
22 December 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Bonami, P., Lodi, A., Zarpellon, G. (2022). A Classifier to Decide on the Linearization of Mixed-Integer
Quadratic Problems in CPLEX. OPERATIONS RESEARCH, 70(6), 3303-3320 [10.1287/opre.2022.2267].

Published Version:

A Classifier to Decide on the Linearization of Mixed-Integer Quadratic Problems in CPLEX

Published:
DOI: http://doi.org/10.1287/opre.2022.2267

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/905157 since: 2024-03-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1287/opre.2022.2267
https://hdl.handle.net/11585/905157

Submitted to Operations Research
manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

A Classifier to Decide on the Linearization of
Mixed-Integer Quadratic Problems in CPLEX

Pierre Bonami
Gurobi Optimization, bonami@gurobi.com

Andrea Lodi
CERC, Polytechnique Montréal

Jacobs Technion-Cornell Institute, Cornell Tech and Technion - IIT, andrea.lodi@cornell.edu

Giulia Zarpellon
CERC, Polytechnique Montréal, giulia.zarpellon@polymtl.ca

With the aim of fully embedding learned predictions in the algorithmic design of a Mixed-Integer Quadratic

Programming (MIQP) solver, we translate the algorithmic question of whether to linearize convex MIQPs

into a classification task, and use machine learning (ML) techniques to tackle it. We represent MIQPs and the

linearization decision by careful target and feature engineering. Computational experiments and evaluation

metrics are designed to further incorporate the optimization knowledge in the learning pipeline. As a practical

result, a classifier deciding on MIQP linearization is successfully deployed in CPLEX 12.10.0: to the best of our

knowledge, we establish the first example of an end-to-end integration of ML into a commercial optimization

solver, and ultimately contribute a general-purpose methodology for combining ML-based decisions and

Mixed-Integer Programming technology.

Key words : mixed-integer quadratic programming, machine learning, classification, linearization

History : This paper is an extension of Bonami et al. (2018).

1. Introduction

While mathematical optimization intrinsically lies at the core of machine learning (ML) methods,

recent years have seen a rise in the application of learned approaches to discrete optimization

settings (Bengio et al. 2018). In particular, a successful paradigm has been identified in using ML

1

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
2 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

within Mixed-Integer Programming (MIP) algorithmic frameworks as a way of complementing the

capabilities of a solver and providing indications about structural decisions for which we lack in-depth

understanding.

We position our work in this recent, yet very fruitful, research area, and consider Mixed-Integer

Quadratic Programming problems (MIQPs). Despite the fact that modern MIQP solvers – and

among those IBM ILOG CPLEX (CPLEX 2020), our solver of choice – have been able to solve

MIQPs for several years (see, e.g., Bliek et al. (2014)), the theoretical and computational implications

of the employed resolution techniques are not fully grasped yet. We are interested in understanding

whether to linearize the quadratic part of a convex MIQP, a decision that substantially conditions

the downstream resolution algorithms operated by a solver. Currently, CPLEX users can utilize a

switch parameter to specify whether a linearization step should take place during preprocessing, but

it is not clear when this switch should be turned on or off in order to benefit the resolution process:

when one considers a wide variety of problems the decision about whether to linearize is not clear

cut.

Our goal in this paper is to use ML statistical tools to decide whether to linearize a convex

MIQP or not. We make the empirical conjecture that some of the reasons leading to an algorithmic

discrimination between the linearization approach (L, in short) and the non-linearization one (NL)

might be linked to the formulation characteristics and the early stages of the optimization of a MIQP

problem, and could hence be detected by a learning algorithm if enough relevant information was

provided as input. The idea that perhaps MIQPs should be solved in a more flexible and adapted

way was first suggested by Fourer (2015), and naturally calls for a predictive machinery. In this

sense, the question linearize vs. not linearize qualifies as a good quest for ML techniques, and it

is naturally framed in a classification setting. We began to explore such classification approach in

Bonami et al. (2018): the developed framework took care of building a synthetic dataset, designing

basic features and labels, and conducting preliminary learning experiments. We also defined new

metrics to assess the quality of the prediction from the optimization standpoint, i.e., in terms of

runtimes. Results were satisfactory, but limited by the fact that only artificial MIQPs were used.

Moreover, the offline learning phase was not integrated in the solver.

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 3

1.1. Contributing a methodology

In the present work, we substantially extend what was done in Bonami et al. (2018) along different

directions, aiming at a tighter combination of the learning and the optimization perspectives.

Resuming from what we identified in Bonami et al. (2018) as future research plans, our contributions

can be summarized as follows.

• Enlarged dataset to include non-synthetic benchmark instances. By adding to our pool

of problems MIQPs from NEOS (Czyzyk et al. 1998, Dolan 2001, Gropp and Moré 1997) submissions

and CPLEX internal testbed, we are able to perform ML on a wider, more representative and more

heterogeneous dataset, which is obtained from real-world and benchmark libraries’ instances.

• Novel binary labeling procedure. We introduce an alternative scheme to determine which

method among L and NL is most suited for each MIQP. While in Bonami et al. (2018) only a

multi-class labeling was proposed, the new binary categorization allows a more streamlined (yet

robust) decision, and it is ultimately selected to conduct refined learning experiments.

• Extended feature design and feature selection process. We define numerous new hand-

crafted features to achieve more detailed representations of MIQPs, of which we carry out a careful

analysis. With respect to Bonami et al. (2018), we introduce finer-grained features as well as novel

attributes, e.g., from the preprocessing phase, which prove to be central to attain better predictions.

• New tailored learning experiments. Given the updated dataset composition, labeling and

feature design process, the present experiments and results are inevitably changed from those in

Bonami et al. (2018). In addition, we explore different ways to incorporate optimization knowledge

in the learning pipeline, thus departing from the previous off-the-shelf usage of basic ML models.

We experiment with optimization-relevant weights and loss functions, as well as with additional

predictions in the learning pipeline; both enhancements improve classification, aligning it with

favorable optimization performance.

• Deployed classifier in CPLEX. Finally, we implement our predictive framework in the solver

ecosystem: as a practical outcome, a learned classifier is fully integrated and deployed in CPLEX

12.10.0, where it operates at default setting to decide online on the linearization of MIQPs.

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
4 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

I. Understanding the algorithmic framework
· Identify and delimit the learning question

II. Building a dataset
· Target definition via labeling procedure
· Feature design to represent the decision
· Gathering data: instances and analysis

III. Baseline learning experiments
– Best practices and context-relevant evaluation metrics

· Baseline results
– Assessing feature importance

IV. Framework revision and tailored experiments
· Necessary adjustments, feature selection
· Adding domain-specific priors to the learning phase

V. Implementing predictions in the solver ecosystem
– Fine-tuned workflow

Figure 1 ML in MIP technology: methodological steps.

These contributions allow us to establish the first example of an end-to-end integration of ML tools

into a leading commercial solver – from the definition of an appropriate ML task responding to the

algorithmic question of whether to linearize a MIQP, until the final deployment of the obtained

prediction function within a complex solver environment. We believe that the methodology we

designed over time, starting from the early attempt in Bonami et al. (2018), could be applied to

a variety of other heuristic tasks in the solver, and will serve as a reference in an area that is

rapidly evolving and gaining attention. In this sense, the present work ultimately contributes a

methodological process for the combination of ML and MIP technology: we share the questions that

guided us in the development, the decisions and turns we had to take and the motivations behind

them.

The paper content is shaped upon our methodological steps, which are outlined in Figure 1. We

start by examining the MIQP algorithmic framework of CPLEX (Section 2), in order to identify

and properly delimit our learning question (e.g., in terms of which MIQPs and algorithms are

involved). The next step is building a dataset (Section 3). Targets capture the essence of a learning

question, so their definition is of utmost importance, and we discuss two valid labeling procedures

for discriminating between the L and NL methods. We approach feature design questioning what

factors could be important for our decision, and which traits of MIQPs might play a role in the

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 5

algorithms that we are trying to compare; we then address the need to gather (and generate) MIQP

instances for data collection.

We follow ML best practices when defining learning experiments (Section 4), but we complement

them with context-specific measures to evaluate the classifier performance in the solver. In fact,

standard ML indicators cannot provide information on the impact of misclassification in terms of

the metric that we use to compute targets. Baseline results serve us to verify the soundness of

our approach and get an idea about the importance of the represented features, but the initial

framework needs to be adjusted to be embedded in the solver. In Section 5, we ask ourselves what is

ultimately viable and what changes are necessary to incorporate predictions in CPLEX: answers

to such questions lead us to a substantial feature selection phase. To further condition predictions

towards a favorable optimization performance, we introduce domain-specific priors in the learning

phase, and eventually recover information that was previously sacrificed. The experimental phase

proceeds far from linearly, and we iterate step IV (Figure 1) to attain satisfactory results. Finally, we

discuss in Section 6 the practical implementation of a predictor in the CPLEX optimization pipeline,

the required fine-tuning and the achieved outcome, before presenting some concluding remarks in

Section 7.

