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The contribution of this paper is threefold. First, we demonstrate that, provided either
a suitable bootstrap implementation is employed or heteroskedasticity-consistent stan-
dard errors are used, the IVX-based predictability tests of Kostakis et al. (2015) retain
asymptotically valid inference under the null hypothesis under considerably weaker as-
sumptions on the innovations than are required by Kostakis et al. (2015). Second, under
the same assumptions, we develop asymptotically valid bootstrap implementations of
the IVX tests. Monte Carlo simulations show that the bootstrap tests deliver considerably
more accurate finite sample inference than the asymptotic implementations of the
tests under certain problematic parameter constellations, most notably for one-sided
testing, and where multiple predictors are included. Third, we show how sub-sample
implementations of the IVX approach can be used to develop asymptotically valid
one-sided and two-sided tests for the presence of temporary windows of predictability.

© 2022 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Motivation

Predictive regression methods are a very important part of the statistical toolbox used in empirical finance, providing a
ramework to investigate whether a given series can be predicted by other lagged financial and macroeconomic variables.
wo important applications are attempts to predict returns on financial assets, most notably equity returns (see, for
xample, the literature review in Campbell and Yogo, 2006), and developing regression-based tests for efficiency in foreign
xchange markets (see Fama, 1984). In both of these applications the returns variable we wish to predict resembles a
near) martingale difference sequence (MDS), while the predictors used are often characterised by high persistence with
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a significant correlation existing between the predictive regression error and the innovations driving the predictors; see,
among others, Campbell and Yogo (2006), Welch and Goyal (2008), Nelson and Kim (1993), Stambaugh (1999) and Pavlidis
et al. (2017). In these circumstances, standard regression estimation and inference methods, including conventional
regression t-tests, are rendered invalid; see, among others, Cavanagh et al. (1995), Campbell and Yogo (2006), Jansson
nd Moreira (2006) and Phillips and Magdalinos (2008).
As a result, a number of likelihood-based procedures have been developed for the case where the predictor is

ndogenous and displays strong persistence within the local-to-unity class of processes; see, in particular, Cavanagh
t al. (1995), Campbell and Yogo (2006), Jansson and Moreira (2006) and Elliott et al. (2015). Excepting Elliott et al.
2015), a major practical drawback with these approaches is that they are invalid if the predictor is weakly persistent. An
lternative approach is to base predictability tests on methods of estimating the predictive regression which are robust
o the properties of the regressor. Various approaches have been considered, arguably the most successful is Kostakis
t al. (2015) who estimate the predictive regression using the extended instrumental variable [IVX] procedure of Phillips
nd Magdalinos (2009); see also, Phillips and Lee (2013), Breitung and Demetrescu (2015), Lee (2016), Demetrescu
nd Hillmann (2022) and Demetrescu et al. (2022), among others. In the IVX approach each predictor in the predictive
egression has an associated stochastic instrument formed by constructing a mildly integrated variable from the first
ifferences of the predictor. The IVX instrument, by construction, has lower persistence than a near-integrated variable
nd, as a consequence, delivers predictability statistics with asymptotically pivotal limiting null distributions.
Kostakis et al. (2015) establish, under certain regularity conditions on the model innovations, an asymptotic mixed

ormality result for their IVX estimator and show that the associated IVX-based predictability statistics possess standard
pivotal) limiting null distributions, regardless of whether the predictor is local-to-unity or weakly dependent (stationary).
he asymptotic theory for IVX predictability statistics can, however, provide a very poor approximation to their finite
ample behaviour, particularly for highly persistent and endogenous predictors which, as noted above, is arguably the case
f most practical relevance. To ameliorate these finite sample distortions from the asymptotic theory, Kostakis et al. (2015)
uggest a finite sample modification to the standard errors used in computing the IVX statistics. While this correction
ppears to work well for tests against two-sided alternatives reported in the simulation study for the case of a single
egressor in Kostakis et al. (2015), as we will show in this paper, tests against one-sided alternatives remain very badly
ize-distorted for highly persistent and endogenous regressors. Moreover, Xu and Guo (2021) present simulation evidence
hich suggests that the quality of the asymptotic distributional approximation under the null, even with the finite sample
orrection employed, also markedly deteriorates as the number of regressors in the predictive regression increases.
The regularity conditions adopted in Kostakis et al. (2015) include an assumption of unconditional homoskedasticity

n the vector of innovations driving the predictive model. Kostakis et al. (2015) allow for some forms of conditional
eteroskedasticity in the innovation vector (provided heteroskedasticity-consistent standard errors are used) although
hese conditions are rather restrictive in practice. In particular, while a relatively weak martingale difference assumption
s placed on the innovations driving the regressors, the errors in the predictive regression equations are assumed to
ollow a finite-order parametric GARCH model. The latter precludes the conditional variance of the regression errors, as a
unction of the past, from involving any direct contributions of the lagged values of the innovations driving the predictors,
likely unrealistic restriction for many commonly posited predictors of stock returns. Moreover, while GARCH models
re very widely used in empirical finance, their usefulness for returns data is not uncontentious; e.g., Carnero et al. (2004)
rgue that the class of autoregressive stochastic volatility [ARSV] models is better suited to capturing the main empirical
roperties of the volatility of financial returns series.
A major contribution of this paper is to address the foregoing issues with the practical implementation of the IVX

ests. First, regarding the regularity conditions needed, we show that the IVX predictability statistics of Kostakis et al.
2015) (implemented with heteroskedasticity-consistent standard errors) continue to admit standard pivotal limiting
ull distributions (again regardless of the degree of persistence or endogeneity of the regressors) under essentially the
ame set of regularity conditions on the innovations as adopted by Demetrescu et al. (2022) for establishing that the
over-identified) two-stage least squares (2SLS) based predictability test statistics of Breitung and Demetrescu (2015)
ave standard pivotal limiting null distributions.1 These conditions allow for quite general patterns of unconditional
ime heteroskedasticity in the innovations, allowing for time-varying innovation variances and the possibility of time-
arying correlations between the innovations. The conditions also allow for a much larger martingale difference class of
nnovations than considered in Kostakis et al. (2015) with no need to exclude interdependence between the conditional
ariances of the innovations in the model. Moreover, no parametric model needs to be assumed for either the conditional
r unconditional time-variation in the innovations.
The 2SLS tests of Breitung and Demetrescu (2015) are based on an (over-identified) regression where two instruments

re used for each predictor: a Type-I instrument which by design has a lower degree of persistence than the predictor (an
xample is the IVX instrument), and a strictly exogenous Type-II instrument (such as a sine function of time). The Type-I
Type-II) instrument is asymptotically dominated under strong (weak) persistence by the type-II (Type-I) instrument;
ee Demetrescu et al. (2022). Consequently, to establish the limiting distribution of the 2SLS statistic under strong
ersistence one does not need to determine the large sample properties of the IVX instrument under strong persistence,

1 The conditions we adopt are higher-level assumptions than those in Demetrescu et al. (2022) and, as such, avoid the ad hoc rate condition
mposed on the fourth (mixed) moments by the latter; see Remark 5.
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only the large sample behaviour of the Type-II instrument is required and this is a relatively easy task under the regularity
conditions on the innovations considered in this paper; see Demetrescu et al. (2022). In contrast, to develop limiting
distribution theory for the (just-identified) IVX statistics of Kostakis et al. (2015) one must establish invariance principles
and asymptotic independence results (see Eq. (11)) for the IVX-filtered predictor in the strongly persistent case, which is
a much more involved task. Showing that the allowable regularity conditions to establish these results can be weakened
from those adopted by Kostakis et al. (2015) to essentially the same (albeit higher-level) conditions as Demetrescu et al.
(2022) use for the 2SLS statistics constitutes a major technical contribution to the literature.

Establishing that the 2SLS tests of Breitung and Demetrescu (2015) and the IVX tests of Kostakis et al. (2015) are
symptotically valid under the same set of regularity conditions implies the practitioner can choose which of these
ests to use, agnostic of the properties of the data. This has important practical ramifications. First, as shown in, among
thers, Harvey et al. (2021, pp. 208–212) for the univariate case, two-sided IVX tests are more powerful than the 2SLS tests
ith certain type-I instruments, and increasingly so as the persistence of the predictor decreases. Second, the randomness
f the sign of the correlation between the Type-II instrument and the predictor entails that the 2SLS tests can only be
alidly implemented as two-sided tests (one reason for this is given in Remark 4 of Breitung and Demetrescu, 2015,
. 364), while the IVX tests can be validly implemented as either one-sided or two-sided tests. This forms an important
ractical distinction between the tests as several studies have found that imposing an economically motivated structure,
uch as a known slope sign, on the predictive regression model can lead to better and more accurate findings of return
redictability. For example, Campbell and Thompson (2008) find that, among other things, imposing positive predictability
so that the sign of the predictor is imposed to be positive under the alternative) almost always improves the out-of-
ample predictability obtained for the predictors considered for equity returns in Welch and Goyal (2008). Similarly, in a
ayesian setting, Pettenuzzo et al. (2014) find that imposing a non-negative prior on the Sharpe ratio aids identification of
eturn predictability. Moreover, Pavlidis et al. (2017) consider an application of predictive regression to testing for bubbles
n foreign exchange markets where a natural positive sign restriction applies under the alternative hypothesis.

Second, and associatedly, to improve on their finite sample performance we also discuss bootstrap implementations of
he IVX tests which are shown to be asymptotically valid under the same set of regularity conditions on the innovations.
lthough there are papers already in the literature that consider the problem of bootstrapping mildly integrated variables,
ee Fan and Lee (2019) and Smeekes and Westerlund (2019), neither of these are capable of allowing for the generality of
ime-variation in the variance matrix of the vector of innovations we consider here. Moreover, neither of these approaches
s concerned with partial-sums based statistics. More relevant to the IVX tests of Kostakis et al. (2015) considered in this
aper, Demetrescu et al. (2022), develop subsample implementations of the 2SLS-based predictability tests of Breitung and
emetrescu (2015) and base inference on a fixed regressor wild bootstrap [FRWB] resampling scheme. In this approach the
egressor (and instrument in the case of Breitung and Demetrescu, 2015) is treated as fixed in the resampling exercise,
hile the series being predicted is resampled using a wild bootstrap. Demetrescu et al. (2022) demonstrate that the
RWB approach correctly replicates the first-order limiting null distributions of the temporary predictability statistics
hey propose under both conditional and unconditional heteroskedasticity. The FRWB is also used by Georgiev et al. (2018,
019) who develop bootstrap tests for structural change in the predictive regression model.
The FRWB can also be used to successfully replicate the first-order limiting null distribution of the full sample IVX

tatistics under the conditions on the innovations considered in this paper. However, in Monte Carlo simulations we
ind that it does not address the finite sample distortions with the asymptotic IVX tests discussed above, most notably
he distortions that occur when the regressor is highly persistent and endogenous. This is perhaps unsurprising given
hat the FRWB does not replicate in the bootstrap data the contemporaneous correlation present between the model’s
nnovations. We therefore also discuss an alternative residual wild bootstrap [RWB] resampling scheme which is designed
o replicate this correlation. Here we jointly wild resample the residuals from the fitted predictive regression model and
parametric autoregressive model fitted to the predictor. We also investigate the conditions under which the RWB-based
VX predictability tests are first-order asymptotically valid, and show that these deliver substantial improvements in finite
ample behaviour relative to the asymptotic IVX tests.
Although the main application of the IVX methodology has been to predictive regressions for forecasting stock returns,

t has also recently been applied to Fama regressions in the context of detecting episodic bubble-type behaviour in foreign
xchange markets by Pavlidis et al. (2017) who consider a rolling subsample-based implementation of one-sided (right-
ailed) IVX tests of Kostakis et al. (2015) proposing a test which rejects the null hypothesis of no bubble if any of the
ubsample statistics in the rolling sequence exceeds a given critical value. To avoid multiple testing bias, Pavlidis et al.
2017) base their approach on a conservative critical value obtained using a Bonferroni correction which adjusts the
ominal significance level for the number of statistics in the rolling sequence. Pavlidis et al. (2017) note that this approach
s likely to deliver a conservative test and suggest that a bootstrap implementation might deliver more powerful size
ontrolled tests.
Tests based on the suprema of rolling and recursive subsample sequences of the 2SLS statistics of Breitung and

emetrescu (2015) have also been implemented recently in the context of detecting temporary periods of stock return
redictability (so-called pockets of predictability) by Demetrescu et al. (2022). As noted above, Demetrescu et al. (2022)

use a FRWB to implement these tests. The final contribution of this paper is to show that both the RWB and FRWB
approaches can also be implemented in the context of the corresponding tests from sequences of subsample IVX statistics
and that these are asymptotically valid under the same regularity conditions on the innovations as are required for the
3
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corresponding bootstrap implementations of the full sample tests. As with the full sample tests, this allows practitioners to
implement one-sided tests for temporary windows of predictability allowing for cases where the direction of predictability
under the alternative is known, as with the foreign exchange rate bubble testing problem considered in Pavlidis et al.
(2017), something not possible with the 2SLS-based tests of Demetrescu et al. (2022). This also ensures that a rejection
of the null is only associated with a window of predictability with the anticipated sign. In the Fama-regression setting, as
discussed by Pavlidis et al. (2017), the slope parameter is likely to be estimated to be negative over many subsamples of
the data and so the tests of Demetrescu et al. (2022) are likely to reject in practice even when no bubble is present.

The remainder of the paper is organised as follows. Section 2, introduces the predictive regression model we consider
ogether with the assumptions needed for our analysis. Section 3 reviews the full sample IV-based predictability
ests of Kostakis et al. (2015) and details subsample implementations of these tests. Representations for the limiting
istributions of the underlying test statistics under both the null and local alternatives are provided. These are shown
o depend in general on any heteroskedasticity present. Moreover, the form of these limiting distributions depends on
hether the predictor is weakly or strongly persistent, even under homoskedasticity. In the context of the full sample IVX
tatistic, however, the use of Eicker–White standard errors is shown to deliver a standard pivotal limiting null distribution
egardless of the predictor’s persistence. Section 4 discusses bootstrap implementations of the IVX tests and demonstrates
he first-order asymptotic validity of these. Section 5 presents the results from a Monte Carlo analysis into the finite sample
ehaviour of both the full sample and subsample IVX tests, while empirical applications to stock returns and exchange
ate data are reported in Section 6. Concluding comments including some suggestions for further research are provided
n Section 7. Detailed proofs of the technical results given in the paper along with other supporting material appear in a
upplementary appendix.
In what follows we use I(·) to denote the indicator function, equal to one when its argument is true, zero otherwise, and

·∥ to denote the matrix norm [Trace((·)′(·))]1/2. We denote by Dk the space of càdlàg real functions on [0, 1]k equipped
with the Skorokhod topology, and abbreviate D1 to D. The weak convergence of probability measures on Dk and on Rk

is denoted by ⇒. We use the notation P, E, etc. for probability, expectation etc. with respect to the distribution of the
original data and use P∗, E∗, etc. for probability, expectation, etc. induced by the data and the wild bootstrap multipliers
(which we shall denote {Rt}) conditionally on the data. If wT , w (T ∈ N) are random elements of metric spaces, the
weak-in-probability convergence wT

w
⇒p w means that E∗f (wT )

p
→ Ef (w) for all continuous bounded real functions with

matching domain. Finally, the Op and op symbols have their usual meaning.

2. The predictive regression model and assumptions

Consider the predictive regression model for returns, yt , allowing for time-variation in the slope coefficient on a lagged
predictor, xt−1, of the form

yt = α + βtxt−1 + ut , t = 1, . . . , T , (1)

where xt satisfies the additive component model

xt = µx + ξt , t = 0, . . . , T , (2)
ξt = ρξt−1 + wt , A (L) wt = vt , t = 1, . . . , T , (3)

in which ut and vt are serially uncorrelated (martingale difference [MD]) innovations, precise conditions on which are
given in Assumption 3, and A(L) := (1− a1L− a2L2 − · · · − apLp) is a stable autoregressive polynomial in the conventional
lag operator, L. We define ω := 1/A(1) and, for the case where xt also follows a stable autoregression, we let κ2 denote
the sum of the squared coefficients of the filter ((1 − ρL)A(L))−1. In our exposition and technical analysis we follow the
bulk of the literature and focus attention on the case of a single predictor, so that xt−1 in (1) is a scalar. Extensions to
allow for multiple predictors will be discussed at various points in the text, although we leave a detailed treatment of
this case for future research.

The DGP in (1) generalises the constant parameter predictive regression model considered in Kostakis et al. (2015)
by allowing for the possibility that the slope coefficient on xt−1 varies over time, allowing for changes over time in the
predictive content of the regressor xt−1. The constant parameter predictive regression model obtains by setting a constant
slope parameter such that βt = β , for all t = 1, . . . , T . The tests we consider in this paper are all for the null hypothesis,
H0, that (yt − α) is a MD and, hence, that yt is not predictable by xt−1, which entails that βt = 0, for all t = 1, . . . , T ,
in (1).2 The full-sample IVX tests of Kostakis et al. (2015) test the same null hypothesis, H0, against the alternative that
yt is predictable by xt−1 with a constant slope parameter holding across the whole sample; that is, βt = β ̸= 0 for all
t = 1, . . . , T . The subsample implementations of IVX we discuss will be used to test against alternatives such that βt ̸= 0
for some t but without imposing constancy on βt . In any case, some structure needs to be placed on the class of alternative
hypotheses we may consider and this will be formalised below.

The degree of persistence of the regressor, xt , is controlled via the parameter ρ. We allow xt to be either weakly or
strongly persistent through the following assumption.

2 The methods which we outline in this paper could equally well be used to test the null hypothesis that βt = β0 for all t = 1, . . . , T , but as the
focus in both equity forecasting and Fama regressions is on testing the null hypothesis of a zero coefficient on the lagged predictor we will restrict
our discussion to β = 0.
0

4
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Assumption 1. A (L) is a finite-order (p < ∞) polynomial with all of the roots of A (z) = 0 lying outside the complex
unit circle, |z| = 1. The initial condition, ξ0, is a mean zero Op(1) variate. Moreover, exactly one of the two following
conditions holds on the autoregressive parameter ρ in (3):

1. Weakly persistent regressor: ρ is fixed and bounded away from unity, |ρ| < 1.
2. Strongly persistent regressor: ρ is parameterised to be local-to-unity; that is, ρ := 1 − cT−1, where c is a finite

constant. This allows for pure I(1) predictors (c = 0), locally stable predictors (c > 0), and locally explosive
predictors (c < 0).

