
07 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Luca Sciullo, Lorenzo Gigli, Angelo Trotta, Marco Di Felice (2020). WoT Store: Managing Resources and
Applications on the Web of Things. INTERNET OF THINGS, 9, 1-18 [10.1016/j.iot.2020.100164].

Published Version:

WoT Store: Managing Resources and Applications on the Web of Things

Published:
DOI: http://doi.org/10.1016/j.iot.2020.100164

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/801006 since: 2021-02-18

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.iot.2020.100164
https://hdl.handle.net/11585/801006

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Sciullo, L., et al. "WoT Store: Managing Resources and Applications on the Web of
Things." Internet of Things (Netherlands), vol. 9, 2020.

The final published version is available online at:
https://dx.doi.org/10.1016/j.iot.2020.100164

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1016/j.iot.2020.100164

WoT Store: Managing Resources and Applications on
the Web of Things

Luca Sciulloa, Lorenzo Giglia, Angelo Trottaa, Marco Di Felicea,1

aDepartment of Computer Science and Engineering, University of Bologna, Italy

Abstract

The chaotic growth of the Internet of Things (IoT) determined a fragmented land-
scape with a huge number of devices, technologies and platforms available on the
market, and the consequential issues of interoperability on many system deploy-
ments. The Web of Things (WoT) architecture recently proposed by the W3C
consortium constitutes a novel solution to enable interoperability across IoT plat-
forms and application domains. At the same time, in order to see an effective
improvement, a wide adoption of the W3C WoT solutions from the academic and
industrial communities is required; this translates into the need of well-defined
and complete support tools easing the deployment of W3C WoT applications. In
this paper, we meet such requirement by proposing the WoT Store, a novel plat-
form for managing and easing the deployment of Things and applications on the
W3C WoT. The WoT Store allows the dynamic discovery of the resources avail-
able in the environment, i.e. the Things, and to interact with each of them through
a dashboard, by visualizing their properties, executing commands or observing
the notifications produced. In addition, similar to popular app stores, the WoT
Store allows the search and execution of third-party WoT applications that inter-
act with the available Things again in a seamless way. We validate the operations
of our framework with two evaluation studies. First, through a small-case testbed,
we demonstrate the Thing discovery and the possibility to run WoT applications
that orchestrate the operations of multiple, heterogeneous Wireless Sensor Net-
works (WSNs). Second, through a mixed real/simulated large-scale crowdsensing
scenario, we demonstrate the scalability of the platform, and the possibility to
aggregate and visualize the data-streams produced by the WoT applications with
minimal efforts for the users.

1Corresponding author: marco.difelice3@unibo.it

Preprint submitted to Elsevier March 23, 2023

Keywords: Internet of Things (IoT), Web of Things (WoT), Interoperability,
Software platform, Resource management, Performance Evaluation.

1. Introduction

1.1. Context
Since the beginning, the Internet of Things (IoT) has been presented as a novel

networking paradigm consisting of a huge base of connected devices that are able
to produce and exchange data, and to enable new services thanks to the seamless
interaction among physical and virtual components [1][2]. At the same time, the
presence on the market of heterogeneous software platforms, network protocols
and Machine-to-Machine (M2M) technologies [3], as well as the creation of pro-
prietary silos often leaded by big vendors, have partially changed the vision of
the IoT as a global interconnected and self-organizing system. Indeed, the lack of
interoperability among heterogeneous platforms and devices has been indicated
as one of the main issues of the IoT [4], since it might introduce additional costs
for the system implementation, and additional complexity for the re-use of exist-
ing solutions on different contexts. From another perspective, the interoperability
can be considered a remunerative research challenge [5]: a recent report from
McKinsey quantifies in 40% the additional IoT value that can be unlocked when
achieving full interoperability among heterogeneous IoT systems [6]. Solutions
to support interoperability on IoT scenarios have been largely investigated by the
academic research as well as by European projects: we cite, among others, the
projects Arrowhead [7], BIG IoT [8] and Wise-IoT [9] that proposed reference
platforms to connect and deploy cross-domain IoT applications. Interoperability
can be supported at four different levels (device, network, semantic and cross-
domain), as extensively surveyed in [4]. Device and network solutions (e.g. the
6LoWPAN stack [10]) face the existing fragmentation by defining common ad-
dressing, routing and data-exchange rules. Vice versa, semantic solutions focus
on the definition of a common data model used by the IoT interacting components;
to this aim, several IoT-related ontologies have been proposed [11]. Cross-domain
solutions (e.g. [12]) represent the most general way of supporting interoperability
on the IoT: rather than focusing on protocols and data, they aim to define common
interfaces that should be implemented by the IoT components, in order to be dis-
coverable and queryable. A key contribution in this field is provided by the W3C
Web of Things (WoT) research group, which is converging on the definition of a
reference architecture to enable interoperability across IoT platforms and applica-
tion domains [13]. In the W3C perspective, a Thing can indicate both a virtual or

2

a physical device and each Thing is associated to a Thing Descriptor (TD), i.e. a
sequence of meta-data modeling the interaction patterns (properties, actions, and
events) as well as the security and access protocol information. Moreover, the TDs
are encoded in JSON-LD [14], i.e. knowledge about Things can be represented
in a machine-understandable way. Several architectural patterns (e.g. Thing-to-
Thing, Thing-to-Cloud, Thing-to-gateway etc) are defined in the W3C draft [13],
so that most of existing IoT scenarios can be easily adapted to a WoT deployment,
hence addressing the interoperability issues in a straightforward way.

1.2. Research questions
The success of the W3C WoT initiative strongly depends on its wide accep-

tance from the academic and industrial communities, as well as from the end-
users. At present, the existing WoT implementation frameworks (e.g. [15] [16])
provide several low-level functionalities for the Thing modeling and creation;
however, their usage requires a solid knowledge of the WoT standard and coding
skill, hence they are not easily accessible from the non technical personnel. The
literature on WoT is quite scarce, and mainly limited to proof-of-concept applica-
tions [17][18][19][20]. Hence, we register the need of service tools (the so-called
Software Ecosystem (SECO) [21]) that can facilitate the adoption of the W3C
WoT technology on existing and novel IoT scenarios. In addition, IoT/WoT de-
ployments are often characterized by dynamicity, e.g. the need of adding/remov-
ing new devices, of re-defining the devices’ behaviour (e.g. software updates), of
tuning system parameters, just to cite few examples. A straightforward research
challenge is how to support the IoT deployment reconfiguration seamlessly, i.e.
avoiding the manual intervention on the field. In this paper, we address both the
research questions (RQs) mentioned so far, i.e.: (RQ1) how to ease the discovery
and the management of WoT resources (e.g. Things), in both private and pub-
lic environments? (RQ2) how to support the dynamic reconfiguration of the WoT
scenario, e.g. the deployment of new WoT resources or the interconnection among
the existing ones, while minimizing the need of manual configuration (for system
administrators) and coding (for programmers)?

1.3. Contributions
Our solution to the RQs above is constituted by WoT Store, a novel plat-

form for managing and deploying resources on the W3C WoT. The WoT Store
is not an implementation of the W3C WoT (like [15]), rather a service platform
that can be installed on top of it, adding novel functionalities for the end users.

