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Abstract
The delayed product differentiation (DPD) recently rose as a hybrid production strategy able to overcome the main limits 
of make to stock (MTS) and make to order (MTO), guaranteeing the management of high variety and keeping low storage 
cost and quick response time by using the so-called product platforms. These platforms are a set of sub-systems forming 
a common structure from which a set of derivative variants can be efficiently produced. Platforms are manufactured and 
stocked following an MTS strategy. Then, they are customized into different variants, following an MTO strategy. Current 
literature proposes methods for platform design mainly using optimization techniques, which usually have a high compu-
tational complexity for efficiently managing real-size industrial instances in the modern mass customization era. Hence, 
efficient algorithms need to be developed to manage the product platforms design for such instances. To fill this gap, this 
paper proposes a two-step methodology for product platforms design and assessment in high-variety manufacturing. The 
design step involves the use of a novel modified algorithm for solving the longest common subsequence (LCS) problem and 
of the k-medoids clustering for the identification of the platform structure and the assignment of the variants to the platforms. 
The platforms are then assessed against a set of industrial and market metrics, i.e. the MTS cost, the variety, the customer 
responsiveness, and the variants production cost. The evaluation of the platform set against such a combined set of drivers 
enhancing both company and market perspectives is missing in the literature. A real case study dealing with the manufactur-
ing of a family of valves exemplifies the efficiency of the methodology in supporting companies in managing high-variety 
to best balance the proposed metrics.

Keywords  Operations and logistics · Industrial plants · Delayed product differentiation · Product platforms · Variety · Make 
to stock · Make to order

1  Introduction

Nowadays, the huge need of customer personalization forces 
industrial companies to move from mass production to mass 
customization, overcoming the ‘fordist’ strategy of produc-
ing a large volume of standardized ‘one-fits-all’ products 
toward multiple variants matching single customer needs 
[1. , 2. ]. Several factors drive this trend, from the customer 
need of new product functionalities to regional requirements. 
Best managing product variety positively contributes to 
expanding markets and increasing volumes and revenues. 

Conversely, these positive effects are not guaranteed when 
variety is not well-managed along the product life cycle, 
from design, to manufacturing, distribution, usage, disman-
tling, and recycling [3. ]. The investigation of the effects and 
consequences of product variety on the production systems 
is a driver for the success of industrial companies. Several 
strategies have been developed to cope with the product 
variety, acting both on the structure of the products and on 
the production strategies. Indeed, in the mass customization 
era, traditional production strategies such as make to stock 
(MTS) and make to order (MTO) show several limitations 
[4. ]. MTS meets customer needs in short lead times, but 
the larger marketing mixes make this strategy not often eco-
nomically convenient, while MTO reduces storage costs but 
customer lead times rise up [5. ]. In this context, hybrid pro-
duction strategies are introduced. The delayed product dif-
ferentiation (DPD) is among the most relevant and strives to 
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join the dual needs of high-variety and quick response time 
by using the so-called product platforms [6. , 7. ]. Accord-
ing to the original definition, a product platform is a set 
of sub-systems and interfaces forming a common structure 
from which a set of derivative variants can be produced [8. 
]. This concept is illustrated in Fig. 1. Products A, B, and C 
belong to the same product family, and they share common 
components, in red, that constitute the product platform X. 
Then, several differentiating components are assembled to 
the platform to get each product variant.

Product platforms are manufactured and stocked follow-
ing an MTS strategy. Then, they are personalized into dif-
ferent variants after the arrival of the customer order, fol-
lowing an MTO strategy, through just assembly or combined 
assembly and disassembly operations [6. ]. Among the most 
important companies that introduced product platforms, 
Sony deserves mentioning for manufacturing Walkman, in 
addition to Kodad, Black and Decker, and Hewlett-Pack-
ard [9. ]. Current literature proposes models and tools for 
product platforms design by using optimization techniques. 
However, optimization is usually able to manage and solve 
in a reasonable amount of time small instances, made of few 
product variants. This could be a significant limit, especially 
in the modern competitive industrial scenario, governed by 
mass customization and by a relevant increase in company 
production mixes. Hence, efficient algorithms need to be 
developed to best manage the product platform design for 
real-size industrial instances, characterized by a wide num-
ber of product variants. According to this background, this 
paper proposes and applies a novel two-step methodology 
for product platforms design and assessment in high-variety 
manufacturing.