2. The MIQP algorithmic framework in CPLEX

We consider Mixed-Integer Quadratic Programming problems, i.e., optimization problems in which a

quadratic objective function is minimized over a set of linear constraints, and (a share of) bounded

variables are required to be integral. We write a MIQP as

min

{
1

2
xTQx+ cTx :Ax= b, l≤ x≤ u, xj ∈Z ∀ j ∈ I

}
, (1)

where the matrix Q= {qij}i,j=1,...,n ∈Rn×n defines the objective function together with c∈Rn, while

A∈Rm×n and b∈Rm formulate linear constraints. Variables x∈Rn are bounded and I ⊆ {1, . . . , n}

denotes the set of indices of variables that are constrained to be integer. Without loss of generality

Q is assumed to be symmetric. It is well known that (1) is NP-hard (e.g., Max-Cut can be cast as a

MIQP with binary variables).

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
6 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

When integrality requirements are dropped from (1), one obtains the (continuous) Quadratic

Programming (QP) relaxation of the problem. If the matrix Q is positive semi-definite (Q� 0), the

quadratic form to minimize is convex and the corresponding QP can be solved in polynomial time;

in this case, the QP relaxation is thus called convex. In the present work, we restrict ourselves to

MIQPs whose Q matrix is positive semi-definite or can be made positive semi-definite by simple

transformations, i.e., we only consider MIQPs that are usually regarded as “convex” by state-of-the-art

MIQP solvers. Two simple transformations that can be applied to repair the indefiniteness of Q are

the following.

Linearization of products involving binary variables. Consider a binary variable xj of (1), i.e.,

lj = 0, uj = 1 and j ∈ I. The product of xj with any other bounded variable xi satisfies the following

linear inequalities McCormick (1976):

max


uixj +xi−ui

lixj

≤ xixj ≤min


lixj +xi− li

uixj

 . (2)

Whenever xj ∈ {0,1} the inequalities of (2) turn into equations. Therefore, every such product

xixj can be expressed using a new variable yij and the respective linear inequalities (2), with the

corresponding entry qij then set to 0. Note also that x2
j = xj if xj ∈ {0,1}, so that all squares involving

a binary variable can be moved from Q to the linear part of the objective as well.

Perturbation of the diagonal of Q for binary variables. Again using the fact that for a binary

variable x2
j = xj, one has xTQx+

∑
j∈B ρj

(
x2
j −xj

)
= xTQx, where B ⊆ I denotes binary variables.

The principal minor of Q corresponding to variables in B can thus be made positive semi-definite.

In particular, if all non-zero products in Q involve at least one binary variable, Q can always be

perturbed so that the resulting QP relaxation is convex. Note that the choice of an appropriate ρ is

a non-trivial step. A simple way to ensure that the perturbed quadratic form xTQx+
∑

j∈B ρjx
2
j has

no negative eigenvalue is to directly use Q’s eigenvalues, though more advanced techniques leverage

semi-definite programming and the linear constraints of (1) to produce tight QP relaxations (Adams

et al. 2004, Billionnet et al. 2012).

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 7

Leading solvers for MIQPs can perform either of the two operations above (linearize or perturb)

at the beginning of the optimization, in a preprocessing phase. If the resulting problem has a convex

QP relaxation it will be solved as a convex MIQP ; otherwise, solving the QP relaxation itself is

an NP-hard problem (Motzkin and Straus 1965) and more involved techniques are required. In

this paper we only consider the former case. The state of the art for solving convex MIQPs usually

employs computationally efficient algorithms for solving QP relaxations; in CPLEX, a simplex-based

algorithm is preferred for its good restart properties. For the rest, the technology is similar to the one

used for Mixed-Integer Linear Programs: a branch-and-bound tree search, augmented with cutting

plane techniques, and heuristic procedures to obtain good feasible solutions (Lodi 2009). Note that

both approaches can also be applied when initially Q� 0 – and in practice they are. In particular, the

linearization step could reformulate an already convex MIQP into a Mixed-Integer Linear Program,

thus deciding which resolution method and technology are applied to solve the problem.

2.1. The linearization option

Linearizing a convex MIQP has its benefits and inconveniences. The operation presents a technological

advantage in that state-of-the-art solvers (CPLEX in particular) are typically better at solving

Mixed-Integer Linear Programs than MIQPs: cutting plane techniques are more complete, and

the algorithmic framework is overall more mature. However, the linearization step requires adding

potentially many variables and constraints (depending on the non-zeros of Q), and the resulting

Linear Programming (LP) relaxation may be very large and significantly slower to solve. On the

other hand, choosing to not linearize does not require additional variables, but one might be left

to deal with a weaker QP relaxation, potentially due to a perturbation of Q diagonal to establish

positive semi-definiteness.

As reported in Bliek et al. (2014), the linearization approach does not dominate in theory the

non-linearization one. In CPLEX internal experiments, though, linearizing appeared to be superior

on average to tackle convex MIQPs, and became the default method. Since version 12.6.0, CPLEX

provides to users the possibility to switch the linearization mechanism on or off through the

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
8 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

preprocessing parameter qtolin 1, whose automatic value corresponds to always linearize. But the

linearization option is not always beneficial, as was reported by Fourer (2015). The following example

shows that a range of situations can occur.

Example 1. We generate MIQP instances (see Section 3) of varying size and structural properties,

and run CPLEX with both qtolin on and off with five different random seeds and a time limit of 2h.

The following table reports for five problems the shifted geometric means of runtimes for the L and

NL strategies, together with the problems’ number of variables and constraints (n,m), the density

of the Q matrix, and the percentage of “hard” eigenvalues of Q (i.e., those making the starting Q

indefinite).

Table 1 Structural parameters and average runtimes for five synthetic MIQP instances.

n m Density of Q Hard Eigen. L Time NL Time

A. 150 5 0.20 0.00 7.24 7200.00
B. 175 1 0.57 0.00 1159.69 251.34
C. 100 11 0.96 0.32 372.75 819.26
D. 150 5 0.70 0.01 140.84 136.48
E. 125 10 0.95 0.51 7200.00 1812.76

Clearly, the initial convexity of Q itself does not decide which method between L and NL is the best

suited to solve a MIQP, and Q density does not define the best option either. Possibly, a combination

of many factors together could parameterize the best solving mode. Note that choosing the correct

strategy for problems A and E appears critical, in the sense that a wrong decision could result in the

problem not being solved within the time limit. In contrast, for problems B and C the performance

gap of L and NL is less pronounced, while for D the two methods are practically equivalent.

The main question addressed in this paper is to decide whether in the preprocessing phase one

should linearize products involving binary variables, when solving convex MIQPs.

3. Building a dataset

To obtain predictions on MIQPs, we need to build a set of data-points, each representing a MIQP

instance like (1) and the best decision for it between L and NL. More formally, we need to build a

dataset D= {(xk, yk)}k=1,...,N : for every k, a vector of features xk ∈Rd describes MIQP k, while a

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 9

categorical label (target) yk encodes the linearization decision. We explain in this section the target

definition and the design of MIQP features, before discussing the dataset composition.

3.1. Labeling procedure

Given our question L vs. NL, we need to provide for each MIQP the answer corresponding to the

better performing approach. We identify three possible scenarios, and therefore assign one among

three categorical labels: L (linearize, i.e., qtolin on), NL (not linearize, i.e., qtolin off), and T (tie),

when L and NL methods are comparable in terms of performance. Tracking tie cases provides a way

of distinguishing between critical and non-critical problems, and can be helpful when evaluating the

learned predictions.

To deal with the solver’s performance variability (Lodi and Tramontani 2013), each instance is

run in both qtolin modes with five different random seeds. We enforce a time limit of 2h for each

run, and collect data on final upper and lower bounds, resolution times and solver’s solution statuses.

We implement two checks to remove troublesome runs:

• Consistency check: on each seed, we compare best primal and dual bounds achieved by methods

L and NL; when an inconsistency is found, the run on that seed is discarded;

• Solvability check: the run on a seed is discarded if neither L nor NL were able to solve the

problem to optimality.

These checks on seed runs are reported in Algorithm 1, for the minimization case. After removing

faulty runs and missing values from the data, we can decree the winner between L and NL or assign

a tie T, for each seed. Algorithm 2 details the following MultiLabel labeling procedure. When both

modes are able to solve the instance, running times are compared and a “seed win” is assigned if one

method performed at least 10% better than the other one, opting for a tie alternatively. Instead, if

only one method could solve the problem, it is decreed the winner for that run. A final label for each

MIQP is determined by cumulative wins: L or NL are assigned only if their seed wins are consistent

through the available runs, while T is returned otherwise. Note that the MultiLabel algorithm is based

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
10 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Algorithm 1 Checks on MIQP runs
Input: For a minimization MIQP (1), lower bounds lb∗, upper bounds ub∗ and statuses status∗

collected on runs in modes ∗ ∈ {L,NL}, on a same seed s. Tolerance parameter constol(= 1×10−5).

Output: True if the run passes consistency and solvability checks, False otherwise.

1: LB := max{lbL, lbNL}, UB := min{ubL, ubNL}

Consistency check

2: if (LB −UB > constol ·max{|LB |, |UB |,1}) then

3: return False . discard the run because inconsistency was found

4: end if

Solvability check

5: solved= [optimal,infeasible] . Statuses corresponding to solved runs

6: if (statusL /∈ solved) and (statusNL /∈ solved) then

7: return False . discard the run because not solved within time limit

8: end if

9: return True

on the standard procedure employed in MIP development to compare two methods and determine

their relative wins/losses.

In addition, we define a binary labeling scheme BinLabel, reported in Algorithm 3. Unlike the

multi-class procedure, BinLabel does not take into account consistent seed wins. Instead, it directly

compares the shifted geometric means of running times for L and NL, across the seeds passing the

checks. Eventually, ties are broken using shifted geometric means of the number of B&B nodes.