Remark 1. Assumption 1 imposes that the errors wt in (3) follow a finite-order autoregression. This is imposed for the
purposes of facilitating the RWB implementations of the full sample and subsample IVX tests in Section 4. Asymptotic
versions of these tests (i.e. tests based on critical values from the limiting null distributions of the statistics) could equally
well be based on a linear process assumption for wt of the form considered in Assumption INNOV of Kostakis et al. ( 2015,
p. 1512) or the slightly weaker Assumption M of Magdalinos (2020); in particular, Proposition 1 of this paper would remain
valid. The FRWB implementations of the IVX tests discussed in Section 4 would also be asymptotically valid under a linear
process assumption of this form. ♢

Remark 2. We follow the bulk of the predictive regression literature in considering regressors that follow either stable
(weakly dependent) processes, see Amihud and Hurvich (2004), or are near-integrated, see Campbell and Yogo (2006),
without assuming knowing which of these holds. As we shall see, the limiting behaviour of the IVX statistics can differ
under the two types of persistence, but this can be consistently replicated (to asymptotic first order) by the bootstrap
procedures we propose. An alternative framework, which we do not consider here, is to characterise the persistence of
the predictors as lying in the class of fractionally integrated processes. Important contributions in predictability testing
with fractionally integrated predictors include, Maynard and Phillips (2001), Maynard and Shimotsu (2009), Bauer and
Maynard (2012), and Andersen and Varneskov (2021a, 2021b). The approach taken in Andersen and Varneskov (2021a,
2021b) is based on the concept of the local spectrum (LCM) methodology and allows for multivariate regressors with any
mix of (fractional) integration degrees along with strong forms of endogeneity. The LCM methodology can therefore be
viewed as complementary to the IVX approach. Andersen and Varneskov (2021a, pp. 227–228) demonstrate that the LCM
approach remains asymptotically valid in the case where the predictors are observed with measurement error which is of
a lower degree of persistence than the true predictor. A similar result holds in the set-up considered here; in particular,
with an I(0) measurement error, the large sample results given in this paper will continue to hold for strongly persistent
predictors satisfying Assumption 1.2. Within the framework of Andersen and Varneskov (2021a), Andersen and Varneskov
(2021c) consider the case of ‘‘imperfect’’ predictors, in the sense of Pastor and Stambaugh (2009), where a component
of the conditional mean of the returns series exists that is not linearly spanned by the chosen predictor(s). Georgiev
et al. (2019) consider essentially the same setting but in the context of standard linear predictive regression tests with
predictors satisfying Assumption 1. In such cases the standard predictability tests should be interpreted not as tests for
a perfect linear relation, but rather as tests of linear predictive power. Indeed, both Andersen and Varneskov (2021c)
and Georgiev et al. (2019) develop tests that allow practitioners to distinguish between the ‘‘imperfect’’ and ‘‘perfect’’
regressor scenarios. ♢

The basic idea underlying the IVX procedure of Phillips and Magdalinos (2009) is to instrument the regressor xt−1 by
a variable of controlled persistence, constructed as

z0 = 0 and zt = (1 − ϱL)−1
+
∆xt :=

t−1∑
j=0

ϱj∆xt−j, t = 1, . . . , T , (4)

and where ϱ := 1 − aT−η with a > 0 and 0 < η < 1. The IVX scale and exponent parameters, a and η respectively,
are tuning parameters set by the practitioner; Kostakis et al. (2015) recommend a = 1 and η = 0.95. Where xt is near-
integrated satisfying Assumption 1.2, zt is approximately a mildly integrated process and therefore of lower persistence
than xt . Moreover, where xt is weakly dependent satisfying Assumption 1.1, we have that zt ≈ xt . As a result, Kostakis et al.
(2015) demonstrate that the IVX full-sample estimator of the slope parameter in (1) is asymptotically (mixed) Gaussian
under H0 and under their Assumption INNOV regardless of whether Assumption 1.1 or 1.2 holds and that, consequently,
the full-sample instrumental variable tests for H0 have standard limiting null distributions regardless of the degree of
persistence or endogeneity of xt .

For our purposes we follow Demetrescu et al. (2022) and conduct our theoretical analysis of the large sample properties
of both the full-sample and sub-sample IVX predictability statistics under local alternatives such that the slope parameter
βt is local-to-zero for an asymptotically non-vanishing set of the sample observations. This is an important generalisation
of the large sample results presented for the full sample IVX-based tests in Kostakis et al. (2015) and Magdalinos (2020)
which only apply under H0. The localisation rate (or Pitman drift) is such that βt is specified to lie in a neighbourhood
of zero which shrinks with the sample size, T , at a rate which depends on which of Assumption 1.1 and Assumption 1.2
holds in (3). Specifically,3

3 Notice that while the Pitman drift rate considered in Assumption 2 is required to obtain non-degenerate asymptotic (local) limiting distributions
for the IVX predictability statistics (it ensures that the left and right hand sides of the predictive regression in (1) are always asymptotically ‘‘balanced’’,
5
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Assumption 2. In (1)–(3), let βt := n−1
T b (t/T ), where b(·) is a piecewise Lipschitz-continuous real function on [0, 1],

ith nT =
√
T under Assumption 1.1, and nT = T 1/2+η/2 under Assumption 1.2, recalling that η, 0 < η < 1, is the IVX

xponent used in the construction of zt in (4).

Under the structure of Assumption 2, the null hypothesis H0 that βt = 0, for all t = 1, . . . , T , can be expressed as

H0 : The function b(·) is identically zero on [0, 1], (5)

while the alternative hypothesis can be written as

H1,b(·) : The function b(·) is non-zero over at least one non-empty open subinterval of [0, 1]. (6)

The latter entails that at least one subset of the sample observations (this need not be a strict subset, so it could contain
ll of the sample observations) comprising contiguous observations exists for which βt ̸= 0, and where the size of this
ubset is proportional to the sample size T . One-sided alternatives that βt > 0 (βt < 0) in some subset(s) of the data can
e considered simply by defining b (·) to be a non-negative (non-positive) function.
We conclude this section by detailing in Assumption 3 the conditions we will place on the innovations ut and vt in

1) and (3), respectively. Subsequently we will discuss these conditions relative to other sets of regularity conditions that
ave been adopted in the literature, before providing the key multivariate invariance principles [MIPs] that hold under
hese conditions.

ssumption 3. Let(
ut
vt

)
:= H

(
t
T

)(
at
et

)
,

here:

1. H(·) :=

(
h11(·) h12(·)
h21(·) h22(·)

)
is a matrix of piecewise Lipschitz-continuous bounded functions on (−∞, 1], which is

of full rank at all but a finite number of points;
2. ψt := (at , et )′ is a L4-bounded stationary and ergodic MD sequence satisfying E(ψtψ

′

t ) = I2 and

E

E0

T∑
t=1

(ψtψ
′

t − I2)


2

= O(T 2ϵ) (7)

for some ϵ < 1
2 , with Eτ (·), denoting expectation conditional on the σ -algebra generated by {ψτ−i}

∞

i=0, and where
Ik denotes the k × k identity matrix.

emark 3. As discussed in Demetrescu et al. (2022), Assumption 3.1 allows for unconditional time heteroskedasticity
f quite general form in the innovations through the function H, the unconditional covariance matrix of (ut , vt)

′ being
H(t/T )H′(t/T ). This allows ut and vt to display time-varying unconditional variances and both contemporaneous and time-
varying (unconditional) correlation between ut and vt , including single or multiple (co-) variance shifts, (co-)variances
following a broken trend, and smooth transition (co-) variance shifts. In contrast, Assumption INNOV of Kostakis et al.
(2015, p.1512) and Assumption M of Magdalinos (2020) impose a constant unconditional variance matrix on (ut , vt)

′,
but do allow for conditional (stochastic) heteroskedasticity. Assumption 3.2 imposes a MD structure on ψt thereby also
allowing for conditional heteroskedasticity. In common with Assumption INNOV of Kostakis et al. (2015) and Assumption
M of Magdalinos (2020), Assumption 3.2 imposes finite fourth-order moments on ψt . ♢

Remark 4. A crucial difference between the IVX tests of Kostakis et al. (2015) and the 2SLS tests of Breitung and
Demetrescu (2015) is that in order to establish the large sample properties of the former in the strong persistence case
we need to establish a weak convergence result for the partial sum process, 1

√

T1+η

∑
[τT ]

t=1 zt−1ut (see (11)). This is not
equired for the over-identified 2SLS statistics because, as discussed in Section 1, the Type-II instrument used in the case
f these statistics asymptotically dominates the Type-I instrument (e.g., the IVX instrument) under strong persistence. For
he case of full-sample sums, Kostakis et al. (2015) and Magdalinos (2020) need to make the parametric assumption that
t is generated by a stationary finite-order GARCH(p, q) model with finite fourth moments. This assumption therefore has
he consequence to preclude the conditional variance of ut , as a function of the past, to involve contributions of lagged
t , an arguably unrealistic restriction for many potential predictors of stock returns; see Example 1 in the supplementary

possessing the same order of magnitude in probability), such local-to-zero magnitude alternative models should not necessarily be taken to have any
inherent economic meaning. Indeed, in the case of excess returns, asset valuation theory stipulates that valuation ratios should have a fixed rather
than shrinking magnitude coefficient in the predictive regression; see, for example, Campbell and Thompson (2008), and the references therein, who
derive specific results for the case of the dividend price ratio based on the Gordon (1962) growth model. Moreover, dynamic asset pricing models
often allow the equity premium to depend on persistent state variables, as for example in the long run risk model of Bansal and Yaron (2004).
6
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appendix for further discussion. Moreover, a number of authors, including Carnero et al. (2004) and Johannes et al. (2014)
argue that ARSV models capture the main empirical properties of the volatility of financial returns series better than
GARCH models. To eliminate the need to choose a specific parametric volatility model, Assumption 3.2 instead adopts
an explicit assumption of martingale approximability whereby E∥E0

∑T
t=1(ψtψ

′

t − I2)∥2
= O(T 2ϵ) for some ϵ < 1

2 ,
ee Merlevède et al. (2006). The exponent ϵ controls the degree of persistence permitted in the conditional variances of
he innovations. Stationary vector GARCH processes with finite fourth-order moments satisfy Assumption 3.2 with ϵ = 0,
but the assumption is considerably more general as it also allows for asymmetric effects in the conditional variance.
Stationary ARSV processes as, for example, are assumed in Johannes et al. (2014) also satisfy Assumption 3.2. ♢

Remark 5. It is instructive to compare the regularity conditions in Assumption 3 with those used in Demetrescu et al.
(2022) in the context of establishing the large sample behaviour of the 2SLS-based predictability statistics of Breitung
and Demetrescu (2015) for the case where the Type-I instrument used is set to be the IVX filter in (4). In doing so, it
is important to note that the relevant regularity conditions in Demetrescu et al. (2022) are spread across Assumptions
3–6 of that paper; see, in particular, Lemma 1 of Demetrescu et al. (2022). Both sets of conditions impose the conditions
in Assumption 3.1 and also require that the MD sequence ψt (in the notation of this paper) defined in Assumption 3.2
is strictly stationarity and ergodic. There are, however, some differences concerning the restrictions they place on the
amount of serial dependence allowed in the conditional second order moments of the sequence ψt . In particular, while
the current paper assumes the single ‘‘high-level’’ condition in (7), Demetrescu et al. (2022) require that

sup
t∈N

E∥Et−m(ψtψ
′

t − I2)∥ → 0 as m → ∞, (8)

and that

sup
t=1,...,T ;T∈N

⏐⏐E ((v2t − E(v2t )
)
vt−kvt−j

)⏐⏐ ≤
C

(jk)1/2+ϑ/2
(9)

or some ϑ > 0 and any k, j > 0, where vt are the shocks to the predictor (the second element of H(t/T )ψt , denoted
by ṽt in Demetrescu et al., 2022). These conditions appear similar, and indeed coincide for many popular parametric
models, such as for example finite-order stationary vector GARCH models or infinite-order ARCH models, for which if ψt
satisfies (7) then it will also satisfy (8) and (9), and vice versa. Crucially, condition (7) replaces both condition (8) and the
ad hoc rate of decay condition on the fourth order mixed moments stipulated under (9), and also allows us to make a
strong connection with the probabilistic literature; see the discussion in Remark 4. Compared to (9), the condition in (7)
is more easily interpretable, allowing us to state that the cumulated sum of ψtψ

′

t − I2 is ‘almost’ a martingale. This type
of assumption is arguably more appealing in the context of modelling financial data where finance theory often predicts
that the innovations in the model should have the MD property, rather than the conventional approach, typified by the
assumptions in Demetrescu et al. (2022) and taken from the classical time series literature, which is to impose generic
rate of decay conditions on higher-order moments. ♢

Under Assumption 1.1 (weak persistence), ξt = (1 − ρL)−1
+

A(L)−1vt +ρ
tξ0 (recall that (1 − ρL)−1

+
:=
∑t−1

j=0 ρ
jLj), which,

given the exponential decay of the coefficients, is asymptotically equivalent to the process (1 − ρL)−1 A(L)−1vt , and with
a slight abuse of notation, we will write ξt = (1 − ρL)−1 A(L)−1vt in what follows, ignoring the asymptotically negligible
term. Given Assumption 3, the normalised partial sums of (ut , vt , ξt−1ut ) then satisfy the MIP,

1
√
T

⌊τT⌋∑
t=1

( ut
vt

ξt−1ut

)
⇒

∫ τ

0
G(s)dB(s) :=

( Mu(τ )
Mv(τ )
Mξu(τ )

)
(10)

n D3, where G(τ ) is a 3 × 6 matrix of piecewise Lipschitz functions whose elements are formed from the elements of
(τ ), and where B(τ ) is a 6-dimensional Brownian motion. Explicit expressions for the covariance matrix of B(τ ) and for
(τ ) are provided in Lemma 4 in the supplement, where the result in (10) is formally established. Using the Phillips-Solo
evice, it is straightforwardly obtained from (10) that the normalised partial sums of ξt weakly converge to ω/(1−ρ)Mv .

emark 6. The MIP in (10) coincides with that given in Equation (2.6) and Lemma 1.1 of Demetrescu et al. (2022)
or a weakly persistent predictor. The limiting processes Mu, Mv and Mξu are individually variance-transformed Brownian
motions; cf. Davidson (1994, section 29.4). They are, in general, correlated under Assumption 3, and indeed this correlation
can be time-varying; see the supplementary appendix for precise expressions. Under conditional homoskedasticity, Mξu
can be seen to be uncorrelated with either Mu or Mv . Under conditional heteroskedasticity, however, Mv and Mξu are in
general dependent (as are Mu and Mξu), even where H(τ ) is constant, because Cov (ξt−1ut , vt) is not necessarily zero if
the conditional correlation between ut and vt is nonzero. Where H(τ ) is constant, such that (ut , vt)

′ is unconditionally
homoskedastic,

∫ τ
0 G(s)dB(s) reduces to a usual Brownian motion process. Where H(τ ) is non-constant the variance

profiles of Mu, Mv and Mξu will, in general, differ (we define the variance profile of a generic stochastic process W (s)
s [W ](s)/[W ](1) where [W ](s) denotes the quadratic variation process of W (s)). Even in the special case where H(τ ) is

a scalar multiple of the identity matrix, although Mu and Mv will share the same variance profile, this will not in general
coincide with variance profile of Mξu because the variance of its increments is a polynomial of degree four in the elements
of H(τ ), while those of M and M are both polynomials of degree two (see the proof of Lemma 4 in the supplement). ♢
u v

7
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Under Assumption 1.2 (strong persistence), the normalised partial sums of (ut , vt ) converge as previously to (Mu,Mv),
where Mu and Mv are the same limiting processes as in (10). Moreover,

1
√
T

[τT ]∑
t=1

(
vt

1
√
Tη

zt−1ut

)
⇒

(
Mv(τ )
Mzu(τ )

)
(11)

on D2, with Mzu(τ ) :=
ω

√
2a

∫ τ
0

√
[Mv]

′(s)[Mu]
′(s)dB(s), where B is a standard Brownian motion independent of Mv , and

where [Mv]
′(s) and [Mu]

′(s) denote the derivatives (with respect to s) of [Mv](s) and [Mu](s), respectively. These derivatives
are well-defined at all but finitely many s ∈ [0, 1], see Lemma 3 in the supplementary appendix. Convergence (11)
is established in Lemma 5 in the supplementary appendix. Under strong persistence, the levels of ξt satisfy the weak
convergence result T−1/2ξ⌊τT⌋ ⇒ ωJc,H(τ ) on D, where Jc,H(τ ) is an Ornstein–Uhlenbeck-type process driven by Mv(τ );
hat is, Jc,H(τ ) :=

∫ τ
0 e−c(τ−s)dMv(s).

Remark 7. The limiting process Mzu in (11) is also a variance-transformed Brownian motion. An important difference
between the MIPs in (10) and (11) is thatMzu is independent ofMv irrespective of any conditional heteroskedasticity while,
as discussed in Remark 6, Mξu and Mv are in general dependent. Another important difference is that the processes Mξu
and Mzu, despite being determined by the same innovations, can have quite different behaviour depending on the pattern
of conditional and unconditional heteroskedasticity present in ψt . To illustrate, under unconditional heteroskedasticity the
variance profiles of Mξu and Mzu will in general differ where conditional heteroskedasticity is also present; see Example
2 in the supplementary appendix. ♢

Remark 8. The MIP in (11) generalises the corresponding convergence results in Kostakis et al. (2015) and Magdalinos
(2020) in two ways. First, as discussed in Remarks 3 and 4, it establishes the existence of a MIP under much weaker
conditions on the innovations than are allowed in Kostakis et al. (2015) and Magdalinos (2020). Second, Kostakis et al.
(2015) and Magdalinos (2020) only provide a convergence result for the full sample quantity 1

√

T1+η

∑T
t=1 zt−1ut , whereas

he MIP in (11) establishes the joint limiting distribution of the corresponding sequence of quantities across all possible
ubsamples. The result in (11) also provides the necessary keystone for deriving the large sample properties of statistics
rising in other settings involving IVX instrumentation of strongly persistent variables, under much weaker conditions
han the extant literature allows. ♢

. IVX-based predictability tests

.1. Full-sample IVX tests

The full-sample IVX-based t-ratio, proposed in Kostakis et al. (2015), for testing the null hypothesis H0 : βt = 0 for all
= 1, . . . , T in (1) is given by4

tzx :=
β̂zx

s.e.(β̂zx)
, β̂zx :=

∑T
t=1 zt−1 (yt − ȳ)∑T

t=1 zt−1 (xt−1 − x̄−1)
(12)

s.e.(β̂zx) =

√
σ̂ 2
u
∑T

t=1 z
2
t−1∑T

t=1 zt−1 (xt−1 − x̄−1)
(13)

with ȳ := T−1∑T
t=1 yt , x̄−1 := T−1∑T

t=1 xt−1, and σ̂ 2
u := T−1∑T

t=1 û
2
t .
5 A variety of choices for the residuals ût is

possible. Breitung and Demetrescu (2015) and Kostakis et al. (2015) recommend the OLS residuals from estimating (1)
on the grounds that they come from the best linear projection of yt on xt−1 regardless of the persistence of the putative
predictor, and that their finite-sample behaviour appears to be more stable than that of the corresponding IV residuals.
One could also use residuals computed under the null; that is, ût := yt − 1

T

∑T
s=1 ys. Under the local alternatives considered

in Assumption 2, these two possible choices are asymptotically equivalent in so far as the behaviour of the resulting IVX
statistic is concerned. The IV residuals also have reduced convergence rates compared to the two possible choices above,
so we will not consider them further.

