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Mapping the decoding of quantum error correcting (QEC) codes to classical disor-
dered statistical mechanics models allows one to determine critical error thresholds of
QEC codes under phenomenological noise models. Here, we extend this mapping to ad-
mit realistic, multi-parameter noise models of faulty QEC circuits, derive the associated
strongly correlated classical spin models, and illustrate this approach for a quantum
repetition code with faulty stabilizer readout circuits. We use Monte-Carlo simulations
to study the resulting phase diagram and benchmark our results against a minimum-
weight perfect matching decoder. The presented method provides an avenue to assess
fundamental thresholds of QEC circuits, independent of specific decoding strategies,
and can thereby help guiding the development of near-term QEC hardware.

The interdisciplinary endeavour to develop large-scale quantum computers has revealed unex-
pected and strong connections across fields, in particular between quantum information theory and
statistical physics. Exploring these links has been fruitful in both directions, e.g. by efficient quan-
tum algorithms to estimate partition functions of classical spin systems [1–9], by providing effective
descriptions for entanglement spreading in random circuits [10–12] or in the context of quantum
error correction (QEC). For the latter, it has been shown that the decoding of leading QEC codes
[13, 14] such as the topological surface [15, 16] and color codes [17, 18] can be mapped onto disor-
dered classical statistical mechanics models. Locating the phase transitions between ordered and
disordered phases in these models reveals the parameter regimes for which QEC succeeds or fails,
respectively [16]. So far, however, these mappings have been largely limited to QEC codes with
simple phenomenological noise models: for instance, uncorrelated [16, 19–22] or weakly correlated
bit and/or phase flip errors [23], phenomenological measurement errors during syndrome readout
[24, 25], qubit loss and leakage [26–30] have been considered, with recent extensions also to bosonic
QEC codes [31]. Realistic modeling of experimental quantum hardware [32–41], however, requires
multi-parameter noise model descriptions of failure processes of the underlying quantum circuit
components.

In this work, we extend the QEC-statistical mechanics model mapping and apply it to realistic
quantum circuit-noise scenarios. For Clifford measurement circuits, correlations arising from circuit
noise can be efficiently related to effective phenomenological models as direct input for (possibly
sub-optimal) decoders [23, 42]. Here, we use a similar approach but perform a systematic error
propagation analysis and identify emerging effective noise processes in realistic quantum circuits.
Instead of direct decoding, we derive the associated disordered classical spin model with correlated
quenched disorder, determine its phase diagram and thereby obtain maximum threshold values
agnostic to specific decoding strategies. This method allows one to assess the maximum potential
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Figure 1: (a1) One cycle of the phase-flip repetition code with circuit-level noise, shown for three data qubits Di

and two ancilla qubits ai. White boxes RY (R−1
Y ) represent single-qubit Y -rotations of π/2 (−π/2). Gray boxes

(idle, init, 1Q, 2Q and read) are depolarizing channels describing faults during idling, state preparation, single-
qubit, CNOT gates and measurements, respectively. (a2) (Top row) Examples of error propagation through
CNOT and RY gates: Z errors on target qubits propagate to the control qubits; Z errors do not propagate
from control to target qubits; Z errors are transformed into X errors through RY . (Center row) A Z error
between two CNOTs on D1 propagates also as a measurement error to the ancilla a0. (Bottom row) A Z error
between two RY on the ancilla results in a measurement error. (b1) Four measurement cycles showing error
propagation and the affected ancilla qubits. (i) A data-qubit error (green asterisk) propagates along the green
path and affects two ancilla qubits at every subsequent measurement. (ii) A measurement error (blue asterisk)
affecting a single ancilla. (iii) An error between the CNOT gates of a data qubit (red asterisk) propagates
along the red path and affects one ancilla at step t and two ancilla qubits in subsequent measurements. (iv)
A space-time equivalence given by two qubit errors and two measurement errors, which does not trigger any
ancilla. (b2) Error graph generated by the physical errors in panel (b1). Positions where qubit, measurement
and correlated data phase-flip and measurement errors can happen are represented by vertical, horizontal and
L-shaped edges, respectively. Colored semicircles represent ancilla qubits triggered by an error event. From this
graph we derive the fundamental error events determining the couplings of the statistical mechanics Hamiltonian
(panels (c1)-(c2)) and the syndrome volume. (c1) Fundamental effective errors e1, e2, e3 generated by the
error processes (i)-(iii) and equivalences σ`. (c2) Lattice of equivalences σ` showing the couplings J1 (vertical
blue links), J2 (horizontal green links), J3 (diagonal red links) of the Hamiltonian of Eq. (5).

of realistic state-of-the-art QEC architectures. This is particularly pressing for QEC codes when
(near-)optimal decoding is computationally hard [43], when optimal decoders are unknown or
strongly dependent on the chosen QEC circuitry and noise model details [44], e.g. in measurement
circuits for high-weight stabilizers in color codes [45–47] or recently developed flag-qubit based
QEC [48–51].

We illustrate the mapping of circuit-level QEC codes to statistical mechanics models for a 1D
quantum repetition code with faulty circuitry described by a multi-parameter microscopic noise
model accounting for a number of single- and two-qubit gate noise processes. Whereas this code
does not enable correction of arbitrary errors, current experimental efforts focus on achieving
repetitive QEC with this code in the regime of beneficial error suppression for increasing code
sizes [52–55]. We show that in contrast to oversimplified phenomenological noise models, new
effective correlated noise processes arise, which we systematically derive and quantitatively relate
to error rates of the underlying microscopic noise model.

We anticipate a robust performance gap between efficient, though sub-optimal minimum-weight
perfect matching (MWPM) decoding and the fundamental upper limit as established via the phase
diagram of the statistical physics model. This demonstrates the viability of this complete mapping
approach to identify maximal performance of QEC circuitry.
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1 Noisy quantum error correcting circuits
Here we consider the phase-flip n-qubit repetition code [56, 57] from the class of stabilizer QEC
codes [58]. The ±1 eigenvalues of the n − 1 stabilizers Si = Xi ⊗ Xi+1 (with Xi the Pauli X
matrix on qubit i) form the error syndrome, with error states having at least one non-trivial
syndrome. In order to diagnose potential errors, the stabilizers Si are measured by coupling them
to n− 1 ancilla qubits. Phase-flip errors Zi are detected, unless they happen on all qubits, which
would be indistinguishable from a logical phase-flip ZL = ⊗n−1

i=0 Zi. Stabilizer measurements on
real hardware are noisy as well and thus need to be repeated periodically. Analysing the discrete
difference in time between successive measurement rounds results in another repetition code in the
time domain, which yields a (1+1)-dimensional space-time syndrome volume. The code-capacity
critical error threshold, below which successful QEC is feasible, is pc = 0.5, when the only error
source are data qubit errors. The phenomenological noise threshold, where errors are injected
with a rate p per round on both ancilla and data qubits is pc ≈ 0.11 [59]. This is identical to
the threshold of the toric code with perfect measurements that exactly maps onto the repetition
code with phenomenological noise, essentially trading one spatial dimension for the time dimension
introduced by repeating stabilizer measurements in time.