3

Indeed, the WoT Store allows the dynamic discovery and managing of the active
Things available on a public or private deployment; through the Web dashboard,
the users can search and list the Things in the scenario, monitor their properties
and events, and execute their commands, without any change to the IoT layer. In
addition, thanks again to the fact that the Thing interfaces are well defined and
non-ambiguous, the WoT Store allows the management of applications that can
make use of the available resources: in this sense, our platform recalls the op-
erations of popular software repositories used for the mobile applications. We
describe here the complete WoT Store platform, by extending the preliminary
works [22][23] in terms of components and evaluation results. More in details:

• We present the WoT Store main functionalities, architecture, implementa-
tion and use-cases. The framework is micro-services oriented, with three
main modules available, i.e: the Things Manager, the Application Manager
and the Data Manager. We illustrate the operative flow from the Thing dis-
covery and management, to the installation and execution of the applications
till the aggregation and visualization of the data produced.

• We validate the operations of the WoT Store in a real-world testbed com-
posed of three Wireless Sensor Networks (WSNs) mapped on different wire-
less access technologies (Wi-Fi, BLE and Zigbee). Specifically, the analysis
provides evidence of the dynamic discovery of Things/sensors and high-
lights the possibility to deploy WoT applications orchestrating the sensing
operations, regardless of the M2M technology used by each sensor.

• We test the scalability of the WoT Store on a mixed real/simulated large-
scale IoT application, i.e. a pedestrian crowdsensing system; each Thing
is associated to a simulated mobile smartphone, providing the sensing val-
ues and the positions over time on a urban scenario (the downtown area of
Bologna). We demonstrate the capability of the Data Manager to aggregate
and visualize the data-streams originated by the WoT applications in two
formats (time-series and geographic data).

The paper is structured as follows. Section 2 discusses the recent works on the
WoT and provides a brief review of the W3C WoT standard. Section 3 introduces
the WoT Store framework; the main components and the implementation are
described in Section 4 and 5, respectively. Section 6 presents the results of the
WoT Store on two evaluation studies (testbed and simulation). Conclusions and
future works are discussed in Section 7.

4

(a) (b)

Figure 1: The abstract architecture of a Web Thing is depicted in Figure 1(a); examples of WoT
deployments and pattern of interaction among Things are shown in Figure 1(b).

2. Related Work

The first works on the WoT are prior to the W3C initiative, and focused on
how to apply Web paradigms and protocols (e.g. REST, HTTP) on IoT scenarios
(e.g. [24][25]). We do not consider non W3C-compliant approaches in the paper,
since they are not aligned with the scope of this work; interested readers can refer
to [26] for a complete survey on generic non-W3C WoT frameworks.

2.1. W3C WoT Standard
The W3C WoT group started its activities on 2015 with the goal of defining a

reference set of standards enabling interoperability among different IoT systems
[13]. The core of the proposal is the definition of the Web Thing and of the Thing
Descriptor (TD). Generally speaking, a WoT Thing indicates any entity that can
be semantically represented. Using the W3C words: ”A Thing is an abstraction
of a physical or a virtual entity whose metadata and interfaces are described
by a WoT Thing Description” [13]. A Web Thing has four architectural aspects
of interest: the Interaction Affordances, the Security Configuration, the Protocol
Bindings, and its Behaviour, as depicted in Figure 1(a). The first three aspects are
made explicit by the TD, i.e. a sequence of standardized, machine-understandable
meta-data that allows consumers to discover and interpret the capabilities of a
Thing. More in details:

• The Interaction Affordances provide an abstract model of how Consumers
can interact with the Thing, in terms of properties (i.e. the state variables of
the Thing), actions (i.e. commands that can be invoked on the Thing) and
events (i.e. notifications sent by the Thing).

5

• The Protocol Bindings define the mapping between the abstract Interaction
Affordances and the network mechanisms (e.g. the protocols) that can be
used to work with the Thing.

• The Security Configuration defines the mechanisms to control the accesses
to the Interaction Affordances.

The TD can be encoded by using the JSON-LD language [14]. Finally the Be-
haviour constitutes the implementation of the Thing, including the interaction Af-
fordances, e.g. the code of its actions. All the blocks above are implemented
within a software runtime named Servient, which can indifferently act as a Server
or as a Client. In the first case, the Servient is said to host and expose Things, i.e.
it creates a run-time object serving the requests towards the hosted Things, like ac-
cessing the exposed properties, actions and events. In the second case, the Servient
is said to consume Things, i.e. it processes the Thing Description (TD), generates
a run-time representation called Consumed Thing, and makes it available to those
applications that are interacting with the remote Thing. Figure 1(b) depicts the
abstract W3C architecture for the WoT, including the blocks inside each Thing
and examples of interaction among them; interested readers can refer to the lat-
ests draft of the standard [13] for the complete list of interaction patterns. The
Node-WoT [15] framework is the reference implementation (in JavaScript) of the
WoT architecture certified by the W3C. However, consequently to the increase in
popularity, additional implementations for different programming languages are
expected to be released. The WoTPy is an example for the Python language [16].

2.2. W3C WoT Research papers
Due to the recent appearance of the W3C WoT standard, few real-world appli-

cations and tools have been proposed so far in the literature. A demo showing the
possibility to query a W3C WoT sensor device from a mobile phone is sketched
in [17]. In [18], an interesting application of the W3C WoT architecture to the
automotive industry is described; more specifically, the authors illustrate how to
describe the car data with a semantic ontology, and how to make them available
to external applications through the W3C WoT interaction patterns. Security risks
and vulnerabilities presented by the WoT metadata are discussed in [19]. Version-
ing mechanisms for the TD are proposed in [20]; here, the authors discuss the
relevance of life cycle mechanisms on Industry 4.0 scenarios, where there might
be a constant change in the data structures exposed by each Thing. In [27] an
ontology-driven discovery for the W3C WoT architecture is proposed, but few

6

implementation details are provided. The WoTify [28] is a W3C WoT platform
that allows users to search for WoT projects, download or contribute to shared
ones. As stated in the Introduction, the WoT Store is not an implementation of
the W3C WoT standard, rather a support tool hence it must be considered comple-
mentary and not alternative to the frameworks in [15][16]. Moreover, differently
from the cited works [17][18][20], it does not focus on a specific WoT applica-
tion; instead, it provide generic, Thing-related functionalities that can be useful
on different use-cases, as discussed in Section 4.4. The most similar work is [28],
since -at the best of our knowledge- it is the only other study proposing a W3C
WoT service tool: however, the goals are different from our framework, since
[28] focuses on the discovery of WoT projects from developers’ perspective (e.g.
for code sharing and maintenance), while our proposal addresses the discovery of
Things from users’ perspective (for resource control and management).

.

3. WoT Store: Overview and Functionalities

The WoT Store framework is designed to be micro-services oriented, with
the possibility to easily load/unload new modules based on the specific user re-
quirements. We can group the WoT Store services into three main areas, i.e.:

1. Things Management: the WoT Store allows to discover the available Things
in the environment, and/or to select a subset of them according to user-
defined, semantic criteria (e.g. the location). Through the GUI, the user
can interact with each of them according to its TD, i.e. display properties,
execute actions or observe the notifications of events.

2. Application Management: beyond monitoring the existing resources, the
WoT Store allows to perform changes to the actual WoT scenario, by in-
stantiating new Things or executing applications involving the interaction
among the available Things. Here, the WoT Store acts like an application
repository: via semantic queries, the users can search for software matching
specific criteria (e.g. the compatibility with the actual devices). In addition,
the application can be executed on any of the Servient registered to the
WoT Store, again minimizing the manual configuration efforts. We further
distinguish between Thing Applications (TAs) and Mash-up Applications
(MAs), as better detailed in the next Section.