The comparison of computing times in BinLabel does not use a 10% threshold, but the resulting

scheme is nevertheless consistent with the MultiLabel one: L and NL labels assigned in the multi-class

procedure remain the same in the binary one. In other words, one can interpret BinLabel as a way of

turning T samples obtained with MultiLabel into L and NL cases.

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 11

Algorithm 2 Labeling procedure – MultiLabel case
Input: For a MIQP, times ts,∗ and statuses statuss,∗ for all seeds s that passed checks and

∗ ∈ {L,NL}. Parameters p(= 0.1) to compare runtimes, ∆(= 3) to compare seed wins.

Output: A label in {L,NL,T}.

Seed wins

1: winsL := 0,winsNL := 0

2: solved= [optimal,infeasible] . Statuses corresponding to solved runs

3: for seed s in passed seeds do

4: if (statuss,L ∈ solved) and (statuss,NL ∈ solved) then

5: if ts,L < (1− p)ts,NL then . L significantly better than NL on s

6: winsL←winsL + 1

7: else if ts,NL < (1− p)ts,L then . NL significantly better than L on s

8: winsNL←winsNL + 1

9: end if

10: end if

11: if (statuss,L ∈ solved) and (statuss,NL /∈ solved) then

12: winsL←winsL + 1

13: else if (statuss,L /∈ solved) and (statuss,NL ∈ solved) then

14: winsNL←winsNL + 1

15: end if

16: end for

Winner label assignment

17: if winsL ≥winsNL + ∆ then return label L

18: else if winsNL ≥winsL + ∆ then return label NL

19: else return label T

20: end if

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
12 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Algorithm 3 Labeling procedure – BinLabel case
Input: For a MIQP, times ts,∗ and nodes nodess,∗ for all seeds s that passed checks and

∗ ∈ {L,NL}. A function sgmean to compute shifted geometric means, with shift ε(= 1).

Output: A label in {L,NL} or None.

1: Time∗ := sgmean(ts,∗ : s passed checks) for ∗ ∈ {L,NL}

2: Nodes∗ := sgmean(nodess,∗ : s passed checks) for ∗ ∈ {L,NL}

Time and nodes comparison

3: if TimeL <TimeNL then return label L

4: else if TimeNL <TimeL then return label NL

5: else

6: if NodesL <NodesNL then return label L

7: else if NodesNL <NodesL then return label NL

8: else return None

9: end if

10: end if

3.2. Feature design

A raw formulation like (1) cannot be fed directly as input to a learning algorithm, so we need to

represent a MIQP via a vector of numerical features x∈Rd, which should condense what we suspect

are the important pieces of information leading to an algorithmic discrimination between L and

NL. We describe a MIQP instance in its mathematical, optimization, and computational properties,

by means of a set of 60 hand-crafted features. For feature design, we reinterpret few ideas from

the works of Khalil et al. (2016) and Hutter et al. (2014). We mostly capture static information

from the initial formulation, but given the impact of the linearization and perturbation steps on

the quality of the root dual bound (Adams et al. 2004) (and hence on the success of the subsequent

optimization process), we also extract data from the preprocessing phase and the resolution of the

root node relaxation, for both L and NL. Features are defined in such a way to be comparable across

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 13

a variety of instances, as they should express common characteristics of MIQPs. With respect to our

early work (Bonami et al. 2018), the feature set has been revised and extended, with the goal of

better capturing the composition of matrix Q and the changes induced by preprocessing.

Static features. Properties of a MIQP that can be read from the formulation (1) are basic

information about the size of the problem (number of variables and constraints) and the proportions

of variables of each type (binary, general integer and continuous). The composition of the symmetric

matrix Q can be detailed by inspecting the presence of different types of non-zero bilinear products,

in and out of the main diagonal, and in particular the appearance of non-linearizable terms (where

binary variables do not participate). Features distinguish binary variables from continuous and general

integer ones, as they are treated differently in the linearization process; diagonal and non-diagonal

terms of Q are also separated for similar reasons. Connectivity degrees of variables appearing in

xTQx are also tracked, as graph-based properties of the quadratic term might relate to the quality of

the formulation (e.g., Barahona (1986)). We compute proxies for potential increases in variables and

constraints sizes after linearization, and record the composition and density of the linear term c of

the objective function. For constraints, we inspect variables’ involvement (per type) and the density

of matrix A. When deciding on linearization, a clear trade-off emerges between size and strength of

the formulation, so measures of how linearizing affects the model and its sparsity appear relevant. On

the one hand, performing McCormick linearization produces additional constraints that are sparse

and structured; on the other hand, a very dense initial model might lead to a reformulation too large

for those advantages to outweigh the increased difficulty of the problem. Additionally, we examine

spectral properties of Q such as rank and proportions of zero and “hard” eigenvalues. The rationale

behind these attributes is the estimation of how far from convexity a problem might be, and thus

also gauging the quality of a potential perturbation step to repair indefiniteness (see Section 2).

Preprocessing features. After the preprocessing phases of L and NL, we record the actual increases

in number of variables and constraints, relative to the original dimensions n and m. The density

of the constraints matrix after preprocessing is also examined and compared with the one of A,

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
14 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

and between the two methods. Again, the motivation for such attributes is to understand how

linearization impacts a MIQP formulation, in terms of size and sparsity. Note that, with respect

to the proxies of size increase computed as static features, the explicit measurements from the

preprocessing step also account for the solver’s ability to further simplify the resulting model.

Root node features. To assess the performance difference between L and NL in solving their

respective relaxations, we collect and compare runtimes and dual bounds achieved after the root node

resolutions. If, on the one hand, measures at the root node do not perfectly reflect a method’s overall

success (i.e., L and NL performance at the root is not always in correspondence with computed labels),

on the other hand, they can capture the solver’s first response to linearization and perturbation

procedures.

In total, we collect 44 static, 11 preprocessing and 5 root node features (60, in total); we report

them in Table 9 in the Appendix. At this stage, features are still extracted offline: we compute static

traits with the CPLEX Python API after reading MIQP instances. Necessary information from

preprocessing and the root node resolutions of L and NL are gathered during the runs of the labeling

procedure (Section 3.1); dual bounds and runtimes at the root node are aggregated using arithmetic

and shifted geometric means, respectively, across the runs that passed the checks of Algorithm 1.

3.3. Instances

We aim to compile a dataset of MIQPs that is heterogeneous and relevant for the L vs. NL question,

and representative of the variety of cases that can occur, as we saw in Example 1. Driven by the

need of more problems than what available libraries offer, we first create synthetic MIQP instances.

The generation procedure takes into account different structural parameters (such as size, density

and spectrum of Q) and multiple types of constraints to obtain heterogeneous MIQPs. We refer to

the resulting dataset of 2640 MIQPs as setD, and to Bonami et al. (2018) for more details on data

generation.

Examining the problems that were generated for Bonami et al. (2018), we observed the presence

of instances with high density due to a dense encoding and near-to-zero coefficients qij. We hence

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 15

Table 2 Dataset composition in terms of labels, for both labeling schemes. Percentages refer to row counts (#).
MultiLabel BinLabel

L (%) T (%) NL (%) # L (%) NL (%)

setD 1821 614 (35.2) 841 (46.2) 339 (18.6) 1322 942 (71.3) 380 (28.7)
neos 480 49 (10.2) 426 (88.8) 5 (1.0) 137 93 (67.9) 44 (32.1)
miqp 284 101 (35.5) 149 (52.5) 34 (12.0) 191 133 (69.6) 58 (30.4)

Total 2585 791 (30.6) 1416 (54.8) 378 (14.6) 1650 1168 (70.8) 482 (29.2)

decided to apply a numerical correction to the dataset, enforcing sparsity of Q matrices. On the

one hand, such correction disrupted the spectral properties of some unstable instances, which could

now be read by the solver as general nonconvex ones, and consequently rejected.2 On the other

hand, we deem the corrected instances to be more stable and meaningful than their original versions.

Instances of setD have been contributed to the MINOA open-source benchmark library (MINOA

2021 (accessed June, 2021).

For this work, we enlarge our MIQP dataset to include non-synthetic benchmark instances from

NEOS submissions and problems of CPLEX internal testbed:

• neos contains 945 MIQPs that were submitted to the NEOS server with CPLEX as the

specified solver. The NEOS server allows to solve various types of optimization problems via a

free internet-based service providing access to more than 60 state-of-the-art solvers, among which

CPLEX. Instances have been collected by querying MIQP submissions to NEOS with CPLEX as

solver between April 2015 and January 2018. No selection of the instances was done except cleaning

duplicates. We share neos instances at https://github.com/ds4dm/miqp-clf2lin. Coming from

general users’ submissions, we expect the dataset to be heterogeneous in composition;

• miqp contains 522 problems that constitute the CPLEX internal MIQP dataset. Differently from

setD, miqp is dominated by the presence of very structured combinatorial MIQPs, like Max-Cut and

Quadratic Assignment Problems. While some models in this benchmark are proprietary, note that

instances from the scientific literature (e.g., QPLIB ones of Furini et al. (2018)) are also included in

this set.