The first step of the proposed methodology deals with the 
product platforms design performed combining the longest 
common subsequence (LCS) and the k-medoids cluster-
ing algorithm, which allow to identify common operation 
sequences in the product variants’ technological cycles, i.e. 
potential product platforms, and grouping the product vari-
ants according to their similarity to the identified operation 

sequences. In the second step, the identified product plat-
forms are globally assessed against a set of industrial and 
market metrics, i.e. the MTS cost, the variety, the respon-
siveness to customers, and the product variants’ production 
cost, performing a multi-scenario analysis to identify the 
best product variants partition. The novelties of the proposed 
methodology can be summarized as follows: (1) the algo-
rithm for solving the LCS problem [10. ] has been modified 
to take into account technological precedence constraints 
among operations when designing platforms; (2) a novel 
similarity index is proposed to group and assign the product 
variants to the most similar product platforms; and (3) the 
integration of four relevant industrial and market metrics for 
platform assessment. To the authors’ knowledge, the litera-
ture lacks methodologies jointly including these features. 
The application of the methodology to a real case study 
dealing with the manufacture of a family of plastic valves 
showcases its industrial relevance.

Globally, this paper is a research article proposing an 
innovative two-step methodology for product platforms 
design and assessment, thus supporting companies in 
reaching efficiency in the current mass customization era. 
The main contributions of this paper can be summarized 
as follows:

1.	 A methodology for product platforms design and assess-
ment is proposed, which requires the product variants’ 
technological cycle as input, and performs a multi-sce-
nario analysis based on the integration of four different 
industrial and market metrics.

2.	 The proposed methodology can also be used to partition 
of the production mix in product families.

3.	 The methodology allows solving large-scale problems 
thanks to the adoption of efficient algorithms (modified 
LCS and clustering).

According to the introduced background, the remain-
der of this paper is organized as follows. Section 2 reviews 
some relevant literature on the topic. Section 3 introduces 
the novel methodology for product platform design in high-
variety manufacturing and the mathematical formulation of 
the evaluation metrics. Section 4 describes the application 
of the methodology to a real industrial case study. Finally, 
Section 5 concludes the paper with final remarks and future 
opportunities for research.

2 � Literature review

A systematic literature review is performed to explore and 
analyse the literature on the topic. The main findings allow 
to organize this section into two parts. The former explores 
the problem of product variety management showing the Fig. 1   Reference illustration of a product platform
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main strategies and solutions proposed by the literature and 
implemented by industrial companies, including the DPD, 
which is deeply analysed in the second part.

2.1 � Product variety management

As highlighted by ElMaraghy et al. [3. ], the existing vari-
ety management strategies can be classified according to 
three main dimensions, i.e. (1) design, (2) planning, and 
(3) manufacturing, and applicable at components, products, 
enterprise, and market levels. The attributes of similarity and 
commonality within a set of product variants are crucial to 
successfully manage variety, with the aim to decrease the 
variety-induced complexity and the related cost. The stream 
of design for variety (DfV) was recently introduced to inte-
grate customers’ needs and their relationship with families 
of technological solutions [11. , 12. ]. In this area, quality 
function deployment (QFD) is a widespread tool to identify 
customers’ requirements and their relationship to product 
specifications [13. ]. Jose and Tollenaere [14. ] stressed the 
importance of modularity and standardization to help group-
ing product components in modules. Rizzi and Regazzoni 
[15. ] proposed the concurrent use of design methodologies, 
such as module interference matrix (MIM), design structure 
matrix (DSM), and Pugh matrix, applying them to a real 
reference product from the household appliance field getting 
significant results in terms of performance. ElMaraghy and 
AlGeddawy [16. ] proposed a novel method for designing 
product variants based on commonality features and using 
the concept of co-evolution. Cladistic methods are adopted 
to identify modules corresponding to common regional mar-
ket requirements. Finally, algorithms for functional, struc-
tural analysis and for variants’ generation are proposed. 
Analytic and optimization models are available in the lit-
erature to balance company profit and customer satisfaction 
within the offered variety [17. , 18. ]. In this field, Kumar 
et al. [17. ] expanded the scope of the product family design 
problem to include the product line positioning, aiming at 
determining the right market niche for each family variant. 
The proposed market-driven product family design (MPFD) 
method analyses the impact of increasing the product vari-
ety across different market segments exploring the cost sav-
ings associated to commonality decisions. Wu et al. [18. ] 
explored how the diverse consumer evaluation of the product 
quality affects the company’s product variety decisions. At 
first, the authors considered in the analysis a uniform con-
sumer evaluation distribution (CVD). Then, they tested more 
complex CVDs as the triangular and Weibull-based func-
tions. The literature recognizes product families, product 
platforms, modularity, and integration as the top enablers 
of DfV [3. ]. Grouping similar products into families is a 
key enabler to efficiently design, plan, and produce vari-
ants [19. -22. ]. A family is a group of products based on a 

