clusters. In order to better inspect the differences 274

between the two methods, we built and analysed the weighted word clouds from such 275

lists of GO terms with a view to improving understanding about the differences between 276

Method 1 and Method 2. Word clouds for up-regulated genes are shown in Figure 9. We 277

note a clear distinction between the two plots based on both data quantity and content. For 278

example, the chunk myeloid is contained in both word clouds in two different sizes: 279

• in the first case, it appears as a small-sized chunk among other terms that are in all 280

likelihood connected to CML; 281

• in the second case, it is represented as a middle-sized chunk among terms that seem 282

quite distant from the target. 283

Correlation analysis was then performed further to investigate the informative content of 284

the word clouds. Figure 10 shows the results achieved on the top 10 most significant words. 285

The chunk myeloid appears in Method 2’s top 10 associated with the chunks regulation, 286

differentiation and cell which in turn show other interesting associations. On the other hand, 287

Method 1 shows interesting correlations for all the top 10 chunks even if the word myeloid 288

is not among them. In this regard, further investigation was conducted by going through 289

the list of GO terms and picking attractive labels based on the insights extracted from the 290

word clouds. 291

Figure 11 shows the word clouds for down-regulated genes. In this case, the two 292

plots show mainly content-based differences. In fact, both clouds are thick and almost 293

equally distributed in terms of word sizes. Moreover, the most powerful words are mostly 294

in common. Both clouds show words of potential interest for experimental analyses - even 295

if with different sizes - as immune, transcription, myeloid, leukocyte, and growth. On the 296

other hand, Method 2 appears to be more detailed than Method 1 since it shows additional 297

specific chunks as apoptotic, hemopoiesis, hematopoietic, p53, chondrocyte, cytokine, stem, and 298

differentiation. 299

Correlation analysis was then performed to better discriminate between the two word 300

clouds. Figure 12 shows the results performed on the top 10 most significant words. We 301

see that the majority of the top 10 words is shared between the two methods. The chunks 302

regulation, process, negative, metabolic, compound, and biosynthetic are represented in both 303

plots. Moreover, since we are analyzing biological processes related to down-regulated 304

genes, it is interesting that both methods share the association negative - regulation. However, 305

the main difference between the two methods relies on the associated words rather than on 306

the most significant ones themselves. In fact, Method 1 shows interesting but high-level 307

associations that bring attention to generic biological processes. On the contrary, Method 308

2 shows more detailed associations as differentiation - chondrocyte, leukocyte, myeloid, 309

compound - phosphate-containing, and negative - transcription. 310

After examining the GO lists on a single-word level with the aim of highlighting 311

key words and biological insights, we thereby selected specific GO terms which showed 312

particular relevance to biological processes involved in CML onset and development. In 313

this regard, the plots presented hereafter split the analysis on two levels. The level defined 314

by the GO terms set that provide labels along with the enrichment score (transformed 315

p-value) returned by GSEA, and (ii) the level of the TF-DEGs set, report for each label the 316

associated TF-DEGs. 317
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Figures 13 and 14 show the selected labels for up-regulated genes. The first plot 318

of Figure 13 shows the selected labels returned by Method 1. GO terms result to be 319

clustered as in Table 2: The second plot of Figure 13 shows the TF-DEGs associated with

Process References GO ID
chromatin [34] GO:0016569, GO:0034401, GO:0097549,

GO:1905269, GO:0006342
acetylation [35] GO:0006473, GO:0006475, GO:0018393,

GO:0016573, GO:0018394
acylation [36] GO:0043543
amino acid [37] GO:0018193
cell growth GO:0016049
myeloid cell [38] G0:0045637
differentiation
angiogenesis [39] GO:0090049

Table 2. GO terms of the biological processes selected by up-regulated TF-DEGs returned by Method
1. We note that the majority of GO labels is associated to the terms chromatin and acetylation while
there is only one GO label (G0:0045637) directly correlated to CML.

320

the above-mentioned GO terms. We note that are only three TF-DEGs: MECP2, involved 321

in almost all the selected biological processes, NR2E1, associated with regulation of cell 322

migration involved in sprouting angiogenesis, and RARG2, implicated in both cell growth 323

and regulation of myeloid cell differentiation. 324

The first plot of Figure 14 shows the selected labels returned by Method 2. There are 325

only two GO labels that show a connection with CML (see Table 3). 326

Process References GO ID
regulation of myeloid [38] GO:0045637
cell differentiation
regulation of blood vessel [40] GO:0043535
endothelial cell migration

Table 3. GO terms of the biological processes selected by up-regulated TF-DEGs returned by Method
2. We note that unlike Method 1 the selection comprises just a few terms. Furthermore, only one term
(GO:0045637) appears to be strictly correlated to CML.