Altogether, setD, neos and miqp amount to 4107 MIQP instances, which we run in both qtolin

modes, for five random seeds, on a cluster of identical 12 core Intel Xeon CPU E5430 machines

https://github.com/ds4dm/miqp-clf2lin

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

running at 2.66 GHz and equipped with 24 GB of memory, with CPLEX version 12.8.0 with a time

limit of 2h, and otherwise default settings. After performing Consistency and Solvability checks,

2585 problems remain (1821,480,284 from setD, neos and miqp, respectively). We then compute

labels with both schemes MultiLabel and BinLabel, and extract features as described in Section 3.2.

The composition of the dataset in terms of labels is reported in Table 2; note that a proper BinLabel

could not be assigned in 935 cases due to ties both in runtimes and number of nodes3, so that only

1650 problems are available in the binary setting. While the MultiLabel scheme produces almost

55% of tie cases, BinLabel yields a 70-30% repartition between L and NL, respectively. As shown in

Figure 2a and 2b, the proportion of problematic eigenvalues of matrix Q, as well as its density, span

the entire [0,1] range in the full dataset.

Because BinLabel does not rely on a hard threshold to separate classes, it is important to check

how performance variability interacts with the determination of the target: if variability was high,

one might reason the labels being noisy. Focusing on problems that are assessed as ties by MultiLabel

and that are turned into L or NL cases by BinLabel (481 samples), we use runtimes collected on five

seeds to compute their variability scores (Koch et al. 2011), for both L and NL times. While these

scores are only based on few benchmark runs, they can nonetheless provide useful insights. Average

scores for the 481-samples selection are 0.076 for L times and 0.062 for NL ones. Scores corresponding

to the higher 80% quantile are 0.0326 for L and 0.016 for NL; 90% quantile values are attained at

0.179 and 0.129, respectively. In conclusion, the target assignment produced by BinLabel appears

robust, as only a small fraction of the considered “turned ties” samples exhibit some variability,

which stays overall low in our dataset. As final remarks, note that the use of geometric means also

contributes to stabilize measurements (e.g., of runtimes) with respect to possible outliers. Moreover,

the majority of the features that we collect (and will later utilize) record static properties of a MIQP

instance that are independent from a specified random seed.

Together with models from setD and neos, we share the entire annotated dataset (2585 samples,

each annotated with 60 features and labels) at https://github.com/ds4dm/miqp-clf2lin.

https://github.com/ds4dm/miqp-clf2lin

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 17

0 500 1000 1500 2000 2500
Instances

0.0

0.2

0.4

0.6

0.8

1.0

%
 p

ro
bl

em
at

ic
ei

ge
nv

al
ue

s i
n

Q

(a)

0 500 1000 1500 2000 2500
Instances

0.0

0.2

0.4

0.6

0.8

1.0

%
 d

en
sit

y
of

 Q

(b)
Figure 2 (a) Fraction of problematic (hard) eigenvalues of Q, and (b) density of Q in the full dataset (2585 instances).

4. Baseline learning experiments

We perform learning experiments on the entire dataset with multi-class labels {L,NL,T} given by

MultiLabel (2585 points), as well as on the binary subset of samples with targets defined by the

BinLabel procedure (1650 points).

As classification models, we test Logistic Regression (LogReg), Support Vector Machine (SVM)

with RBF kernel (Cortes and Vapnik 1995), a single Decision Tree (Tree) and Random Forests (RF)

(Breiman 2001). We specify a grid of values for the main hyper-parameters of each model, in order

to search the best combinations. All models can perform both multi-class and binary classification,

and are compared with a dummy classifier (dum) following a stratified strategy (i.e., generating

predictions according to the class distribution of the training set).

For each of our learning experiments, we randomly split the available data into training and test

sets using a 75-25% ratio. We perform a training phase with 5-fold cross validation to grid-search

models’ hyper-parameters, and a test phase on the neutral test set. When splitting the data and

defining folds, general proportions of labels are maintained in each subset; features are standardized

with respect to each subset, by removing the mean and scaling to unit variance. Each type of

experiment is repeated for five different random seeds: within the learning pipeline, randomization

mostly affects the determination of the train/test splits, but can also impact the definition of some

predictive models (e.g., RF). Practically, learning experiments are implemented in Python 3.5 with

Scikit-learn 0.20.0 (Pedregosa et al. 2011), and run on a dual Intel(R) Xeon(R) Gold 6142 CPU @

2.60GHz, equipped with 512GB of RAM.

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
18 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Metrics. Especially in our context, it is important to quantify the performance of the trained

classifiers not solely with respect to standard classification measures: from an optimization standpoint,

we need to determine how effective and valuable our learned approach proves to be when practically

solving MIQPs, and compare it to the solver’s current strategy. For this reason, we rely on a set of

heterogeneous metrics to assess the performance of the predictors.

For a vector of true labels y and a vector of predicted labels ŷ, we compute the accuracy of the

predictions over a (test) set of size K as

accuracy(y, ŷ) =
1

K

K∑
k=1

1{yk=ŷk}. (3)

We also report f1-scores, i.e., harmonic means of precision and recall for the predictions (see Bishop

(2006) for details). More generally, a weight wk can be associated to each sample k, to get a weighted

accuracy score

w-accuracy(y, ŷ,w) =
1∑
kw

k

K∑
k=1

wk ·1{yk=ŷk}. (4)

To compensate for (and get a sense of) the effects of class-imbalance in the data, one can evaluate a

balanced accuracy score. By defining class weights wclass as the uniform weights over samples of the

same class, one can compute

b-accuracy(y, ŷ) =w-accuracy(y, ŷ,wclass). (5)

However, from the perspective of practically solving MIQPs, misclassifying critical problems has

more severe effects than predicting the wrong method for an instance in which L and NL show

instead comparable performances. As we saw in Example 1, misclassifications are neither all equally

important nor bad. In order for our measurements to reflect the quality of the predictions from the

solver’s standpoint, we introduce a notion of sample weights linked to the runtimes of L and NL. A

natural way of measuring how critical a MIQP problem is – i.e., how different the methods perform,

and hence how important it is to classify the sample correctly – is that of considering the shifted

geometric mean of the runtimes difference, as in

wtime := sgmean(|ts,L− ts,NL| : s∈ seeds). (6)

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 19

Weights wtime can be easily obtained from the benchmark runs of the labeling procedure. We then

measure accuracy “with respect to times”,

t-accuracy(y, ŷ) =w-accuracy(y, ŷ,wtime). (7)

On a similar note, we try to quantify the “prospective” optimization runtimes that would result if

our predictors were deployed in the solver to decide on L vs. NL. In other words, we estimate for

how long each problem would run if it was solved according to a classifier’s prediction, and use this

information to compare the quality of learned decisions to the current solver configuration. Again, we

make use of the runtimes collected during the labeling procedure. For each classifier clf , we associate

a vector of “predicted” times tclf to the vector of its predicted labels ŷclf : for every (test) sample

k, we select Timek
∗ for the corresponding predicted label ∗ ∈ {L,NL}. As in Algorithm 3, Timek

∗

is defined as the shifted geometric mean of runtimes, across the available seeds from the labeling

benchmark. If a tie T was predicted for sample k by clf , we set tkclf to be the average of Timek
L

and Timek
NL. Likewise, we compute tdef and ttarget for the solver’s default strategy (always linearize)

and the ideal classifier that perfectly predicts the true targets, respectively. A simple sum of such

predicted (prospective) runtimes enables one to get a sense of how effective a learned discrimination

between L and NL can be. We define

σclf :=
K∑

k=1

tkclf , (8)

and compare both σclf /σtarget (the smaller the better, ideally 1) and σclf /σdef. Note that σtarget/σdef

naturally provides a bound to how much a classifier can improve on the current default solver setting,

in a given subset of samples k ∈ {1, . . . ,K}.

4.1. Baseline results

As a baseline experiment, we train classifiers on the initial set of 60 features (Initial), in both

multi-class and binary settings. Results reported in Table 3 are averages of the scores across five tries.

With respect to traditional classification measures, all classifiers are exhibiting good performance,

with RF and SVM usually being the best performing models. Scores accounting for runtimes in their

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
20 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Table 3 Baseline results for the two data setting; 60 Initial features are used for learning. Reported values are averages
across five experiments of the same type, on different seeds.

(a) MultiLabel, Initial features

dum LogReg RF SVM Tree def target

accuracy 0.41 0.85 0.90 0.87 0.87 - -
b-accuracy 0.33 0.78 0.85 0.81 0.81 - -
f1-score 0.41 0.85 0.90 0.87 0.87 - -

t-accuracy 0.29 0.93 0.96 0.95 0.91 - -
σclf /σtarget 3.06 1.28 1.15 1.17 1.39 1.33 1.00
σclf /σdef 2.27 0.96 0.86 0.88 1.03 1.00 0.75

(b) BinLabel, Initial features

dum LogReg RF SVM Tree def target

accuracy 0.60 0.76 0.83 0.80 0.80 - -
b-accuracy 0.50 0.69 0.77 0.73 0.77 - -
f1-score 0.59 0.76 0.83 0.79 0.80 - -

t-accuracy 0.69 0.91 0.96 0.95 0.89 - -
σclf /σtarget 2.46 1.42 1.17 1.26 1.53 1.37 1.00
σclf /σdef 1.78 1.04 0.85 0.92 1.11 1.00 0.73

definition (i.e., t-accuracy, σclf /σtarget, and σclf /σdef) appear consistent with the classification ones.