specific design concept or originated from a standard parent’ 
product, similar in design and/or production process. On the 
other hand, product platforms rose as an important asset of 
the DPD strategy, representing sub-products made by the 
most common components within a product family, which 
can be reconfigured into specific variants after the arrival of 
the customer order through assembly [23. ] or both assembly 
and disassembly tasks [7. , 19. ]. Including modularity and 
flexibility into product platforms allows industrial compa-
nies to face dynamic market needs with a lower increase in 
complexity and investments. According to modularity, part 
components can be removed and recombined to form new 
variants. Hence, each module is functionally independent 
and contains a set of standard and interchangeable compo-
nents [14. ].

This paper focuses on DPD and product platforms as 
means to efficiently cope with product variety. Therefore, 
the next Section 2.2 analyses and discusses some relevant 
studies exploring these cross-linked topics.

2.2 � Delayed product differentiation

DPD consists of postponing the final product differentiation 
point in the supply chain until it is cost-effective [24. ]. When 
postponement occurs at the product shape level, the delayed 
differentiation is obtained by designing product platforms 
to develop at the initial manufacturing stages, which will be 
stored until customers’ orders for different product variants 
are received [2. ]. Martin and Ishii [25. ] proposed develop-
ing product platform architectures to minimize the re-design 
effort in the case of a significant change in the costumers’ 
needs. They proposed two metrics to support the product 
platforms design, i.e. the generational variety index, which 
is a measure of the amount of redesign effort required for 
future product designs, and the coupling index, which meas-
ures the coupling among the product components in case of 
product platforms redesign. However, their study is qualita-
tive, and product platform architectures are built at the prod-
uct design level, rather than at a product production level. 
Moussa and ElMaraghy [2. ] introduced a product variety 
management methodology using median-joining phyloge-
netic networks (MJPN) for multiple platform design. The 
methodology allows generating process plans for hybrid, i.e. 
additive/subtractive, manufacturing technologies for platform 
customization benefiting from the commonalities between 
the features of the product family. Similarly, ElMaraghy and 
Abbas [26. ] introduced a co-platforming methodology to 
map product features platform together with the manufac-
turing system machines, so that changes in product variants 
do not lead to significant changes in the platform machines. 
In this study, the authors proposed an optimization model 
to design product platforms according to the single vari-
ants differentiating features and the manufacturing process. 
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However, this approach is not suitable with assembly indus-
tries, where the similarity is related to the commonality of 
the product variants technological cycles, rather than to the 
product features. Galizia et al. [7. ] introduced an algorithm 
for product platforms design, selection, and customization in 
high-variety assembly industry, considering both assembly 
and disassembly tasks to get the final variants. The authors 
proposed two new metrics to evaluate the effort to reconfig-
ure the platform into a variant by considering the required 
number of assembly and disassembly tasks, i.e. Platforms 
Reconfiguration Index (PRI), and the ease of assembly and 
disassembly factors, i.e. Platforms Customisation Index 
(PCI), which also provide conditions to determine whether 
it is better to adopt DPD or assemble to order (ATO) strat-
egy for each product variant. Longo et al. [27] proposed a 
two-stage platform-based optimal design process to support 
apparel brands in implementing mass customization strate-
gies, validating their methodology in an Italian underwear 
and lingerie brand. Their methodology considers several fac-
tors, including the customer satisfaction and the production 
and inventory costs to select the best platforms. Ben-Arieh 
et al. [23. ] developed a mixed integer programming model to 
design product platforms for a given product family to mini-
mize the product platforms production cost, considering the 
market demand and determining the optimal number of plat-
forms, their optimal configuration, and the assignment of the 
products to the platforms. Although the authors considered 
both assembly and disassembly tasks to transform platforms 
into the final variants, they limited the analysis to a single 
product family, forcing each component to either belong to a 
platform or to be a customization component, which is not a 
realistic assumption. In addition, the objective function does 
not include the production cost of the product variants not 
obtained from any platform. Hanafy and ElMaraghy [28] 
developed a modular product platform configuration model 
using both assembly and disassembly to get product variants 
as well as co-planning of platforms and their assembly lines. 
However, they considered the presence of a single product 
family, assuming the product family production cost as the 
unique driver for product platforms selection. Moussa and 
ElMaraghy [29] developed a non-linear optimization model 
for designing multi-period product platforms and managing 
the inventory, providing the optimal product platform design, 
process plans for customisation, the number of each plat-
form stored as inventory, and the product variant-platform 
assignment. Zhang et al. [30] proposed a method for prod-
uct platform planning using the available product data in the 
product lifecycle management (PLM) database. Their method 
introduces two key technologies, i.e. pruning analysis and 
attribute matching. The pruning analysis is used to determine 
the most common components within different product fami-
lies, which constitutes the platform. The attribute matching 
is used to classify product modules into different categories 