3. Data Management: the WoT Store allows to process and aggregate the
data produced by a WoT application, by providing proper facilities in order

7

Figure 2: Main functionalities and sequence of operations with the WoT Store.

to gather the data-streams, aggregate them and visualize the results on the
Web dashboard.

Figure 2 shows how the services can be used in pipeline on a typical use-case.
Let us consider a generic IoT environments with heterogeneous devices in terms
of communication protocols, data formats and implementations. No assumption
is made regarding them; they could be native W3C WoT compliant devices or
they could have been mapped into the W3C WoT ecosystem by means of any of
the architectural patterns shown in Figure 1(b). In any case, we assume that the
corresponding Web Things have been deployed on some Servient. First of all,
through the Discovery Service, the Things are registered to the WoT Store tool;
they are now searchable and displayable from the Web dashboard. For instance,
let us assume the presence of a Thing connected to a Smart Bulb device; as soon as
the Thing is connected to our platform, the user can perform the action turnOn
or turnOff directly from the GUI. As next step, the user might be interested in
downloading applications from the Store through which it might implement coor-
dinated or autonomic behaviours involving multiple Things at the same time. For
instance, assuming that the Web Things associated to a Smart Bulb and a Smart
Lock are both available and active, the user might run an application that issues
the action turnOn each time the Lock is generating an open event, in an auto-
matic way. Behind the actuation, some applications might also produce streams of
data that can be relevant for the context. In the previous example, the user might
monitor the sequence of decisions performed by the application (i.e. the turnOn
or turnOff actions) over a temporal window. This is possible by connecting
the application to the proper data facilities of the WoT Store, hence closing the

8

Figure 3: The operations of the Things Discovery Service (TDS).

pipeline. In next Section we provide an in-depth description of the three main
modules of the WoT Store. The implementation details and the technologies
used are sketched in Section 5.

4. Service Components

We detail here the main modules of the WoT Store i.e. the Thing Manager,
the Application Manager and the Data Manager.

4.1. Things Manager
The Things Manager module allows the users to interact with the Things al-

ready available in the WoT environment. We further distinguish between two
sub-modules. i.e.: the Thing Discovery Service (TDS), that is in charge of regis-
tering the active Things on our tool, and the Thing Visualizer Service (TVS), that
is in charge of displaying the registered Things on the GUI of the WoT Store.

4.1.1. Things Discovery Service (TDS)
The overall discovery procedure is depicted in Figure 3. The procedure is

initiated by the Web Things when they register themselves to the WoT Store and
more specifically to the Thing DIrectory (TDI) module, assuming that the URI
of this latter is known. In the registration phase, each Thing provides its Thing
Descriptor (TD). The TDI works as a broker and as a repository of TDs; in the

9

Figure 4: A portion of the TD of the Device Thing of Table 3. The Thing is associated to a wireless
sensor producing temperature values.

Figure 5: The rendering of the actions of the TD of Figure 4 within the WoT Store.

10

first mode, it notifies the presence of a new Thing to all the clients, including
the TVS described below. Each client will then retrieve the TDs directly from
the Things, in order to consume the most updated version. In addition, the TDI
stores a copy of the TD of all the registered Things; this is required since the
TDI can support search and filter operations, issued by the user through the Web
dashboard. We consider two usage modes of the TDI, according to its visibility
level: i.e. public TDI or private TDI. In the first case, all the Things registered
to the TDI are searchable from the clients: this might be the case for instance of
a smart city willing to share its IoT resources with all its citizens. Vice versa, in
the private case, the access to the Things is restricted, and proper authorization
mechanisms are employed by the WoT Store: this is the case of smart home or
industrial IoT deployments with severe security concerns. The visibility flag must
be set during the TDI configuration process, together with other meta-data such
as the authentication mechanisms (e.g. header-based authorization, token-based
authorization like OAuth 2.02) required by clients to access the TDI.

4.1.2. Things Visualizer Service
The TVS is a Web dashboard and the main GUI of the WoT Store. It allows

to visualize the list of available Things registered to the TDI (by subscribing to it).
Moreover it supports search operations, where a subset of Things is selected ac-
cording to user-defined conditions; search operations are enabled by a Web form
with a list of predefined fields that can be filled through the GUI, and involve a
subset of the meta-data contained in the TDs. Finally, the TVS allows the user
to interact with each Thing available in the TDI or contained in the result of a
search operation; this is performed by parsing the corresponding TD and creating
an ad-hoc Web GUI, through which it is possible to monitor the state properties,
click and execute actions (passing the needed parameters if requested), or receive
notifications of the events occurred. Figure 4 shows a small portion of the TD of
a Device Thing measuring temperature values and used in the Pervasive Sensing
testbed of Section 6.1; the full interaction model is reported in Table 3. The cor-
responding GUI rendered within the WoT Store with the list of available actions
and properties is depicted in Figure 5.

4.2. Applications Manager
The Application Manager supports the dynamic search, download and execu-

tion of third-party WoT applications, involving the interactions with the available

2https://oauth.net/2/

11

resources, or the creation/update of new resources. We assume that the current
applications are coded in Javascript (JS), since this is the language of the WoT
implementation made available by the WoT W3C community [15], although this
choice does not impact the general functionalities of the WoT Store. Concep-
tually we distinguish between two classes of WoT applications supported by the
WoT Store, i.e.: Things Applications (TAs), and Mash-up Applications (MAs).
The TAs correspond to the source-code of a Thing, hence to a static object that
can be activated when executing it. Through the TAs, it is possible to instantiate
a new Thing in the WoT Store, or to update the behaviour of current Things,
as better described in the following. Vice versa, the MAs implement automatic
policies that involve the interactions of multiple Things (active and registered on
the TDI); the result of a MA can be an actuation or a data-stream that can be pro-
cessed through the Data Manager described in Section 4.3. More in details, the
Application Manager provides three main functionalities:

• App Storing. The source code of the WoT applications is stored on a database.
Moreover, each application (MA or TA) is associated to a semantic descrip-
tor, including a list of meta-data, like its category, description and the re-
sources required (e.g. the type of Things used). For instance, Table 1 con-
tains the RDF description of a MA that queries all Things of type ”Temper-
ature” registered to the TDI and computes the average of the sensed data.
In the current implementation, we describe each WoT application through a
list of RDF fields; clearly, more formal descriptions of the MA and TA can
be considered, by means of dedicated WoT ontologies. We discuss the issue
among the future works (Section 7).

• App Searching. Through the Web dashboard and the compilation of specific
fields, the user can build SPARQL queries3 in order to filter the WoT appli-
cations matching specific criteria, defined again through the meta-data. The
results are then displayed on the WoT Store GUI.

• App Executing. After having selected the application meeting his/her re-
quirement, the user can download and execute it. In this case, the proper
run-time environment (i.e. the Servient where to deploy the application)
must be selected among the ones registered to the WoT Store. We intro-
duce additional features for the execution of the TAs, that can occur in Nor-

3The SPARQL code in all the search operations must not be inserted manually, rather, it is
generated automatically based on the search option fields filled by the user on the Web GUI.