1.1 Microscopic circuit noise
In contrast to the phenomenological noise models, which ignore the physical reality of the circuit the
QEC code is running on, in this work we analyze a multi-parameter circuit level noise model that
treats every component of the circuit as faulty, as illustrated in Fig. 1(a1). Here, every operation is
followed by a depolarizing noise channel (grey boxes in Fig. 1(a1)). For single-qubit operations, we
inject Pi (Pi ∈ X,Y, Z) with probability λ/3, where λ can represent state preparation (psp), idling
(pid), single-qubit gates (p1) and measurements (pm) [44, 60]. Likewise, after a CNOT we inject
a non-trivial one- and two-qubit Pauli operator Pi ⊗ Pj with probability p2/15. Errors propagate
according to the rules described in Fig. 1(a2). For the special case psp = pid = p1 = pm = p2 = λ
the threshold was found to lie at λ ≈ 0.033 for maximum likelihood decoding [61].

1.2 Effective noise processes
Any microscopic circuit-level error configuration of the multi-parameter noise model will lead to
one of three effective error processes or combinations thereof, called error chains E, with associated
error probabilities: (i) a single data qubit phase flip error with probability p, (ii) a measurement
error with probability q, and (iii) a correlated error flipping a data-qubit and simultaneously one of
the adjacent measurement outcomes with probability r (examples shown in Fig. 1(b1)). Through
propagation of Pauli error generators and factorizing the effective error channel(s) we can express
an arbitrary Pauli circuit noise model in terms of the three effective error rates p, q and r (see
Appendix A for details):

p = 1
2
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)(
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]
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)2(
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3

)(
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3

)]
,

r = 8
15p2.

(1)

Let us emphasize that this correspondence is exact: given an arbitrary set of circuit noise param-
eters, the above relationship expresses this set of noise parameters in terms of p, q and r exactly
to all orders. We gather the error events from the microscopic processes (Fig. 1(b1)) in the error
graph of Fig. 1(b2): here vertical, horizontal and L-shaped lines indicate positions where a data-
qubit (i), a measurement (ii) or a correlated error (iii) event has occurred, while colored semicircles
indicate the stabilizers triggered by these, respectively. The error graph is used to construct the
types of interactions appearing in the classical statistical mechanics Hamiltonian (Fig. 1(c1)) and
to construct the syndrome volume as input for the MWPM decoder.
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From the error graph, we can visualize the error processes by introducing the lattice in Fig. 1(c1)
where vertical links represent data qubits and horizontal links are measurement steps. The three
error processes (i)-(iii) define the fundamental errors events e1, e2, e3 shown in Fig. 1(c1):

1. the error e1 is generated by a data qubit error (i) or a combination of a measurement error
(ii) and a correlated error (iii) with probability

Pr(e1) = p(1− q)(1− r) + (1− p)qr; (2)

2. the error e2 is generated by a measurement error (ii) or a combination of a data qubit error
(i) and a correlated error (iii) with probability

Pr(e2) = q(1− p)(1− r) + rp(1− q); (3)

3. the error e3 is generated by a correlated error (iii) or a combination of a data qubit error (i)
and a measurement error (ii) with probability

Pr(e3) = r(1− p)(1− q) + pq(1− r). (4)

These fundamental errors form error chains E that can be parametrized by introducing binary
variables h`, v` ∈ {±1} for each link ` of the lattice. h` (v`) are set to −1 if the horizontal (vertical)
link ` belongs to E.

2 Statistical mechanics model
Mapping an error model into a statistical mechanics Hamiltonian allows us to compute the prob-
ability Pr(Ē) of the class Ē formed of all the errors that differ from a reference (candidate) error
chain E by a so-called space-time equivalence [16, 23]: A space-time equivalence σ̂ (simply called
equivalence in the following) is a trivial sequence of errors not detected by the stabilizers and thus
producing the same space-time syndrome. For the phase flip code, equivalences are given by the
action of a first phase flip on a qubit Di at a measurement step t, followed by two measurement
errors on the ancilla qubits of the stabilizers Si adjacent to Di and a second phase flip error on
Di before the measurement step t + 2 (see (iv) in Fig. 1(b1)). We associate a classical Ising spin
σ to each equivalence (e.g. σ0 in Fig. 1(c1)) such that a spin configuration with σ = −1 effectively
describes the error E′ = Eσ̂ that differs from E by the equivalence σ̂. Thus, once we fix E,
sampling over all possible spin configurations is equivalent to sampling over all possible errors E′
in the class Ē, and the probability of the class Ē is Pr(Ē) =

∑
{σ̂} Pr(Eσ̂). The limiting behavior

of the complementary probabilities Pr(Ē) and Pr(EZL) with increasing system size allows us to
distinguish two regimes: below threshold, either of the probabilities converges to unity and hence
applying a correction from the same error class will undo the error with probability approaching
unity, above threshold all probabilities remain asymptotically finite, i.e. there is no decoding choice
that removes the error with high probability [21].