4 As discussed in Kostakis et al. (2015, p.1514), β̂zx is invariant to whether zt−1 is demeaned or not.
5 To ameliorate the finite sample effects of estimating the intercept term in (1), Kostakis et al. (2015, p. 1516) recommend the use of

a finite-sample correction term. This entails replacing the numerator of (13) by
√
σ̂ 2
u
∑T

t=1 z
2
t−1 −Ξ where Ξ := T z̄2

−1(σ̂
2
u − σ̂ 2

uw σ̂
−2
w ), with

z̄−1 := T−1∑T
t=1 zt−1 , and where σ̂ 2

w and σ̂uw are estimates of the long-run variance of wt , and of the long-run covariance between ut and wt ,
respectively; a discussion on the practical choice of these estimators is provided in Kostakis et al. ( 2015, pp. 1513 and 1524). The inclusion of the
correction term, Ξ , does not alter any of the large sample results that follow.
8
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Kostakis et al. (2015) also consider a variant of the tzx statistic based on the use of heteroskedasticity-robust
Eicker–White) standard errors. This is given by

tEWzx :=
β̂zx

s.e.EW (β̂zx)
, s.e.EW (β̂zx) :=

√∑T
t=1 z

2
t−1û

2
t∑T

t=1 zt−1 (xt−1 − x̄−1)
. (14)

As we show in Section 3.3, tEWzx has a standard normal limiting null distribution under unconditional and/or conditional
heteroskedasticity satisfying Assumption 3, regardless of whether xt is strongly or weakly persistent. Kostakis et al. (2015)
and Magdalinos (2020) have previously shown that this result holds under unconditional homoskedasticity and for the
form of conditional heteroskedasticity they assume which, as discussed in Section 2, is a special case of our Assumption 3.2.
The same result holds for tzx in the strongly persistent case when the innovations are unconditionally homoskedastic, but
does not hold in general otherwise. The finite sample correction term Ξ discussed in footnote 5 can also be applied to
the numerator of s.e.EW (β̂zx) in (14).

One-sided tests based on either tzx or tEWzx can be formed by rejecting against the right-sided alternative that βt = β > 0,
for all t = 1, . . . , T , for large positive values of the statistics and against the left-sided alternative that βt = β < 0, for all
t = 1, . . . , T , for large negative values of the statistics. The latter can be equivalently implemented as right-sided tests
simply by replacing the predictor xt−1 by −xt−1. Two-sided tests can be formed by rejecting against the alternative that
βt = β ̸= 0, for all t = 1, . . . , T , for large positive values of either (tzx)2 or (tEWzx )2.

Remark 9. Kostakis et al. (2015) consider the more general set-up of multiple predictive regressions of the form
yt = α + β′xt−1 + ut , t = 1, . . . , T , where β := (β1, . . . , βK )′ and where xt := (x1,t , . . . , xK ,t )′ is such that xt = µx + ξt
where ξt satisfies the K -dimensional generalisation of (3), ξt = Γ ξt−1 + vt , t = 1, . . . , T , and where µx is a K -vector of
constants. In common with Kostakis et al. (2015), the dimension K of xt is assumed to be fixed (does not increase with
T ). Kostakis et al. (2015) specify the matrix Γ to be diagonal with ith diagonal element ρi, i = 1, . . . , K , and assume that
the predictors all lie within the same persistence class; that is, the xi,t , i = 1, . . . , K , either all satisfy Assumption 1.1,
or they all satisfy Assumption 1.2. Generating the set of K instruments, z t := (z1,t , . . . , zK ,t )′, from the predictors xi,t ,
i = 1, . . . , K , each generated according to (4), a two-sided Wald-type IVX based test rejects the null Rβ = 0, where R
is a known q × K matrix of full row rank, for large values of WR

zx := β̂
′

zxR
′(R ˆCov(β̂zx)R

′)−1Rβ̂zx where β̂zx := A−1
T C T with

AT :=
∑T

t=1 z t−1(xt−1 − x̄−1)′, C T :=
∑T

t=1 z t−1(yt − ȳ), x̄−1 := T−1∑T
t=1 xt−1, and where ˆCov(β̂zx) := σ̂ 2

u A
−1
T BT (A−1

T )′

with BT :=
∑T

t=1 z t−1z ′

t−1, σ̂
2
u := T−1∑2

t=1 û
2
t and ût being the OLS residuals of the estimated predictive regression. An

Eicker–White version of WR
zx can be formed by replacing σ̂ 2

u BT in the expression of ˆCov(β̂zx) with DT :=
∑T

t=1 z t−1z ′

t−1û
2
t .

A finite sample correction term can again be used; see Kostakis et al. (2015, p. 1515) for precise details. IVX (partial)
t-type tests of the null hypothesis βi = 0, i ∈ {1, . . . , K }, can also be considered. ♢

3.2. Subsample IVX tests

As we will subsequently show in Proposition 1, the full-sample test based on tzx has non-trivial asymptotic local power
against H1,b(·) of (6) for both weakly and strongly persistent regressors. However, these tests are clearly designed for the
case where the function b(·) of Assumption 2 is such that b(t/T ) = b, t = 1, . . . , T . If it were known that a pocket
of predictability might occur only over the particular subsample t = ⌊τ1T⌋ + 1, . . . , ⌊τ2T⌋, such that b(t/T ) = b for
t = ⌊τ1T⌋+1, . . . , ⌊τ2T⌋ but was zero elsewhere, then it would be more logical to base a test for this on the IVX statistic
computed only on the subsample t = ⌊τ1T⌋ + 1, . . . , ⌊τ2T⌋, viz,

tzx(τ1, τ2) :=
β̂zx(τ1, τ2)

s.e.(β̂zx(τ1, τ2))
(15)

here

β̂zx(τ1, τ2) :=

∑⌊τ2T⌋

t=⌊τ1T⌋+1 zt−1 (yt − ȳ(τ1, τ2))∑⌊τ2T⌋

t=⌊τ1T⌋+1 zt−1 (xt−1 − x̄−1(τ1, τ2))
(16)

s.e.(β̂zx(τ1, τ2)) :=

σ̂u(τ1, τ2)
√∑⌊τ2T⌋

t=⌊τ1T⌋+1 z
2
t−1∑⌊τ2T⌋

t=⌊τ1T⌋+1 zt−1 (xt−1 − x̄−1(τ1, τ2))
(17)

ith ȳ(τ1, τ2) := (T ∗)−1∑⌊τ2T⌋

t=⌊τ1T⌋+1 yt and x̄−1(τ1, τ2) := (T ∗)−1∑⌊τ2T⌋

t=⌊τ1T⌋+1 xt−1, where T ∗
:= (⌊τ2T⌋ − ⌊τ1T⌋), and

ˆu(τ1, τ2)2 is the analogue of σ̂ 2
u in (13) computed for the subsample t = ⌊τ1T⌋ + 1, . . . , ⌊τ2T⌋. The corresponding

ubsample analogue of the full sample Eicker–White tEWzx statistic in (14) can be defined similarly and will be denoted
EW
zx (τ1, τ2).

In practice τ1 and τ2 are unknown and so, like in Demetrescu et al. (2022), we base tests on suitable functionals of
equences of subsample statistics. These need to be agnostic of the data to avoid any endogenous selection bias and any
9
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test formed from them must be such that multiple testing issues are also avoided. Given we are testing the null of no
predictability against the alternative of predictability in at least one subsample of the data, an approach based on the
maximum (in the case of two-sided and right-tailed tests) or minimum (in the case of left-sided tests) of the sequence
of subsample predictability statistics would seem appropriate. Common choices of such agnostic sequences of statistics
include forward and reverse recursive sequences and rolling sequences. Tests based on the forward recursive sequence
of statistics are designed to detect pockets of predictability which begin at or near the start of the full sample period,
while those based on the reverse recursive sequence are designed to detect end-of-sample pockets of predictability. For
a given window width, tests based on a rolling sequence of statistics are designed to pick up a window of predictability,
of (roughly) the same length, within the data.

The subsample IVX tests we propose are formally defined as follows. We will outline these for the case of IVX statistics
omputed with conventional standard errors, but these can also be implemented with Eicker–White standard errors by
eplacing tzx(·, ·) with tEWzx (·, ·) throughout.

• The sequence of forward recursive statistics is given by {tzx(0, τ )}τL≤τ≤1, where the warm-in parameter τL ∈ (0, 1)
s chosen by the user. The forward recursive regression approach uses ⌊TτL⌋ start-up observations and calculates the
equence of subsample predictive regression statistics tzx(0, τ ) for t = 1, . . . , ⌊τT⌋, with τ travelling across the interval
τL, 1]. An upper-tailed test can then be based on the maximum taken across this sequence, viz,

T F
U := max

τL≤τ≤1
{tzx(0, τ )}. (18)

he corresponding left-tailed test can be based on the minimum across this sequence, denoted T F
L , and a two-tailed test

an be based on the corresponding maximum taken over the sequence of (tzx(0, τ ))2 statistics, denoted T F
2 .

The sequence of backward recursive statistics is given by {tzx(τ , 1)}0≤τ≤τU with τU ∈ (0, 1) chosen by the user. Here one
alculates the sequence of subsample predictive regression statistics tzx(τ , 1) for t = ⌊τT⌋ + 1, . . . , T , with τ travelling
cross the interval [0, τU ]. Analogously to the forward recursive case, an upper-tailed test can again be based on the
aximum from this sequence,

T B
U := max

0≤τ≤τU
{tzx(τ , 1)} (19)

hile corresponding lower-tailed tests and two-sided tests can be formed from the statistics T B
L and T B

2 , defined
nalogously to the forward recursive case.

The sequence of rolling statistics is given by {tzx(τ , τ + ∆τ )}0≤τ≤1−∆τ where the user-defined window fraction ∆τ ∈

0, 1). Here one calculates the sequence of subsample statistics tzx(τ , τ +∆τ ) for t = ⌊τT⌋+1, . . . , ⌊τT⌋+⌊T∆τ⌋, where
T∆τ⌋ is the window width, with τ travelling across the interval [0, 1−∆τ ]. An upper-tailed test can again be based on
he maximum from this sequence,

T R
U := max

0≤τ≤1−∆τ
{tzx(τ , τ +∆τ )} (20)

hile corresponding lower-tailed tests and two-sided tests can again be formed from the statistics T R
L and T R

2 , defined
nalogously to the recursive cases.

emark 10. The full sample IVX statistic tzx of (12) is contained within the forward recursive, backward recursive, and
olling sequences of statistics, by setting τ = 1, τ = 0, and ∆τ = 1. ♢

emark 11. Subsample implementations of the multiple predictor IVX Wald tests discussed in Remark 9 can also be
efined in an analogous fashion to T F

U , T B
U and T R

U of (18), (19) and (20), respectively. Here, defining the subsample
nalogue of the IVX Wald statistic WR

zx computed over the data subsample t = ⌊τ1T⌋ + 1, . . . , ⌊τ2T⌋, as WR
zx(τ1, τ2),

e can consider tests which reject for large values of the maxima from analogous forward recursive, backward recursive
nd rolling sequences of such subsample statistics, which we will denote WR

F , W
R
B and WR

R , respectively. ♢

Tests based on sequences of subsample statistics have also been proposed in the literature on testing for episodic
ubbles; see, for example, Phillips et al. (2015). Pavlidis et al. (2017) propose tests for episodic bubbles in foreign exchange
arkets based on the right-sided IVX t-ratios of Kostakis et al. (2015) applied to Fama regressions estimated over a rolling
equence of subsamples of the data. Their proposed test rejects the no bubble null hypothesis if any of the subsample
tatistics in the rolling sequence exceeds a given critical value. For size-controlled inference, they base their test on a
onservative critical value obtained using a Bonferroni correction, adjusting the nominal significance level for the number
f statistics in the sequence. Given that this number will generally be quite large (for given T , the number of statistics in
he sequence will be larger the smaller the rolling window width, ⌊T∆τ⌋), Pavlidis et al. (2017) acknowledge that this
pproach will deliver a conservative test. The subsample maximum tests outlined above avoid the need for conservative
esting methods and so would be expected to deliver more powerful bubble detection tests than those proposed in Pavlidis
t al. (2017).
10
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Demetrescu et al. (2022) also consider tests for episodic predictability based on the maxima from corresponding
equences of rolling and recursive subsample implementations of a 2SLS predictability statistic proposed in Breitung
nd Demetrescu (2015). It can be seen from Lemma S.6 of Demetrescu et al. (2022) and its proof that, under strong
ersistence and for any subsample of the type analysed there, the 2SLS t statistic with a heteroskedasticity-consistent

standard error is distributed under the null in large samples as the product of a χ (1) variate6 and a random sign that
are statistically dependent in general, where the distribution of the random sign depends on the localisation parameter
c. Moreover, neither the bootstrap studied by Demetrescu et al. (2022) nor the residual wild bootstrap studied in this
paper can be validly applied to the 2SLS t statistic as the former fails to replicate the dependence structure of the χ (1)
variate and the random sign, whereas the latter cannot mimic the distribution of the random sign as a function of c.
Valid (asymptotic and bootstrap) tests can be based on the squared 2SLS t statistics (as this eliminates the random sign),
but doing so precludes meaningful testing against one-sided predictability. In contrast, the subsample IVX-based tests
and their bootstrap implementations proposed here can be validly used to test against either one-sided or two-sided
alternatives as we show below, and so can be used to test against directed alternatives in cases where the predictor has a
natural sign predicted by theory, as with the testing problem considered in Pavlidis et al. (2017) where a bubble implies
a positive slope coefficient.

3.3. Asymptotic theory

In this section we now provide limiting distribution theory for the IVX statistics from Sections 3.1 and 3.2.

Proposition 1. Consider the model in (1)–(3) and let Assumptions 2 and 3 hold. Then under the local alternative H1,b(·) of
(6):

(i) Under Assumption 1.1, as T → ∞

tzx(τ1, τ2) ⇒

Mξu(τ2) − Mξu(τ1) + κ2
∫ τ2
τ1

b(s)d[Mv](s)√
κ2

τ2−τ1
([Mu](τ2) − [Mu](τ1)) ([Mv](τ2) − [Mv](τ1))

:= G1(b, τ1, τ2);

T F
U ⇒ sup

τ∈[τL,1]
{G1(b, 0, τ )} := GF

1,U (b);

T B
U ⇒ sup

τ∈[0,τU ]
{G1(b, τ , 1)} := GB

1,U (b);

T R
U ⇒ sup

τ∈[0,1−∆τ ]
{G1(b, τ , τ +∆τ )} := GR

1,U (b).

ii) Under Assumption 1.2, and with ϵ < min{1 − η, 1
2η} in Assumption 3,

tzx(τ1, τ2) ⇒
Mzu(τ2) − Mzu(τ1)√

1
τ2−τ1

([Mu](τ2) − [Mu](τ1)) ([Mv](τ2) − [Mv](τ1))

+

√
2ω2

a

∫ τ2
τ1

b(s)d[Mv](s) +
∫ τ2
τ1

(Jc,H(s) − Jc,H(τ1, τ2))b(s)dJc,H(s)√
1

τ2−τ1
([Mu](τ2) − [Mu](τ1)) ([Mv](τ2) − [Mv](τ1))

:= G2(b, τ1, τ2);

T F
U ⇒ sup

τ∈[τL,1]
{G2(b, 0, τ )} := GF

2,U (b);

T B
U ⇒ sup

τ∈[0,τU ]
{G2(b, τ , 1)} := GB

2,U (b);

T R
U ⇒ sup

τ∈[0,1−∆τ ]
{G2(b, τ , τ +∆τ )} := GR

2,U (b),

where a and η are the parameters defining the IVX filter in (4), ω and κ2 are as defined in Section 2, and Jc,H(τ1, τ2) :=
1

τ2−τ1

∫ τ2
τ1

Jc,H(s)ds. The results for tzx(τ1, τ2) hold for any given fixed values of τ1 and τ2, 0 ≤ τ1 < τ2 ≤ 1.

emark 12. Corresponding representations for the limiting distributions of the left-sided T F
L , T B

L and T R
L statistics under

he conditions of Proposition 1 can be obtained by replacing the sup operator by the inf operator in the representations
iven in Proposition 1, and with an obvious notation we denote these limiting distributions as GF

j,L(b), G
B
j,L(b) and GR

j,L(b),
= 1, 2, respectively. Similarly, representations for the limiting distributions of the two-sided statistics T F

2 , T B
2 and T R

2 ,
enoted GF

j,2(b), G
B
j,2(b) and GR

j,2(b), j = 1, 2, respectively, can be obtained by squaring the limiting quantities over which
he supremum is taken in the expressions in Proposition 1. ♢

6 If a random variable is χ2(1) distributed, then its positive square root obeys a χ (1) distribution.
11
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Remark 13. Part (ii) of Proposition 1, which relates to the case where xt is strongly dependent, imposes a further
restriction on the degree of persistence permitted in the conditional variances via the additional requirement that
ϵ < min{1− η, 1

2η}. This restriction therefore entails that ϵ < 1/3 (with this maximum upper bound for ϵ corresponding
to the use of an IVX filter with η = 2/3). Recalling, for example, that parametric GARCH models are such that ϵ = 0, it
seems likely that this additional restriction would not be restrictive in practice. ♢

Remark 14. The results in Proposition 1 establish the asymptotic local power functions of the tests based on the
subsample and full sample IVX-based statistics (the latter obtained by setting τ2 = 1 and τ1 = 0 in the limiting
representations for tzx(τ1, τ2)) from Sections 3.1 and 3.2, respectively, under the local alternative H1,b(·). These local power
functions depend, in general, on any heteroskedasticity and/or weak autocorrelation (short-run dynamics) present in the
errors and differ according to whether xt is weakly or strongly persistent. In the strongly persistent case they also depend
on the parameter a used in the IVX filter and on the local-to-unity parameter, c . For the full sample tzx test these results
therefore complement those provided in Kostakis et al. (2015) and Magdalinos (2020) which apply only under the null
hypothesis. From Proposition 1 it can be seen that the full sample tzx test exhibits non-trivial power against the class of
time-varying local alternatives we consider in this paper; that is, it has power to detect predictive episodes. In the case
where, for some constant b ̸= 0, b(s) = b for all s, the results in Proposition 1 provide the asymptotic local power functions
of the tests against the alternative of (local) predictability with a fixed slope coefficient across the full sample. ♢

Remark 15. The limiting null distributions of the statistics obtain from the results in Proposition 1 on setting b(s) = 0 for
all s. Doing so, the limiting null distributions of the individual statistics tzx(τ1, τ2) can be seen to be (pointwise) normal.
For example, under strong persistence, we have for the full-sample statistic that

tzx ⇒
Mzu(1)

√
[Mu](1)[Mv](1)

=

∫ 1
0

√
[Mu]

′(s)[Mv]
′(s)dB(s)

√
[Mu](1)[Mv](1)

d
= N

(
0,

∫ 1
0 [Mu]

′(s)[Mv]
′(s)ds∫ 1

0 [Mu]
′(s)ds

∫ 1
0 [Mv]

′(s)ds

)
.

t can then be seen that in the unconditionally homoskedastic case where H is constant, the limiting null distribution of
zx is standard normal under strong persistence, and hence that of (tzx)2 is χ2

1 . This holds regardless of any conditional
eteroskedasticity present in the innovations. In the weakly persistent case, however, we have that

tzx ⇒
Mξu(1)√

κ2[Mu](1)[Mv](1)
d
= N

(
0,

[Mξu](1)
κ2[Mu](1)[Mv](1)

)
whereby it follows that the variance of the limiting distribution of tzx will in general depend on any conditional
eteroskedasticity and/or short-run dynamics (the latter through the parameter κ2) present, even where H is constant.
n the other hand, κ2 drops out of this expression under conditional homoskedasticity of ψt , even if H is time-varying.