12

subject predicate object
<WoTStore://temperatureMonitor> schema:applicationCategory Domotics
<WoTStore://temperatureMonitor> schema:downloadUrl coap://wotstore.cs.unibo.it:8081/market/actions/getApplication?application=temperatureMonitor
<WoTStore://temperatureMonitor> schema:downloadUrl http://wotstore.cs.unibo.it:8080/market/actions/getApplication?application=temperatureMonitor
<WoTStore://temperatureMonitor> wotstore:involve sosa:Sensor
<WoTStore://temperatureMonitor> rdf:type schema:SoftwareApplication

<WoTStore://temperatureMonitor> dcterm:description
temperatureMonitor is an application that takes the temperature
from several sensors and returns the average

<WoTStore://temperatureMonitor> rdfs:label temperatureMonitor

Table 1: Example of RDF Description of a MA application available in the WOT STORE.

mal or Update mode. The first case is equivalent of creating a new Thing,
and registering it to the TDI. In the second case (Update), we provide the
possibility to replace a list of active Things with new ones implementing the
behaviour described by the TA downloaded by the WoT Store. Hence, a
SPARQL search query is issued on the TDI in order to select the Things to
unregister; then, a new set of Things is deployed with the updated source-
code provided by the TA. In Section 4.4 we discuss the usefulness of such
feature in industrial IoT use-cases.

4.3. Data Manager
This module contains functionalities for the processing and visualization of

the data produced by the running WoT applications. The block components of the
Data Manager are the data-streams; each data-stream can be configured in order
to be attached to a MA, and to gather data from it, through a set of APIs made
available by the WoT Store. Each data-stream consists of two sub-components:
a data aggregator, that filters/aggregates the output of the MA, and a data plot-
ter, that creates the proper Web dashboard of the processed data. Clearly, the
stages above are strictly dependent on the data-format, on the MA in use and on
the user needs; it is nearly impossible to cover all possible requirements. For this
reason, we provide basic data-stream templates that must be extended/customized
by users/developers. Moreover, as proof of concepts, we implemented two spe-
cific data-flows: one for temporal data-series (composed by a time-stamp and a
numeric field), the other one supporting geo-data (in GEOJSON) and generating
the corresponding heatmap. Further details regarding the two data-streams are
provided in Section 6.

4.4. Use cases
The WoT Store is application-agnostic, hence it can be used on several IoT

scenarios where there is need of managing and integrating heterogeneous re-
sources. In the following, we discuss two main use-cases, by highlighting how
specific components of the framework can be leveraged.

13

1. Industrial automation. Industry 4.0 environments are often characterized
by the large-scale installation of sensors, and by the need to process vast
amount of sensor data in order to build the digital twin of a physical com-
ponent [29]. We can assume that each sensor is represented by a Thing and
runs a default factory application that publishes itself on the WoT Store.
Through the TVS, it is possible to display and monitor the behaviour of the
sensors available in the environment. In addition, let us consider a practical
case where a bug is discovered on the current TA, and hence a patch must
be applied on all the Things. Without the WoT Store, this would require a
manual re-configuration of all the devices, with a clear impact in terms of
time and cost. Through the Update mechanism, the users can issue a se-
mantic query in order to select a set of Things all satisfying the same query
conditions (e.g. ”update all sensor devices of type temperature available in
room 262”), and then install the new TA replacing the previous one.

2. Home automation. The home automation constitutes one of the main market
of the IoT in terms of revenues and applications; however, it is also charac-
terized by the proliferation of devices mapped on different hardware/soft-
ware technologies and using specific APIs to be queried. Current platform
enabling the execution of mash-up services (e.g. the IFTTT platform4) are
limited in terms of IoT devices supported, since specific connectors to be
used. The WoT Store allows users to search and deploy MAs that im-
plement autonomic behaviors without requiring any connector from the de-
vices, except to be provided with a TD.

5. Implementation

The WoT Store is composed of four internal components, reported in Figure
6: the Market Service (MS) and the Thing DIrectory (TDI) on the server side, the
Market Interface (MI) on the client side, and the Runner (RNN) on the physical
device hosting the W3C WoT Servient. The WoT Store implementation involved
the usage of several software libraries: we briefly discuss here the main solutions
adopted, while Table 2 provides a mapping of the service components of Section
4.1 with the enabling technologies.
The Market Service (MS) has been implemented as a Node.js5 v10.x applica-

4https://ifttt.com
5https://nodejs.org

14

Figure 6: The WoT Store internals.

tion using the LoopBack6 v3 framework and the Socket.IO7 library. The MS
exposes the REST APIs for all the Things-related and application-related opera-
tions and a WebSocket endpoint for real-time notifications. In addition, it stores
the platform information through four database technologies: (i) Minio, an ob-
ject storage server containing the WoT applications (MAs and TAs) source code,
(ii) MongoDB, the popular NOSQL database used to store the user data, (iii)
Blazegraph, the triplestore used to save the application metadata and the TDs
and (iv) Redis, a high performance in-memory database, used for the real-time
processing of the Things notifications.We developed a complete LoopBack con-
nector for Blazegraph implementing all the necessary methods to initialize the
connection, the data migrations and CRUD operations. In addition, a second com-
ponent is in charge of converting the JSON-LD to N-Quads when pushing the data
to the triplestore, and from JSON to JSON-LD when they are pulled out.
The Runner (RNN) is a piece of software developed to facilitate the installation
of the WoT Store, and to automatize the execution of the WoT applications on
the devices. The RNN is written in JavaScript and exploits the ShellJS library.

6https://loopback.io
7https://socket.io

15

Area Service Tecnologies / Libraries
Thing Manager TDS Node.js, Blazegraph, SPARQL.
Thing Manager TVS Angular, ngx-mqtt, rxjs-websockets, socket.io-client.
Application Manager App Storing Minio, MongoDB, Blazegraph.
Application Manager App Searching SPARQL.
Application Manager App Executing Docker, shelljs.
Data Manager Data Aggregator bull.
Data Manager Data Plotter ngx-echarts.

Table 2: List of technologies used for the implementation of the WoT Store service components
of Section 4.1.

When installed on a machine (which could be a physical device, like a Rasp-
berry Pi, or a Virtual Machine), the RNN registers the machine to the MS. Then,
through the RNN, the user can install the WoT Servient on its device, by choosing
the version compliant with the current hardware and software (operating system)
configuration.8 The RNN allows issuing commands from the WoT Store directly
on the device, like for instance the execution of a MA or a TA selected from the
repository. To this aim, it supports multiple run-time environments through the
executors, i.e. the Shell and Docker9 in the current implementation, while
the support for Kubernetes10 will be considered as future work. Finally, the
Market Interface (MI) is an Angular11 v6 web application composed of several
modules. Among these, we find the Thing Visualizer Module, which implements
the TVS introduced in the previous Section, i.e. it renders a Thing starting from
its TD. Properties and events are updated in real-time thanks to libraries such as
ngx-mqtt and rxjs-websockets; for each action, a specific form is created
with the necessary constraints for the data input.

6. WoT Store Experimental Validation

The operations of the WoT Store have been validated through two evaluation
studies: (i) a small case testbed of a pervasive sensing scenario (Section 6.1), and
(ii) a large-scale simulation combining real Things and virtual devices in a urban
crowdsensing scenario (Section 6.2). The studies addressed different goals and
evaluated different components of the WoT Store framework. In the testbed, we

8At present, we rely on the JS Servient made available in [15]; however, we imagine the case
where multiple Servient implementation will be available for a specific device.