Given E which is described by h` ∈ {±1} and v` ∈ {±1} and the set of equivalences {σ}, the
probability of the error E′ can be written as Pr(E′) = exp[−βHE(σ)] where

HE(σ) = −
∑
`l`′

J1h`σ`σ`′ −
∑
`↔`′

J2v`σ`σ`′ −
∑
`↖↘`′

J3h`v`σ`σ`′ (5)

is an Ising Hamiltonian with correlated quenched disorder. The couplings J1, J2, J3 and the inverse
temperature β are fixed from the error model describing E by the so-called Nishimori conditions
(see Eq.(14) in Appendix B). Ferromagnetic or antiferromagnetic interactions are given by the
signs of v` and h` fixed by the error E. In the first sum of the r.h.s. of Eq. (5), σ` and σ`′ are
the spins horizontally adjacent to the link ` (e.g. spins σ1 and σ2 in Fig. 1(c1)); in the second
sum, σ` and σ`′ are the spins vertically adjacent to the link ` (e.g. spins σ3 and σ4 in Fig. 1(c1));
in the third sum, σ` and σ`′ are the two spins adjacent to the two arms of the L-shaped error e3
(e.g. spins σ5 and σ6 in Fig. 1(c1)). A similar Hamiltonian has been analyzed for the surface code
with spatially correlated phenomenological noise [23], whereas here Hamiltonian (5) arises from
multi-parameter circuit noise.
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3 Numerical results
3.1 Monte Carlo simulations
Mapping the QEC code to Eq. (5) allows us to access the critical thresholds of the code from
thermodynamic properties of HE(σ) [16]. The error threshold separating the correctable from
non-correctable parameter regime of the code corresponds to the phase transition between ordered
and disordered phases of HE(σ). We determine this transition from Monte Carlo (MC) simulations
and a scaling analysis of the two-body spin correlation length for various disorder strengths (see
Appendix C for details). To this end, we transform the lattice in Fig. 1(c1) into the triangular
one of Fig. 1(c2) where classical spins (white circles) reside on vertices and couplings J1, J2, J3 are
represented by vertical (blue), horizontal (green) and diagonal (red) links, respectively.

Figure 2 shows the resulting phase diagram for (I) p = q = 2r, (II) p = q = r, (III) p = q = r/2,
and for the uncorrelated case (IV) p = q and r = 0 (this reduces to the random-bond Ising model on
a square lattice). We find that as the correlated error strength r increases, the thresholds decrease
to pc(I) = 0.0925(25), pc(II) = 0.0725(25), pc(III) = 0.0475(25) from the uncorrelated threshold
pc(IV) = 0.110(5). Near the Nishimori lines, longer MC runs are required to locate pc and Tc
accurately. The error in pc is determined within the present MC statistics (see Appendix C).

3.2 Minimum weight matching decoder
The thresholds extracted via MWPM provide lower bounds to the thresholds obtained through the
statistical mechanics mapping since they correspond to a decoding decision that is not necessarily
optimal: MWPM looks for the likeliest errors given a syndrome, which in the statistical mechanics
mapping corresponds to minimizing the energy as opposed to the free energy [16]. MWPM therefore
disregards the degeneracy of errors, because the likeliest error need not necessarily be in the
most likely class of equivalent errors. A discrepancy between MWPM and optimal (maximum-
likelihood) decoding is known to exist already for phenomenological noise [62]. In order to make a
fair comparison, we optimize the weight metric going into the MWPM algorithm, which uses the
information available about the syndrome graph. A detailed derivation of the error weight metric
used for decoding and information on the general MWPM strategy are provided in Appendix D.
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3.3 Discussion
Figure 3 shows the thresholds from MC simulations (blue points, solid line) and from MWPM
decoding (red points, dotted line). The region where MWPM successfully decodes lies within
error bars inside the fundamental region of correctability determined with the statistical mechanics
mapping. This demonstrates a finite interval between MWPM and a higher fundamental threshold
that could be approached or achieved by improving the decoding strategy. To connect the phase
diagram to experimental situations, let us discuss the relative strength of r and its meaning. First,
p and q both are typically dominated by similar error processes that for many qubit platforms
are of comparable error rates, hence we set p = q for simplicity, and additionally, we dial up the
strength of r. The known case r = 0 reduces to the phenomenological case without correlated
errors, which would correspond to perfect two-qubit gates (p2 = 0). Increasing r to r = p/2 = q/2
corresponds to p2 = 5p1 + O(p2

1), which is roughly compatible with the two-qubit gate being an
order of magnitude worse than single-qubit operations (error rate or infidelity) as observed in many
experimental realizations [36, 40, 55, 63]. Considering r = p = q corresponds to p2 being dominant
and all other error sources negligible (psp = pid = p1 = pm = 0). The case r = 2p = 2q goes beyond
the depolarizing noise model that underlies Eq. (1): not only is the two-qubit gate the only error
source, it furthermore specifically produces errors leading to the r type instead of p and q, which
would be described by an asymmetric depolarizing noise channel biased towards r. Finally, pure
r errors (p = q = 0) correspond to a situation where syndrome information is perfectly trustable
if interpreted correctly, akin to a repetition code with perfect measurements (with a threshold
approaching 0.5 asymptotically). We thus see that the most experimentally relevant region r 6=
p ≈ q is where we also find a clear separation between MWPM and the fundamental threshold.
The separation seems to become narrower for larger contributions of r, which is compatible with
the expectation in the extreme case of only r errors with an asymptotic threshold of 0.5. From
a practical operational viewpoint, the estimated thresholds for ideal decoding and MWPM for
p = q = 2r correspond to single-qubit errors p1 ≈ 0.02 (ideal) vs. 0.017 (MWPM) and the two-
qubit error rate p2 ≈ 0.087 (ideal) vs. 0.074 (MWPM). For p = q = r the threshold is p2 ≈ 0.14
(ideal) vs. 0.12 (MWPM).

Interestingly, in a recent experimental realization of the phase-flip code [55] circuit errors are
reported to be well described by Pauli errors. Casting the experimentally obtained error rates into
Eq. (1), we find that they correspond to effective error rates p = 0.032, q = 0.0285 and r = 0.0035,
which is in excellent agreement with the observation that this experiment is thoroughly in the
error-suppression regime.
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4 Outlook
The techniques presented in this work can be extended to more complex complete QEC codes,
including surface and color codes, and concatenated codes. We anticipate that as the code circuitry
becomes more complex, it will be necessary to include more types of effective noise processes, which
in turn will give rise to new statistical mechanics models with even richer interaction and disorder
properties. It will also be interesting to extend the mapping technique to non-Clifford dynamics,
and to temporally or spatially correlated circuit-level noise, to study the QEC potential of an even
broader class of realistic quantum processors.
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A Effective error model from circuit level noise

. . .
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Figure 4: Cutout of one ancilla and one data qubit of the QEC circuit. All noise contributions of the circuit-level
noise model (see Fig. 1(a) of the main text) can be merged into the three channels P, Q and R. The effective
error rates are given in Eq. (9).