Even if the selection is very different from the one carried out in Method 1, we obtained 327

that the TF-DEGs identified are the same. Furthermore, Method 2 detected both NR2E1 328

and MECP2 as members of GO:0043535. 329

Figures 15 and 16 show the selected labels for down-regulated genes. The first plot 330

of Figure 15 shows the selected labels returned by Method 1. GO terms can be clustered 331

as follows based on the key words used to carry out the selection reported in Table 4. The 332

second plot shows the TF-DEGs associated with the GO terms listed in Table 4. In the 333

plot we see that the two most significant GO terms are both referred to the genes SOX5 334

and SMAD1. Moreover, GO:0071560 is a direct child of GO:0071559 and hence it is more 335

specific than the other. Secondly, we note that several genes are identified in the high-level 336

label GO:0002376 immune system process. Among them only ZBTB16, IFI16, and BATF3 are 337

associated with more specific terms. 338

The first plot of Figure 16 shows the selected labels returned by Method 2. The 339

selection of GO terms reported in Table 5 is more relevant to CML than the one returned by 340

Method 1 both regarding the number of labels and their specificity. On the other hand, the 341

set of related TF-DEGs overlaps with the one from Method 1 except for the genes LHX2 342

(only in Method 2), TFAP2C and TRPS1 (only in Method 1). Moreover, it is possible to 343

notice that the TF-DEGs are always associated with more than two labels. Hence, Method 2 344

proves to be more detailed not only in the variety of GO terms but also in the number of 345
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Process References GO ID
growth GO:00071559, GO:0071560
differentiation [38] GO:0046637, GO:0006475, GO:0018393,

GO:0016573, GO:0046632
immune GO:0002376, GO:0002253
kinase [38] GO:0007178
epigenetic [41] GO:0040029
endopeptidase [42] GO:2000117
cell population G0:0045637

Table 4. GO terms of the biological processes selected by Method 1 for down-regulated genes. We
note that most of the GO labels are associated to the term differentiation. Moreover, also the other
terms comprised in the selection appear to be clearly correlated with CML.

associated TF-DEGs. Regarding the genes left out by Method 1 we note that both TFAP2C 346

and LHX2 were associated only to GO:00040029 regulation of gene expression, epigenetic, 347

which results to be a high-level label. On the contrary, the new entry TRPS1 is associated 348

to both GO:0002062 and GO:0032330, i.e. to chondrocyte differentiation. This means that 349

Method 2 opted again in favour of a more CML-specific connotation.

Process References GO ID
leukocyte [43] GO:0002521, GO:1902105, GO:0045321,

GO:0002573
immune GO:0002376, GO:0006955, GO:0002520,

GO:0002550
chondrocyte [44] GO:0002062, GO:0032330
p53 [45] GO:0072331
myeloid [38] GO:0030099, GO:0002573
growth GO:0071560, GO:0071559
differentiation [38] GO:0002521, GO:1902105, GO:0030099,

GO:0002573, GO:0032330
hemopoiesis [46] GO:0030097
hematopoietic [46] GO:0048534
cytokine [47] GO:0001816, GO:0001817
phosphorylation [47] GO:0006468
stem [48] GO:0098722, GO:0008356

Table 5. GO terms of the biological processes selected by Method 2. We note that the terms differ-
entiation, immune and leukocyte are the most significant as far as number of associated GO labels.
Moreover, lalso the other terms comprised in the selection appear to be strictly correlated to CML.
In this case the correlation is clearly higher than the one returned by Method 1. This is due to the
fact that the key terms comprised in the selection are referred to more specific biological processes
involved in CML.

350

6. Discussion 351

We analyzed the modulation of CML cell model K562 transcriptome following trans- 352

fection with the tumor suppressor gene PTPRG and the treatment with the tyrosine kinase 353

inhibitor (TKI) Imatinib with the aim at identifying genes responding to the PTPRG modu- 354

lation and/or treatments with Imatinib. 355

We developed two GSEA-based computational methods, Method 1 and Method 2, 356

aimed at detecting all the CML-related differentially expressed transcription factors (TF- 357

DEGs) and the biological processes involved. To summarize, the genes responsive to the 358

treatments found by our methods are: 359

• Method 1: 360
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– Up-regulated TF-DEGs: MECP2, NR2E1, RARG; 361

– Down-regulated TF-DEGs: ZBTB16, TFAP2C, SOX5, SMAD1, LHX2, IKZF3, IFI16, 362

EPAS1, BATF3, BACH2; 363

• Method 2: 364

– Up-regulated TF-DEGs: MECP2, NR2E1, RARG; 365

– Down-regulated TF-DEGs: ZBTB16, TRPS1, SOX5, SMAD1, IKZF3, IFI16, EPAS1, 366

BATF3, BACH2. 367

Method 1 was designed to take as input the whole list of DEGs stemming from DEA and 368

afterwards select only the TF-DEGs. On the other hand, Method 2 was set to filter out only 369