9https://docker.com
10https://kubernetes.io
11https://angular.io

16

focus on the Thing Manager and Application Manager modules; more specifically,
we demonstrate the possibility to orchestrate the sensing operations of multiple,
heterogeneous wireless sensors through the MAs, and we provide evidence of the
Thing Discovery Service. The crowdsensing study aims to verify the scalability of
the WoT architecture and of the WoT Store under increasing number of Things
to manage; moreover, it demonstrates the capabilities of the Data Manager to
aggregate and visualize both time-series and geographic data-streams produced
by MAs orchestrating the sensing operations of simulated mobile devices.

Figure 7: The IoT/WoT monitoring system deployed in this study.

6.1. Pervasive Sensing Testbed
We built the testbed represented in Figure 7 and preliminary presented in [23]:

it consists of an indoor monitoring system composed of three layers: sensing,
fog, and processing. The sensing layer is constituted by three Wireless Sensor
Networks (WSNs), operating at different rooms of the same building: an IEEE
802.15.4 WSN network, a IEEE 802.11 Wi-Fi WSN network and a Bluetooth
Low Energy (BLE) WSN. The 802.15.4 network includes four devices (Arduino
Xbee boards), with one Coordinator and three Leaf nodes equipped with sensing
units (ThinkerKit temperature sensor). The Wi-Fi network includes three devices
(two NodeMCU and one Arduino WiFly board), all provided with a direct link
toward the Access Point (AP) and with a DHT11 temperature/humidity sensor.
The BLE WSN consists of one ESP32 board, provided with a DHT11 sensor. The
802.15.4 coordinator, the BLE and the Wi-Fi devices are connected to a Fog node,
via USB cable links (for the 802.15.4 Coordinator) or wireless links (for the BLE

17

Name Type Description
DeviceID Property Device identifier in the network.
NetworkID Property Network identifier the device belongs to.
Temperature Property Last temperature value.
State Property Current state of the device.
GetData Action Get the temperature data.
Start Action Start sending data at each time-slot.
Stop Action Stop sending data.
NewData Event This event is fired when a new sensor data is produced.
ChangeState Event This event is fired when the connection state changes.

Table 3: List of Properties, Actions, and Events of a Device Thing.

and the IEEE 802.11 devices). Finally, the processing layer is constituted by a
Linux server, connected to the Fog nodes via Wi-Fi links. We deployed the W3C
WoT architecture and the WoT Store as follows:

• Edge devices, i.e. the wireless sensors, implement low-level communication
and sensing operations in the embedded firmware (written in C language).
The implementation as well as the list of operations and the data format
used by each device are technology dependent. This layer is part of the IoT,
while it is not covered by the WoT architecture.

• Fog nodes run a W3C WoT Servient, by using the JavaScript (JS) frame-
work available at [15]. Each Fog node exposes two types of Web Things,
i.e.: multiple (i) Thing Devices, describing the properties, events and actions
of physically managed edge devices, and one (ii) Thing Network, describ-
ing the overall performance of the virtual WSN composed by the list of
connected Thing Devices. Table 3 displays some of the properties, actions,
and events described in the Thing Description (TD) for a Device Thing.

• Finally, the Processing node hosts the WoT Store. This latter allows to
manage the Web Thing Devices and Web Thing Networks through the Thing
Manager presented in Section 4.1. Also, we implemented multiple MAs
that are in charge of orchestrating the sensing operations, i.e. of selecting
a subset of devices to query at each sensing slot, according to MA-specific
policies. At each interval, the MA works by querying the TDI and gather-
ing the list of Things Devices available on the WoT Store; hence the MAs
are also able to adapt to dynamic conditions where the number of available
Things is varying over time, as demonstrated by the analysis below.

We highlight that the WSNs are heterogeneous in terms of M2M technology
and of network performance. To this purpose, Figure 8(a) depicts the average

18

ble WiFi0 WiFi1 WiFi2 ZigBee0 ZigBee1 ZigBee2
Sensor

0

200

400

600

800

1000

1200

1400

1600

RT
T

(m
s)

(a)

ble arduinowifly modemcu nodemcu zigbee0 zigbee1 zigbee2
Sensor

0

20

40

60

80

100

PD
R

(%
)

(b)

Figure 8: The per-sensor RTT and PDR metrics are shown respectively in Figures 8(a) and 8(b).

per-sensor Round Trip Time (RTT), computed as the delay to issue the getData
command from the MA and to receive the sensor data. As expected the Wi-Fi
devices experience the lowest RTT values due to the higher channel bandwidth
provided by the M2M technology. Figure 8(b) shows the per-sensor Packet Deliv-
ery Ratio (PDR), defined as the ratio of successful getData command issued by
the MA. As expected, the Wi-Fi sensors are also the most reliable nodes. Based on
these results, we implemented three MAs on the WoT Store, simply denoted as
P1, P2, P3. Each MA selects M different Things Device to query at each sensing
slot, but according to different policies, i.e.: (i) the MA P1 (RTT-aware) selects
the M Things with the lowest mean RTT values; (ii) P2 (PDR-aware) selects the
M Things with the highest mean PDR values; (iv) P3 (PDR-RTT aware) selects
the M Things providing the best RTT-PDR trade-off. We assume that -at system
startup- the MAs have no knowledge about the WSN performance (i.e. the results
shown in Figures 8(a) and 8(b)), and hence they have to discover the optimal set
of M Things maximizing the specific policy in use. This is implemented through
basic online reinforcement learning mechanisms, provided by the Q-learning al-
gorithm [30]: the MA computes a numeric reward each time the getData com-
mand is issued toward a sensor, related to the specific policy (e.g. the packet RTT
in case of MA P1). We skip the details of how the Q-learning algorithm has been
applied in the testbed, since they can be found in [23], rather we focus on the
operations of the Things and Applications Managers.

To this purpose, Figure 9(a) and 9(b) provide a validation of the Thing Dis-
covery Service (TDS). We considered the following experiment: at system startup,

19

0 500 1000 1500 2000 2500
Time

300

400

500

600

700

800

900

1000

1100

RT
T

(m
s)

W
iF

i b
oo

t

W
iF

i c
ra

shRTT for packet
PDR for packet

0

20

40

60

80

100

PD
R

(%
)

(a)

0 500 1000 1500 2000 2500
Time

0

20

40

60

80

100

Us
ag

e
(%

)

ble
WiFi0
WiFi1
WiFi2

ZigBee0
ZigBee1
ZigBee2

(b)

Figure 9: The impact of the Thing Discovery Service on the PDR and RTT performance indexes
on a scenario with varying number of available Things/devices is shown in Figure 9(a). The
Thing/device utilization over time is depicted in Figure 9(b).

only the BLE and Zigbee Things are registered to the WoT Store. Hence, the MA
relies exclusively on them for the sensing operations. At t=1200 seconds, the Wi-
Fi Things are activated; they autonomously publish their TDs and hence become
discoverable by the MA via the TDI. We highlight that the process above occurs
in an autonomic way without any manual configuration. At t =2100 seconds, the
Wi-Fi devices are physically detached from the environment, without notifying
the WoT Store. Figure 9(a) shows the average PDR and RTT metrics over time
as computed by the running MA (in this case, we used P3). It is easy to notice the
impact of the TDS since both the metrics improve from t >1200 seconds, as direct
consequence of the fact that the Wi-Fi devices are used by the MA; we recall that -
in accordance with the results of Figures 8(a) and 8(b), the Wi-Fi technology max-
imizes both the RTT and PDR performance. At the same time, we can notice that
the RTT decrease and the PDR increase occur gradually and not instantaneously;
this is due to the Q-learning convergence delay, since the usage of Wi-Fi is re-
inforced at each packet transmission, hence increasing the selection probability
over time. Finally, both the performance indexes become worse when the Wi-Fi
devices stop sending the data because of the hardware crash. Figure 9(b) supports
the discussion by showing the sensor utilization over time. For t <1200 seconds,
the MA queries the BLE and two zigbee Things, while from 1200 ≤ t < 2100,
it mostly relies on the Wi-Fi Things; however, the Wi-Fi Things do not achieve
the 100% of utilization due to random actions performed by the Q-learning for

20

0 2000 4000 6000 8000
Time

0

200

400

600

800

1000

RT
T

(m
s)

RTT P1
PDR P1
RTT P2
PDR P2
RTT P3
PDR P3

0

20

40

60

80

100

PD
R

(%
)

Figure 10: The RTT and PDR values when switching the MA in use over time.

the periodic exploration phase [30]. Thanks to it, the Q-learning mechanism is
able to discover alternative sensor selections once the Wi-Fi devices become not
available (t >2100 seconds).