In particular, RF yields at least a 14% improvement on def in both settings: def uses 16% or more

time to solve test instances than what decisions based on RF predictions would. Classification scores

in the multi-class configuration are generally higher than those in the binary one. An inspection of the

confusion matrices allows to assess that classifiers in the multi-class setting are indeed very good at

correctly classifying T cases (the majority class), with errors mostly happening when distinguishing

between L and NL. As expected, given that the BinLabel scheme in fact transforms some tie cases into

L and NL samples, the classification of T which was so accurate in the MultiLabel setting translates

into less clear-cut separation in the binary one. Nonetheless, despite misclassification happening more

frequently in the BinLabel setting, t-accuracy and ratios of prospective runtimes remain high for RF

and SVM. Again, misclassifications do not have all the same impact in terms of solver performance,

and runtime-based metrics show that classifiers are still able to predict correctly on many critical

binary samples. For these reasons, we decide to focus our subsequent experiments in the binary

setting only.

Feature importance. To get a sense of the importance of each feature in the prediction, we analyze

the importance scores of the trained RF models, which emerged as best in our baseline experiments.

Such scores, computed by Scikit-learn, consist of nonnegative scalar values summing up to 1 (among

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 21

0 500 1000 1500 2000 2500
Instances - ordered by # nonzeros in Q

0.0

0.2

0.4

0.6

0.8

1.0

%
 d

en
sit

y
of

 Q

L
NL
T

(a)

0 500 1000 1500 2000 2500
Instances - ordered by # nonzeros in Q

0

25

50

75

100

125

150

Re
la

tiv
e

va
rs

. i
nc

re
as

e
af

te
r L

 p
re

pr
oc

es
sin

g

L
NL
T

(b)

0 500 1000 1500 2000 2500
Instances - ordered by # nonzeros in Q

1000

0

1000

2000

3000

4000

Ti
m

e
di

ffe
re

nc
e

of
 L

 a
nd

 N
L

ro
ot

 n
od

es

L
NL
T

(c)

0 500 1000 1500 2000 2500
Instances - ordered by # nonzeros in Q

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Re
la

tiv
e

di
ffe

re
nc

e
of

 L
 a

nd
 N

L
ro

ot
 d

ua
l b

ou
nd

s

L
NL
T

(d)
Figure 3 Four relevant features in the full dataset: (a) density of Q, (b) relative increase in number of variables after L

preprocessing, (c) root node runtimes difference between L and NL, (d) root node bounds difference between L
and NL. Colors match MultiLabel targets, while bubble size is proportional to weights wtime . In all plots, instances
are ordered by the number of non-zeros in Q.

all features), and represent the mean decrease in impurity (Louppe 2014) for each feature. Simply

put, the predictive power of an attribute is quantified in terms of the depths in the decision tree at

which the attribute is used to create a node split, following the rationale that attributes used at the

top practically affect more samples. Because interpreting feature importance of kernelized methods

like SVM is not practical, we rely on RF and this tree-based criterion to assess our attributes. We

average the features’ scores across the five RF models trained in both data setting, and consider the

10 top-ranked features, which we report in Table 10 in the Appendix. For MultiLabel, top features

are mostly from preprocessing and the root node resolution; this suggests that T cases can be

well detected thanks to this type of non-static information. In the binary configuration, instead,

a common subset of features starts to emerge: together with few non-static features, attributes

describing the composition of matrix Q appear. In particular, measures of density and of the presence

of binary variables gain relevance. This is in line with our expectations: these features help to

distinguish between L and NL by looking at those terms that are directly involved in the linearization

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
22 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

transformation. In Figure 3 we plot four relevant features across the multi-class dataset. The density

of Q (Figure 3a) and the relative dual bound difference between L and NL (Figure 3d) clearly

help in discriminating between classes. Together with the relative increase in number of variables

after L preprocessing (Figure 3b), they also reflect the trade-off between size and strength of the

(re-)formulation, which is crucial for a successful resolution of MIQPs (Adams et al. 2004).

5. Revised framework and tailored experiments

Up to now we performed data collection and learning experiments offline, tracing over the outline of

what had been done in Bonami et al. (2018). However, the ultimate goal of the present work is that

of tightly integrating a predictive tool with the MIQP solver, a task that requires rethinking our

initial framework and adjustments of various kind.

5.1. Feature selection

Working with the goal of combining predictions and optimization, one main aspect to take into

account is the fact that instead of data being collected once and for all, feature extraction will

need to be performed online, when a MIQP instance is presented to the solver. More generally, one

has to understand when the prediction should take place, with respect to the resolution pipeline

and the solver’s various functionalities – a consideration that, in turn, affects which type of input

can be available for the predictor model. Moreover, not all the hand-crafted features prove to be

useful for good classification: in fact, the presence of irrelevant features in the input may induce

over-fitting, besides entailing extra computational cost. One generally needs to compromise between

the predictive power of some features and the possibility of efficiently computing them in the solver:

attributes related to root node information are certainly useful for classification but expensive to

get, as they would require to solve the root node twice. Some static features involving a spectral

decomposition of Q are also not viable in an online procedure.

Practically, these considerations altogether motivate the revision of the hand-crafted feature set.

We drop features that are not accessible for an online solver computation; in particular, we remove

from the initial 60 traits:

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 23

Table 4 Description of features in the Selected subset (21).

Name Description

Static features

RBin Ratio of binary variables over n
RContInt Ratio of continuous and integer variables over n
RNnzDiagContInt Ratio of non-zero (nnz) coefficients in Q diagonal for continuous and integer vari-

ables
OutDiagDensity Density of non-diagonal entries of Q
QDensity Density of Q
RBinBin Ratio of nnz products between binary variables in Q
RContContInt Ratio of nnz products between continuous or integer variables in Q
RNonLinTerms Ratio of nnz non-linearizable terms, over n2

RelVarsLinInc Relative size increase of potential linearization, over n
RLinSizes Sizes m/n ratio after potential linearization
NormMaxDegBin Maximum connectivity degree in Q among binary variables, over n− 1
NormMaxDegContInt Maximum connectivity degree in Q among continuous and integer variables, over

n− 1
RNnzContIntLin Ratio nnz continuous and integers variables in linear term
ConssDensity Density of constraints matrix A
RConssInt Ratio of constraints involving integer variables, over m
RQRankEig Rank of Q over n (i.e., ratio of nnz eigenvalues of Q)
HardEigenPerc Portion of problematic (hard) eigenvalues in Q

Preprocessing features

prep_RelVarsIncL Relative variables increase after L preprocessing
prep_RelConssIncL Relative constraints increase after L preprocessing
prep_RSizesL Sizes m/n ratio after L preprocessing
prep_ConssDensityL Density of constraints matrix after L preprocessing

• most of the features regarding the spectrum of the Q matrix, only keeping information on the

proportion of hard eigenvalues and zero ones (i.e., measures relative to Q’s rank);

• features gathered from root nodes resolution for both L and NL, and those from the preprocessing

step of NL;

• features prone to numerically ill behaviors (e.g., those involving comparisons of A, b and c

coefficients), in order to avoid scaling issues in the learning phase and remove dependencies from

each instance’s parameters.

After these reductions, we end up with a set of 35 features. Note that the only non-static features

kept are those extracted from the L preprocessing step, which is more expensive than the NL one,

but appeared more useful for predictions in the baseline experiments. This is not surprising, because

L has a more dramatic effect than NL on the postprocessed model size and the constraints’ matrix.

We then proceed with a phase of further feature selection. Feature selection is an inherently iterative

phase in the learning pipeline, and we try various procedures – from filtering based on a single

SVM model or Decision Tree, to cross-validating the best subset using ensemble methods. We also

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
24 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Table 5 Results for the binary setting using the 21 Selected features. Reported values are averages across five
experiments of the same type, on different seeds.

dum LogReg RF SVM Tree def target

accuracy 0.60 0.76 0.77 0.77 0.75 - -
b-accuracy 0.50 0.67 0.70 0.69 0.70 - -
f1-score 0.59 0.74 0.76 0.76 0.75 - -

t-accuracy 0.69 0.92 0.94 0.92 0.90 - -
σclf /σtarget 2.46 1.37 1.32 1.40 1.49 1.37 1.00
σclf /σdef 1.78 1.00 0.96 1.01 1.07 1.00 0.73

examine the performance of different feature subsets with respect to the regression task that will

be included in the learning pipeline (see Section 5.3). At the end, we decide to keep a subset of

21 features (17 static and 4 from L preprocessing) that are consistently identified throughout the

experiments as relevant and leading to satisfactory classification performances. We describe this

final subset of attributes in Table 4, and refer to it as Selected. Most of the static features detail

the composition of matrix Q, particularly in terms of binary variables’ participation; Q’s rank and

portion of problematic (hard) eigenvalues are also kept.

We run classification experiments in the binary setting; results are reported in Table 5. After

removing and selecting features, all scores appear decreased with respect to the baseline (cf. Table 3).

Accuracy drops by at least 10% for both RF and SVM, and performance measured with runtimes

is generally reduced; RF’s improvement on def shrinks from 15% to 4%, while SVM appears to

lose its advantage with respect to the default setting. Relevant features consolidate in the binary

configuration, consistent with what already observed in the baseline experiments: with features

describing the initial Q composition (particularly in terms of binary variables appearance), traits on

the effects of linearization (e.g., with respect to problem size and A’s density) are regularly in the

top-10 (cf. Table 10). Note that among the attributes that were identified as important by RF on

the Initial dataset, we only remove two computed at the root node and one from L preprocessing

(prep_RelConssDensityL); dropping the latter probably has the effect of pushing the importance

score of the similar prep_ConssDensityL from 0.0327 to 0.0633.