based on their sharing degrees. However, their methodology 
only includes the product platform design, while any evalu-
ation of the solution is missing.

The analysis of the literature highlights that a method-
ology for product platforms design and assessment inte-
grating different industrial and market metrics, i.e. MTS 
cost, production cost, inventory costs, responsiveness, is 
still missing. Several studies assume to design product 
platforms for single product families, or that all the prod-
uct variants belonging to the same product family can be 
derived by one product platform. Some studies, in addi-
tion to the platform design phase, also focus on assigning 
the best production strategy to each variant, among MTS, 
MTO, and DPD. However, the selection of the set of plat-
forms to be implemented is guided exclusively by the cost 
of the variants managed through DPD, at the expense of 
a global assessment of the production mix, which should 
also include the remaining products managed through other 
management strategies [23. ]. Finally, many studies use 
optimization models for designing platforms. However, 
they usually have a high computational complexity for 
efficiently managing real-size industrial instances in a rea-
sonable amount of time. On the other hand, existing stud-
ies using heuristic algorithms do not consider the techno-
logical precedence constraints when designing platforms, 
which, indeed, is a crucial aspect.

In such a scenario, this paper proposes a novel two-step 
methodology for the design of potential product platforms 
and assessment in high-variety manufacturing. In particu-
lar, the longest common subsequence (LCS) problem is 
adopted to identify the set of all the potential product plat-
forms, relaxing any constraints concerning the number of 
product families under analysis, the number of product 
platforms designed for each product family, and the com-
ponents belonging to the product platforms. In addition, 
the algorithm to solve the LCS problem has been modified 
to build product platforms that respect the precedence con-
straints of product variants’ technological cycle and to be 
efficient in managing large-scale industrial instances. This 
study also proposes a novel similarity index based on the 
similarities between the product variants and the poten-
tial product platforms, and not on the similarities between 
variants, as in most of the existing studies. In this way, the 
product variants are not grouped according to the simi-
larity of their technological cycle, but according to their 
similarity to a specific product platform, guaranteeing that 
a product variant is assigned to a product platform only 
if it can be effectively built from it. Hence, the manage-
ment strategy of each product variant, i.e. MTO or DPD, 
is also provided by the methodology since a product vari-
ant that cannot be built from any product platform is not 
managed with DPD. Finally, four different industrial and 
market metrics are proposed to assess the set of solutions 
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that can be obtained from grouping the product variants 
using a different number of clusters. These metrics con-
sider both the cost associated to the product platforms, i.e. 
the MTS cost and the variety, and the production cost and 
the responsiveness of all the product variants, considering 
those built from the product platforms and those managed 
with the MTO strategy. The integration of all the above 
described aspects justifies the novelty of this study as well 
as the main elements of differentiation compared to the 
existing methods.

The proposed methodology is introduced and discussed 
in Section 3.

3 � A two‑step methodology enhancing 
delayed product differentiation

Considering a full MTO production environment, the proposed 
methodology aims at assessing if, and at which degree, adopting 
the DPD strategy can be beneficial from the industrial and mar-
ket points of view. In particular, the methodology is able to assign 
the most suitable production strategy, i.e. MTO or DPD, to each 
product variant, through the use of product platforms in case of 
DPD selection. The input of the methodology is the technological 
cycle of all the product variants manufactured by the company, i.e. 
ordered sequences of operations in which one component is built on 
the previous ones. In addition, the variants’ demand, the assembly 
times and costs of each component, their storage cost per unit, and 
the supply lead times are also required to evaluate possible solutions.