Circuit-level noise in general, by definition, introduces noise channels at all locations inside the
circuit. However for the given QEC code, it is possible to rewrite the noise model by exploiting the
fact that many errors injected at different locations effectively lead to the same error and are thus
equivalent, which allows us to arrive at a much simpler noise model (while keeping the mapping
exact). Let us establish these equivalences as follows: on a data qubit, observe that X-errors
do not affect the syndrome, hence for the purposes of decoding X ∼ 1 and thus also Y ∼ Z.
On ancilla qubits, the situation is similar, except that the intermediate rotations RY (±π/2) flip
the relevant error: at initialization and read-out, only X-errors are relevant, Z does neither alter
the initialization state nor the readout in the computational basis. Between the rotation gates
RY (±π/2), the roles are reversed and only Z is relevant. This immediately lets us move all single-
qubit channels to one side, since all noise channels commute (Pauli channels commute) and the Z-
errors commute past the control of the CNOT. Similarly, the data qubit single noise channels can be
collected into four consecutive single qubit noise channels. Turning to the two-qubit error channels,
let us observe that by the equivalence of errors there are four possible distinct errors arising from
the two-qubit depolarizing channel: 11,1Z, Z1 and ZZ (omitting the tensor product symbol).
There is a single new phenomenon encoded here: looking at the earlier CNOT noise channel,
observe that ZZ is equivalent to a simple data qubit error that would have preceded the CNOT
and 1Z (data-ancilla) is equivalent to a simple measurement error, Z1 generates a new syndrome
phenomenon, which we call an r-type error. The effect of the second two-qubit noise channel is
the same, just the roles of the terms being permuted. Assuming a depolarizing probability p2 of
the CNOT gate, defining the operators P = 1⊗Z, Q = X ⊗ 1 and R = X ⊗Z = P ·Q and using
hats for superoperator notation M̂(ρ) := MρM† we thus have

N2qubit =
(

1− 12p2

15

)
1̂+ 4p2

15

(
P̂ + Q̂+ R̂

)
(6)
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This channel is a mixture of three error events, which we would like to factorize into independent
channels. Remarkably, we can make the ansatz of a product of three channels and solve for their
error rates.

(N2qubit)2 =
[
(1− λp)1̂+ λpP̂

]
·
[
(1− λq)1̂+ λqQ̂

]
·
[
(1− λr)1̂+ λrR̂

]
(7)

Note that the square means applying the channel twice, which comes from the fact that we have
two two-qubit noise channels acting subsequently, both of the form (6). By symmetry of Eq. (6),
the three rates must be equal, they turn out to be λr = λp = λq = 8p2/15. For the r-type
error we are done, but for the effective single-qubit channels P and Q, it remains to incorporate
the four contributions from the single-qubit error channels. This is straightforward in the Pauli-
transfer-matrix (PTM) representation [64], where we characterize a channel E by the matrix Rij =
tr(PiE(Pj))/d with i ∈ {0, 1, 2, 3}. The strength of this representation is that here the action of
a sequence of channels is simply given by matrix multiplication of their PTMs. The PTM of a
bit-flip channel is

Ê = (1− γ)1̂+ γX̂ ∼= RE =


1 0 0 0
0 1 0 0
0 0 1− 2γ 0
0 0 0 1− 2γ

 (8)

and furthermore it is evident that composing bit-flip channels results in a new bit-flip channel, such
that we can read off the error rate from computing one of the non-trivial entries on the diagonal.
This results in P = (1− p)1̂+ pP̂ , Q = (1− q)1̂+ qQ̂ and R = (1− r)1̂+ rR̂ with

p = 1
2

[
1−

(
1− 16p2

15

)(
1− 4pid

3

)4
]

q = 1
2

[
1−

(
1− 16p2

15

)(
1− 4p1

3

)2(
1− 4psp

3

)(
1− 4pm

3

)]

r = 8
15p2.

(9)

These are the three channels depicted in Fig. 4. Let us comment on the structure of these
expressions: we recover the standard circuit-level noise by setting p2 = pid = pm = p1 = psp = λ.
In that case, in leading order in λ we recover r/p = 1/6, which can be understood also by simply
counting the number of locations weighted by their error probability. While distinguishing between
different error rates of different components in the circuit is straightforward, the factorization of the
two-qubit noise channel into independent channels crucially relied on the symmetry between the
different Pi ⊗ Pj terms. This suggests that biasing a particular two-qubit noise term would make
the prefactor in Eq. (6) non-symmetric and thus hinder the factorization of the channel. As a side
note, we remark on a slightly non-intuitive feature in the conventional definition of the depolarizing
channel: if we define it (as we do) as a random application of Paulis, complete depolarization
(i.e. deterministically receiving the completely mixed state) corresponds to λ = 3/4 (single qubit
depolarizing channel) or λ = 15/16 (two-qubit depolarizing channel), which shows that no term in
the product inside Eq. (9) becomes negative. Additionally, some works in the literature choose to
not use a depolarizing noise for every location but rather put a bit-flip channel at the initialization
and measurement locations. The two differ by a rescaling-factor of 2/3, since only two of the three
Pauli errors lead to errors at initialization and readout (e.g. in the computational basis a Z acts
trivially etc.).

B Derivation of the correlated disordered interacting classical spin model
The technique of the statistical mechanical mapping is used to construct a classical statistical
Hamiltonian with quenched disorder for describing the error model of a quantum code. The map-
ping relies on the identification of the partition function of the Hamiltonian with the probability
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Pr(Ē) of the class Ē = {E′} of errors E′ that are equivalent up to the action of space-time equiva-
lences to a reference error E. Several ways have been introduced for deriving this mapping [16, 23].
Here we will follow mainly the approach of Ref. [23].

Any error E of the repetition code is composed of the fundamental errors e1, e2, e3 introduced
in the main text that in turn are generated by the three error processes (i) single-qubit phase
flip error on data qubits with probability p, (ii) measurement error with probability q, and (iii)
single-qubit phase flip errors happening on the target qubit between two adjacent CNOT gates
that trigger a correlated occurrence of a measurement error on one of the neighboring ancilla qubits
with probability r.

The probabilities of the errors e1, e2, e3 are easily calculated and are given by

π0 ≡ Pr(e0) = (1− p)(1− q)(1− r) + pqr,

π1 ≡ Pr(e1) = p(1− q)(1− r) + rq(1− p),
π2 ≡ Pr(e2) = q(1− p)(1− r) + rp(1− q),
π3 ≡ Pr(e3) = pq(1− r) + r(1− p)(1− q).