5.2. Using runtime weights

After a necessary reduction in input features, classification and runtime-related scores dropped

considerably. In this and the next section, we introduce some changes in the learning process: the

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 25

aim is to obtain predictions that will be effective decisions from the optimization point of view, or, in

other words, to work towards classifiers whose decisions will result in prospective runtimes that are

competitive with those of the optimization solver. Improving the predictions from the optimization

point of view concretely means making the classifiers more attentive to critical data-points. A very

natural idea to incorporate the knowledge of whether a sample is critical is to use wtime as defined in

(6) as sample weights, i.e., to work with a weighted dataset. In SVM models, for example, the use of

weights on the points has the effect of re-scaling the penalty parameter, so that during training the

classifier will be emphasized to get high-weight points correctly. In a single Decision Tree, instead,

weights would modify the classes’ probabilities in the identified split regions of the feature space.

In our proposed example reweighting scheme, using wtime simply corresponds to assigning greater

weights to samples where the L vs. NL choice is most critical.

Another possible way of introducing a prior about critical instances is by defining a custom loss

function designed to penalize misclassification proportionally with the criticality of samples. In this

respect, we define

WTarLoss(y, ŷ) :=
1

σtarget

K∑
k=1

wk
time ·1{yk 6=ŷk}, (9)

a weighted loss with respect to target runtimes. For a misclassified sample k (yk 6= ŷk), the weight

wk
time is a proxy for the difference between the prospective runtime of an instance k that runs

accordingly to a classifier’s decision and the target one, i.e., of tkclf − tktarget. We try WTarLoss as

scoring function for cross-validation, so that during training the best combinations of classifiers’

hyper-parameters will be chosen based on this score (the lower the better).

Results in both the sample weights setting and with the use of WTarLoss are reported in Table 6.

Overall, it appears clear that incorporating some prior knowledge on which instances are critical

via weights substantially helps to enhance the prospective optimization performance of classifiers’

decisions. Measures of t-accuracy and runtimes ratios improve in both setups, with sample weights

especially boosting SVM (cf. Table 6a). Classification measures are comparable between settings,

and with respect to previous results in which no weight information were used (cf. Table 5). Note

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
26 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Table 6 Results for the binary setting using the Selected feature subset (21), with sample weights wtime and custom
cross-validation scoring function WTarLoss. Reported values are averages across five experiments of the same type, on different

seeds.
(a) BinLabel, Selected features, wtime as sample weights

dum LogReg RF SVM Tree def target

accuracy 0.60 0.77 0.75 0.76 0.75 - -
b-accuracy 0.50 0.64 0.66 0.63 0.62 - -
f1-score 0.59 0.74 0.74 0.73 0.72 - -

t-accuracy 0.69 0.95 0.95 0.96 0.94 - -
σclf /σtarget 2.46 1.25 1.24 1.21 1.30 1.37 1.00
σclf /σdef 1.78 0.92 0.90 0.88 0.94 1.00 0.73

(b) BinLabel, Selected features, WTarLoss

dum LogReg RF SVM Tree def target

accuracy 0.60 0.76 0.76 0.76 0.75 - -
b-accuracy 0.50 0.67 0.68 0.67 0.69 - -
f1-score 0.59 0.75 0.75 0.75 0.75 - -

t-accuracy 0.69 0.93 0.94 0.93 0.92 - -
σclf /σtarget 2.46 1.36 1.28 1.35 1.43 1.37 1.00
σclf /σdef 1.78 0.99 0.93 0.98 1.02 1.00 0.73

Table 7 Statistics for wtime with respect to classes, in the BinLabel data. We report: count, mean, standard deviation,
min, max and percentiles values.

mean std min 25% 50% 75% max

L 1168 1938.44 2853.36 0.0 0.0 36.08 4366.82 7199.90
NL 482 432.63 1433.96 0.0 0.2 1.72 20.11 7199.90

that the use of sample weights leads to lower b-accuracy scores, i.e., there is a marked imbalance

in terms of which class is correctly predicted. In this setup, confusion matrices reveal that L is the

predicted label for a higher number of samples, and most misclassifications happen in the form of

a NL wrongly predicted as L. This might be linked to the fact that values of wtime show different

distributions when restricted to L and NL samples; Table 7 presents descriptive statistics for weights

in BinLabel data. While wtime ∈ [0,7200) hits the same min and max values for both classes, mean

and 75% percentile values indicate that weights are higher for L samples. In other words, there is

more to lose (on average, in our data) when misclassifying L for NL than vice versa.

5.3. Regression of root bounds information

Among the factors affecting the final runtime of a MIQP, an important one clearly is the quality of the

dual bound reached at the root node, i.e., the strength of the initial problem relaxation. As we already

noticed, features comparing root node information of L and NL methods were deemed very useful

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 27

for correct predictions (cf. Table 10 and Figure 3d). We try to incorporate dual bounds information

without solving the root node twice, by approximating a root feature via learned regression. In

particular, we select root_RelSignRDBDiff, i.e., the relative signed difference of root dual bounds

in L and NL, and use it as target to train a Support Vector Regression model (SVR) with a nonlinear

RBF kernel. For the minimization case (dual bounds are lower bounds),

root_RelSignRDBDiff=
lbL− lbNL

1e−10 + max(|lbL|, |lbNL|)
, (10)

the metric being positive when L’s bound is better, negative otherwise. Recall that bounds lbL and

lbNL are arithmetic means of those benchmarked during the labeling procedure. In fact, this feature

partially aligns with the binary labeling: when linearizing is the best choice, that will be reflected in

the bound quality 91% of the times; when NL is the target, instead, the NL bound is actually better

than the L one only 23.6% of the times (cf. also Figure 3d).

Practically, we need to allocate part of our data to train the SVR. In our experimental pipeline we

now first perform a 30-70% split for training and testing the regression; we restrict classification to

the SVR test set only, i.e., we further divide the 70% portion into a 75-25% split for training and

testing classification models. The predictions of the trained SVR are added to the 21 input features

of the Selected subset, and used for classification. Note that the entire classification phase only

relies on predicted values of root_RelSignRDBDiff, never true ones.

The average mean square error of SVR across five experiments is 0.1012. The fact that the regressor

is not able to perfectly predict root_RelSignRDBDiff might be explained by the fact that it is

trained on a small fraction of the data (502 samples only); nonetheless, enough signal about the

root node performance is captured to positively influence classification. Indeed, classification-wise,

results improve when the regressed root information is exploited. Table 8 reports scores for both

kinds of weights integration. If classification metrics are comparable with the previous cases, the use

of SVR is particularly helpful to improve runtime-related scores. In the sample weight case (Table 8a)

models improve their performance, the only exception being SVM. When WTarLoss is used instead

(Table 8b), SVM is the best performing classifier in terms of prospective runtimes ratios, scoring a 16%

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
28 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Table 8 Results for the binary setting using the Selected feature subset and predicted feature root_RelSignRDBDiff
(21+1) from SVR, with sample weights wtime and custom cross-validation loss function WTarLoss. Reported values are averages

across five experiments of the same type, on different seeds.
(a) BinLabel, SVR + Selected features, wtime as sample weights

dum LogReg RF SVM Tree def target

accuracy 0.60 0.75 0.74 0.74 0.73 - -
b-accuracy 0.51 0.61 0.61 0.62 0.59 - -
f1-score 0.60 0.71 0.71 0.71 0.69 - -

t-accuracy 0.67 0.97 0.95 0.94 0.94 - -
σclf /σtarget 2.59 1.17 1.26 1.33 1.27 1.42 1.00
σclf /σdef 1.78 0.82 0.88 0.90 0.89 1.00 0.70

(b) BinLabel, SVR + Selected features, WTarLoss

dum LogReg RF SVM Tree def target

accuracy 0.60 0.76 0.76 0.77 0.74 - -
b-accuracy 0.51 0.65 0.66 0.66 0.64 - -
f1-score 0.60 0.74 0.75 0.75 0.72 - -

t-accuracy 0.67 0.95 0.95 0.96 0.91 - -
σclf /σtarget 2.59 1.25 1.24 1.19 1.48 1.42 1.00
σclf /σdef 1.78 0.88 0.87 0.84 1.02 1.00 0.70

improvement on default runtimes. Feature importance scores as assigned by RF models identify the

same top-10 attributes in both setups, with the predicted version of root_RelSignRDBDiff ranking

at positions 4 and 5, respectively.

6. Implementing predictions in CPLEX

For the actual implementation of our trained predictors into CPLEX, we select an SVM model trained

in the setting with SVR regression performed on Selected features and WTarLoss used as custom

scoring function (cf. Table 8b). Overall, both SVM and RF models performed consistently well

in our multiple experiments, but we ultimately opt for a SVM model over a RF one because of

its easy-to-implement decision function. The SVM coefficients and support vectors can be readily

extracted with Scikit-learn in Python, and then used to implement the trained SVM decision function

(which also includes a SVR model in its pipeline) directly in C, the native language of CPLEX.

We devise the following workflow in the solver: a MIQP problem is read and L preprocessing

performed; after features are internally computed (our initial Python implementation translated into

C, for the Selected feature set), the predictive pipeline starts: the trained SVR predicts a proxy of

the root feature root_RelSignRDBDiff, which is added as input for SVM classification. If L is the

predicted label, then the optimization continues; otherwise, the original model is resumed and the NL

preprocessing and optimization applied to it. We refine the process to take care of two special cases:

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 29

(i) the problem is already solved during linearization preprocessing; in such case, no prediction is

needed;

(ii) it may happen that during NL preprocessing on the original problem the solver fails to establish

convexity and rejects the instance; in this case, we disregard the classifier’s prediction and forcibly

fall back to the L-preprocessed problem, to continue with the L resolution process.