Figure 10 shows the RTT and PDR metrics over time when dynamically switch-
ing from one MA to another. Moreover specifically, from t=0 to t=3000, policy
P1 is used (delay minimization), then P2 from t=3001 to t=6000 (PDR maximiza-
tion), finally we switch to P3 (delay-PDR trade-off) from t > 6000. We remark
that the application replacement is performed through the WoT Store GUI, and
consists in selecting a new software, and the Servient where to execute it. No
hardware or software re-configuration of the WSNs is required. We can notice the
values of the metrics (RTT and PDR) vary over time in accordance with the MA
that is in execution in that temporal instant.

6.2. Urban Crowdsensing Scenario
In the second study, we consider a urban crowdsensing application composed

of multiple, heterogeneous mobile devices (e.g. smartphones). Like in most of
existing crowdsensing systems [31], the mobile devices perform environmental
sensing through their embedded sensors and transfer the data to a central process-
ing unit; here, data are aggregated and analyzed. We assume that the central unit
is also in charge of orchestrating the sensing operations, similarly to the testbed
described in the previous Section. The overall architecture of the crowdsensing
system is reported in Figure 11(a). A W3C Thing is associated to each mobile
device: the list of actions and properties is provided in Table 4. The system ad-
ministrators can download MAs implementing different sensing policies from the

21

(a) (b)

Figure 11: The crowdsensing system considered in this study is depicted in Figure 11(a). The ab-
straction of the WoT deployment with the WoT Store and the real/simulated entities is represented
in Figure 11(b).

WoT Store; in addition, they can aggregate and visualize the data gathered from
the mobile devices through the Data Manager. Differently from the testbed, the
system APIs of the Web Things do not query a physical device rather a simulated
entity -denoted as Virtual Smartphone (VS)- that provides the current position and
the result of each sensing action. In the following, we detail how the mobility and
the sensing phases have been modeled.
Mobility simulation. We consider a pedestrian mobility model on a realistic city
map (in our case, the downtown area of Bologna), extracting the street informa-
tion from the OpenStreetMap web service12. A random direction model is consid-
ered: each user moves toward a random point of the scenario on the shortest path
(computed over the graph of streets), and stops there for a random interval before
selecting a new destination. We assume that the sensing and mobility phases are
not mutually dependent; hence, the mobility traces of the N users have been gen-
erated offline and saved on N different files. The position information of each
Thing (i.e. the Latitude and Longitude properties at each time-slot tk) is provided
by the VS by reading the corresponding entry on the trace file owned by the Thing.
Event simulation. We model the sensing operations through a function that returns
the sensing value at each location of the environment and at each time-slot. To this
purpose, we consider a generic situation where an event occurs in the urban sce-

12https://www.openstreetmap.org

22

Name Type Description
PhoneID Property Smartphone unique identifier.
Latitude Property Current latitude coordinate.
Longitude Property Current longitude coordinate.
State Property Current state of the device (connected/disconnected).
GetSensingData Action Perform a sensor reading.
NewData Event This event is fired when a new sensor data is produced.

Table 4: List of Properties, Actions, and Events of a Virtual Smartphone Thing in the crowdsensing
scenario.

nario -and more specifically in its central position- and the crowdsensing system is
used to monitor the event and its evolution over time. Let C = 〈clat, clong〉 denote
the center of the scenario that coincides with the event origin. We abstract from
the physical meaning of the event, of the sensing values and of the type of sensor
in use, since they are not relevant for this study. Let S(i, tk) be the event sensing
function that provides the intensity of the event as sensed by Thing i at time slot tk
(i.e., the values returned after invoking the GetSensingData action). The S(i, tk)
function is modeled as follows:

S(i, tk) = e
di(tk,C)

σ · I(tk) + χ (1)

where di(tk, C) is the distance between the position of Thing i at time slot tk
(denoted as Pi(tk) = 〈lati(tk), longi(tk)〉) and the event origin C, σ is a nor-
malization value, χ is a Gaussian noise with zero mean and variance equal to β
(it models the sensing error of each device) and I(tk) is the function modeling
the event intensity over time. Hence, on the spatial domain, the event intensity
assumes the maximum value in C while it decreases proportionally with the dis-
tance from it. Let Imax and Imin be the maximum and minimum event intensity
values. The I(tk) function defines an event with a time-varying intensity, i.e.: (i)
it is equal to the minimal value (i.e. I(tk) = Imin) till instant tk=900 seconds; (ii)
it increases linearly till instant tk=1350 seconds, when the maximum value (Imax)
is achieved; (iii) it remains equal to the maximum value (Imax) till instant tk=2150
seconds; (iv) it decreases linearly till becoming equal again to the minimum value
(Imax) at time instant tk=2600 seconds. Let Imin < η < Imax be a system thresh-
old; a Thing/device13 is said to detect the event at time tk if S(i, tk) > η.

13Things and devices are used indifferently in the following, since each Thing corresponds to
one device; we used the word device when referring to the operations of the crowdsensing system,
and Thing when referring to its implementation using the WoT architecture.

23

The WoT deployment of the crowdsensing system with real/simulated entities
is shown in Figure 11(b). In order to save the battery of the mobile devices, the
controller is querying only a subset of the available N devices at each sensing
interval tk. Let Ψ(tk) be such subset, and M be the number of devices queried,
assumed constant over time. More formally, we have: M = |Ψ(tk)| = bN · γc,
with 0 < γ ≤ 1. Also, we denote with Ω(tk) ⊆ Ψ(tk) the list of devices detecting
the event at time slot tk, i.e Ω(tk) = {i ∈ Ψ(tk)|S(i, tk) > η}. We implemented
two MAs in WoT Store with differentiated policies to compute the Ψ(tk) set:

• Random MA. At each sensing interval tk, the MA chooses randomly the
subset of M sensors to query among the available N .