(10)

where, for completeness, we added the probability of the trivial error e0 that corresponds to the
absence or the simultaneous presence of all of the three error processes.

In a section of the lattice in Fig. 1(c1) of the main text made only of a horizontal and a vertical
link (shown also in Fig. 5), the probability of a generic event E composed by the errors ej with
j = 0, 1, 2, 3 can be written as

Pr(E) = π
f0(v,h)
0 π

f1(v,h)
1 π

f2(v,h)
2 π

f3(v,h)
3 (11)

where v, h ∈ {±1} are binary variables that take the negative value −1 if the horizontal (vertical)
link belongs to the error E. The Boolean functions fj ∈ {0, 1} signal if ej belongs to the error
E and they satisfy f0(v = +1, h = +1) = f1(v = −1, h = +1) = f2(v = +1, h = −1) = f3(v =
−1, h = −1) = 1, otherwise they are zero. From this, they can be written as

f0(v, h) = 1
4(1 + h+ v + v h), f1(v, h) = 1

4(1 + h− v − v h),

f2(v, h) = 1
4(1− h+ v − v h), f3(v, h) = 1

4(1− h− v + v h).
(12)

By substituting the Eqs. (12) in Eq. (11), the probability Pr(E) can be written as

Pr(E) = exp [−βHE ] , (13)

where HE = −J0 − J1h − J2v − J3v h is a noise Hamiltonian [23] and the couplings J0, J1, J2, J3
satisfy

βJ0 = 1
4 log (π0π1π2π3) , βJ1 = 1

4 log π0π1

π2π3
,

βJ2 = 1
4 log π0π2

π1π3
, βJ3 = 1

4 log π0π3

π1π2
.

(14)

These are the Nishimori conditions connecting the Hamiltonian HE to the error model of Eq. (10).
The Hamiltonian HE can be extended to the whole lattice by introducing binary variables h`, v` ∈
{±1} associated to each link ` of the lattice. The variables h` (v`) take the negative value −1 if
the horizontal (vertical) link ` belongs to the error E. The Hamiltonian will then take the form

HE = −
∑
`

(J0 + J1h` + J2v` + J3v` h`) . (15)

The syndrome associated with the error E can also be generated by other error chains E′ = Eσ̂
that differ from E by the action of the space-time equivalences σ̂ that are trivial sequences of
data-qubit errors and measurement errors that are not detected by the stabilizers. Figure 6 shows
the lattice with two highlighted equivalences: σ̂0 and σ̂1 belonging to the bulk and the boundary
of the lattice, respectively.
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e0

f0(1,1) = 1

e1

f1(−1,1) = 1

e2

f2(1,−1) = 1

e3

f3(−1,−1) = 1

Figure 5: Fundamental errors e0, e1, e2, e3 parametrized by two binary variables v, h ∈ {−1,+1} for the
vertical and horizontal links and four Boolean functions fj(v, h) ∈ {0, 1}. The trivial error e0 corresponds to
(v, h) = (1, 1) and the function f0 satisfies f0(1, 1) = 1. The error e1 corresponds to (v, h) = (−1, 1) and the
function f1 satisfies f1(−1, 1) = 1. The error e2 corresponds to (v, h) = (1,−1) and the function f2 satisfies
f2(1,−1) = 1. The error e3 corresponds to (v, h) = (−1,−1) and the function f3 satisfies f3(−1,−1) = 1.
On all the other cases not shown in the figure, the functions fj(v, h) are zero.

σ̂0

σ̂1

Figure 6: The equivalence σ̂0 in the bulk and σ̂1 at the boundary of the space-time lattice. The equivalence
σ̂0 is given by the combined action of two measurement errors on the ancilla qubits (horizontal blue links)
preceded and followed by phase flip errors on the data qubit (vertical green links) adjacent to the ancilla qubits.
The equivalence σ̂1 at the boundary is given by the combined action of one measurement error preceded and
followed by phase flip errors on the data qubit.

–1+1
+1

+1
+1
+1

+1

+1

+1
+ =

σ̂E E ′

Figure 7: Action of the equivalence σ̂ on an error E = e3 (red L-shaped link). The equivalence σ̂ (central panel)
is given by two data-qubit errors (vertical green links) and two measurement errors (horizontal blue links). On
the lattice the action of σ is represented by a closed loop and it can be parametrized by a configuration of
classical Ising spins {σ = ±1} as explained in the text.
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We can associate classical Ising spins {σ} to each of the equivalences such that if a spin σ in
this configuration is −1, we are effectively considering the error E′ = Eσ̂ that differs from the
reference error E by the equivalence σ̂ (for an example of an equivalence applied to an error E see
Fig. 7). These Ising spins {σ} can be associated to the plaquettes of the lattice in Fig. 1(c1) of
the main text (see also Fig. 7). The data-qubit errors (green vertical links in Fig. 7) entering the
equivalence σ̂ are given by the vertical links ` of the lattice for which the product σ`σ`′ = −1 where
the equivalences σ`, σ`′ belong to the left and the right plaquettes w.r.t ` (Fig. 8(a)). Similarly,
the measurement errors (blue horizontal links in Fig. 7) entering the equivalence σ̂ are associated
to the horizontal links ` of the lattice for which the product σ`σ`′ = −1 where the equivalences
σ`, σ`′ belong to the top and the bottom plaquettes w.r.t. ` (Fig. 8(b)).

The probability Pr(E′) of the error E′ can also be written as Pr(E′) = exp [−βHE′ ] where
in the noise Hamiltonian HE′ = −

∑
` (J0 + J1h

′
` + J2v

′
` + J3v

′
` h
′
`) the binary parameters h′` and

v′` defining the error E′ are fixed by the parameters h` and v` of E and by the equivalence σ as
follows:

• for a vertical link `, v′` = v`σ`σ`′ where the equivalences σ`, σ`′ are on the left and on the
right of ` (Fig. 8(a));

• for a horizontal link `, h′` is given by h′` = h`σ`σ`′ where the equivalences σ` and σ`′ are on
top and at the bottom of ` (Fig. 8(b)).