For further details see the proof of Lemma 4 in the supplementary appendix. ♢

Remark 16. The limiting null distributions of the subsample-based statistics, T F
j , T B

j and T R
j , j ∈ {U, L, 2}, all depend,

in general, in a highly complicated way on nuisance parameters arising from any heteroskedasticity and (in the weakly
dependent case) serial correlation present in (ut , vt )′ and on whether xt is strongly or weakly persistent. While, as we
show below in Proposition 2, these dependencies can be removed from the limiting null distribution of the full sample
statistic by using Eicker–White standard errors, this is not true of the subsample-based statistics. ♢

As discussed in Remark 15, the standard tzx statistic, while having a limiting null distribution that is free of nuisance
parameters when xt is strongly persistent and the innovations are unconditionally homoskedastic, does not in general have
a pivotal limiting null distribution when xt is weakly persistent. The non-pivotal nature of the limiting null distribution
of tzx under conditional heteroskedasticity in the case of a weakly persistent predictor motivated Kostakis et al. (2015)
to also consider the Eicker–White statistic tEWzx in (14). In Proposition 2 we demonstrate that the limiting (marginal) null
distribution of the subsample Eicker–White statistic tEWzx (τ1, τ2) is standard normal under the conditions of Proposition 1
and regardless of whether xt is weakly dependent or near-integrated.

Proposition 2. Under the conditions of Proposition 1, and for any given fixed values of τ1 and τ2, tEWzx (τ1, τ2) ⇒ N(0, 1), and
hence (tEWzx (τ1, τ2))2 ⇒ χ2

1 , under the null hypothesis, H0, regardless of whether Assumption 1.1 or Assumption 1.2 holds.

Remark 17. As a consequence of Proposition 2 the full-sample tEWzx statistic of (14) is seen to have a standard normal
limiting null distribution under H0 regardless of whether xt is weakly or strongly persistent. The standard normality of the
limiting null distribution of tEWzx has previously been shown to hold by Kostakis et al. (2015) under their Assumption INNOV
and by Magdalinos (2020) under his Assumption M, both of which assume unconditional homoskedasticity. The result in
Proposition 2 therefore establishes that this result holds under the much more general conditions of Assumption 3, which
includes: (i) the case where H is non-constant such that the innovations are unconditionally heteroskedastic, and (ii) the
case where the sequence ψt exhibits conditional heteroskedasticity of very general form; see again the discussion in
Remarks 4 and 5. ♢
12
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Remark 18. Provided the vector (ut , v
′
t )

′ satisfies an obvious (k+1)-dimensional generalisation of Assumption 3, then the
multiple predictor full sample Wald statistic, WR

zx of Remark 9, when implemented with Eicker–White standard errors, can
be shown to have a χ2

q limiting null distribution regardless of whether xt is strongly or weakly persistent. The limiting null
distributions of the corresponding subsample-based statistics, WR

F , W
R
B and WR

R , of Remark 11 will, like the corresponding
subsample-based tests for a scalar predictor, xt , discussed in this section, have limiting null distributions which will, in
general, depend in a highly complicated way on nuisance parameters arising from any heteroskedasticity and (in the
weakly dependent case) serial correlation present in (ut , v

′
t )

′ and on whether xt is strongly or weakly persistent. ♢

4. Bootstrap IVX tests

As the results in Section 3.3 show, implementing tests based on either the full sample tzx statistic from Section 3.1 or
the subsample-based T F

j , T B
j and T R

j , j = U, L, 2, statistics from Section 3.2 will require us to address the fact that their
limiting null distributions will, in general, depend on nuisance parameters arising from heteroskedasticity and/or serial
correlation present in the data, and on whether the predictor xt−1 is weakly dependent or near-integrated.

To that end, we will consider two bootstrap resampling schemes for tzx, T F , T B and T R. The first, a residual wild
bootstrap [RWB], is outlined in Algorithm 1. In Algorithm 2 we then outline how the fixed regressor wild bootstrap [FRWB]
employed by Demetrescu et al. (2022) can also be used with the full sample and subsample IVX statistics discussed in
this paper.7 Although we will not formally establish large sample validity here, the RWB could also be validly employed
in connection with the corresponding 2SLS tests of Demetrescu et al. (2022).

Algorithm 1 (Residual Wild Bootstrap).

tep 1: Fit the predictive regression to the sample data (yt , xt−1)′ to obtain the residuals ût , t = 1, . . . , T , using any of the
two choices outlined below (13).

tep 2: Fit by OLS an autoregression of order p + 1 to xt ; viz,

xt = m̂ +

p+1∑
j=1

âjxt−j + v̂t

and compute the OLS residuals v̂t , t = p + 1, . . . , T . Set v̂t = 0 for t = 1, . . . , p.
tep 3: Generate bootstrap innovations

(
u∗
t , v

∗
t

)′
:=
(
Rt ût , Rt v̂t

)′, t = 1 . . . , T , where Rt , t = 1, . . . , T , is a scalar i.i.d.(0, 1)
sequence with E(R4

t ) < ∞, which is independent of the sample data.
tep 4: Define the bootstrap data (y∗

t , x
∗

t−1)
′, where y∗

t = u∗
t (so that the null hypothesis is imposed on the bootstrap y∗

t )
and where x∗

t is generated according to the recursion

x∗

t =

p+1∑
j=1

âjx∗

t−j + v∗

t , t = 1, . . . , T

with initial conditions x∗

0 = · · · = x∗
−p = 0. Create the associated bootstrap IVX instrument, z∗

t , via z∗

0 = 0 and
z∗
t =

∑t−1
j=0 ϱ

j∆x∗

t−j, t = 1, . . . , T , where ϱ is the same value used in constructing the original IVX instrument, zt .
tep 5: Using the bootstrap sample data,

(
y∗
t , x

∗

t−1, z
∗

t−1

)′, in place of the original sample data, (yt , xt−1, zt−1)
′, construct

the bootstrap analogues of the tzx(τ1, τ2), T F
j , T B

j and T R
j , j = U, L, 2, statistics from Section 3.2. Denote these

bootstrap statistics as t∗zx(τ1, τ2), T
∗,F
j , T ∗,B

j and T ∗,R
j , j = U, L, 2.

tep 6: Taking T F
U to illustrate, a bootstrap p-value is then computed as p∗

1,T := 1 − G∗

1,T (T
F
U ), where G∗

1,T (·) denotes the
conditional (on the original sample data) cumulative distribution function (cdf) of T ∗,F

U . The bootstrap test, run at
the λ significance level, based on T F

U is therefore defined such that it rejects H0 if p∗

1,T < λ. Bootstrap p-values for
the other tests are similarly obtained.

Algorithm 2 (Fixed Regressor Wild Bootstrap).

tep 1: As Step 1 in Algorithm 1.
tep 2: Generate bootstrap innovations u∗

t := Rt ût , t = 1 . . . , T , where Rt satisfies the same conditions as given in Step 3
of Algorithm 1.

tep 3: For t = 1, . . . , T , define the bootstrap data y∗
t = u∗

t (so that the null hypothesis is imposed on the bootstrap y∗
t ).

7 To save space we outline our proposed bootstrap procedures for the case where conventional standard errors are used and where the finite
sample correction term of Kostakis et al. (2015) is not employed; cf. footnote 5. Bootstrap implementations of the tests with the finite sample
correction term can instead be used without altering any of the large sample properties given in this section. Moreover, bootstrap implementations
of the IVX tests based around Eicker–White standard errors may also be considered and share the same asymptotic validity properties as the
bootstrap tests based on conventional standard errors.
13
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tep 4: As detailed in Step 5 of Algorithm 1, but where the original sample data, (yt , xt−1, zt−1)
′ are instead replaced by

the fixed regressor bootstrap sample data,
(
y∗
t , xt−1, zt−1

)′.
tep 5: As Step 6 of Algorithm 1.

Remark 19. A key difference between the RWB and FRWB outlined in Algorithms 1 and 2, respectively, surrounds the
generation of the bootstrap analogue data for xt and, hence, zt . In the FRWB scheme one calculates the bootstrap statistics
in Step 4 using the data

(
y∗
t , xt−1, zt−1

)′; that is, y∗
t is generated exactly as in Algorithm 1, but the observed outcomes on

x := [x0, x1, . . . , xT ]′ and z := [z0, z1, . . . , zT ]′ are treated as a fixed regressor and fixed instrument vector, respectively.
As such, while the RWB rebuilds into the bootstrap data (an estimate of) the correlation between the innovations ut and
vt through Step 3 of Algorithm 1 (it is crucial in doing so that the same Rt is used to multiply both ût and v̂t ), the FRWB
does not. This is an important distinction because, as the simulation results we report in Section 5 will show, the finite
sample behaviour of the IVX statistics is heavily dependent on the correlation between ut and vt in the case where xt
is strongly persistent. As a result we find that the RWB delivers considerably better finite sample performance than the
FRWB in the case where xt is strongly persistent. ♢

Remark 20. A further difference between the RWB and the FRWB is that because one creates bootstrap analogues of xt and
zt , x∗

t and z∗
t respectively, one implicitly has to use an estimate of ρ in doing so. Under Assumption 1.2 (strong persistence)

it is well known that the associated local-to-unity parameter, c , cannot be consistently estimated. Consequently, when xt
is strongly persistent the bootstrap data on x∗

t will not be generated with the same local-to-unity parameter as the original
data xt . For the FRWB this issue does not arise as the original data on xt are used in calculating the bootstrap statistics.
However, the IVX statistics instrument xt−1 by zt−1, and their bootstrap analogue statistics instrument x∗

t−1 by z∗

t−1, where
zt and z∗

t are, by construction, both mildly integrated processes regardless of the value of c under Assumption 1.2. There
is therefore no necessity for the estimate of c from Step 2 to be consistent in order to validly implement the RWB in
Algorithm 1. Notice that this would not be true under Assumption 1.2 if we were bootstrapping the standard OLS t-
statistic from (1) because this statistic does not instrument xt by a variable of lower persistence and, as result, has a
limiting null distribution which depends on c. ♢

Remark 21. It could also be possible to implement a moving block bootstrap [MBB] based scheme, similar to that
used in Fan and Lee (2019), for the IVX-based tests considered here. An outline of this algorithm can be found in the
supplementary appendix. We conjecture that this MBB procedure is asymptotically valid provided H is constant such
that the innovations were unconditionally homoskedastic. To account for unconditional heteroskedasticity a block wild
adaptation of this bootstrap could be employed and this is also outlined in the Supplementary Appendix. We will not
pursue either of these methods further here as in unreported simulations we found them to perform poorly in finite
samples relative to the RWB-based tests. ♢

Remark 22. With simple modifications, the RWB of Algorithm 1 can be implemented for the multiple regressor full
sample Wald statistic, WR

zx of Remark 9, and the corresponding subsample-based statistics, WR
F , W

R
B and WR

R , of Remark 11.
In Step 2 of Algorithm 1 a vector autoregression of order p+ 1 is fitted to xt to obtain the residuals v̂t with the residuals
from these collected into v̂t . In Step 3 one then calculates the bootstrap innovations

(
u∗
t , v

∗′
t

)′
=
(
Rt ût , Rt v̂

′

t

)′, t = 1, . . . , T .
In Step 4 one generates the bootstrap data y∗

t = u∗
t imposing the null, together with the bootstrap predictor vector, x∗

t ,
by the recursion based on the coefficient estimates obtained in Step 2. The bootstrap instruments, z∗

t , are derived from
x∗
t according to the same IVX filter used to obtain z t from xt . The RWB statistics are then computed from the bootstrap

sample data,
(
y∗
t , x

∗

t−1, z
∗

t−1

)′. The FRWB of Algorithm 2 can also be modified to allow for multiple regressors by using
the bootstrap sample data,

(
y∗
t , xt−1, z t−1

)′ in Step 4. Provided the conditions outlined in Remark 18 hold, the FRWB and
RWB-based tests for multiple regressors will share analogous asymptotic validity properties to the bootstrap tests in the
case of a single regressor established below. ♢

In Proposition 3 we demonstrate the large sample validity of the RWB and FRWB implementations of the IVX tests
from Algorithms 1 and 2, respectively. In particular, these are shown to correctly replicate the first order asymptotic null
distributions of the IVX statistics under both the null and local alternatives. For the RWB-based tests this result requires
a further restriction to hold on the fourth moments of the innovations in the case where xt is weakly persistent. This
additional restriction is not required for the asymptotic validity of the FRWB-based tests.

Proposition 3. Consider the model in (1)–(3) and let Assumptions 2 and 3 hold. Then under the local alternative H1,b(·) of
(6):

(i) Under Assumption 1.1,

(a) For the bootstrap statistics generated according to the RWB scheme in Algorithm 1, provided E[(ψ1ψ
′

1) ⊗

(ψ−iψ
′

−j)] = 0 for all natural i ̸= j, it holds that t∗zx(τ1, τ2)
w
⇒p G1(0, τ1, τ2) for fixed 0 ≤ τ1 < τ2 ≤ 1, and

T ∗,F w
⇒ GF (0), T ∗,B w

⇒ GB (0) and T ∗,R w
⇒ GR (0), in each case for j = U, L, 2.
j p 1,j j p 1,j j p 1,j

14
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(b) For the bootstrap statistics generated according to the FRWB scheme in Algorithm 2, t∗zx(τ1, τ2)
w
⇒p G1(0, τ1, τ2)

for fixed 0 ≤ τ1 < τ2 ≤ 1, and T ∗,F
j

w
⇒p GF

1,j(0), T
∗,B
j

w
⇒p GB

1,j(0) and T ∗,R
j

w
⇒p GR

1,j(0), in each case for j = U, L, 2.

ii) Under Assumption 1.2, and with ϵ < min{η, 1
2 } in Assumption 3, and regardless of whether the bootstrap statistics are

generated according to the RWB scheme in Algorithm 1 or the FRWB scheme in Algorithm 2, t∗zx(τ1, τ2)
w
⇒p G2(0, τ1, τ2)

for fixed 0 ≤ τ1 < τ2 ≤ 1, and T ∗,F
j

w
⇒p GF

2,j(0), T
∗,B
j

w
⇒p GB

2,j(0) and T ∗,R
j

w
⇒p GR

2,j(0), in each case for j = U, L, 2.

Remark 23. A comparison of the limiting results for the bootstrap statistics in Proposition 3 with those given for
the corresponding statistics in Proposition 1 demonstrates the usefulness of the RWB and FRWB procedures from
Algorithms 1 and 2, respectively; as the number of observations increases, the bootstrapped statistics have the same
first-order limiting null distributions as the corresponding original test statistic.8 For this result to hold for the RWB
statistics, however, it is seen that fourth moments of the form E[(ψ1ψ

′

1) ⊗ (ψ−iψ
′

−j)] for natural i ̸= j should not
ontribute to the quadratic variation of the process Mξu. The reason is that in the RWB world the mixed fourth moments
∗
[(R2

tψtψ
′

t ) ⊗ (Rt−iRt−jψt−iψ
′

t−j)] = 0 by construction for all positive natural i ̸= j, and hence, these do not contribute
o the quadratic variation of the RWB analogue of Mξu. As with the conditions placed on {ψt} by Assumption 3.2,
his assumption is not tied to any specific parametric model. Even where this condition is violated, the impact on the
asymptotic) size of the resulting RWB test might still be relatively small, given that the quantities E[(ψ1ψ

′

1)⊗ (ψ−iψ
′

−j)],
or all natural i ̸= j, only constitute part of the quadratic variation of Mξu and it is this latter quantity which the bootstrap
imit needs to reproduce. A well known class of models which violate this condition are GARCH models with non-zero
everage effects. We will explore the impact of such a model on the finite sample size behaviour of the RWB tests in
ection 5. ♢

emark 24. In the case of the RWB, the asymptotic validity result in Proposition 3 requires knowledge of the true
utoregressive lag length, p, used in Step 2 of Algorithm 1. In practice p, will be unknown. This can be selected in the
sual way using a consistent information criterion such as the Bayes Information Criterion (BIC) or Hannan–Quinn [HQ]
nformation criterion without affecting the stated asymptotic validity results for the RWB. A less parsimonious information
riterion, such as the Akaike Information Criterion [AIC] could also be used. Furthermore, we conjecture that the RWB tests
ould still be asymptotically valid for more general linear process innovations of the form discussed in Remark 1, provided
sieve-type device is used in Step 2 whereby the truncation lag for the fitted autoregression is allowed to increase at a
uitable rate with the sample size, e.g. ⌊κ(T/100)1/4⌋, for a positive constant κ . A formal proof of this conjecture is beyond
he scope of the present paper but constitutes an interesting topic for future research. Along these lines, in unreported
imulations we found that the lag length fitted in Step 2 has rather little bearing on the power of the resulting bootstrap
ests. It should also be stressed that no choice of truncation lag is required in connection with the FRWB outlined in
lgorithm 2. ♢

emark 25. Although, as Proposition 3 shows, the RWB and FRWB are asymptotically equivalent, to first-order, to each
ther and to the limiting null distributions of the corresponding asymptotic statistics, they can be shown to differ in
igher-order terms. In particular, Demetrescu and Hosseinkouchack (2021) demonstrate that in the strongly persistent
ase the second-order term in a Taylor expansion of the full-sample IVX statistic is a function of c. In preliminary work
e have found that the FRWB fails to replicate this second-order term entirely, while the RWB, conditional on the data,
eplicates a similar functional to the second-order term but with ĉ (the implied estimate of c obtained from Step 2 of
lgorithm 1) replacing the true c. So although the RWB does not correctly replicate the second-order term from the
imiting null distribution of the IVX statistic it replicates part of it and this would be anticipated to effect a reduced
ensitivity to c in the finite sample size properties of the RWB test relative to the FRWB test, a prediction borne out by
he simulations results in Section 5. A full treatment of this issue is beyond the scope of the present paper, but constitutes
useful topic for further research. ♢

emark 26. A consequence of the results in Proposition 3, using the same arguments as in the proof of Theorem
in Hansen (2000), is that for each of the tests the bootstrap p-values are (asymptotically) uniformly distributed

under the unit root null hypothesis, H0, leading to tests with (asymptotically) correct size, thereby establishing the
asymptotic validity of the bootstrap tests. In the case of the FRWB, this validity result is achieved without the practitioner
needing to have knowledge of whether xt is weakly or strongly persistent and holds regardless of any autocorrelation
or heteroskedasticity present in ut and vt satisfying Assumption 3. For the RWB this is also true, provided the condition
E[(ψ1ψ

′

1) ⊗ (ψ−iψ
′

−j)] = 0 for all natural i ̸= j holds. A further consequence of the result in Proposition 3 for t∗zx(τ1, τ2),
setting τ1 = 0 and τ2 = 1, is therefore that under the null the RWB and FRWB bootstrap implementations of the full
sample tzx test deliver asymptotically valid (by which we mean that the bootstrap p-values are asymptotically invariant
to any nuisance parameters under the null) inference under Assumption 3 (or the restricted version thereof in the case
of the RWB scheme) without the need for Eicker–White standard errors. ♢

8 Observe that the condition placed on ϵ in part (ii) of Proposition 3 is less restrictive than that imposed for part (ii) of Proposition 1 regardless
of the value of η used in the IVX filter and therefore this result holds for all DGPs such that Proposition 1 holds.
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Remark 27. A further implication of Proposition 3 is that the bootstrap IVX tests from Algorithms 1 and 2 will admit
the same asymptotic local power functions under H1,b(·) as the corresponding (infeasible) size-adjusted tests based on the
orresponding original IVX statistic. ♢

emark 28. As discussed in Remark 23, a key difference between the large sample properties of the RWB and FRWB
s that the former can only be validly applied in the case where xt is weakly persistent if the mixed fourth moments
E[(ψ1ψ

′

1)⊗ (ψ−iψ
′

−j)] with i ̸= j do not contribute to the quadratic variation of the process Mξu. However, as we will see
in the simulations in Section 5, the RWB delivers considerably better finite sample performance than the FRWB when xt is
strongly persistent, while the two display similar performance when the degree of persistence in xt is weaker. In principle
one might use the sample data on xt to decide which of the RWB and FRWB to use. In particular, one could adopt the RWB
of Algorithm 1 unless the sample data suggested the persistence in xt was relatively weak. This idea has previously been
advocated in the predictability testing literature by Elliott et al. (2015) who propose a procedure which switches between
a weighted average power test where xt is strongly persistent and the standard OLS t-test from (1) when xt is weakly
persistent. The switching mechanism they adopt is to use the OLS t-test when ĉ ≥ 130 and the weighted average power
test otherwise, where ĉ is an estimate of the local-to-unity parameter, c. A similar rule could be used here, whereby we
use the RWB unless ĉ exceeds some specified value in which case we use the FRWB. An obvious estimate of c , based on
the autoregressive estimates from Step 2 of Algorithm 1, is ĉ := T (1 −

∑p
j=1 âj). This rule ensures that, with probability

approaching one, the RWB would not be chosen in large samples when xt was weakly dependent, and so this hybrid
bootstrap will share the asymptotic validity result enjoyed by the FRWB in the weak persistence case. ♢

Remark 29. In practice the cdf G∗

1,T (·) of the bootstrap T ∗,F
U statistic, and the corresponding cdfs for the other statistics,

required in Step 6 of Algorithm 1 and Step 5 of Algorithm 2 will be unknown but can be approximated in the usual way
through numerical simulation. To illustrate, again for the case of the T F

U statistic, this is achieved by generating B bootstrap
(conditionally) independent statistics, say T ∗,F

U,b , b = 1, . . . , B, each computed as in Algorithm 1 above. The simulated

bootstrap p-value for the test is then computed as p̃∗

1,T = B−1∑B
b=1 I

(
T ∗,F
U,b > T F

U

)
and is such that p̃∗

1,T
a.s.
→ p∗

1,T as B → ∞,

where
a.s.
→ denotes almost sure convergence. An approximate standard error for p̃∗

1,T is given by (p̃∗

1,T (1 − p̃∗

1,T )/B)
1/2.