• Adaptive MA. Like the previous policy, the MA chooses M sensor to query
at each sensing interval; it chooses them randomly if |Ω(tk)| ≤ α, the num-
ber of devices detecting the event is below a system threshold α. Vice versa,
when |Ω(tk)| > α, the MA attempts to estimate the area where the event
is occurring and to concentrate the sensing operations over it. To this pur-
pose, the position of the event Cest(tk) = 〈cestlat(tk), cestlong(tk)〉 at time tk is
estimated as the centroid of the position of the users detecting it, i.e.:

cestlat(tk) =

∑
i∈Ω(tk) lati(tk)

|Ω(tk)|
(2)

cestlong(tk) =

∑
i∈Ω(tk) longi(tk)

|Ω(tk)|
(3)

Similarly, the radius of the event R(tk) is estimated as the maximum dis-
tance between Cest(tk) and all the devices that detected the event in Ω(tk),
i.e. R(tk) = maxi∈Ω(tk) (di(tk, C

est(tk)). In order to build the list of devices
to query at the next time-slot (i.e. Ψ(tk+1)), we consider only the devices at
a distance lower than R(tk) from cestlong. Let Γ(tk) denote such set. Then, we
order Γ(tk) according to the distance values di(tk, Cest(tk)), and we select
the top M elements. In case |Ψ(tk+1)| < M , the remaining M − |Ψ(tk+1)|
devices are randomly chosen as for the Random Policy.

Clearly, much more complex MAs can be defined for the scenario in use. How-
ever, we remark that the goal of the study is not on the crowdsensing algorithms
rather on the deployment and execution of MAs through the WoT Store. Unless
stated otherwise, we used the following parameters in our tests: N=400, M=80,
γ=0.2, η=5, α=2, β=2, σ=300.

24

0 500 1000 1500 2000 2500 3000 3500
Time (ms)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f d
ev

ice
s

Number of devices
Avg Sensing Value

0.5

1.0

1.5

2.0

2.5

Av
g

Se
ns

in
sg

 v
al

ue

(a)

0 500 1000 1500 2000 2500 3000 3500
Time (ms)

0

10

20

30

40

50

60

Nu
m

be
r o

f d
ev

ice
s

Number of devices
Avg Sensing Value

0

1

2

3

4

5

6

Av
g

Se
ns

in
sg

 v
al

ue

(b)

Figure 12: The average sensing value and the number of Things detecting the event for the Random
MA are shown in Figure 12(a). The same metrics for the Adaptive MA are shown in Figure 12(b).

We implemented two data-streams in the Data Manager, one handling time-
series data and the other handling geographic data, coded in GEOJSON. Each MA
generates two time-series: (i) the average sensing intensity at each tk, computed as
the average value over theM queried devices, i.e.

∑
i∈Ψ(tk) S(i,tk)

M
, and (ii) the num-

ber of devices detecting the event at each tk, i.e. |Ω(tk)|. For readability reasons,
we visualized both the time-sequences in the same plot. Figure 12(a) refers to the
Random MA, while Figure 12(b) to the Adaptive MA. Both the plots show a simi-
lar trend, since the average sensing intensity follows the variations over time of the
event intensity, provided by the I(tk) values; however, it is easy to notice that the
absolute values are much greater for the Adaptive MA compared to the Random
MA, since the sensing activities are focused an the area where the event is occur-
ring. As a result, the number of devices detecting the event is also significantly
higher for the Adaptive MA. In addition to the time-series, at pre-defined time-
slots each MA generates a GEOJSON file, containing the position (i.e. Pi(tk))
and the instantaneous sensing value (i.e. S(i, tk)) of the Things queried (i.e. be-
longing to the set Ψ(tK)). The Data Manager allows visualizing the GEOJSON
file as heatmaps. Figure 13(a) and 13(b) show the heatmaps of the Random MA
at tk=100 and tk=1000, i.e. before and during the occurrence of the event. We can
notice that the sensing actions of the Random MA are equally distributed over the
scenario in both cases. Figure 14(a) and 14(b) show the heatmaps of the Adaptive
MA at the same time slots. Before the occurrence of the event (Figure 14(a)), the
Adaptive MA behaves similarly to the Random MA since no device has detected

25

(a) (b)

Figure 13: The geodata stream visualization for the Random MA before the occurrence of the
event (Figure 13(a)) and during the occurrence (Figure 13(b)).

the event, and hence the device selection is performed randomly. Vice versa, after
the occurrence (Figure 14(b)), most of the M sensing actions are performed on
the central area of the scenario, i.e. on the estimated event origin Cest that also
coincides with the real event origin C. This result further justifies the higher per-
formance of the Adaptive MA in terms of number of devices detecting the event
compared to the Random MA (Figures 12(a) and 12(b)). In conclusion, the Data
Manager can be useful to monitor the crowdsensing operations over both the time
and space dimensions; moreover, since different MA can be installed from the
WoT Store, the Data Manager allows to compare the performance of different
sensing control policies in a straightforward way.

We conclude the analysis by investigating the scalability of our platform when
increasing the number of deployed Things. Figure 15 shows the usage of resources
(RAM utilization, CPU time) of the machine14 hosting the Servient. It is easy
to see that the resource utilization increases linearly with the number of Things
to manage, and in any case no performance bottlenecks are introduced even for
large-scale WoT deployments.

14Core i5 7600 Kaby 3,5GHz with 16GB RAM DDR4 and ArchLinux OS.

26

(a) (b)

Figure 14: The geodata stream visualization for the Adaptive MA before the occurrence of the
event (Figure 14(a)) and during the occurrence (Figure 14(b)).

7. Conclusions

In this paper, we have addressed the interoperability issue on the Internet
of Things (IoT), and more specifically the design and implementation of cross-
domain solutions able to cope with the heterogeneity of devices and platforms.
To this purpose, we have proposed the WoT Store, a novel resource management
platform for IoT scenarios compliant with the recent W3C Web of Things (WoTs)
architecture. The WoT Store allows to discover and manage all the Things avail-
able in the environments in a seamless way; moreover, it provides functionalities
to deploy new resources in the current scenario, by acting as a WoT application
marketplace. The framework operations have been validation through a twofold
evaluation: a small-case testbed composed of heterogeneous wireless sensor de-
vices, and a large-scale simulation related to an urban crowdsensing scenario. It is
worth highlighting that the relevance of the contributions presented in this paper
is strictly related to the W3C WoT standard, which is quite recent in its definition.
At the same time, the availability of support tools constituting the WoT SECO
can facilitate the adoption of the W3C standard from the academic and industrial
communities and the definition of novel use-cases.

27

1 10 100 1000
Number of Things

0

5

10

15

20

25

30

35

Bo
ot

 ti
m

e
(m

s)

0

50

100

150

200

250

300

350

M
em

or
y

(M
B)

Boot time
RAM usage

Figure 15: The resource (CPU,RAM) utilization of the WoT Store for increasing number of
deployed Things in the crowdsensing scenario.

7.1. WoT Store Limitations and Future extensions
Far from being a reference solution covering all the requirements of WoT de-

ployments, the WoT Store can still be considered -at the best of our knowledge-
the first W3C-compliant WoT tool providing Things management in dynamic
WoT scenarios. The micro-services oriented architecture facilitates further im-
provement, platform extension and customization. We discuss here the planned
future works in four complementary research directions, i.e.: security support,
services/functionalites and data support.

• Security support. Security aspect is a crucial issue for the IoT domain as
well as for the WoT Store, given the possibility offered by our tool to dis-
cover, interact, and potentially update remote Web Things. Hence, proper
authorization mechanisms must be designed to avoid data leaks or harmful
operations on shared WoT resources. However, it is important to distinguish
between two aspects, i.e. platform control access and Things control access.
Regarding the first aspect, the WoT Store relies on state-of-art Web tech-
nologies to authenticate users when logging in onto the platform; also, the
visibility of available Things is manually configurable during the TDI con-
figuration process explained in Section 4.1.1. At present, the latter includes
only two visibility levels (public or private): however, more fine-grained
registration policy can be defined. Vice versa, the Thing access policy is

28

defined within its TD: the current W3C WoT standard already identifies
several authorization patterns (e.g. token-based) for restricted access to the
Things. We are going to extend the WoT Store by providing support to the
mechanisms defined in [13] in order to keep the full standard compliance.