TF-DEGs identifying a smaller gene universe than Method 1. Moreover, the two methods 370

were split in two modalities to discern between up-regulated and down-regulated genes. 371

We observed that Method 1 returned more GO labels than Method 2 in both modalities. 372

However, this entailed different outcomes for up-regulated and down-regulated TF-DEGs 373

respectively. In fact, both the word clouds and the correlation analysis showed that for 374

up-regulated TF-DEGs Method 1 returned appropriate and specific GO labels while Method 375

2 provided more general results. Nevertheless, the selections of CML-related TF-DEGs 376

stemming from key term analysis identified the same list of genes for both methods. Hence, 377

we could say that in this case Method 1 appears to be more appropriate on the grounds 378

that it identified more specific GO labels than Method 2. For down-regulated TF-DEGs, 379

Method 1 provided more high-level biological insights at all stages (weighted word clouds, 380

correlation analysis and key term selection) while Method 2 showed more specific references 381

to CML-related biological processes. However, the final lists of CML-related TF-DEGs 382

differ for only few genes (LHX2 only for Method 2, TFAP2D and TRPS1 only for Method 1). 383

In this case Method 2 is to be preferred to Method 1. 384

In conclusion, the methods here presented offer a versatile exploratory computational 385

approach to analyze and extract meaningful biological information. The study combines 386

statistical tests for DEA and GSEA with human-curated contents (Gene Ontology), weighted 387

word clouds, correlation analysis and key term selection, originally born in different 388

application domains (as textual analysis). These methods could be potentially very useful 389

and expressive also in the descriptive statistical analyses applied to gene biology. 390

Finally, we provide some future development of our analysis. The identification of 391

genes responsive to pharmacological treatments is certainly not limited to the application of 392

these exploratory methods focused mainly on the gene as a single entity and the quantitative 393

characteristics of its activity (e.g., its expression level), but requires analyses relevant to the 394

field of systems biology. Indeed, the past twenty years have seen a revolution in the volume 395

and complexity of data generated in experiments and observations in the life sciences. With 396

the increase in available data, the need for data management, integration, and analysis has 397

become an increasingly important challenge. Biological knowledge is inherently complex 398

and so cannot readily be integrated into existing databases of molecular data. Since more 399

than twenty years ontologies provide a means of formalizing biological knowledge — 400

for example, about genes, anatomy and phenotypes — in complex hierarchies that are 401

composed of terms and rules [49]. An ontology is a formal way of representing knowledge 402

in which concepts are described both by their meaning and relationship. Ontologies usually 403

consist of a set of classes (or terms or concepts) with relations that operate between them. 404

The use of ontologies began in the biological sciences around 1998 with the development 405

of the Gene Ontology [50,51], which systematically summarizes current knowledge of 406

gene products across a wide range of species. Since then, many other databases have been 407

created to store biological information in ontological structures. We refer the reader to 408

[51–53] for a comprehensive review of the existing ontologies databases. 409

Currently, ontology databases store the knowledge about the static structures of bi- 410

ological organisms, whereas the dynamic behaviors of biological processes have, for the 411

past half-century, been captured in the mathematical language of physics-based simulation 412

modelling [54]. To date, there have been only a few attempts to bridge the wealth of 413

structural knowledge and the wealth of process knowledge, i.e., of the physico-chemical 414
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laws described by equations of dynamical models. D. Cook et al. [54] introduced the 415

terms bio-ontology and biosimulation to indicate ontologies related to biological entities and 416

simulation of physics-based mathematical models of biological systems dynamics. 417

D. Cook and co-authors showed that the semantics of biosimulation models could 418

be expressed in a formal ontology that describes the entities, the properties, and the 419

physical laws that are encoded in the mathematical equations of a simulation model. 420

They introduced the Ontology of Physics for Biology (OPB) [55,56] based on systems 421

dynamics and makes explicit the biophysical semantics of physics-based biosimulation 422

models. OPB can be used as a reference knowledge resource for annotating variables 423

and equations of models and for deriving computable modelling code. Therefore, the 424

future direction of this study is the development of a methodology to bridge this gap, 425

and link the semantics of biosimulation to the knowledge in structural bio-ontologies. A 426

possible way to pursue this goal could be the analysis of gene networks resulting from the 427

identification of TF-DEGs of interest. More specifically, we plan to choose TF-DEGs that 428

seem to be involved in CML-related biological processes and expand the analysis on genes 429

that interact with them. The types of relations between genes can be retrieved from various 430

sources as partner or pathway databases. Here we relied on Pathway Commons, a pathway 431

database that uses the Biological Pathway Exchange (BioPAX) [57] standard to represent 432

data. It allows to investigate multiple biological concepts such as biochemical reactions; 433

gene regulatory networks; genetic interactions; proteins, small molecules, DNA, RNA, 434

complexes and their cellular locations; complex assembly and transport; post-translational 435

protein modifications; citations; experimental evidence and links to other databases e.g. 436

protein sequence annotation [58]. 437

For our purposes we focused on two types of gene-gene relationships involving 438