Simulated bootstrap critical values can also be obtained; e.g. for the T F
U statistic, a λ level bootstrap critical value, cvλ,B

say, can be calculated as the upper tail λ percentile from the order statistic formed from the B bootstrap statistics, T ∗,F
U,b ,

b = 1, . . . , B. The resulting bootstrap test, which rejects H0 if T F
U > cvλ,B, will have asymptotic size that for sufficiently

large B will be as close as desired to λ. ♢

5. Monte Carlo simulations

We now discuss the results from a detailed Monte Carlo study into the finite sample properties of IVX-based
predictability tests. In Section 5.1 for the case of a single predictor and Section 5.2 for multiple predictors, we compare the
properties of the full sample tests of Kostakis et al. (2015) based on asymptotic critical values with their RWB and FRWB
bootstrap implementations developed in this paper. A comparison of the subsample bootstrap IVX tests proposed in this
paper with their 2SLS counterparts from Demetrescu et al. (2022) is made in Section 5.3. For all statistics, OLS residuals
are used in computing the standard errors. All simulations are preformed in MATLAB, versions R2018b and R2020a, using
the Mersenne Twister random number generator. Results are reported for tests run at the 5% nominal significance level.
Unless otherwise stated, the results are based on B = 999 bootstrap replications, and 10,000 Monte Carlo replications.

5.1. Single predictor regressions — full sample tests

We first consider the case where a single predictor, xt−1, is included in the predictive regression. Results are reported
for the IVX test of Kostakis et al. (2015) both with and without Eicker–White corrected standard errors, tEWzx and tzx,
respectively; these statistics were computed exactly as detailed in Section 3.1 with the finite sample correction term,
Ξ , (see footnote 5) included using a Bartlett kernel with bandwidth T 1/3 as recommended by Kostakis et al. (2015) —
this choice was made in all of the numerical experiments and empirical applications reported in this paper. We will
compare these with their RWB and FRWB bootstrap analogues, denoted t∗,RWB

zx and t∗,FRWB
zx , described in Algorithms 1

and 2, respectively. In the context of the RWB the autoregressive lag length used in Step 2 of Algorithm 1 was chosen
applying the BIC over p ∈ {0, . . . , ⌊4(T/100)0.25⌋}. The bootstrap statistics are all based on conventional standard errors
and all include the finite sample correction term. Our analysis consists of testing the null hypothesis of no predictability,
H0 : β = 0, in (1) in the context of a constant parameter prediction model, so that βt = β , for all t = 1, . . . , T . We
will consider tests directed against both one-sided alternatives, left-tailed tests for H1 : β < 0, and right-tailed tests for
H1 : β > 0, together with two-sided tests for H1 : β ̸= 0.

5.1.1. Empirical size
To investigate the finite sample size properties of tzx, tEWzx , t∗,RWB

zx and t∗,FRWB
zx under the null hypothesis of no

predictability, we generate data according to (1)–(3) with β = β = 0 for all t = 1, . . . , T . We initialised the autoregressive
t
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process characterising the dynamics of the putative predictor, xt , in (3) at ξ0 = 0, and considered a wide range of values for
the autoregressive parameter ρ in (3) covering stationary, near-integrated and mildly explosive predictors; in particular,
we set ρ = 1 − c/T with c ∈ {−5,−2.5, 0, 2.5, 5, 10, 25, 50, 75, 100, 125, 150, 200, 250}. All results reported, both in
the main text and in the supplementary appendix, are for sample sizes T = 250 and T = 1000. In total, for the single
predictor case, we consider 11 distinct classes of DGP. For the sake of space we will present Tables of results for two of
these DGPs in this section. A summary of the results for the other 9 DGPs will also be given, with the full details of these
DGPs and the associated tables of results for these cases given in the supplementary appendix.

Main results
The first DGP (DGP1) we will consider corresponds to (1)–(3) with the innovation vector (ut , vt)

′ drawn from an i.i.d.

bivariate Gaussian distribution with mean vector zero and covariance matrix Σ =

[
1 φ

φ 1

]
, where φ corresponds to

the correlation between ut and vt . Results from DGP1 for φ = −0.95, −0.90, and −0.50 are reported in Table 1.9 Results
for tests run at the 1% and 10% significance levels are qualitatively similar and can be found in Tables D.1–D.3 of the
supplementary appendix. Additional results for φ = 0 can also be found in Table D.4.

The second DGP (DGP2) we will consider is one designed to be such that the regularity conditions needed for the
validity of the RWB when xt is weakly persistent are violated. The DGP we consider is a well known model where the
conditional variance of the innovations (ut , vt)

′ follows a stationary ARCH model with leverage effects and is of the form(
yt
xt

)
=

(
0

ρxt−1

)
+

(
ut
vt

)
=

(
0

ρxt−1

)
+

(
1 0
1 1

)
ψt (21)

with

ψt =

(
at
et

)
=

(
ε1t

√
1 +

1
2a

2
t−1I{at−1<0}

ε2t

)
and (ε1t , ε2t )′ ∼ NIID(0, I2). The AR parameter ρ is again set equal to 1 − c/T .

DGP2 satisfies our assumptions of finite fourth moments of ψt and martingale approximability of ψtψ
′

t (with ϵ = 0).
owever, and crucially, the quadratic variation of Mξu depends on,

h2
11h

2
21b1b2 E(a

2
t at−1at−2) = ρ3 E(a2t at−1at−2)

=
ρ3

8
E |ε1|

3 E
{
|a1|

[√(
1 +

1
2
a21

)3

− 1
]}

> 0 (22)

or ρ > 0; see the proof of Lemma 4. This model therefore violates the limiting condition that M∗

ξu
d
= Mξu

which is necessary and sufficient for the validity of the RWB in the case where xt is weakly persistent. Specifically,
the non-zero term in (22) is absent from the quadratic variation of M∗

ξu in the limiting distribution of the RWB
bootstrap statistic when xt is weakly persistent; cf. Remark 23. Therefore, results will be reported only for c ∈

{5, 10, 25, 50, 75, 100, 125, 150, 200, 250}. Recall, however, that this limiting condition is not required for the asymptotic
validity of the FRWB statistic. Results from DGP2 are reported in Table 2; additional results for tests run at the 1% and
10% significance levels can be found in Table D.5 of the supplementary appendix.

Consider first the results for the homoskedastic DGP1. A comparison of the results in Table 1 for φ = −0.95, −0.90, and
−0.50, respectively, shows that when the innovations are homoskedastic the endogeneity correlation parameter, φ, has
relatively little impact on the size properties of the two-sided tests, at least for cases where the autoregressive parameter
c is positive and not close to zero. Here there is relatively little difference between the tests based on asymptotic critical
values and the corresponding RWB and FRWB bootstrap tests. For all of these cases the two-sided tests display finite
sample size close to the nominal level. However, where xt is mildly explosive with c = −5 there is a tendency to undersize
in tzx, tEWzx and t∗,FRWB

zx for φ = −0.95 and φ = −0.90 which is largely redressed by t∗,RWB
zx . For 0 ≤ c ≤ 10 slight oversizing

is also seen for both φ = −0.95 and φ = −0.90 with tzx, tEWzx and t∗,FRWB
zx which is again largely eliminated by t∗,RWB

zx .
A different picture emerges for the one-sided implementations of the tests. The one-sided tzx, tEWzx and t∗,FRWB

zx tests
display severe size distortions for c < 50 when φ = −0.95. Specifically, for φ = −0.95 the left-tailed tzx, tEWzx and
t∗,FRWB
zx tests display very significant undersizing, while their right-tailed counterparts are severely oversized (for instance
when c < 10 empirical size is in most cases more than double the nominal size). The size distortions observed for these
one-sided tests decrease, other things equal, as |φ| decreases, but significant size distortions are still observed even for
φ = −0.5. We also observe that the empirical rejection frequencies of the one-sided tzx, tEWzx and t∗,FRWB

zx tests under
DGP1 are all very similar to each other for given values of φ and c. Consequently, the FRWB based implementations
of the one-sided IVX tests do not appear to offer any tangible improvement on the finite sample size properties of the

9 Notice that, because we report results for both left-tailed, right-tailed and two-tailed tests, it is not necessary to report results for positive
values of φ; cf. Campbell and Yogo (2006, p. 30).
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Table 1
0 and T = 1000. DGP1 (homoskedastic IID innovations):

-sided tests
B t∗,FRWB

zx tEWzx tzx t∗,RWB
zx t∗,FRWB

zx tEWzx tzx
250 T = 1000

8 0.038 0.044 0.039 0.040 0.030 0.032 0.031
8 0.040 0.048 0.044 0.037 0.042 0.043 0.042
7 0.051 0.057 0.053 0.041 0.050 0.050 0.049
3 0.058 0.062 0.060 0.050 0.056 0.057 0.058
4 0.058 0.063 0.060 0.052 0.056 0.058 0.058
5 0.060 0.066 0.060 0.055 0.061 0.063 0.062
6 0.056 0.060 0.058 0.052 0.056 0.057 0.056
1 0.051 0.054 0.052 0.051 0.053 0.054 0.053
9 0.047 0.052 0.049 0.051 0.052 0.054 0.052
9 0.048 0.052 0.050 0.051 0.051 0.053 0.052
0 0.049 0.053 0.051 0.050 0.051 0.052 0.052
1 0.049 0.054 0.052 0.050 0.052 0.053 0.051
0 0.048 0.054 0.050 0.052 0.051 0.052 0.051
9 0.048 0.053 0.050 0.050 0.051 0.051 0.051

5 0.036 0.044 0.038 0.041 0.032 0.034 0.033
7 0.042 0.047 0.044 0.037 0.040 0.043 0.041
8 0.052 0.057 0.053 0.043 0.048 0.049 0.048
5 0.059 0.062 0.061 0.050 0.056 0.057 0.057
4 0.059 0.064 0.060 0.051 0.058 0.059 0.058
5 0.057 0.065 0.061 0.054 0.059 0.061 0.060
4 0.055 0.060 0.057 0.052 0.056 0.056 0.055
9 0.050 0.054 0.052 0.051 0.053 0.054 0.052
8 0.049 0.053 0.049 0.051 0.053 0.053 0.053
9 0.048 0.052 0.050 0.052 0.052 0.052 0.053
2 0.050 0.054 0.052 0.051 0.052 0.053 0.053
9 0.050 0.054 0.052 0.051 0.052 0.054 0.052
9 0.048 0.052 0.050 0.049 0.050 0.053 0.051
9 0.049 0.054 0.049 0.050 0.050 0.051 0.050

8 0.043 0.055 0.042 0.047 0.042 0.043 0.041
9 0.050 0.059 0.051 0.043 0.047 0.047 0.045
8 0.051 0.057 0.053 0.045 0.049 0.050 0.048
2 0.054 0.059 0.055 0.050 0.052 0.053 0.052
2 0.055 0.059 0.057 0.050 0.053 0.054 0.053
2 0.053 0.057 0.055 0.050 0.052 0.054 0.054
9 0.050 0.054 0.052 0.049 0.050 0.052 0.051
9 0.050 0.054 0.050 0.054 0.052 0.053 0.053
9 0.049 0.054 0.052 0.053 0.053 0.054 0.053
0 0.048 0.054 0.052 0.052 0.052 0.053 0.052
1 0.050 0.055 0.050 0.052 0.052 0.052 0.053
1 0.049 0.054 0.052 0.052 0.052 0.053 0.054
9 0.049 0.055 0.052 0.052 0.052 0.053 0.053
9 0.049 0.053 0.050 0.050 0.050 0.051 0.051

Wild bootstrap (RWB) and fixed regressor wild bootstrap

18
Empirical rejection frequencies at 5% significance level of one-sided (left and right tail) and two-sided predictability tests, for sample sizes T = 25
yt = βxt−1 + ut , xt = ρxt−1 + wt andwt = ψwt−1 + vt , where β = 0, ρ = 1 − c/T , ψ = 0 and (ut , vt )

′
∼ NIID(0,Σ ), with Σ = [1 φ; φ 1].

φ c Left-sided tests Right-sided tests Two

t∗,RWB
zx t∗,FRWB

zx tEWzx tzx t∗,RWB
zx t∗,FRWB

zx tEWzx tzx t∗,RWB
zx t∗,FRWB

zx tEWzx tzx t∗,RWB
zx t∗,FRWB

zx tEWzx tzx t∗,RWzx

T = 250 T = 1000 T = 250 T = 1000 T =

−0.95 −5 0.046 0.004 0.004 0.003 0.045 0.002 0.003 0.003 0.046 0.074 0.080 0.073 0.039 0.064 0.065 0.064 0.04
−2.5 0.045 0.000 0.000 0.001 0.046 0.000 0.000 0.000 0.041 0.094 0.097 0.093 0.041 0.092 0.092 0.091 0.03
0 0.041 0.001 0.001 0.001 0.042 0.001 0.001 0.001 0.053 0.105 0.114 0.110 0.050 0.103 0.104 0.102 0.04
2.5 0.062 0.005 0.005 0.005 0.060 0.006 0.006 0.006 0.064 0.112 0.116 0.115 0.059 0.107 0.108 0.107 0.05
5 0.068 0.010 0.011 0.010 0.068 0.013 0.014 0.013 0.062 0.107 0.116 0.112 0.059 0.105 0.106 0.106 0.05
10 0.064 0.019 0.019 0.018 0.064 0.022 0.021 0.021 0.062 0.097 0.102 0.099 0.059 0.097 0.098 0.098 0.05
25 0.057 0.029 0.030 0.028 0.061 0.030 0.030 0.031 0.057 0.078 0.084 0.080 0.055 0.081 0.082 0.081 0.05
50 0.056 0.034 0.036 0.035 0.057 0.035 0.035 0.035 0.052 0.067 0.072 0.067 0.051 0.070 0.071 0.070 0.05
75 0.056 0.037 0.038 0.037 0.055 0.039 0.039 0.038 0.053 0.064 0.068 0.065 0.051 0.067 0.068 0.067 0.04
100 0.054 0.038 0.040 0.038 0.055 0.040 0.040 0.040 0.053 0.061 0.065 0.062 0.051 0.065 0.066 0.065 0.04
125 0.054 0.039 0.042 0.041 0.054 0.041 0.042 0.041 0.052 0.060 0.063 0.060 0.051 0.063 0.063 0.063 0.05
150 0.055 0.043 0.046 0.042 0.053 0.043 0.043 0.043 0.053 0.056 0.060 0.059 0.051 0.061 0.061 0.061 0.05
200 0.054 0.046 0.048 0.045 0.053 0.044 0.044 0.042 0.050 0.054 0.056 0.053 0.050 0.059 0.060 0.059 0.05
250 0.054 0.048 0.051 0.048 0.053 0.044 0.044 0.044 0.051 0.051 0.055 0.053 0.050 0.059 0.059 0.059 0.04

−0.90 −5 0.049 0.004 0.005 0.004 0.047 0.003 0.003 0.003 0.044 0.074 0.079 0.073 0.041 0.066 0.067 0.064 0.04
−2.5 0.047 0.000 0.001 0.001 0.048 0.000 0.000 0.000 0.042 0.093 0.100 0.094 0.040 0.092 0.091 0.090 0.03
0 0.039 0.001 0.001 0.001 0.040 0.002 0.002 0.002 0.054 0.104 0.112 0.108 0.051 0.098 0.101 0.100 0.04
2.5 0.059 0.005 0.005 0.005 0.058 0.007 0.007 0.007 0.063 0.110 0.114 0.112 0.058 0.103 0.106 0.105 0.05
5 0.066 0.010 0.011 0.010 0.065 0.014 0.014 0.014 0.062 0.106 0.114 0.109 0.059 0.100 0.102 0.102 0.05
10 0.063 0.019 0.020 0.020 0.063 0.023 0.022 0.022 0.061 0.094 0.100 0.096 0.059 0.094 0.095 0.094 0.05
25 0.055 0.030 0.032 0.030 0.059 0.031 0.031 0.031 0.058 0.078 0.082 0.079 0.055 0.080 0.080 0.078 0.05
50 0.054 0.033 0.036 0.034 0.056 0.036 0.036 0.036 0.053 0.067 0.071 0.068 0.051 0.069 0.070 0.069 0.04
75 0.054 0.038 0.038 0.037 0.054 0.039 0.040 0.039 0.052 0.064 0.067 0.064 0.052 0.066 0.066 0.066 0.04
100 0.050 0.037 0.040 0.039 0.054 0.040 0.041 0.040 0.052 0.062 0.065 0.062 0.053 0.065 0.064 0.064 0.04
125 0.053 0.041 0.043 0.041 0.055 0.044 0.043 0.043 0.053 0.059 0.062 0.059 0.051 0.060 0.062 0.062 0.05
150 0.054 0.043 0.045 0.044 0.055 0.045 0.044 0.044 0.052 0.056 0.059 0.058 0.051 0.061 0.060 0.060 0.04
200 0.054 0.046 0.049 0.047 0.054 0.045 0.046 0.046 0.051 0.055 0.058 0.055 0.053 0.059 0.061 0.061 0.04
250 0.055 0.048 0.051 0.048 0.052 0.046 0.046 0.046 0.048 0.049 0.053 0.051 0.051 0.058 0.059 0.060 0.04