According to the DPD strategy, the main goal of the 
methodology is to identify the product platforms to realize 
according to a known demand, where a product platform is 

intended as an operation sequence common to at least two 
product variants’ technological cycles. As a result, the pro-
duction process of each product variant is split in two parts: 
the product platform assembly, which is made to stock, and 
the customization components assembly, which is made to 
order to get the requested product variants.

A further relevant issue to consider when designing plat-
forms is their composition in terms of number of components. 
This characteristic is called ‘width’ in the following. Hence, 
each platform can be characterized by few components, i.e. 
small, or by a high number of components, i.e. wide.

In high-variety manufacturing industries, characterized 
by a huge production mix, designing and assessing the num-
ber of platform types and their width is not trivial. First, 
the design of the product platforms needs to consider the 
technological precedence constraints of the original product 
variants. Second, selecting a specific platform implies to 
identify a trade-off between a high number of small prod-
uct platforms or a low number of wide product platforms. 
Figure 2 shows a reference example of five product variants 
for which three different platform solutions are proposed. 
Each solution leads to the presence of a different number of 
platforms characterized by different width. Such solutions 
inevitably affect the global number of variants in the produc-
tion mix managed through the DPD strategy.

Following the standard literature and industrial practice, 
the proposed methodology lies on the following assump-
tions, validated by previous studies [2. , 7. , 26. , 29]:

	 1.	 The production mix is known, as well as the techno-
logical cycles and the bill of materials of each product 
variant.

Fig. 2   Product platforms solu-
tions: a one product platform 
made by two components and 
three DPD variants; b one 
product platform made by three 
components and two DPD 
variants; c one product platform 
made by two components, one 
DPD variant and one MTS 
variant
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	 2.	 The product variants and the components are initially 
managed with an MTO strategy.

	 3.	 The demand of each product variant is known and 
deterministic.

	 4.	 The assembly time and cost, and the purchasing cost, 
of each component are known and deterministic.

	 5.	 The product platforms are managed with an MTS strat-
egy and their demand can be derived from the product 
variants’ demand.

	 6.	 The components included in at least one product plat-
form are managed with an MTS strategy and their 
demand can be derived from the bill of materials of 
each product variant.

	 7.	 The components not included in any product platforms, 
i.e. customization components, are managed with an 
MTO strategy.

	 8.	 Customization of product platforms can only be real-
ized by assembly tasks, i.e. disassembly is not allowed.

	 9.	 The cost to assemble a component in a product plat-
form is lower than the assembly cost of the same com-
ponent if used to customize the platform.

	10.	 Only one component can be assembled in each operation.
	11.	 A product variant can be built on a product platform 

only if the product variants’ technological cycle begins 
with the platform’s technological cycle.

Some of the assumptions, e.g. 1, 3, 4, deal with the avail-
ability and knowledge of the data needed to apply the meth-
odology, i.e. production mix, bill of materials (BOM), vari-
ant demand, and assembly time and cost. These data can be 
directly accessible as they are available within industry or 
can be collected through on-field tests, while assumptions 
about product platforms (and their components) manage-
ment strategy, e.g. 5, 6, 7, lie on suggestions and recommen-
dations from the industrial field and evidence of previous 
studies on product platform design [2. , 7. , 26. , 29].

Following these assumptions, the two-step methodology 
aims to address two main issues:

1.	 The platform design, which consists of determining 
the number and structure, i.e. technological cycle, of 
the product platforms and, consequently, the number 
of MTS components, the number of MTO components, 
and the number of product variants managed through 
the DPD strategy. First, the sequences of operations 
common to two or more product variants respecting 
the precedence constraints of their technological cycle 
are identified through a modified algorithm (mLCS) to 
solve the longest common subsequence (LCS) problem 
(phase 1.A in the following). Then, a novel similarity 
index is proposed to evaluate the similarity among the 
product variants and the potential product platforms 
(phase 1.B in the following). Furthermore, a cluster-

ing algorithm is used to group the product variants 
according to their similarity to the identified platforms. 
Finally, potential platforms are associated to the clus-
ters, i.e. variant-platform association (phase 1.C in the 
following).