• Functionalites. The Data Manager as presented in the paper provides the
template and few specific modules for data aggregation and visualization;
however, commercial IoT applications ([2] [29]) often involve intensive data
processing by means of Machine Learning (ML) techniques. We highlight
that the focus of the WoT Store (and also of the Data Manager) is not on
the IoT analytics, rather on the interoperability support; however, we might
implement proper bindings in order to connect the Data Manager to existing
IoT data processing platforms, hence enabling the processing of the data
generated by a MA on external tools and the visualization of results within
the WoT Store dashboard.

• Data support. The semantic description of Things and WoT applications
(both MAs and TAs) are only sketched in the current proposal; a relevant
contribution might be constituted by the definition of a reference WoT on-
tology (or extending available ones, e.g. the SWOT proposal [32]) in order
to semantically characterize both Things and application meta-data within
the same formalism, so that it will be possible to check the compatibility of
MAs/TAs with deployed Things in a fine-grained way.

Finally, we are planning to further validate the operations of the WoT Store on
large-scale IoT deployments, e.g. the MAC4PRO project [33] addressing struc-
tural monitoring in industrial environments.

References

[1] A. I. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash.
Internet of Things: A Survey on Enabling Technologies, Protocols, and Ap-
plications. IEEE Communications Surveys and Tutorials, 17(4), pp. 2347-
2376, 2015

[2] B. Di Martino, M. Rak, M. Ficco, A. Esposito, S. A. Maisto and S. Nac-
chia. Internet of Things: A Survey on Enabling Technologies, Protocols,
and Applications. Internet of Things, 1(1), pp. 99-112, 2018

29

[3] F. Montori, L. Bedogni, M. Di Felice, L. Bononi. Machine-to-Machine
Wireless Communication Technologies for the Internet of Things: Taxon-
omy, Comparison and Open Issues. Pervasive and Mobile Computing, 50(1),
pp. 56-81, 2018

[4] M. Noura, M. Atiquzzaman, Martin Gaedke. Interoperability in Internet of
Things: Taxonomies and Open Challenges. Mobile Networks and Applica-
tions, 24(3), pp. 796-809, 2018

[5] M. Donovan. Interoperability and the Internet of Things. NDP Analytics,
Report, 2017.

[6] McKInsey Global Institute. The Internet of Things: Mapping the value
beyond the hype. Executive Summary. 2015.

[7] Arrowhead - Ahead the Future. https://www.arrowhead.eu

[8] Big IoT - Bridging the Interoperability Gap of the Internet of Things.
http://big-iot.eu

[9] Wise IoT - Worldwide Interoperability for Semantics IoT. http://big-iot.eu

[10] IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN).
https://tools.ietf.org/html/rfc8138

[11] A study of existing Ontologies in the IoT-domain. Garvita Bajaj, Rachit
Agarwal, Pushpendra Singh, Nikolaos Georgantas, Valerie Issarny. Techni-
cal Report, HAL repository, https://hal.inria.fr/hal-01556256/document.

[12] L. Roffia, P. Azzoni, C. Cristiano, F. Viola, F. Antoniazzi, and T. Salmon
Cinotti. Dynamic Linked Data: A SPARQL Event Processing Architecture
Future Internet, 10(4), pp. 1-33, 2018.

[13] WoT Reference Architecture (W3C Candidate Recommendation 16 May
2019). http://www.w3.org/TR/wot-architecture/

[14] JSON-LD, JSON for Linking Data https://json-ld.org

[15] Eclipse Thingweb node-wot. Source repository:
https://github.com/eclipse/thingweb.node-wot

30

[16] A. G. Mangasa, F. J. S. Alonso. WOTPY: A framework for web of things
applications. Computer Communications, 147(1), pp. 235-251, 2019.

[17] Y. Ji, K. Ok and W. Suk Choi. Demo Abstract: Web of Things based IoT
standard interworking test case. Proc. of ACM BuildSys, Shenzen, China,
2018.

[18] B. Klotz, S. K. Datta, D. Wilms, et al. A car as a semantic Web Thing:
motivation and demonstration. Proc. of IEEE GIoTS, Bilbao, Spain, 2018.

[19] M. McCool and E. Reshetova. Distributed Security risks and opportunities
in the W3C Web of Things. Proc. of IEEE DISS, San Diego, USA, 2018.

[20] M. Blank, S. Kaebisch, H. Lahbaiel, and H. Kosch Role models and lifecy-
cles in IoT and their impact on the W3C WoT Thing Description. Proc. of
IEEE IoT, Santa Barbara, USA, 2018.

[21] J.V. Joshua, D.O. Alao, S.O. Okolie, O. Awodele Software Ecosystem: Fea-
tures, Benefits and Challenges. International Journal of Advanced Computer
Science and Applications(IJACSA), 4(8), 2013

[22] L. Sciullo, C. Aguzzi, M. Di Felice, T. S. Cinotti WoT Store: Enabling
things and applications discovery for the W3C Web of Things. Proc. of
IEEE CCNC, Las Vegas, USA, 2019.

[23] L. Sciullo, A. Trotta, L. Gigli, M. Di Felice. Deploying W3C Web of Things-
based Interoperable Mash-up Applications for Industry 4.0: A Testbed. in
Proc. of IFIP WWIC, Bologna, Italy, 2019.

[24] F. Paganelli, S. Turchi and D. Giuli. A Web of Things framework for REST-
ful applications and its experimentation in a smart city. IEEE Systems, 10(4),
pp. 1412-1423, 2016.

[25] E. Mingozzi, G. Tanganelli and C. Vallati. CoAP proxy virtualization for
the Web of Things. Proc. of IEEE CloudCom, Singapore, 2014.

[26] A. Kamilaris and M. I. Ali. Do ”Web of Things platforms” truly follow the
Web of Things?. Proc. of IEEE WF-IoT, Reston, USA, 2016.

[27] F. Serena, M. Poveda-Villalon and R. Garcia-Castro. Semantic discovery in
the Web of Things. Proc. of ICWE (Springer LNCS), Rome, Italy, 2017.

31

[28] E. Korkan, H. Hassine, V. Schlott, S. Kabisch and S. Steinhorst. WoTify:
A platform to bring Web of Things to your devices. W3C Workshop on the
Web of Things, Munich, Germany, 2019.

[29] E. Sisinni, A. Saifullah, S. Han, U. Jennehag and M. Gidlund. Industrial
Internet of Things: Challenges, Opportunities, and Directions. IEEE Trans-
actions on Industrial Informatics, 2018.

[30] A. Barto and R. S. Sutton Reinforcement Learning: An Introduction MIT
Press, 1998

[31] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich and P.
Bouvry. A Survey on Mobile Crowdsensing Systems: Challenges, Solutions
and Opportunities IEEE Communications Surveys and Tutorials, 2019.

[32] F. Antoniazzi, F. Viola. Semantic Web of Things Ontology (SWOT)
https://fr4ncidir.github.io/SemanticWoT/

[33] MAC4PRO BRIC 2018 Project. https://site.unibo.it/mac4pro/it

32