−0.50 −5 0.053 0.019 0.024 0.019 0.050 0.018 0.018 0.018 0.046 0.072 0.079 0.072 0.047 0.070 0.072 0.070 0.04
−2.5 0.050 0.006 0.007 0.005 0.048 0.004 0.004 0.004 0.053 0.101 0.107 0.101 0.047 0.095 0.096 0.094 0.04
0 0.030 0.005 0.006 0.006 0.032 0.009 0.008 0.008 0.061 0.097 0.102 0.096 0.056 0.091 0.090 0.091 0.04
2.5 0.045 0.016 0.017 0.016 0.049 0.018 0.018 0.018 0.061 0.090 0.096 0.090 0.058 0.087 0.087 0.086 0.05
5 0.050 0.023 0.024 0.023 0.054 0.024 0.024 0.025 0.061 0.081 0.087 0.085 0.057 0.082 0.081 0.080 0.05
10 0.052 0.030 0.031 0.030 0.053 0.031 0.031 0.031 0.056 0.074 0.078 0.076 0.053 0.073 0.074 0.074 0.05
25 0.050 0.036 0.038 0.036 0.053 0.039 0.039 0.039 0.053 0.065 0.069 0.067 0.052 0.064 0.065 0.063 0.04
50 0.048 0.039 0.040 0.039 0.051 0.042 0.042 0.043 0.054 0.063 0.066 0.064 0.049 0.057 0.059 0.058 0.04
75 0.050 0.042 0.045 0.043 0.053 0.045 0.045 0.045 0.055 0.060 0.065 0.062 0.049 0.056 0.057 0.057 0.04
100 0.049 0.043 0.045 0.043 0.052 0.047 0.046 0.045 0.054 0.059 0.063 0.061 0.049 0.056 0.059 0.057 0.05
125 0.051 0.044 0.046 0.045 0.051 0.045 0.046 0.045 0.055 0.059 0.061 0.059 0.049 0.054 0.056 0.055 0.05
150 0.051 0.046 0.048 0.047 0.052 0.046 0.046 0.046 0.055 0.057 0.061 0.058 0.050 0.055 0.055 0.054 0.05
200 0.052 0.047 0.050 0.048 0.053 0.047 0.046 0.046 0.053 0.054 0.057 0.054 0.050 0.054 0.054 0.054 0.04
250 0.053 0.049 0.052 0.051 0.052 0.048 0.047 0.046 0.051 0.052 0.055 0.051 0.050 0.053 0.054 0.055 0.04

Note: tzx and tEWzx correspond to the statistics presented in (12) and (14) of the main text, and t∗,RWB
zx and t∗,FRWB

zx are the corresponding residual
(FRWB) implementations of (12) computed as described in Algorithms 1 and 2 of Section 4.
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Table 2
Empirical rejection frequencies at 5% significance level of one-sided (left and right tail) and two-sided predictability tests,

for sample sizes T = 250 and T = 1000. DGP2 (ARCH with Leverage Effects):
(

yt
xt

)
=

(
0

ρxt−1

)
+

(
ut
vt

)
=(

0
ρxt−1

)
+

(
1 0
1 1

)
ψt with ψt = (at ; et )′ = (ε1t

√
1 +

1
2 a

2
t−1I{at−1<0}; ε2t )′ and (ε1t , ε2t )′ ∼ NIID(0, I2).

c t∗,RWB
zx t∗,FRWB

zx tEWzx tzx t∗,RWB
zx t∗,FRWB

zx tEWzx tzx
T = 250 T = 1000

Left-sided tests
5 0.062 0.099 0.106 0.107 0.060 0.097 0.101 0.102
10 0.059 0.088 0.096 0.099 0.059 0.090 0.092 0.093
25 0.059 0.076 0.081 0.092 0.055 0.076 0.075 0.080
50 0.058 0.067 0.074 0.089 0.053 0.066 0.068 0.074
75 0.060 0.062 0.069 0.090 0.055 0.064 0.066 0.075
100 0.060 0.061 0.067 0.089 0.057 0.061 0.063 0.076
125 0.059 0.060 0.066 0.088 0.058 0.061 0.062 0.078
150 0.059 0.058 0.063 0.085 0.059 0.061 0.063 0.080
200 0.057 0.056 0.060 0.082 0.061 0.060 0.063 0.085
250 0.053 0.053 0.057 0.078 0.062 0.062 0.063 0.088

Right-sided tests
5 0.058 0.014 0.015 0.015 0.057 0.013 0.013 0.013
10 0.059 0.021 0.022 0.024 0.057 0.021 0.020 0.021
25 0.061 0.030 0.030 0.039 0.057 0.030 0.030 0.034
50 0.062 0.037 0.038 0.053 0.058 0.037 0.037 0.045
75 0.061 0.039 0.041 0.061 0.061 0.041 0.040 0.052
100 0.059 0.037 0.040 0.065 0.060 0.041 0.041 0.055
125 0.057 0.039 0.041 0.067 0.061 0.042 0.042 0.058
150 0.059 0.040 0.042 0.071 0.060 0.042 0.042 0.062
200 0.056 0.041 0.045 0.072 0.062 0.042 0.042 0.067
250 0.054 0.043 0.047 0.075 0.062 0.042 0.044 0.071

Two-sided tests
5 0.053 0.055 0.065 0.063 0.051 0.056 0.058 0.058
10 0.051 0.053 0.060 0.062 0.053 0.056 0.058 0.059
25 0.056 0.052 0.057 0.069 0.053 0.053 0.055 0.059
50 0.059 0.050 0.056 0.081 0.054 0.051 0.052 0.062
75 0.061 0.051 0.057 0.090 0.059 0.052 0.054 0.069
100 0.063 0.053 0.058 0.095 0.061 0.055 0.054 0.074
125 0.062 0.051 0.059 0.098 0.064 0.054 0.055 0.079
150 0.060 0.051 0.057 0.097 0.064 0.054 0.056 0.084
200 0.058 0.050 0.056 0.096 0.068 0.053 0.056 0.089
250 0.053 0.051 0.054 0.092 0.068 0.052 0.055 0.097

Note: tzx and tEWzx correspond to the statistics presented in (12) and (14) of the main text, and t∗,RWB
zx and t∗,FRWB

zx are
the corresponding residual Wild bootstrap (RWB) and fixed regressor wild bootstrap (FRWB) implementations of (12)
computed as described in Algorithms 1 and 2 of Section 4.

asymptotic tests, as might be expected in the light of Remark 19. In contrast, both the left-sided and right-sided tests
implemented with the RWB offer empirical size properties close to the nominal level throughout.

Consider next the results in Table 2 for DGP2 where the conditional variance of (ut , vt )′ follows an ARCH model with
everage effects. The results show that in general the two-sided versions of the tEWzx , t∗,RWB

zx and t∗,FRWB
zx tests all display

reasonable size control throughout. In contrast, significant size distortions are seen for the two-sided tzx test. The latter
finding is consistent with our discussion in Remark 15 on the non-pivotal nature of the limiting null distribution of tzx
under conditional heteroskedasticity when xt is weakly dependent. Large size distortions are also seen for the one-sided
tzx tests. Moreover, and as observed with DGP1, although the two-sided tEWzx and t∗,FRWB

zx tests show decent finite sample
size control the same is not true of the one-sided versions of these tests. In contrast the one-sided t∗,RWB

zx tests deliver
decent finite sample size control for all values of c and regardless of the sample size. Consequently, although the limiting
condition M∗

ξu
d
= Mξu formally required for the asymptotic validity of the RWB tests is not met by DGP2, the results in

Table 2 suggest that t∗,RWB
zx nonetheless displays arguably the most reliable finite sample size control among the tests

considered for data generated according to DGP2.

Summary of additional results
We also investigated the impact on the finite sample performance of the IVX statistics and their bootstrap implemen-

tations from a variety of additional empirically relevant models. Full details of the simulation DGPs considered and the
tabulated results (which appear in Tables D.7–D.42) are given in the supplementary appendix. In what follows we provide
a summary of these results:
19
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(1). We repeated the experiments in Table 1 for the case where vt follows either a positively autocorrelated (DGP3) or
negatively autocorrelated (DGP4) stationary AR(1) process. These results, which can be found in Tables D.7–D.14, were
ualitatively very similar to those reported for serially uncorrelated vt in Table 1.

(2). We consider two DGPs which include a contemporaneous one-time break of equal magnitude in the unconditional
variances of ut and vt , as in Georgiev et al. (2018) and Demetrescu et al. (2022). The first, labelled DGP5, contains an
upward change in the unconditional variances of ut and vt at the sample midpoint (Tables D.15–D.18), while the second,
labelled DGP6, contains a corresponding downward change in the unconditional variances of ut and vt (Tables D.19–D.22).

The results reported in Tables D.15 to D.22 reveal that, as expected, the two-sided IVX test with conventional standard
errors, tzx, displays significant size distortions. For example, for a 5% significance level and φ = −0.95 the rejection
frequencies observed across all values of c considered, when an upward change in variance occurs (Table D.15) are in
the range [0.064, 0.095] for T = 250 and [0.066, 0.097] for T = 1000. For a downward change in variance (Table D.19)
esults are similar ([0.017, 0.098] for T = 250 and [0.018, 0.091] for T = 1000), except for cases where c < 0 (mildly
xplosive predictors) in which case some undersizing is observed. The magnitude of these size distortions are relatively
table across φ.
In contrast, for the one-sided versions of tzx the empirical size distortions for the former worsen, other things equal,

as |φ| increases. For example, for DGP5 with T = 250 and φ = −0.95 the range of empirical rejection frequencies for the
left-sided tests is [0.003, 0.075] and for the right-sided tests [0.085, 0.151]; see Table D.15. On the other hand, for φ = 0
the left and right-sided tests rejection frequencies’ range is [0.064, 0.081]; see Table D.18.

The size distortions seen in the two-sided tzx test for DGP5 and DGP6 are significantly ameliorated by using Eicker–
White standard errors (tEWzx ) when c ≥ −2.5. However, the one-sided (left and right-sided) tEWzx tests do not improve much
relative to tzx when c ≤ 25; see Tables D.15 to D.22.

The RWB and FRWB bootstrap implementations of the two-sided tzx test both do a very good job of controlling finite
sample size in the presence of unconditional heteroskedasticity. For the one-sided tests, t∗,RWB

zx displays empirical rejection
frequencies which are again in general close to the nominal significance level considered, regardless of the values of c
and φ. In contrast, the one-sided t∗,FRWB

zx test displays significant size distortions for values of c ≤ 25; these improve as
|φ| decreases, as anticipated by the discussion in Remark 19.

(3). To further evaluate the impact of conditional heteroskedasticity we considered three further volatility specifications:
(i) a GARCH(1,1) model with either N(0, 1) (DGP7) or Student-t distributed innovations with 5 degrees of freedom [t5]
(DGP8); (ii) a GoGARCH(1,1) model, see for example (Van der Weide, 2002), allowing for either N(0, 1) (DGP9) or t5
innovations (DGP10); and (iii) an autoregressive stochastic volatility process (DGP11).

As observed earlier, the non-pivotal nature of the tzx statistic’s limiting null distribution under GARCH type conditional
heteroskedasticity is also apparent in the results in Tables D.23 to D.26 and D.27 to D.30 corresponding to DGP7 and
DGP8, respectively. These results highlight that the size distortion of the two-sided tzx statistic increases as |φ| increases
regardless of whether N(0, 1) (Tables D.23 to D.26) or Student-t innovations (Tables D.27 to D.30) are used in generating
the data. The magnitude of the size distortions is, however, considerably exacerbated when the innovations are heavy
tailed (DGP8). For instance, for N(0, 1) innovations, T = 250, φ = −0.95 and for a 5% significance level the range of
the empirical rejection frequencies for tzx is [0.042, 0.082], whereas for t5 innovations the range is [0.081, 0.167]. The
Eicker–White correction does a good job in correcting the size distortion of the two-sided tzx test regardless of whether
the innovations are N(0, 1) or Student-t distributed. In the previous example, the ranges of the rejection frequencies of
tEWzx when the innovations are N(0, 1) and t5 distributed is [0.047, 0.066] and [0.062, 0.068], respectively. The results also
show that the RWB and FRWB both display good empirical size properties in a two-sided hypothesis testing context.
However, for one-sided testing t∗,RWB

zx delivers significantly better finite sample size control than t∗,FRWB
zx when xt is

strongly persistent, while they display similar performance for weaker levels of persistence in xt . Overall t∗,RWB
zx is the

best performing test regardless of the nominal significance levels used and regardless of the underlying distribution of
the innovations. All of the other one-sided tests display serious size distortions when the predictor is strongly persistent
(c < 25), for both N(0, 1) or t5 distributed innovations.

For the GoGARCH models (DGP9 and DGP10 in Tables D.31 to D.34 and Tables D.35 to D.38, respectively), qualitatively
similar conclusions can be drawn to those discussed above for the GARCH(1,1) case albeit the magnitude of the size
distortions observed for the t∗,FRWB

zx , tEWzx and tzx tests are generally smaller.
Finally, for stochastic volatility (DGP11), the results in Tables D.39 to D.42 suggest that all of the two-sided tests display

adequate finite sample size control, with the exception of tEWzx which is oversized for T = 250, although its size properties
are improved for T = 1000. For the one-sided tests, similar conclusions are drawn as for the GARCH and GoGARCH
specifications. Specifically, t∗,FRWB

zx , tEWzx and tzx are considerably oversized when the predictor is strongly persistent and
φ = −0.95, but t∗,RWB

zx displays reliable empirical rejection frequencies, across c .

5.1.2. Finite sample local power
We next provide a brief analysis of the finite sample local power properties of one-sided and two-sided implementa-

tions of the IVX tests from Section 3.1 together with their bootstrap analogues from Section 4 and compare these with the
2SLS predictability tests of Breitung and Demetrescu (2015). To that end, we simulate data from DGP1 under a variety of
local alternatives. For the sake of space, we only report results for φ = {−0.95,−0.50}, for a sample of size T = 250 and
20
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for four values of the persistence parameter, c , associated with xt ; specifically, c = {0, 10, 25, 50}. The slope parameter
β is parameterised in (1) as β = b/T , with results reported for b ∈ {−20,−19, . . . , 19, 20}.

Due to the large finite sample size distortions seen with the one-sided tzx, tEWzx and t∗,FRWB
zx tests discussed in Section 5.1.1

for these combinations of c and φ, we only report local power results for the two-sided tzx, t∗,RWB
zx and t∗,FRWB

zx tests and
for the one-sided t∗,RWB

zx test all of which have well controlled empirical size under DGP1. Results are also reported for
the two-sided test of Breitung and Demetrescu (2015), denoted t∗,2SLSzx , implemented with a fixed regressor wild bootstrap
(the asymptotic validity of which is established in Demetrescu et al., 2022) using the choice of instruments recommended
by Breitung and Demetrescu (2015), namely the type-I fractionally integrated instrument z1t := (1 − L)0.51

+
xt and type-II

sine instrument z2t := sin( π2 t/T ). The finite sample local power curves of these tests are graphed in Fig. 1. Recalling from
Remark 27 that the RWB and FRWB implementations of the IVX tests share the same asymptotic local power functions
as the corresponding (size-adjusted) asymptotic IVX test, Fig. 1 shows that this prediction from the limiting theory is
borne out well even for a sample of size T = 250 with the power curves of the bootstrap and asymptotic two-sided tests
being almost indistinguishable from each other for all of the values of c considered. The power dominance of the IVX
tests, both one-sided and two-sided, over the two-sided 2SLS t∗,2SLSzx test is clearly seen in Fig. 1, confirming the findings
of Harvey et al. (2021). For alternatives where β < 0 the gains from using the left-tailed IVX tests over the two-sided
IVX tests are also clearly seen in Fig. 1, with the magnitude of the power gains from using the one-sided tests generally
larger for φ = −0.95 vis-à-vis φ = −0.5, and greater the larger is c . For alternatives where β > 0, the gains from using a
right-tailed IVX test over the two-tailed IVX test are much less obvious than for testing against β < 0, but are nonetheless
still apparent for c ≥ 10 when φ = −0.50 and for c ≥ 25 when φ = −0.95.

.2. Multiple predictors — full sample tests

We now investigate the finite sample behaviour of the asymptotic IVX test and its RWB and FRWB bootstrap
ounterparts in cases where multiple predictors are included in the predictive regression. For our analysis we use the
ame DGP as is considered in Xu and Guo (2021); that is,

yt = α + x′

t−1β + ut , t = 1, . . . , T , (23)

xt = Γxt−1 + vt , t = 0, . . . , T , (24)

here xt := (x1,t , . . . , xK ,t )′ is a K × 1 vector of predictor variables, β is a K × 1 vector of parameters, α = 0.25, Γ is the
× K diagonal matrix Γ := diag(ρ, . . . , ρ), and (ut , v

′
t )

′
∼ NIID(0,Σ ) where

Σ =

⎛⎜⎜⎜⎜⎜⎝
σ 2
u σu,v1 0 · · · 0

σu,v1 σ 2
v1

0 · · · 0
0 0 σ 2

v2
· · · 0

...
...

...
. . .

...

0 0 0 · · · σ 2
vK

⎞⎟⎟⎟⎟⎟⎠ (25)

with σ 2
u = 0.037, σu,v1 = −0.035, σ 2

v1
= · · · = σ 2

vK
= 0.045. Notice, therefore, that the first predictor, x1,t is endogenous

(with an endogeneity correlation parameter φ1 = −0.83), while the remaining predictors x2,t , . . . , xK ,t are exogenous. For
the autoregressive parameter we again consider ρ = 1 − c/T with c ∈ {−5, 2.5, 0, 2.5, 5, 10, 25, 50, 75, 100, 125, 150,
200, 250}.

Table 3 reports the empirical rejection frequencies at a 5% significance level, for T = 250 and T = 1000 and for
K ∈ {1, 3, 5, 10}, for the Wald-type IVX tests Wzx and W EW

zx discussed in Remark 9, together with the RWB and FRWB
bootstrap implementations of Wzx, denoted W ∗,RWB

zx and W ∗,FRWB
zx , respectively, computed as described in Remark 22

(results for 1% and 10% significance levels are reported in Table D.6 of the supplementary appendix). In the context of
W ∗,RWB

zx , in Step 2 of the multivariate version of Algorithm 1 autoregressions of length p + 1 were fitted to each element
of xt with p selected in each case by BIC using the same range of values of p as were used in the simulations for a single
predictor.