2.	 The platform assessment, which consists of evaluating 
the solution obtained in step 1. Four distinct metrics are 
integrated for the first time to this aim: the MTS cost and 
the variety, which derive from the adoption of the MTS 
strategy for both the product platforms and the com-
ponents: the responsiveness and the variant production 
cost, which depend on the management strategy of the 
product variants, i.e. DPD or MTO. Since the clustering 
algorithm applied in phase 1.C requires the number of 
clusters as input, a multi-scenario analysis is performed 
by iterating phase 1.C and step 2 with different number 
of clusters.

As shown in Fig. 3, the first step of the methodology is 
divided into three main phases: the identification of potential 
product platforms (phase 1.A), the construction of the simi-
larity matrix between the product variants and the potential 
product platforms (phase 1.B), and the product variants clus-
tering (phase 1.C).

Phase 1.A aims at building the set of potential prod-
uct platforms by solving the LCS problem to determine 
the longest common subsequences of components among 
each couple of product variants. In particular, the tra-
ditional algorithm has been modified to consider the 
precedence constraints imposed by the technological 
cycles. Phase 1.B involves determining the similarity 
degree between potential platforms and product variants 
to define which variants can be potentially derived from 
which platform(s). In this phase, a novel similarity index 
is proposed, which assigns a higher similarity score to the 
couple of variant and platform that shares the higher num-
ber of common operations. The novelty of the proposed 
index is that it is computed between the product variants 
and the product platforms instead of among product vari-
ants. In addition, it is a relative measure, meaning that 
the similarity of a product variant with a product platform 
depends on the maximum similarity that the same product 
variant can have with the other potential platforms. Phase 
1.C applies the k-medoids algorithm to group the prod-
uct variants into k clusters according to their similarity 
to the potential platforms. Finally, the obtained solution 
for a given value of k is evaluated in terms of MTS costs, 
variety, responsiveness, and product variants’ production 
costs (step 2). Since different values of k lead to different 
partitions of the variant space and, therefore, to different 
product platforms, phase 1.C and step 2 are iterated for 
different values of k to perform a multi-scenario analysis 
to support the decision process.
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Before describing each phase of the methodology, the 
following nomenclature is introduced:

Entities.

Product variants i = 1,… ,N Product variants assem-
bled by the company

Components j = 1,… ,M Components included in at 
least one product variant

Operations s = 1,… , Si Phase of the technological 
cycle of variant i

Longest common 
subsequences

a =
(

i, i
� )

, a = 1,… ,
N(N+1)

N

Potential product plat-
forms

Product platforms l = 1,… ,L Selected product platforms

Parameters.

xijs �The technological cycle of product variant, i defining 
which component j is assembled in which operation s 
(binary)

yla	� The product platform l derived from the LCS a (binary)
zl	�  The selected product platform l (binary)
zil	 �The product variant i associated with the product plat-

form l (binary)
λa	 �The number of operations included in the LCS a
μl	� The number of operations included in platform l
ρs	� The technological cycle of an LCS (binary)
φi	 �The management strategy of variant i (binary)
ψj	� The management strategy of component j (binary)

Fig. 3   The proposed methodol-
ogy
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3.1 � Step 1: product platform design

3.1.1 � Phase 1.A: identification of potential product 
platforms

This phase aims to identify the potential product platforms 
by solving the LCS problem. It considers the technological 
cycle of the product variants as input, computing the longest 
common subsequence between each couple of product vari-
ants and providing as output the list of potential product plat-
forms. In particular, the traceback algorithm, which is widely 
adopted to find ordered sequence of elements common to two 
strings [10. , 31. ], has been modified to obtain a subsequence 
that respects the precedence constraints of the variants’ tech-
nological cycles, i.e. only considers consecutive operations.

Given two product variants i and i′ of length Si and Si′ , respec-
tively, the goal is to find the vector � = (�0, �1,… , �

s
,… , �

min

(

Si ,S
i
�

)) 
such that ∑�a

s=1
x
ijs
�
s
=
∑�a

s=1
x
i
�
js
= 1i, i

�
= 1,… ,N, j = 1,… ,M , where 

�
a
=
∑

min(Si ,S
i
� )

s=1
�
s
 is the length of the LCS a between the variants i 

and i′ , with a = (i, i
�

) . About the logical working, the first element 
of the vector is set to 1. Then, for each operation s , if the previous 
element is equal to 1 ( �s−1 = 1 ) and if the component j of variant 
i is equal to the component j of variant i′ , fill �s with 1. Otherwise, 
�s = 0 . The pseudo-code of the algorithm is described in Table 1.