Substituting the variables h′` and v
′
` in the HamiltonianHE′ allows us to compute the probability

Pr(Ē) of the class Ē = {E′} composed by errors E′ that are equivalent up to the action of
equivalences to a reference error E as

Pr(Ē) =
∑
{σ̂}

Pr(Eσ̂) =
∑
{σ}

exp [−βHE(σ)] , (16)

where
HE(σ) = −

∑
`l`′

J1h`σ`σ`′ −
∑
`↔`′

J2v`σ`σ`′ −
∑
`↖↘`′

J3h`v`σ`σ`′ (17)

is the Ising Hamiltonian with correlated disorder of the main text and we have neglected the
unimportant additive constant J0. The couplings J1, J2, J3 and the inverse temperature β are
fixed from the error model describing E by the Nishimori conditions previously obtained (see
Eq. (14)). The type of interactions (ferromagnetic or antiferromagnetic) is given by the signs of
v` and h` that are fixed by the reference error E. In the first sum of the r.h.s. of Eq. (17), σ` and
σ`′ are the spins horizontally adjacent to the link ` (e.g. spins σ1 and σ2 in Fig. 1(c1) of the main
text); in the second sum, σ` and σ`′ are the spins vertically adjacent to the link ` (e.g. spins σ3
and σ4 in Fig. 1(c1) of the main text); in the third sum, σ` and σ`′ are the two spins adjacent
to the two arms of the L-shaped error e3 (e.g. spins σ5 and σ6 in Fig. 1(c1) of the main text).
Equation (16) shows that the probability Pr(Ē) of the class Ē can be written as the partition
function ZE =

∑
{σ} exp [−βHE(σ)] of a statistical mechanical Hamiltonian HE(σ). The limiting

behavior of the complementary probabilities Pr(Ē) and Pr(EZL) with increasing system size allows
us to distinguish two regimes: below threshold, either of the probabilities converges to unity and
applying a correction from the same error class will undo the error with probability approaching
unity, above threshold all probabilities remain asymptotically finite [21].

C Monte-Carlo simulation study of the phase diagram
In this section we present the details on the numerical simulations of the Hamiltonian HE(σ).
In particular, we describe how we choose the couplings J1, J2, J3 of HE(σ) and the methods for
obtaining the phase transition points.

C.1 Couplings of the random bond-Ising model
The Hamiltonian of Eq. (17) that we analyse corresponds to a random-bond Ising model on a
triangular lattice with couplings J1, J2 and J3 (see Fig. 1(c2) of the main text). Relative ratio
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Figure 8: Parametrization of the equivalences and the error E′. For the equivalences: Given an Ising spin
configuration {σ} where each spin is associated to the plaquette of the lattice (see Fig. 7 central panel), (a) a
data-qubit error occurring on the vertical link ` enters the equivalence σ̂ if the product σ`σ`′ = −1 where the
equivalences σ`, σ`′ are on the left and on the right of `. (b) Measurement errors occurring on the horizontal
link enters the equivalence σ̂ if the product σ`σ`′ = −1 where the equivalences σ`, σ`′ are at the top and the
bottom of `. For the error E′: given a reference error E described by the binary variables v` and h` and the
equivalences σ̂, the error E′ equivalent to E up to σ̂ is parametrized by v′` and h′` with (a) v′` = v`σ`σ`′ where
the equivalences σ`, σ`′ are on the left and on the right of ` and (b) for a horizontal link `, h′` is given by
h′` = h`σ`σ`′ where the equivalences σ` and σ`′ are on top and at the bottom of `.

Errors Couplings
zp zq zr v` h` J1h` J2v` J3v`h`
+1 +1 +1 +1 +1 F F F
+1 +1 −1 −1 −1 AF AF F
+1 −1 +1 +1 −1 AF F AF
+1 −1 −1 −1 +1 F AF AF
−1 +1 +1 −1 +1 F AF AF
−1 +1 −1 +1 −1 AF F AF
−1 −1 +1 −1 −1 AF AF F
−1 −1 −1 +1 +1 F F F

Table 1: The binary variables zp, zq, zr, drawn randomly with probabilities p, q, r, represent the fundamental
errors and fix the sign of the variables v`, h` and thus of the couplings (ferromagnetic (F) or antiferromagnetic
(AF)) of the noise Hamiltonian of the random bond Ising model Eq. (17).

of these couplings are fixed by the Nishimori conditions (see Eq. (14)) while the type of interac-
tions (ferromagnetic or antiferromagnetic) is assigned by drawing three random binary variables
zp, zq, zr ∈ {±1} with probability p, q, r for each link of the triangular lattice. These variables take
the negative sign if one of fundamental processes (data-qubit error, measurement error, correlated
error) is present in the reference error E. Therefore, they fix the signs of the variables v` and h`
and thus of the couplings entering the Hamiltonian of Eq. (17) according to Table 1.

C.2 Finite-size scaling and transition points
Determining the code threshold requires in general the computation of the scaling with the system
size of the free energy cost of a domain wall as reported in Ref. [16]. However since in [23] the
threshold of the quantum code has been proven to correspond to the phase transition point of the
statistical mechanics model, in this work we locate the code threshold by looking at the critical
point of the random Ising Hamiltonian. In the case of zero disorder the system is completely
magnetized and a convenient order parameter is given by the total magnetization: M =

∑
~x σ~x

where ~x denotes a site in the 2D lattice of linear size L (here we consider lattices with L = 16, 24
and 32). Instead of looking at the behavior of M for different system sizes, we define the Fourier
transform of the spin correlation function 〈σ0σ~x〉 as

ĜL(~k) =
∑
~x

〈σ0σ~x〉L ei
~k·~x (18)
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and we extract the correlation length ξL in the unit of lattice spacing from

ξL = 1
2 sin(qmin/2)

√
〈ĜL(0)〉av

〈ĜL(qmin)〉av
− 1 (19)

where qmin = (2π/L, 0). The brackets 〈· · · 〉av denote averages over the quenched disorder dis-
tribution (in addition to the thermal average). Near the critical temperature Tc, the correlation
length ξL is expected to obey a scaling relation [65] of the form ξL/L ∼ f(L1/ν(T − Tc)), where
f is an unknown scaling function and ν is the critical exponent related to the correlation length.
Therefore, at the critical temperature Tc, the quantity ξL/L becomes independent of the temper-
ature and Tc can be found by locating the temperature at which the lines representing ξL/L for
different L intersect. Some examples of the comparisons of ξL/L are given in Fig. 9 for the case
p = q = 2r. In each figures, the vertical line indicates the temperature at which ξL/L cross for
three different lattice sizes L. The figure without the vertical line shows the case in which there is
no phase transition.