TF-DEGs: 439

• control of gene expression (one-way relationship): we analyzed all the genes in control 440

or controlled by TF-DEGs in terms of expression levels. 441

• interaction between genes (two-way relationship): we analyzed all the genes that 442

chemically interact with TF-DEGs. 443

Since the analysis on up-regulated genes returned the same set of relevant TF-DEGs, we 444

focused only on down-regulated genes. Figures 17, 18, 19 and 20 show the analysis results 445

for Method 1 and Method 2 as gene networks. In conclusion, we plan to investigate the 446

biological and chemical relations between the genes represented in the networks to enrich 447

the exploratory methods hereby defined with additional information about the network 448

dynamics. The construction of the equations for the dynamics of the gene networks 449

of interest involves calibrating the model as the next step. In possession only of static 450

data, such as those used in this study, this phase will require the development of efficient 451

sensitivity analysis techniques given the large number of genes potentially involved and the 452

expected non-linear dynamics. In this regard, we plan to refine the numerical techniques 453

fpr parameter sensitivity analysis, inference and dynamic simulation developed in [59–61]. 454

Another future research line to be furter explored is the identification and the analysis 455

of the DEGs responsive to both the case study under examination and known pharmaco- 456

logical treatments with TKI. In this direction, we preliminarly performed DEA to detect 457

DEGs between two groups: control considered as the untreated group (2 replicates) and the 458

treatment group referred to TKI expressing samples (2 replicates). In order to discard back- 459

ground noise, only genes with intragroup standard deviation < 0.3 and distance between 460

the group means > 0.5 were considered. Differential expression analysis was conducted 461

on log2-trasformed gene expressions using the Bioconductor/R package limma (Version 462

3.12). Both the empirical Bayes correction on the variances and the multi-testing Bonferroni- 463

Hochberg correction on p-values were selected. Therefore, genes with adjusted p-value < 464

0.05 and |log2FoldChange| > 0.1 were considered to be differentially expressed. Based on 465

these criteria, 568 genes have been selected as DEGs: 310 were up-regulated and 258 were 466

down-regulated. Among them we have identified 61 transcription factors, of which 25 are 467

down-regulated and 36 are up-regulated (see Figure 21). The top 5 down-regulated TFs 468
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are GATA3, RUNX3, HES1, TBX4, FOSL1 while the top 5 up-regulated are NPAS4, FOXN4, 469

HOXA2, PURG, ZNF540. Then, we selected only the DEGs that occurred in both selections 470

stemming from DEA. The results are represented in 22 and are split between up-regulated 471

and down-regulated genes. 472

7. Conclusions 473

In this study we identified molecular pathways modulated by the tumour suppressor 474

gene PTPRG and focused on transcription factors, known to act as master genes controlling 475

a high number of downstream effectors. Future avenues might involve the identification of 476

specific genes regulated by them and to investigate the biological and chemical relations 477

between the genes represented in the networks to enrich the exploratory methods hereby 478

defined with additional information about the network dynamics. The construction of the 479

equations for the dynamics of the gene networks of interest involves calibrating the model 480

as the next step. In possession only of static data, such as those used in this study, this 481

phase will require the development of efficient sensitivity analysis techniques given the 482

large number of genes potentially involved and the expected non-linear dynamics. In this 483

regard, we plan to refine the numerical techniques developed in [59]. In conclusion, the 484

methods here presented offer a versatile exploratory computational approach to analyse 485

and extract meaningful biological information. The study combines statistical tests for 486

DEA and GSEA with human-curated contents (Gene Ontology), weighted word clouds, 487

correlation analysis and key term selection, originally born in different application domains 488

(as textual analysis). Of note we have validated the microarray data using a group of 489

differentially expressed genes and identified a cell differentiation program activated by 490

the TSG PTPRG leading to a higher propensity of the blasts to differentiate toward a more 491

mature phenotype, a condition that is further enhanced by TKI therapy. These data further 492

support the relevance of re-expression of PTPRG in the context of CML suggesting it as a 493

relevant therapeutic target. These methods could be potentially very useful and expressive 494

also in the descriptive statistical analyses applied to gene biology. 495

Figures 496

For the sake of clarity and order we collect in this section all the figures produced to 497

show the application of the methods to the data and the obtained results. 498
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Figure 7. Main tasks of GSEA-based text mining algorithm. The proceeding here represented was
applied to all the GO lists returned by Method 1 and 2.

Figure 8. Bar plots of GSEA p-values.
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