For CPLEX internal fine-tuning, we refine the dataset by removing 252 instances solved by L

preprocessing (i.e., those for which we do not actually need to train a classifier) and adding 40

large ones (n≥10,000) for which spectral features could not be previously computed, but are now

available via the internal solver implementation. The resulting dataset amounts to 1674 instances

when BinLabel is performed. As before, there is a 70-30% proportion between L and NL classes. We

select the final SVM model from a last round of training, and embed its decision function in the

solver.

As a final experiment, we run both CPLEX versions 12.9.0 and 12.10.0, the latter incorporating the

learned classifier, which is run by default, on the test set (on which the classifier was not trained) over

five seeds. While CPLEX version 12.10.0 incorporates more enhancements than just our classifier,

the comparison with version 12.9.0 is meaningful and important to understand the response of

the developed tool in the more complex solver ecosystem. Note that the solving environment now

presents some differences with respect to the setting in which we computed targets: for labeling,

version 12.8.0 was used together with a time limit of 2h; now the time limit is raised to 10,000

seconds, and computations run on a more powerful cluster of identical machines with 16 core Intel

X5650 processor at 2.67GHz, 24 GB RAM and using 12 threads. The classifier ultimately yields

a 28% improvement of running time over the previous default strategy; the measure increases to

92% when considering runs4 taking more than 10 seconds to solve with either version (Figure 4a).

Figure 4b reports a scatter plot of MIQPs running times between versions 12.9.0 and 12.10.0. While

using the classifier results in slower runs for some models, the degradation is generally limited and

compensated by improvements of several order of magnitudes. In particular, only two runs present

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
30 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

(a) (b)
Figure 4 Comparison of MIQPs runtimes between CPLEX 12.9.0 and CPLEX 12.10.0 on the test set: (a) bar plot (CPLEX

12.10.0 in red), (b) scatter plot of running times in log scale.

a degradation of more than one order of magnitude (the worst case being 13 times slower), while

58 (resp. 30) of them show an improvement of more than one (resp. two) order of magnitude. Our

classifier runs in the default version of CPLEX 12.10.0; alternatively, linearization can be manually

toggled by fixing the preprocessing parameter qtolin to other than its automatic value.

Future developments. As our metrics show, there surely is room for improving predictions. At

the very least, the classifier could be periodically updated to incorporate newly available MIQP

instances: most of the computational effort needed to maintain a growing dataset would be spent

on label computation. Nonetheless, the question arises of how to compare prospective classifiers to

the current one. In this respect, the definition of a fixed, shared MIQPs test set (as those available

for other ML applications, e.g., for object recognition) could make future comparisons easier, but it

definitely is a non-trivial task. Being this the first time a predictor is fully integrated in a commercial

MIP solver, we do not know all the answers upfront; we are curious to see how this classifier (and

more generally this research field) will practically evolve.

7. Conclusions

We considered convex MIQPs and the question of whether to linearize the binary components of

their quadratic objective in order to solve them. We translated the problem into a classification task

and addressed it with ML techniques. The developed framework aims at embedding a predictive

function in CPLEX: with this goal in mind, we contributed a methodological process for combining

ML and MIP technology, and thoroughly revised our initial work (Bonami et al. 2018). We built a

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 31

dataset of synthetic and real-world instances, proposing labeling schemes and carefully engineering

features to describe MIQPs and the decision of whether to linearize them. Learning experiments as

well as evaluation metrics were designed to integrate the optimization knowledge in the learning

pipeline. In particular, we experimented with runtime weights, a custom scoring function and with

the regression of an attribute about the root node bounds. Finally, we carefully considered how

to include a predictor in the solver ecosystem. As a result, a SVM classifier deciding on MIQP

linearization is implemented in CPLEX 12.10.0, establishing to the best of our knowledge the first

example of a learning-based tool deployed in a commercial optimization solver.

Appendix

We include additional tables on MIQP features and their importance.

Table 9: Description of features in the Initial set (60). Features marked with * are part of the Selected set.

Name Description

Static features

RSizes Ratio of sizes m/n
* RBin Ratio of binary variables, over n
* RContInt Ratio of continuous and integer variables, over n

RNnzDiagBin Ratio of non-zero (nnz) coefficients in Q diagonal for binary variables
* RNnzDiagContInt Ratio of nnz coefficients in Q diagonal for continuous and integer variables

DiagDensity Density of diagonal entries of Q
* OutDiagDensity Density of non-diagonal entries of Q
* QDensity Density of Q
* RBinBin Ratio of nnz products between binary variables in Q
* RContContIntInt Ratio of nnz products between continuous or integer variables in Q

RMixedBin Ratio of mixed-type products involving binaries
RMixedContInt Ratio of mixed-type products involving continuous and/or integers

* RNonLinTerms Ratio of nnz non-linearizable terms, over n2

RNonLinTermsNnz Ratio of nnz non-linearizable terms, over nnz
* RelVarsLinInc Relative size increase of potential linearization, over n

RelConssLinInc Relative size increase of potential linearization, over m
* RLinSizes Sizes m/n ratio after potential linearization
* NormMaxDegBin Maximum connectivity degree in Q among binary variables, over n− 1
* NormMaxDegContInt Maximum connectivity degree in Q among continuous and integer variables, over n−1

AvgDiagDom Averaged “diagonal dominance” on rows Bonami et al. (2018)
RDiagCoeff Ratio of biggest and smallest diagonal nnz coefficients of Q, in absolute value
ROutDiagCoeff Ratio of biggest nnz diagonal coefficient and smallest out diagonal one, in absolute

value
RNnzBinLin Ratio nnz binary variables in linear term

* RNnzContIntLin Ratio nnz continuous and integers variables in linear term
HasLinearTerm Boolean, whether there is a linear term
LinDensity Density of the linear term
RLinCoeff Ratio of biggest on smallest linear coefficients, in absolute value

* ConssDensity Density of constraints matrix A
RConssBin Ratio of constraints involving binary variables, over m
RConssCont Ratio of constraints involving continuous variables, over m

* RConssInt Ratio of constraints involving integer variables, over m
RConssCoeff Ratio biggest on smallest nnz constraints coefficients, in absolute value
RRhsCoeff Ratio magnitudes smallest on biggest nnz rhs coefficients, in absolute value

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
32 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Table 9 – continued from previous page

Name Description

RQTrace Trace of Q, over n
QSpecNorm Spectral norm of Q

* RQRankEig Rank of Q over n (i.e., ratio of nnz eigenvalues of Q)
* HardEigenPerc Portion of problematic (hard) eigenvalues in Q

AvgSpecWidth Width of Q spectrum, over n
RPosEigen Ratio of positive eigenvalues, over n
RNegEigen Ratio of negative eigenvalues, over n
RZeroEigen Ratio of zero eigenvalues, over n
RAbsEigen Ratio of min and max eigenvalues, in absolute value
RNZeroEigenDiff Ratio of difference between original and corrected eigenvalues
HardEigenPercDiff Ratio of difference between original and corrected hard eigenvalues

Preprocessing features

* prep_RelVarsIncL Relative variables increase after L preprocessing
prep_RelVarsIncNL Relative variables increase after NL preprocessing

* prep_RelConssIncL Relative constraints increase after L preprocessing
prep_RelConssIncNL Relative constraints increase after NL preprocessing

* prep_RSizesL Sizes m/n ratio after L preprocessing
prep_RSizesNL Sizes m/n ratio after NL preprocessing

* prep_ConssDensityL Density of constraints matrix after L preprocessing
prep_ConssDensityNL Density of constraints matrix after NL preprocessing
prep_ConssDensityDiff Difference of density of constraints after preprocessing, between L and NL
prep_RelConssDensityL Relative density of constraints after L preprocessing with respect to original one
prep_RelConssDensityNL Relative density of constraints after NL preprocessing with respect to original one

Root node features

root_RtTimeDiff Difference of total root times (comprising preprocessing), between L and NL
root_RLPTimeDiff Difference of LP root times, between L and NL
root_SignRDBDiff Sign of dual bounds at root (1 if L better, -1 if NL better)
root_RelRDBDiff Relative difference of bounds at root
root_RelSignRDBDiff Signed relative difference of L and NL bounds at root

Endnotes

1. https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/

CPLEX/Parameters/topics/QToLin.html

2. This behavior can be explained by the fact that we generated Q matrices with non-full rank,

and that zero eigenvalues are not really null in floating point operations.

3. This happens because we set all runtimes smaller than or equal to 0.1 seconds to be precisely 0.1.

4. As it was for labeling, a “run” corresponds to a MIQP model solved with a specific seed.

Acknowledgments

This work was done when the first author was working for IBM Spain in the CPLEX team. We would like to

thank the review team for their suggestions, which helped us make the present document clearer and the

overall contribution more incisive. We are also grateful to Xavier Nodet, Andrea Tramontani, and the entire

CPLEX development team for supporting the project in all its phases and throughout the years.

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/Parameters/topics/QToLin.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/Parameters/topics/QToLin.html

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 33

Table 10 Top-10 features identified by RF importance scores, in the multi-class and binary setting with Initial and
Selected features. The reported scores are averages across the five RF models trained in each configuration.