For computing the spin correlation function and thus the correlation length we use the standard
Metropolis algorithm [66] interspersed with parallel tempering between adjacent temperatures to
allow efficient sampling of the low temperature phase [67, 68]. Moreover, for a given quenched
disorder distribution, the spin configurations are swapped after Nmet = 800 Metropolis steps
following the parallel tempering algorithm (except the data point for p = q, r = 0 with p = 0.11
(open blue circle in Fig. 2 of the main text) where Nmet = 8000 Metropolis steps are performed).
Metropolis steps/spin-swap combination are repeated 10000 times. The spin correlation function
is measured during the Metropolis steps. Averages are taken over the Metropolis steps and then
these averages serve as one of the jack-knife bins used to determine the statistical error. We use
250 different quenched disorder samples to compute the average of the correlation length over the
disorder distribution. Table 2 lists the details of the numerics: for every case shown in Fig. 2 of
the main text, when the probability p is fixed to the values reported in the second column of the
table, we found the critical temperatures reported in the third column when the simulations are
carried with a number of metropolis step Nmet.

For assessing whether the random bond Ising model has thermalized we perform additional
checks near the quenched probabilities at which the thermal transition crosses the Nishimori lines
(Fig. 2 of the main text). In Fig. 10, we compare the effects of increasing the Metropolis steps
between parallel tempering spin-swap steps. Comparing the two top panels of Fig. 10, we observe
that there is no noticeable difference in the crossing of the lines ξL/L when the number of Metropolis
steps is increased from 800 (panel (a)) to 8000 (panel (b)) for the probability p = q = r = 0.070.
On the other hand, the comparison of the two bottom panels in Fig. 10 (p = q = r = 0.075)
shows that the crossing of ξL/L for the three different lattice sizes, which seems to suggest a phase
transition in panel (c) for 800 Metropolis steps, almost disappears for 8000 Metropolis steps (panel
(d)) and the lines of ξL/L overlap for all the temperatures T . 1.35. Therefore we conclude that
there is no transition at the quenched disorder probability p = q = r = 0.075 and the threshold
probability should be larger than 0.070 but smaller than 0.075.

In Table 3, we list the largest p’s at which MC simulations (run for Nmet = 8000) show a phase
transition and the smallest p’s at which MC simulations do not show a phase transition for the
cases (I)-(IV). Figure 3 in the main text is produced with these data. The central value of these
two p’s is taken as the estimated threshold probability and a half of the difference is given as the
error estimate. A more precise determination of the threshold probability will require even longer
Metropolis updates between parallel tempering steps.

D Minimum-weight-perfect-matching decoding
To motivate this decoding strategy, observe that the probability of some error pattern E consisting
of ni errors of the i−th type, where i = p, q or r) is proportional to

p(E) ∝
(

p

1− p

)np(E)(
q

1− q

)nq(E)(
r

1− r

)nr(E)
. (20)
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case p Tc Nmet
(I) p = q = 2r 0.001 3.86(2) 800

0.020 3.72(2) 800
0.040 3.38(2) 800
0.060 2.93(2) 800
0.080 2.00(2) 800
0.090 1.43(2) 800

(II) p = q = r 0.000 3.64(2) 800
0.020 3.21(2) 800
0.040 2.74(2) 800
0.060 2.19(2) 800
0.070 1.67(2) 800

(III) p = q = r/2 0.001 3.38(2) 800
0.020 2.75(2) 800
0.030 2.44(2) 800
0.040 2.07(2) 800
0.045 1.80(2) 800

(IV) p = q, r = 0 0.000 2.266(2) 800
0.060 1.760(5) 800
0.080 1.565(5) 800
0.100 1.32(1) 800
0.105 1.16(1) 800
0.110 0.93(5) 8000

Table 2: Critical temperatures Tc for the different cases (I)-(IV) of quenched disorder from the Monte Carlo
simulations. The columns report the case analyzed, the quenched disorder probability p, the corresponding
critical temperature Tc obtained by performing Nmet Metropolis steps.

2.1 2.4 2.7 3.0 3.3 3.6
0.0

0.5

1.0

1.5

2.0
16x16
24x24
32x32
3.38

1.5 1.8 2.1 2.4 2.7 3.0 3.3
0.0

0.5

1.0

1.5
16x16
24x24
32x32
2.93

1.2 1.4 1.6 1.8 2 2.2 2.4
temperature

0.0

0.3

0.6

0.9 16x16
24x24
32x32
2.00

0.6 0.9 1.2 1.5 1.8 2.1 2.4
temperature

0.0

0.2

0.4

0.6 16x16
24x24
32x32

(a) (b)

)d()c(
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p = q = 0.08, r = 0.04 p = q = 0.10, r = 0.05

ξ L
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Figure 9: Critical temperatures from finite size scaling. The critical temperatures are found by locating the points
where the lines representing the quantities ξL/L cross each other for different systems sizes L. Examples of the
occurrence of a phase transition are shown in (a) for p = q = 0.04, r = 0.02, in (b) for p = q = 0.06, r = 0.03,
in (c) for p = q = 0.08, r = 0.04. If it is not possible to identify a temperature where the lines with the
quantities ξL/L cross, the transition does not occur. This is shown in panel (d) for p = q = 0.10, r = 0.05.
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case largest p showing a
critical temperature

smallest p not showing a
critical temperature

(I) p = q = 2r 0.090 0.095
(II) p = q = r 0.070 0.075

(III) p = q = r/2 0.045 0.050
(IV) p = q, r = 0 0.110 0.115

Table 3: Lower and upper bounds of the probability p between which the system exhibits a critical temperature
for the cases (I)-(IV). The threshold probabilities and the associated errors shown in Fig. 3 of the main text for
the statistical mechanics model are estimated by the mean and the deviation of these bounds for p.
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Figure 10: Effect of increasing the Metropolis steps. The quantity ξL/L computed with (a) 800 Metropolis
steps and (b) 8000 Metropolis steps is shown for p = q = r = 0.07 before the Nishimori line is crossed.
In this case a transition is identified at a temperature Tc = 1.67. When instead p = q = r = 0.075 after
the Nishimori line is crossed, a transition at Tc = 1.35 seems to appear when ξL/L is computed with 800
Metropolis steps (panel (c)). However, when we compute ξL/L with 8000 Metropolis steps (d) the lines do not
cross any more and overlap for the temperature less than 1.35. This implies that a transition does not occur
when p = q = r = 0.075.
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Figure 11: (a) Example of an error graph generated by physical errors. Positions where qubit, measurement
and correlated data phase-flip and measurement errors can happen are represented by vertical, horizontal and
L-shaped edges, respectively. Colored links represent occured error events while colored semicircles represent
the ancilla qubits triggered by an error event. From this graph we derive syndrome volume which is the input
for the MWPM decoder. (b) Syndrome volume graph derived by the error graph in (a). The boxes labeled
with 1s represent defects, i.e. ancilla qubits where the measurement outcome differs from the previous round
of measurements. The colored diagonal red, vertical green and horizontal edges represent a possible matching
of the defects.