For K = 1 (the single predictor case), and in line with what was observed in Section 5.1.1 for the two-sided tests
based under DGP1, all of the Wald-based IVX statistics display empirical rejection frequencies close to the nominal level.
Again, W ∗,RWB

zx displays the smallest size distortions among the tests considered. For instance, for a 5% significance level
the rejection frequencies of W ∗,RWB

zx are in the range [0.042, 0.056] for T = 250 and [0.038, 0.056] for T = 1000, whereas
for W ∗,FRWB

zx , W EW
zx and Wzx these are [0.037, 0.058], [0.045, 0.064], and [0.040, 0.060], respectively, when T = 250 and

[0.034, 0.060], [0.036, 0.060] and [0.035, 0.059], respectively, when T = 1000.
However, it is as K increases that the significant advantage of the RWB becomes clear, particularly in the case where

the predictors are strongly persistent. It is clear from the results that the W ∗,FRWB
zx , W EW

zx and Wzx tests are not reliable
when the predictors are strongly persistent. The rejection frequencies we observe for Wzx are in line with those reported
in Xu and Guo (2021) who also show that the quality of the prediction from the asymptotic theory deteriorates as the
number of regressors, K , specified in the predictive regression increases. For instance, for K = 3 and c < 0; for K = 5 and
c < 2.5; and for K = 10 and c < 25, even for T = 1000 all three of these tests display rejection frequencies larger than
21
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Fig. 1. Power plots for two-sided t∗,FRWB
zx , t∗,2SLSzx , tzx , t∗,RWB

zx tests and the one-sided t∗,RWB
zx tests for predictability. Data generated from DGP1 with

= {−0.95,−0.50} and for T = 250.
ote: The green line corresponds to the rejection frequencies of the left-sided and right-sided RWB-based t-tests in the relevant tail: i.e., for b < 0
he line corresponds to the left-sided test, while for b > 0 it corresponds to the right-sided test.
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Table 3
Empirical rejection frequencies at 5% significance level of Wald-type IVX-based tests for predictability in a multiple
predictive regression context with K ∈ {1, 3, 5, 10} predictors, for sample sizes T = 250 and T = 1000.
K c W ∗,RWB

zx W ∗,FRWB
zx W EW

zx Wzx W ∗,RWB
zx W ∗,FRWB

zx W EW
zx Wzx

T = 250 T = 1000

1 −5 0.048 0.037 0.045 0.040 0.043 0.034 0.036 0.035
−2.5 0.042 0.045 0.051 0.048 0.038 0.042 0.043 0.043
0 0.050 0.053 0.059 0.056 0.045 0.051 0.051 0.050
2.5 0.054 0.058 0.062 0.059 0.051 0.054 0.056 0.056
5 0.056 0.058 0.064 0.060 0.054 0.059 0.060 0.058
10 0.054 0.056 0.061 0.056 0.055 0.060 0.060 0.059
25 0.055 0.057 0.060 0.057 0.056 0.059 0.059 0.059
50 0.054 0.055 0.059 0.056 0.055 0.059 0.059 0.058
75 0.055 0.055 0.060 0.056 0.056 0.057 0.058 0.058
100 0.055 0.054 0.059 0.055 0.056 0.056 0.057 0.058
125 0.055 0.054 0.058 0.054 0.056 0.056 0.057 0.056
150 0.053 0.051 0.056 0.052 0.055 0.053 0.055 0.055
200 0.052 0.051 0.056 0.052 0.054 0.054 0.053 0.052
250 0.051 0.049 0.055 0.051 0.053 0.052 0.053 0.053

3 −5 0.085 0.352 0.385 0.366 0.083 0.346 0.354 0.346
−2.5 0.097 0.176 0.193 0.177 0.092 0.162 0.159 0.155
0 0.075 0.105 0.117 0.104 0.071 0.096 0.096 0.095
2.5 0.067 0.086 0.103 0.090 0.063 0.081 0.084 0.083
5 0.059 0.077 0.095 0.083 0.060 0.076 0.079 0.077
10 0.054 0.066 0.083 0.071 0.057 0.072 0.078 0.075
25 0.052 0.061 0.075 0.066 0.056 0.064 0.067 0.065
50 0.053 0.057 0.070 0.061 0.053 0.058 0.061 0.059
75 0.053 0.053 0.069 0.058 0.050 0.055 0.058 0.055
100 0.051 0.053 0.069 0.057 0.048 0.052 0.054 0.051
125 0.052 0.054 0.070 0.058 0.048 0.049 0.054 0.050
150 0.052 0.054 0.069 0.058 0.047 0.049 0.052 0.049
200 0.052 0.055 0.071 0.059 0.046 0.048 0.051 0.048
250 0.053 0.055 0.071 0.060 0.046 0.048 0.050 0.048

5 −5 0.074 0.402 0.466 0.421 0.074 0.398 0.408 0.403
−2.5 0.091 0.239 0.281 0.241 0.091 0.237 0.238 0.230
0 0.082 0.157 0.186 0.156 0.085 0.152 0.154 0.148
2.5 0.069 0.120 0.156 0.129 0.069 0.118 0.126 0.117
5 0.063 0.105 0.138 0.116 0.063 0.104 0.110 0.105
10 0.062 0.086 0.120 0.098 0.058 0.089 0.096 0.092
25 0.053 0.067 0.100 0.080 0.052 0.069 0.077 0.071
50 0.052 0.059 0.089 0.069 0.049 0.057 0.064 0.059
75 0.051 0.055 0.085 0.063 0.050 0.055 0.062 0.057
100 0.049 0.053 0.082 0.062 0.051 0.056 0.060 0.057
125 0.049 0.053 0.080 0.062 0.052 0.055 0.060 0.057
150 0.046 0.052 0.078 0.061 0.051 0.055 0.059 0.056
200 0.047 0.051 0.079 0.060 0.051 0.052 0.057 0.054
250 0.044 0.049 0.077 0.058 0.051 0.052 0.058 0.054

10 −5 0.058 0.513 0.635 0.559 0.060 0.502 0.526 0.501
−2.5 0.072 0.398 0.505 0.425 0.076 0.384 0.394 0.371
0 0.087 0.306 0.406 0.324 0.091 0.295 0.300 0.280
2.5 0.075 0.238 0.342 0.262 0.078 0.229 0.244 0.224
5 0.067 0.191 0.301 0.225 0.068 0.188 0.211 0.191
10 0.060 0.141 0.244 0.175 0.061 0.147 0.166 0.151
25 0.050 0.089 0.174 0.118 0.057 0.101 0.119 0.108
50 0.048 0.067 0.142 0.091 0.057 0.081 0.096 0.085
75 0.046 0.060 0.129 0.081 0.055 0.071 0.085 0.077
100 0.046 0.056 0.120 0.077 0.055 0.066 0.080 0.071
125 0.043 0.053 0.117 0.074 0.055 0.061 0.077 0.067
150 0.042 0.052 0.116 0.071 0.052 0.058 0.075 0.064
200 0.039 0.049 0.116 0.070 0.053 0.057 0.070 0.063
250 0.036 0.050 0.116 0.072 0.051 0.055 0.070 0.061

Note: Wzx and W EW
zx are the Wald-type IVX-based statistics discussed in Remark 9 of the main text, and W ∗,RWB

zx and
W ∗,FRWB

zx are the corresponding residual Wild bootstrap (RWB) and fixed regressor wild bootstrap (FRWB) versions of
Wzx computed as described in Algorithms 1 and 2 of Section 4 of the main text.

15% at a 5% nominal level. For the smaller sample, T = 250, qualitatively similar size behaviour is observed (but with
distortions of larger magnitude) for W ∗,FRWB

zx and Wzx. However, W EW
zx becomes severely oversized as K increases, for all

values of c. For instance, for K = 10, T = 250 and a 5% significance level, the smallest empirical rejection frequencies seen
for this statistic is more than double the significance level considered. To illustrate the severity of the size distortions,
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observe from Table 3 that, for K = 10 unit root predictors (c = 0) and a 5% significance level, the empirical rejection
requencies of W ∗,FRWB

zx , W EW
zx and Wzx are 30.6%, 40.6% and 32.4%, respectively, for T = 250, and 29.5%, 30.0% and 28.0%,

respectively for T = 1000. For mildly explosive predictors, the situation is even worse with empirical size in the region
of 70% for each of W ∗,FRWB

zx , W EW
zx and Wzx when K = 10 and c = −5.

In contrast, the residual wild bootstrap based test, W ∗,RWB
zx , controls empirical size much better than the other tests

with empirical rejection frequencies acceptably close to the nominal level for all of the values of K considered. Some size
distortions remain for values of c ≤ 5, albeit unlike with the other tests these do not get appreciably worse as K increases.
Moreover, in those cases where size distortions are seen with the W ∗,RWB

zx test, these are very much smaller than those
seen for those cases with the other tests. Indeed, there are no entries in Table 3 where W ∗,RWB

zx displays an empirical size
in excess of 10%, which compares very favourably with the other tests.

Finally, although not reported here, we also investigated the finite sample behaviour of the partial IVX t-type tests
discussed in Remark 9. To summarise our findings, for both one-sided and two-sided implementations, the t-type tests
associated with the exogenous predictors, x2,t , . . . , xK ,t , all displayed qualitatively similar finite sample size properties
to those which were observed for the single predictive regression case for DGP1 with φ = 0 (see Table D.6 of the
supplementary appendix), i.e., the t-type tests display empirical rejection frequencies which are close to the nominal
significance levels considered. For the t-type tests associated with the endogenous predictor, x1,t , both one-sided and
two-sided versions of the RWB implementation of the tests continued to display good finite sample size control, regardless
of the number of predictors, K , and the value of c . In contrast, the empirical sizes of the other implementations of the
tests, including the FRWB tests, deteriorated very badly as K increased, rendering these tests highly unreliable in practice.

5.3. Subsample tests

We next summarise the findings from a Monte Carlo study of the finite sample performance of the subsample IVX-
based predictability tests proposed in Section 3.2. The full set of results can be found in the supplementary appendix: the
empirical size results in Tables D.43–D.48, and the empirical local power results in Figures D.1–D.3. Results are reported
for two-sided and one-sided tests, implemented with either the RWB or FRWB, together with the corresponding rolling,
forward and backward recursive two-sided 2SLS-based tests of Demetrescu et al. (2022) which use a type-I instrument
constructed as in (4) and the type-II sine instrument, z2t := sin( π2 t/T ), and are implemented using the FRWB. For the
recursive sequences we set τL = 1/3 and τU = 2/3, respectively, and for the rolling sequences we set ∆τ = 1/3.
The empirical size and local power simulations are based on 3000 and 1000 Monte Carlo replications, respectively, and
B = 399 bootstrap replications. All other computational aspects are as outlined previously.

5.3.1. Empirical size
The results in Tables D.43–D.48 pertain to data generated from DGP1, as described in Section 5.1.1, setting βt = 0 for

all t and ρ = 1 − c/T , with c ∈ {−5,−2.5, 0, 2.5, 5, 10, 25, 50, 75, 100, 125, 150, 200, 250}, and T ∈ {250, 1000}.
Consider first the rolling tests. The results in Tables D.43–D.44 suggest that the correlation parameter φ has relatively

little impact on the empirical size properties of the two-sided rolling tests. For c ≥ 0 there is relatively little
difference between the two-sided 2SLS test and the two-sided IVX-based tests, regardless of whether a RWB or FRWB
implementation is used with the latter, with all of the tests displaying good finite sample size control. For c < 0 (locally
explosive predictors) the two-sided FRWB IVX-based test is rather conservative while the 2SLS test is slightly over-sized.
Turning to the one-sided rolling tests, both the lower- and upper-tail RWB based IVX tests display decent finite sample
size control (the empirical sizes of the nominal 5% level lower-tailed and upper-tailed statistics across all the values of c
considered lie in the range [0.026, 0.063] and [0.029, 0.064], respectively). In contrast, the rolling upper-tail FRWB IVX-
based test displays a tendency to over-sizing, most notably when c ≥ 0 and φ = −0.95 (rejection frequencies at a nominal
5% level when T = 250 are between [0.065, 0.117] and between [0.090, 0.129] for T = 1000). This over-sizing moderates
for smaller φ; however, Table D.43 shows that for c close to zero (regardless of the sample size) significant over-sizing is
still observed in the FRWB IVX-based test. The lower-tailed FRWB IVX-based rolling test also displays notable under-sizing
when the predictor is strongly persistent, which is severe for locally explosive processes. Notice also that these patterns
of size-distortion in the one-sided FRWB IVX-based tests closely mirror the full sample FRWB (and asymptotic) IVX-based
tests under DGP1 reported in Section 5.1.1.

Turning to the recursive tests, the results in Tables D.45–D.48 show similar patterns to those observed for the rolling
tests. Specifically, for c ≥ 0 there is little to choose between the two-sided 2SLS and IVX-based tests, with all of these tests
displaying decent size control throughout. Differences again surface between the one-sided IVX-based tests: the RWB-
based implementations of the tests displaying good size control across c , while the lower- and upper-tailed forward and
backward FRWB IVX-based tests display size distortions. To illustrate the latter, the upper-tailed forward and backward
recursive FRWB IVX-based tests tend to be over-sized, particularly when for a strongly persistent predictor with a high
endogeneity correlation (e.g., for φ = −0.95, the forward recursive test displays size between [0.071, 0.088] for 0 ≤ c ≤ 25
nd the backward recursive test between [0.074, 0.091] for 0 ≤ c ≤ 10). The lower-tailed FRWB IVX-based recursive tests
re again correspondingly undersized. As with the full sample IVX tests, our simulation results strongly support using
WB implementations of the subsample IVX tests rather than the FRWB.
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5.3.2. Finite sample local power
Figure D.1 (rolling tests) and Figures D.2 and D.3 (forward and backward recursive tests) graph finite sample local

ower functions of the subsample tests for data generated from DGP (1)–(3) under local alternatives satisfying H1,b(·)
of (6). We report results for φ = −0.95 and φ = −0.5, for the homoskedastic case, σ 2

ut = σ 2
vt = 1, for T = 250

and for c = {0, 10, 25, 50}. The slope parameter in (1) is parameterised as βt = bt/T , with bt = b with b ∈

{−40,−39, . . . ,−1, 1, . . . , 39, 40} for t = 1, . . . , ⌊T/3⌋ and bt = 0 for t = ⌊T/3⌋ + 1, . . . , T , such that a window of
predictability occurs in the first third of the sample. We would therefore expect the rolling and forward recursive tests
to display more power against this DGP than the backward recursive tests.

Consider the results for the rolling tests in Figure D.1. For testing against right-tailed alternatives (or equally, against
left-tailed alternatives when φ is positive) there is little difference in general between those tests which are size-
controlled. Exceptions occur for the case where c = 0 and φ = −0.95 where the (FRWB) two-sided 2SLS-based test
is slightly more powerful than the other tests, and where c = 50 and φ = −0.50 where the one-sided RWB IVX-based
test is slightly more powerful than the two-sided 2SLS and IVX tests. The pattern is very different when testing against
left-tailed alternatives (right-tailed alternatives when φ is positive) where clear power gains over the two-sided tests are
achieved by the one-sided IVX tests, except for c = 0 where the one-sided IVX test has almost identical power to the
two-sided 2SLS-based test. The power gains for the left-sided IVX tests over the two-sided tests are larger for φ = −0.95
vis-à-vis φ = −0.50.

Turning to the forward and backward recursive tests in Figures D.2–D.3, as expected the forward recursive tests are
the more powerful against this DGP and so we will focus our discussion on those tests. In contrast to the rolling tests
discussed above, the gains to using the one-tailed IVX tests are most obvious when testing against right-sided alternatives,
and again these power gains are larger for φ = −0.95 vis-à-vis φ = −0.50. The one-sided RWB IVX-based test clearly
dominates the other tests against right-sided alternatives (noting that the FRWB IVX-based test is not size-controlled). For
left-sided alternatives the one-sided IVX tests are significantly more powerful than the two-sided IVX tests but roughly
as powerful as the two-sided 2SLS tests; albeit for c = 0 and φ = −0.95 the 2SLS test is somewhat more powerful than
the one-sided IVX test, although it should be recalled from Table D.47 that the 2SLS test is a little over-sized in this case.

6. Empirical applications

6.1. Testing for predictability in the equity premium

We first re-evaluate the predictability of the equity premium based on the predictors considered in the empirical
case studies of Welch and Goyal (2008) and Campbell and Yogo (2006), using both one-sided and two-sided bootstrap
and asymptotic tests. Specifically, we will first test for predictability in the log excess stock return, which is computed
as the log of the monthly return on the S&P 500 index (including dividends) minus the log of the risk-free rate as our
dependent variable, based on the predictors in Welch and Goyal, 2008), namely: the log dividend–price ratio (dp); the log
dividend yield (dy); the log earnings–price ratio (ep); the log dividend–payout ratio (de); the stock return variance (svar);
the book-to-market ratio (bm); the net equity expansion (ntis); the treasury bill rate (tbl); the long-term yield (lty); the
long-term return (ltr); the term spread (tms); the default yield spread (dfy); the default return spread (dfr); and inflation
(infl); see Welch and Goyal (2008) for full details on how these predictors are generated. We then subsequently revisit
the empirical analysis of Campbell and Yogo (2006) who also test for predictability in excess returns using as putative
predictors: the dividend–price ratio (dp); the earnings–price ratio (ep); the three-month T-bill rate (r3), and a measure of
the long-short yield spread (y − r1); see Campbell and Yogo (2006) for full data descriptions.10

Table 4 presents bootstrap and asymptotic p-values for both one-sided and two-sided IVX predictability tests and the
two-sided 2SLS predictability tests of Breitung and Demetrescu (2015) (again using their recommended fractional type-I
and sine type-II instruments), in each case computed from predictive regressions with a single predictor based on Welch
and Goyal’s monthly data (Panel A) and on Campbell and Yogo’s data (Panel B). The results in Panel A are obtained from
a sample of monthly data from January 1927 to December 2020 (T = 1128) and in Panel B for samples of annual data
from 1926 to 2002 (T = 77), quarterly data from the 4th quarter of 1926 to the 4th quarter of 2002 (T = 305) and
monthly data from December 1926 to December 2002 (T = 913). The asymptotic IVX and 2SLS tests are computed with
Eicker–White standard errors to allow for heteroskedasticity in the innovations. The bootstrap 2SLS test is implemented
with the fixed regressor wild bootstrap while the bootstrap IVX tests are implemented using the residual wild bootstrap,
in each case using conventional standard errors. For each predictor, Table 4 also reports both OLS and IVX estimates of
the predictive regression slope parameter, β (denoted β̂OLS and β̂IVX , respectively), together with OLS estimates of the
dominant AR root (ρ̂) for each predictor and estimates (φ̂) of the endogeneity correlation.11

Consider first Panel A. The estimated endogenity correlation is relatively small (between −0.297 and 0.185) for all of
the predictors, except dp, ep and bm for which φ̂ is large and negative: −0.980, −0.767 and −0.821, respectively. The