(a) MultiLabel - Initial

Rank Score Feature

1. 0.1826 root_RtTimeDiff
2. 0.0897 prep_ConssDensityL
3. 0.0862 prep_RelVarsIncL
4. 0.0779 root_RelRDBDiff
5. 0.0512 root_RelSignRDBDiff
6. 0.0407 prep_RSizesL
7. 0.0391 prep_RelConssDensityL
8. 0.039 root_RLPTimeDiff
9. 0.0311 QDensity

10. 0.0293 OutDiagDensity

(b) BinLabel - Initial

Rank Score Feature

1. 0.0762 QDensity
2. 0.07 RBinBin
3. 0.068 root_RtTimeDiff
4. 0.065 OutDiagDensity
5. 0.0545 root_RelSignRDBDiff
6. 0.0419 NormMaxDegBin
7. 0.0327 prep_ConssDensityL
8. 0.0314 prep_RelVarsIncL
9. 0.0257 prep_RelConssDensityL

10. 0.0252 root_RelRDBDiff

(c) MultiLabel - Selected

Rank Score Feature

1. 0.203 prep_RelVarsIncL
2. 0.1807 prep_ConssDensityL
3. 0.1113 prep_RSizesL
4. 0.0571 QDensity
5. 0.055 RelVarsLinInc
6. 0.0519 prep_RelConssIncL
7. 0.0519 OutDiagDensity
8. 0.0513 RBinBin
9. 0.0441 NormMaxDegBin

10. 0.0306 RQRankEig

(d) BinLabel - Selected

Rank Score Feature

1. 0.1335 QDensity
2. 0.1177 OutDiagDensity
3. 0.1026 RBinBin
4. 0.0774 prep_RelVarsIncL
5. 0.067 NormMaxDegBin
6. 0.0633 prep_ConssDensityL
7. 0.0582 RelVarsLinInc
8. 0.0559 prep_RSizesL
9. 0.054 RQRankEig

10. 0.0453 RNonLinTerms

References

Adams WP, Forrester RJ, Glover FW (2004) Comparisons and enhancement strategies for linearizing

mixed 0-1 quadratic programs. Discrete Optimization 1(2):99 – 120, ISSN 1572-5286, URL http:

//dx.doi.org/https://doi.org/10.1016/j.disopt.2004.03.006.

Barahona F (1986) A solvable case of quadratic 0–1 programming. Discrete Applied Mathematics 13(1):23–26,

ISSN 0166-218X, URL http://dx.doi.org/https://doi.org/10.1016/0166-218X(86)90065-X.

Bengio Y, Lodi A, Prouvost A (2018) Machine learning for combinatorial optimization: a methodological

tour d’horizon. arXiv preprint arXiv:1811.06128 .

Billionnet A, Elloumi S, Lambert A (2012) Extending the qcr method to general mixed-integer programs.

Mathematical programming 131(1-2):381–401.

Bishop CM (2006) Pattern Recognition and Machine Learning. Information Science and Statistics (Springer-

Verlag New York, Inc.), ISBN 978-0-387-31073-2.

Bliek C, Bonami P, Lodi A (2014) Solving mixed-integer quadratic programming problems with IBM-CPLEX:

a progress report. Proceedings of the Twenty-Sixth RAMP Symposium, 171–180.

http://dx.doi.org/https://doi.org/10.1016/j.disopt.2004.03.006
http://dx.doi.org/https://doi.org/10.1016/j.disopt.2004.03.006
http://dx.doi.org/https://doi.org/10.1016/0166-218X(86)90065-X

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
34 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Bonami P, Lodi A, Zarpellon G (2018) Learning a classification of mixed-integer quadratic programming

problems. van Hoeve WJ, ed., Integration of Constraint Programming, Artificial Intelligence, and

Operations Research, 595–604 (Cham: Springer International Publishing), ISBN 978-3-319-93031-2.

Breiman L (2001) Random forests. Machine Learning 45(1):5–32, ISSN 1573-0565, URL http://dx.doi.

org/10.1023/A:1010933404324.

Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20(3):273–297, ISSN 1573-0565, URL

http://dx.doi.org/10.1023/A:1022627411411.

CPLEX (2020) https://www.ibm.com/analytics/cplex-optimizer.

Czyzyk J, Mesnier MP, Moré JJ (1998) The NEOS server. IEEE Journal on Computational Science and

Engineering 5(3):68—–75.

Dolan ED (2001) The NEOS server 4.0 administrative guide. Technical Memorandum ANL/MCS-TM-250,

Mathematics and Computer Science Division, Argonne National Laboratory.

Fourer R (2015) Quadratic optimization mysteries, part 1: Two versions. http://bob4er.blogspot.ca/

2015/03/quadratic-optimization-mysteries-part-1.html.

Furini F, Traversi E, Belotti P, Frangioni A, Gleixner A, Gould N, Liberti L, Lodi A, Misener R, Mittelmann

H, Sahinidis N, Vigerske S, Wiegele A (2018) QPLIB: A library of quadratic programming instances.

Mathematical Programming Computation URL http://dx.doi.org/10.1007/s12532-018-0147-4.

Gropp W, Moré JJ (1997) Optimization environments and the NEOS server. Buhman MD, Iserles A, eds.,

Approximation Theory and Optimization, 167–182 (Cambridge University Press).

Hutter F, Xu L, Hoos HH, Leyton-Brown K (2014) Algorithm runtime prediction: Methods & evaluation.

Artificial Intelligence 206:79–111, ISSN 0004-3702, URL http://dx.doi.org/10.1016/j.artint.2013.

10.003.

Khalil E, Le Bodic P, Song L, Nemhauser G, Dilkina B (2016) Learning to branch in mixed integer programming.

Proceedings of the 30th AAAI Conference on Artificial Intelligence.

Koch T, Achterberg T, Andersen E, Bastert O, Berthold T, Bixby RE, Danna E, Gamrath G, Gleixner AM,

Heinz S, Lodi A, Mittelmann H, Ralphs T, Salvagnin D, Steffy DE, Wolter K (2011) MIPLIB 2010.Mathe-

matical Programming Computation 3(2):103, URL http://dx.doi.org/10.1007/s12532-011-0025-9.

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1022627411411
https://www.ibm.com/analytics/cplex-optimizer
http://bob4er.blogspot.ca/2015/03/quadratic-optimization-mysteries-part-1.html
http://bob4er.blogspot.ca/2015/03/quadratic-optimization-mysteries-part-1.html
http://dx.doi.org/10.1007/s12532-018-0147-4
http://dx.doi.org/10.1016/j.artint.2013.10.003
http://dx.doi.org/10.1016/j.artint.2013.10.003
http://dx.doi.org/10.1007/s12532-011-0025-9

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 35

Lodi A (2009) Mixed integer programming computation. Jünger M, Liebling T, Naddef D, Nemhauser G,

Pulleyblank W, Reinelt G, Rinaldi G, Wolsey L, eds., 50 Years of Integer Programming 1958-2008,

619–645 (Springer Berlin Heidelberg).

Lodi A, Tramontani A (2013) Performance variability in mixed-integer programming. Theory Driven by

Influential Applications, 1–12 (INFORMS).

Louppe G (2014) Understanding Random Forests: From Theory to Practice. Ph.D. thesis, Université de Liège,

Liège, Belgique.

McCormick GP (1976) Computability of global solutions to factorable nonconvex programs: Part I — convex

underestimating problems. Mathematical Programming 10(1):147–175.

MINOA (2021 (accessed June, 2021)) Open-source benchmark library. URL https://minoa-itn.fau.de/

?page_id=749.

Motzkin TS, Straus EG (1965) Maxima for graphs and a new proof of a theorem of Turán. Canadian Journal

of Mathematics 17:533–540.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss

R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)

Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12:2825–2830.

Author biographies

Pierre Bonami is currently a Senior Developer at Gurobi. From 2013 to 2020, he was one of

the lead developers of the IBM-CPLEX solver. His research interests are mixed integer linear and

nonlinear programming. He is particularly known for his extensive work on cutting planes and his

contribution to the Bonmin open-source solver.

Andrea Lodi is an Andrew H. and Ann R. Tisch Professor at the Jacobs Technion-Cornell Institute

at Cornell Tech and the Technion. His research interests are mixed integer programming, nonlinear

programming and statistical learning. From 2015 to 2022, he has held the Canada Excellence Research

Chair in “Data Science for Real-time Decision Making” at Polytechnique Montréal.

https://minoa-itn.fau.de/?page_id=749
https://minoa-itn.fau.de/?page_id=749

Bonami, Lodi, and Zarpellon: A Classifier to Decide on the Linearization of MIQPs in CPLEX
36 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Giulia Zarpellon holds a Ph.D. in Applied Mathematics by Polytechnique Montréal, where she

joined the “Data Science for Real-time Decision Making” team. Her research interests lie at the

intersection of mixed integer programming and statistical learning. She is presently working as an

AI Scientist at the Vector Institute.

	Introduction
	Contributing a methodology

	The MIQP algorithmic framework in CPLEX
	The linearization option

	Building a dataset
	Labeling procedure
	Feature design
	Instances

	Baseline learning experiments
	Baseline results

	Revised framework and tailored experiments
	Feature selection
	Using runtime weights
	Regression of root bounds information

	Implementing predictions in CPLEX
	Conclusions