1

time
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Figure 12: Simplification in computing the distance of two defects (boxes labeled with 1s) in the triangular
lattice. Depending on the values of the weights wp, wq, wr the shortest path between any two vertices can
always be found by considering error patterns consisting of two types of errors only. If wr > wp +wq (pq case)
the shortest path is the regular Manhattan distance of the square lattice, counting the number of p and q edges
between the two defects (red path). If wr +wp < wq (pr case) the shortest path is composed by only p and r
edges (blue path). Similarly, if wr + wp > wq (qr case) the shortest path is composed by only q and r (green
path).
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Given some observed collection of stabilizer measurement outcomes (the syndrome), repairing that
syndrome amounts to finding a configuration of errors where every violated syndrome (a defect)
is the endpoint of one error string, an assignment known as a (perfect) matching in graph theory
(Fig. 11). Now Eq. (20) implies that finding the most likely among all these is equivalent to
finding an error configuration with the lowest weight wtot = − log(p(E)) = npwp + nqwq + nrwr,
hence minimum weight perfect matching. By creating a graph with all defects as vertices and
the weight between every pair of nodes given by the number of error locations times error type
weight (wp = − log p

1−p etc.) between the respective stabilizers, this is what is solved by the above
mentioned Blossom algorithm (implemented e.g. in [69]). As a side remark, we note that the QEC
code at hand does have a boundary, i.e. error strings extending to a boundary qubit only create a
single defect, which is not immediately amenable to the above but can be incorporated by creating
a copy of the matching graph with weights set to zero and then putting an edge between every
defect and its virtual partner with the corresponding weight of matching to the code boundary [70].
Due to the addition of r-type edges the calculation of weights going into the matching problem has
to be adapted as well. While in general we would have to compute the shortest path on a triangular
lattice with the three types of edges being weighted respectively, which can be done by a Dijkstra-
type algorithm, we can make a vast simplification by observing that the shortest path between
any two vertices in our setting can always be found by considering error patterns consisting of two
types of errors only. To see this, observe that any single edge in a certain path can be replaced by
the other two edges in the triangle, which are hence of the other two types, e.g. a particular r-edge
can be circumvented by moving across the neighboring p- and q-edge. Furthermore all vertices are
connected to at least one edge of each type and the weights are globally the same (up to the edge
type). Let us assume that wr < wp + wq (if this was not the case the metric would not change
compared to the case without r-edges). Now the two possible cases are that either wr+wp < wq or
wr +wp > wq. In the former case, we replace all q-moves by the same amount of r- and p- moves,
in the latter case we do the opposite and replace all p-moves by q- and r-moves, which shows that
given a path, we can always find a path of lower weight by eliminating one of the edge types.
In the borderline case wr + wp = wq both replacements are admissible, such that the statement
holds that we can eliminate one edge type (see Fig. 12). This shows that a minimum weight path
between any two vertices necessarily lies on one of the three sublattices and the path weight on a
sublattice is given by the Manhattan distance on the respective sublattice:

wt(s1, s2) = min


||s1 − s2||pq1
||s1 − s2||pr1
||s1 − s2||qr1

. (21)

Here the two superscript labels indicate the sublattice of the triangular lattice, that consists of
the two types of edges. In the pq case this is just the regular Manhattan distance, counting the
number of p and q edges between the two vertices at hand. In case of pr and qr this is the Manhattan
distance on a skewed square lattice, but by simply rotating the basis vectors we can still use the
Euclidean position vectors to compute the Manhattan distance on the respective sublattices. The
weight function assigning the weight between any two defects then simply takes the minimum over
the three weighted Manhattan distances. Having assigned the edge weights, we can then solve
the minimum weight matching problem, which amounts to finding the most likely collection of
errors explaining the observed syndrome in a trial run, from which we can therefore deduce the
recovery operation we should apply to the code (or in which way we should update the “Pauli
frame”). The figure of merit we are after is the logical error rate, the probability that the decoding
strategy fails. In order to cleanly decide in our simulation whether a logical error happened or
did not happen, we initialize a perfect codeword, we then simulate d subsequent QEC-cycles, each
consisting of injecting phase-flip errors with probability p on each data qubit followed by a noisy
syndrome extraction (the syndrome bit being flipped with probability q). We furthermore inject
the third error type needed, namely a correlated flip of the data-qubit accompanied by a flip of one
of the syndrome measurement outcomes adjacent to it (depending on the order of the two-qubit
gates this deterministically happens on the syndrome bit sitting either to the left or to the right
of the data qubit). This type of error is injected with probability r. In order to make sure that
we can declare the binary outcome of the trial run logical error/no logical error, we let the final
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measurement be perfect, i.e. in the final round the syndrome bits never flip (with q or r). The
final measurement being perfect ensures that matching up all defects will with certainty put the
data qubits back into a code state. The simulation results are shown in Fig. 13.
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Figure 13: The logical error rate obtained with the minimum weight perfect matching decoder on the triangular
syndrome lattice. Left column is a broad sweep, right column is a closeup around the transition point. We
plot the average logical error rate as a function of the input error rates p, q, and r. Shown are the three cases
p = q = r in a)+b), p = q = 2r in c)+d), p = q = r/2 in e)+f) and p = q, r = 0 in g)+h) . On the left
for the broader scan, we use 104 samples, data points in the right colum are averaged over 105 samples. In
each case, we observe a transition from error suppression to error enhancement with increasing error rate. This
transition is signified by the behavior of the logical error rate when increasing the code size (the distance d): for
small p, increasing the distance leads to a suppression of the logical error rate, whereas for error rates beyond
an inflection point increasing the code size instead leads to an increased logical error rate. We estimate the
threshold from the region where we can not distinguish the logical error rates within errorbars.
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