10 The Welch–Goyal data (updated data up to 2020) were obtained from https://sites.google.com/view/agoyal145/ and the Campbell–Yogo data
from https://sites.google.com/site/motohiroyogo/research/asset-pricing.
11 Here, ρ̂ is computed from an error correction parameterisation of an AR(p) model fitted to the predictor, in which p is chosen applying the
BIC over p ∈ {0, . . . , ⌊4(T/100)0.25⌋}, while φ̂ is the OLS estimate of the correlation of the predictive regression residuals and the residuals from the
fitted AR(p) model.
25
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Table 4
Empirical results for the Welch and Goyal (2008) and Campbell and Yogo (2006) predictive regressions.

t∗,2SLSzx t2SLS,EWzx t∗,RWB(−)
zx t∗,RWB(+)

zx t∗,RWB
zx tEW (−)

zx tEW (+)
zx tEWzx β̂OLS β̂IVX ρ̂ φ̂

PANEL A: Welch and Goyal (2008) monthly data: January 1927–December 2020
dp 0.5125 0.4916 0.5366 0.4634 0.6124 0.7450 0.2550 0.5099 0.002 0.003 0.994 −0.980
dy 0.3395 0.2578 0.8355 0.1645 0.2868 0.9254 0.0746 0.1492 0.000 0.000 1.006 −0.060
ep 0.9116 0.9107 0.8271 0.1729 0.2719 0.9142 0.0858 0.1716 0.005 0.006 0.989 −0.767
de 0.2721 0.2684 0.2236 0.7764 0.4647 0.3013 0.6987 0.6025 −0.004 −0.004 0.991 −0.073
svar 0.5812 0.5821 0.3511 0.6489 0.7107 0.3856 0.6144 0.7712 −0.159 −0.189 0.577 −0.297
bm 0.5819 0.5805 0.6720 0.3280 0.4530 0.7181 0.2819 0.5939 0.008 0.007 0.987 −0.821
ntis 0.5083 0.5061 0.0784 0.9216 0.1609 0.1170 0.8830 0.2339 −0.142 −0.141 0.981 −0.047
tbl 0.3212 0.3135 0.0340 0.9660 0.0874 0.0365 0.9635 0.0730 −0.001 −0.001 0.994 −0.053
lty 0.1145 0.1073 0.0278 0.9722 0.0703 0.0272 0.9728 0.0543 −0.001 −0.001 0.997 −0.088
ltr 0.4045 0.3992 0.9176 0.0824 0.1707 0.9180 0.0820 0.1639 0.001 0.001 0.043 0.055
tms 0.8831 0.8855 0.7883 0.2117 0.4144 0.7434 0.2566 0.5132 0.002 0.001 0.962 −0.002
dfy 0.7160 0.7121 0.4588 0.5412 0.9939 0.5019 0.4981 0.9962 0.000 0.000 0.975 −0.265
dfr 0.2367 0.2316 0.8166 0.1834 0.3740 0.8029 0.1971 0.3943 0.002 0.002 −0.102 0.185
infl 0.5870 0.5887 0.0959 0.9041 0.1874 0.0567 0.9433 0.1113 −0.004 −0.005 0.480 0.033

PANEL B: Campbell and Yogo (2006) data: 1926–2002
Annual data
dp 0.2610 0.1853 0.9807 0.0193 0.0205 0.9983 0.0017 0.0035 0.158 0.166 0.932 −0.721
ep 0.3683 0.3175 0.9780 0.0220 0.0255 0.9967 0.0033 0.0065 0.162 0.161 0.855 −0.957
r3 0.6242 0.6035 0.1178 0.8822 0.2247 0.0977 0.9023 0.1954 −0.934 −0.914 0.908 0.091
y-r1 0.5576 0.5490 0.7721 0.2279 0.4361 0.7824 0.2176 0.4351 1.743 1.570 0.626 −0.248
Quarterly data
dp 0.6747 0.6470 0.8967 0.1033 0.1296 0.9506 0.0494 0.0987 0.034 0.035 0.963 −0.942
ep 0.5878 0.5579 0.9558 0.0442 0.0544 0.9544 0.0456 0.0913 0.047 0.047 0.958 −0.986
r3 0.6767 0.6566 0.1267 0.8733 0.2742 0.1206 0.8794 0.2412 −0.233 −0.228 0.965 −0.050
y-r1 0.6590 0.6517 0.8179 0.1821 0.3378 0.7550 0.2450 0.4900 0.556 0.502 0.800 −0.119
Monthly data
dp 0.6534 0.6398 0.7974 0.2026 0.2675 0.9092 0.0908 0.1817 0.008 0.008 0.990 −0.954
ep 0.8686 0.8548 0.9467 0.0533 0.0656 0.9607 0.0393 0.0787 0.013 0.013 0.989 −0.987
r3 0.4100 0.4074 0.0834 0.9166 0.1775 0.0833 0.9167 0.1666 −0.086 −0.086 0.991 −0.058
y-r1 0.1723 0.1744 0.9348 0.0652 0.1304 0.8641 0.1359 0.2719 0.239 0.222 0.938 −0.065

Note: The columns headed t∗,2SLSzx and t2SLSzx provide p-values for the bootstrap based 2SLS tests and for the corresponding 2SLS test based on asymptotic
ritical values, respectively. The columns t∗,RWB(−)

zx , t∗,RWB(+)
zx and t∗,RWB

zx correspond to the p-values of the left-sided, right-sided and two-sided residual
ild bootstrap based IVX t-tests, respectively. The columns labelled t (−)

zx , t (+)
zx and tzx provide the p-values of the left-sided, right-sided and two-sided

VX tests computed using asymptotic critical values. β̂OLS and β̂IVX are the OLS and IVX estimates of the predictive regression slope parameter β , ρ̂
s the estimate of the largest root from an AR model fitted to the predictor, and φ̂ is the OLS estimate of the correlation of the predictive regression
esiduals and the residuals from an AR model fitted to the predictor. All bootstrap p-values were computed using 9999 bootstrap replications. Test
utcomes significant the 10% (5%) level are highlighted in bold (bold italic).

ominant estimated AR root is also close to unity for most of the predictors: ρ̂ ∈ [0.962, 1.006], with the exception of svar,
tr, dfr and infl for which ρ̂ is 0.577, 0.043, −0.102 and 0.480, respectively. Turning to the outcomes of the predictability
ests, for both dy and ep we see that the right-sided asymptotic IVX test, tEW (+)

zx , yields significant evidence of positive
predictability at the 10% level, while in both cases the two-sided tEWzx test fails to reject at the 10% level. For both of
these series the right-sided RWB t∗,RWB(+)

zx fails to reject at the 10% level suggesting that these are most likely spurious
rejections attributable to the finite-sample oversize of the tEW (+)

zx test seen in the simulations in Table 1 for strongly
persistent predictors. Among the other putative predictors, the left-sided RWB t∗,RWB(−)

zx test find evidence of (negative)
predictability at the 5% level for tbl and lty and at the 10% level for ntis, in each case statistically stronger evidence than
is provided by the corresponding two-sided t∗,RWB

zx test. Similar conclusions are drawn for the tbl and lty predictors using
the asymptotic IVX tests, while no rejections are seen with either the two-sided or one-sided asymptotic IVX tests in the
case of ntis. For ltr (infl) both the right-sided RWB t∗,RWB(+)

zx (left-sided RWB t∗,RWB(−)
zx ) test and the right-sided asymptotic

tEW (+)
zx (left-sided asymptotic tEW (−)

zx ) test find evidence of positive (negative) predictability at the 10% level, not found in
the corresponding two-sided tests. To summarise the results in Panel A, we find rather stronger evidence of predictability
when using one-sided tests, with 5 (2) of the predictors being found to be statistically significant at the 10% (5%) level
using one-sided RWB bootstrap tests, compared to 2 (0) when using the two-sided RWB bootstrap tests. Finally, consistent
with the local power results in Fig. 1, the 2SLS tests are insignificant at the 10% level for all of the predictors, regardless
of whether asymptotic or bootstrap p-values are used.

Consider next Panel B. As with the predictors in Panel A, the Campbell and Yogo (2006) predictors again appear to be
strongly persistent in general. Moreover, although φ̂ is relatively small for both r3 and y−r1 (in line with the corresponding
Welch and Goyal predictors), for dp and ep very strong negative endogeneity correlations are estimated: for monthly data
φ̂ for dp and ep is −0.954 and −0.987, respectively (reducing to −0.721 and −0.957, respectively for annual data). With
annual data, the null hypothesis of no predictability is rejected for both dp and ep at the 5% level, regardless of whether
26
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one uses right-sided or two-sided tests and for both the asymptotic and RWB implementations of the IVX test. As the
data frequency increases the strength of these rejections tends to decline. For both quarterly and monthly data in the
case of ep, both the RWB and asymptotic tests now only reject at the 10% level for the two-sided tests and at around the
5% level for right-sided tests. For dp, both the right-sided and two-sided RWB IVX-based tests fail to reject at the 10%
level; some rejections are still seen for both quarterly and monthly data with the right-sided asymptotic IVX test, albeit we
should treat the results from the latter with a degree of caution given the high persistence and large negative endogeneity
correlation observed for dp (cf Table 1). For the monthly data the left-sided RWB and asymptotic IVX tests both indicate
rejection of the null hypothesis of no predictability for r3 at the 10% level, while the right-sided RWB test also indicates
ejection of the null for y − r1 at the 10% level; in none of these cases does the corresponding two-sided version of the
est signal predictability at the 10% level. Finally, as with the results in Panel A, the 2SLS tests are insignificant at the 10%
evel for all of the predictors considered, regardless of whether asymptotic or bootstrap p-values are used.

.2. Testing for bubbles in foreign exchange rates

We next re-visit the problem of testing for speculative bubbles in the U.K. pound to U.S. dollar foreign exchange market
onsidered in Pavlidis et al. (2017), using monthly data (downloaded from the Bank of England, www.bankofengland.co.uk)
n spot and forward rates for the period from January 1999 to July 2021 (T = 271), the start date coinciding with the
ntroduction of the Euro.

Fama (1984) proposes the following regression as a basis for testing for efficiency in foreign exchange markets,

st+h − ft,h = αh + βh(ft,h − st ) + ut+h, (26)

where st+h − ft,h is typically referred to as the excess return (or forecast error) (see, for example, Maynard, 2006) and
ft,h −st is the forward premium, where st is (the log of) the spot exchange rate at time t and ft,h is (the log of) the forward
ate at time t for maturity at time t + h, h ≥ 1.

In the context of (26), as discussed in Pavlidis et al. (2017), the efficient market hypothesis corresponds to βh = 0, while
if an exchange rate bubble is present in any time period then βh > 0. Pavlidis et al. (2017) therefore apply right-tailed
olling subsample implementations of the IVX tests of Kostakis et al. (2015) to test the null hypothesis βh = 0 against
he alternative hypothesis that βh in (26) is positive in at least one subsample of the data. In the context of this testing
roblem it is important to use only right-tailed tests because, as is well known in this literature, the estimate of βh can

suffer from a severe negative finite sample bias when βh = 0; the so-called forward bias puzzle. A number of explanations
have been posited for this phenomenon including the negative correlation between the risk premium and the forward
premium; see Maynard (2003). Consequently, a two-sided test might be inappropriate as a rejection could be due to either
a downward bias effecting large negative statistics in some subsamples, or a genuine bubble episode.

Like Pavlidis et al. (2017) we report results for the three periods to maturity available in the dataset, namely, one, three,
and six months: h = {1, 3, 6}. Where h > 1 we follow Pavlidis et al. (2017, Appendix A.2, pp. 1221–1223) and estimate
the parameters of (26) using a reverse regression (Phillips and Lee, 2013) type approach. Fitting an autoregressive model
(with a constant), we found the forward premium, (ft,h − st ), to be a strongly persistent time series regardless of the
maturity period; in particular the dominant autoregressive root was estimated to be ρ̂ = 0.9635 for h = 1, ρ̂ = 0.9821
for h = 3, and ρ̂ = 0.9880 for h = 6. The estimated correlation parameter, φ̂, was found to be relatively small and
negative for h = 1, but increases in absolute value as h increases: φ̂ = −0.0861 for h = 1, φ̂ = −0.3100 for h = 3, and
φ̂ = −0.3686 for h = 6. The estimates of ρ and φ were calculated as outlined in footnote 11.

Table 5 reports bootstrap (both RWB and FRWB) p-values for the maximum rolling, and forward and backward
recursive subsample IVX statistics from Section 3.2, in each case implemented as upper-tailed (right-sided) tests, using
B = 9999 bootstrap replications. Results are reported for four values of the tuning parameters ∆τ (the window fraction
used for the sequence of rolling statistics) and τL and (1 − τU ) (the warm-in parameters for the forward and backward
recursive sequences, respectively), namely 1/6, 1/4, 1/3, and 1/2.

The results in Table 5 show that for h = 1 none of the subsample IVX tests provide evidence, at any conventional
significance level, of exuberant behaviour in the foreign exchange rate. However, for the longer maturities considered,
h = 3 and h = 6, statistically significant results are found in the case of the rolling tests, suggesting the presence of a
potential bubble. Specifically, for both ∆τ = 1/6 and 1/2 the rolling tests signal the presence of exuberant behaviour in
he foreign exchange rate, although they do not for ∆τ = {1/4, 1/3}. The strongest rejections are observed for h = 6. In
this case, the RWB based rolling tests find evidence of exuberant behaviour for all four window widths. The FRWB based
rolling tests also reject the null that β6 = 0 for all window widths, except ∆τ = 1/4. The forward and backward recursive
tests do not reject the null that βh = 0 for any of the warm-in parameters and maturities considered, suggesting that the
start and end points of the bubble episode are likely bounded away from the end points of the full sample.

Pavlidis et al. (2017) find no evidence of speculative bubbles for any of the maturity periods considered for data
covering the period January 1979 to December 2013, and so, although we consider a different sample period, it would
seem instructive to investigate where in the sample the rejections that we find above occur. To that end, Fig. 2 plots
the sequence of rolling IVX subsample statistics computed for a window fraction ∆τ = 1/2 and maturity period h = 6.
Plotted on the graph are the 5% and 10% RWB critical values for the maximum of the rolling test statistics together with
the upper-tail 5% and 10% pointwise RWB critical values. This plot indicates that the rejection of the null hypothesis
27
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Table 5
Testing for bubbles in exchange rates between 1999 and 2021. P-values for the rolling, and forward and backward
recursive statistics.

∆τ , τL, (1 − τU ) T R,RWB
U T R,FRWB

U T F ,RWB
U T F ,FRWB

U T B,RWB
U T B,FRWB

U

h = 1
1/6 0.1770 0.4929 0.8851 0.5917 0.8817 0.6292
1/4 0.2321 0.6094 0.8085 0.4214 0.8124 0.6035
1/3 0.2913 0.6451 0.7530 0.4059 0.7837 0.5769
1/2 0.1547 0.3251 0.4454 0.3517 0.6795 0.5592
h = 3
1/6 0.0498 0.0847 0.8152 0.8719 0.3858 0.3733
1/4 0.2443 0.3973 0.7681 0.7932 0.3512 0.3551
1/3 0.1126 0.2198 0.7364 0.7328 0.3275 0.3348
1/2 0.0588 0.0347 0.5129 0.6676 0.2866 0.3230
h = 6
1/6 0.0169 0.0078 0.8915 0.8628 0.2125 0.1745
1/4 0.0950 0.1390 0.8484 0.7848 0.1799 0.1497
1/3 0.0347 0.0587 0.8129 0.7575 0.1752 0.1427
1/2 0.0121 0.0010 0.6205 0.6768 0.1631 0.1419

Notes: The columns headed T R,k
U , k = RWB, FRWB, provide p-values for the residual (RWB) and fixed regressor (FRWB)

wild bootstrap based rolling (R) upper tail tests. The columns T F ,k
U , and T B,k

U , k = RWB, FRWB, correspond to forward (F )
and backward (B) recursive residual (RWB) and fixed regressor (FRWB) wild bootstrap based upper tail tests, respectively.
All bootstrap p-values were computed using 9999 bootstrap replications. Test outcomes significant at the 10% (5%) level
are highlighted in bold (bold italic).

Fig. 2. Plot of the sequence of upper-tailed rolling statistics for testing the null hypothesis of no bubble in the U.K. pound–U.S. dollar foreign
exchange market for a six month maturity (h = 6).

H0 : β6 = 0 by the maximum of the rolling tests occurs between January 2016 and November 2016 (after the end of
the sample period considered in Pavlidis et al., 2017) when a 10% significance level is considered and between February
2016 and September 2016 for a 5% significance level. The sequence of rolling statistics displays a steady and sustained
increase in magnitude from mid-2013 onwards, with the statistics exceeding the pointwise 10% (5%) significance level
between June 2015 and May 2019 (September 2015 and August 2018). These findings are, on the face of it, consistent
with a bubble episode in the U.K. pound–U.S. dollar exchange rate which collapsed at or around the time of the Brexit
vote in summer 2016.

7. Conclusions

We have extended the IVX-based predictability tests of Kostakis et al. (2015) in three directions. First, we have
shown that, provided either a suitable bootstrap implementation is employed or Eicker–White standard errors are used,
these tests still deliver asymptotically valid inference, regardless of the degree of persistence or endogeneity of the
predictor, under considerably weaker assumptions on the innovations, including quite general forms of conditional and
unconditional heteroskedasticity, than required by Kostakis et al. (2015) in their analysis. Second, we have developed
asymptotically valid residual and fixed regressor wild bootstrap implementations of the IVX tests. Simulation evidence
has been provided which demonstrates that tests based around a residual wild bootstrap resampling scheme perform
28
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particularly well in finite samples. Third, we have shown how sub-sample implementations of the IVX approach can be
used to develop asymptotically valid one-sided and two-sided tests for temporary windows of predictability.

We finish with three suggestions for further research. First, we have focused on the case of a single predictive regressor.
s we have noted, the methods we have discussed readily extend to the case of multiple regressors, provided, as assumed
n Kostakis et al. (2015), they all belong to the same persistence class. However, based on the results in this paper, we
onjecture that our bootstrap IVX tests should also retain asymptotic validity in the scenario where some of the regressors
re weakly persistent and others strongly persistent, and where the strongly persistent regressors could cointegrate. The
ractitioner would not need to know which of the regressors were weakly persistent and which were strongly persistent,
r the form of any cointegrating relations present. A formal proof of this conjecture is likely very involved but constitutes
n important next step in this research agenda, with technical material in this paper providing important groundwork.
Second, unlike Kostakis et al. (2015), we have not discussed the case of mildly integrated regressors. While we hold it

o be plausible that our results may be extended to cover the mildly integrated case, the corresponding derivations may
e quite lengthy and we leave them for further work. Among other things, one would have to consider several distinct
ases depending on whether the IVX filter depends on a coefficient which is closer to or further away from unity than
he largest autoregressive root of the predictor, together with the interplay of the true regressor’s persistence with the
ixed fourth moments of the innovations series, which, as shown by Proposition 3, is quite different under weak and
trong persistence.
Third, the finite sample efficacy of the residual wild bootstrap IVX tests proposed in this paper will depend, in part,

n the finite sample properties of the autoregressive parameter estimates obtained in Step 2 of Algorithm 1. The OLS
stimates we have employed are known to suffer from non-negligible finite sample biases. It might be useful to explore
refinement of Algorithm 1 based on the bootstrap-after-bootstrap approach of Kilian (1998) to investigate if this can

urther improve on the finite sample properties of our proposed bootstrap tests.

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.02.007.
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