To get the set of the LCSs among all product variants, the 
mLCS is applied to each couple i, i′ of product variants. There-
fore, the total number of LCSs is equal to N∗(N+1)

2
 . However, two 

product variants may have no common subsequence, or two 
couples of product variants may have the same longest common 
subsequences. To reduce the computational effort of the next 
phases, a filtering phase is conducted, aimed at removing both 
empty subsequences and duplicates. Consequently, although the 
number of potential product platform has an upper limit, their 
exact number depends on the specific application ( a ≤

N∗(N+1)

2
).

Note that if no LCS is found, the methodology stops and 
no product platforms can be designed.

3.1.2 � Phase 1. B: the construction of the similarity matrix

The second phase of the methodology consists of building 
the similarity matrix between the product variants and the 
potential product platforms. This paper proposes a novel 
similarity index, which assigns a higher similarity to the 
product variants and the potential product platform sharing 
the longest common subsequence. Therefore, the algorithm 
described in Table 1 is applied to find the length �i,a of 
the LCS between the product variant i and the potential 
product platform a . Then, the similarity index is given by 
Eq. (1):

where �a is the length of the potential product platform a . 
As a result, the similarity between a product variant and 
a potential product platform is equal to zero in two cases: 
(1) i and a do not share any sequences and (2) the potential 
product platform is longer than the sequence of operations 
it shares with the variant. Otherwise, the similarity between 
the product variant i and the product platforms depends on 
the maximum length of the LCS between the variant and any 
product platform for which �i,a ≠ 0.

Table 2 provides an example including three product vari-
ants and three LCSs. For i = 1 , only two potential product 
platforms, a = 1 and a = 2 , are included in technological 
cycle of the product variant ( �1,3 = 0 ). However, because 
𝜆1,1 > 𝜆1,2, S11 > S12 . Similarly, for i = 2 ,  �2,1 = �2,2 = 2 
and �2,3 = 0 . However, 𝜆1 > 𝜆2,1 and the product variant can-
not be built from the potential product platform 1. Therefore, 
their similarity is equal to zero.

The output of phase B is a matrix of dimensions N × a , in 
which the generic element si,a is the similarity index between 
a product variant i and a potential product platform a , pro-
vided by Eq. (1).

(1)si,a =

{

0 if𝜆a > 𝜆i,a
𝜆i,a

max
a

𝜆i,a
otherwise

Table 1   Algorithm for LCS computation
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3.1.3 � Phase 1. C: product variants clustering

After computing the similarity matrix, the product variants 
are grouped according to their similarity to the potential 
product platforms to determine the product variants that can 
be built from the same product platform.

An exemplar-based clustering model, i.e. k-medoids, is 
used to this aim. It divides a set of observations into k clus-
ters minimizing the sum of distances between an observation 
and a cluster centre, named medoid. The reader could refer to 
reference [32] for a deep explanation of k-medoids.

The clustering algorithm provides as output a set of k clus-
ters, each including a certain number of product variants con-
sidered the most similar to the same potential product platform. 
However, it does not directly provide the product platform 
associated to each cluster. The association between product 
platforms and clusters is made by checking which potential 
product platform is included in all the variants within a cluster. 
In particular, the longest platform is chosen in case different 
product platforms could be assigned to the same cluster. On 
the contrary, no platform is assigned to a cluster if there is no 
potential product platform included in the technological cycle 
of the product variants grouped in the same cluster.

At the end of clustering, the first step of the methodol-
ogy is concluded, providing all the parameters listed at the 
beginning of this section, which can be extracted as follows:

(2)L =
∑

l

zl

where L is the total number of the selected product platforms. 
If �i = 1 , the product variant i is managed through the DPD 
strategy. Otherwise, it is managed through the MTO strat-
egy. If �j = 1 , the component j is managed through the MTS 
strategy. Otherwise, it is managed through the MTO strategy.

Because the obtained solution depends on the number of clus-
ters k , running the k-medoids for different values of k provides 
a range of possible solutions that will be evaluated in step 2 to 
perform a multi-scenario analysis. Consider the example of clus-
tering through k-medoids shown in Fig. 4. For k = 2 , the variant 
space is divided into two non-homogeneous groups. It means 
that the three variants in the little cluster have a higher similarity 
with the same product platform, while the other variants are less 
similar to a specific platform. For this reason, no product platform 
is assigned to that cluster. Similarly, for k = 3 , only two clusters 
can be associated to a product platform. Finally, for k = 4 , one 
cluster includes only one variant, and, for this reason, it is not 
convenient to assign a product platform to it.

(3)zl =

�

1 if
∑N

i=1
zil > 1

0 otherwise
∀l = 1,… ,L

(4)�l =
∑

a yla�a ∀l = 1,… , L

(5)𝜑i =

�

1 if
∑

lzil > 0

0 otherwise
∀l = 1,… ,N

(6)𝜓j =

�

1 f
∑N

i=1

∑L

l=1

∑𝜇l

s=1
zilxijs > 0

0 otherwise
∀l = 1,… ,M

Table 2   Example of similarity 
index between product variants 
and potential product platforms

Product variant (i)/potential 
product platforms (a)

a = 1 → (x111, x122, x133) a = 2 → (x111, x121) a = 3 → (xi41, xi32)

i = 1 → (x111, x122, x133, x144) �1,1 = 3,max
a

�1,a = 3

S11 = 1

�1,2 = 2,max
a

�1,a = 3

S12 = 0.67

�1,3 = 0,

S13 = 0

i = 2 → (x211, x222, x243, x234) �2,1 = 2, �1 = 3

S21 = 0

�2,2 = 2,max
a

�2,a = 2

S22 = 1

�2,3 = 0,

S23 = 0

i = 3 → (x311, x322, x333) �3,1 = 3,max
a

�3,a = 3

S31 = 1

�3,2 = 2,max
a

�3,a = 3

S32 = 0.67

�3,3 = 0,

S33 = 0

Fig. 4   Clustering process and 
product platform association, 
with a. k = 2 , b. k = 3 , c. k = 4 . 
In this figure, the representation 
of product variants, i.e. white 
parallelograms, and product 
platforms, i.e. grey rectangles, 
coherently follows the legend 
introduced in Fig. 2
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The set of solutions obtained from this example is shown 
in Table 3, where the input and output of clustering with dif-
ferent k are summarized, together with the output of the step 
1 of the methodology.

3.2 � Step 2: product platform assessment

The last phase of the methodology aims at evaluating and 
selecting one of the solutions provided by the clustering 
phase with different values of k . Each solution is evaluated 

through four distinct metrics, which can be divided into 
company and customer drivers. The MTS costs, variety, 
and variant production costs belong to the first category. 
Responsiveness is the market driver. The parameters 
needed to compute each metric are listed in Table 4.

The following subsections provide the mathematical for-
mulations of each metric.

The total MTS cost arises because the MTS strategy 
is adopted for the product platforms and the components 
included in at least one product platform. According to the 

Table 3   Example of the solution provided by the k-medoids and step 1 of the methodology with different values of k

Input of clustering Output of clustering Output of step 1

Product variants Potential product platforms k a ∶ yla = 1 i ∶ zil = 1 L �l i ∶ �i = 1 j ∶ �j = 1

x111, x122, x133, x143 a = 1 ∶ x111, x122 2 1 1,2,3 1 2 1,2,3 1,2
x211, x222, x243, x234 a = 2 ∶ x311, x322, x3333 1,3 1,2,3,7,8 2 2,2 1,2,3,7,8 1,2,4,5
x311, x322, x333 a = 3 ∶ x741, x752 4 1,3,4 1,2,3,7,8,4,5,6 3 2,2,2 1,2,3,7,8,4,5,6 1,2,4,5,8
x421, x482, x493, x474 a = 4 ∶ x421, x482

x521, x582, x533, x544 a = 5 ∶ x521, x582, x532

x621, x682, x633, x674

x741, x752, x763, x774

x841, x852, x863

x971, x922, x933

Table 4   List of parameters

Component parameters Platform parameters
Symbol Description Unit Symbol Description Unit

c
′ Cost of one order emission €/order c Cost of one set up €/setup

Dj Demand Unit/year Dl Demand Unit/year

EOQj Economic order quantity Unit/lot EOQl Economic order quantity Unit/lot

hj Inventory cost €/unit Hl Inventory cost €/unit

MTSC Cost of component’ MTS policy € MTSL Cost of platforms’ MTS 
policy

€

p
�

j
(qj)

Price €/unit pl Production cost €/unit

qj Order quantity unit � Production rate Unit/year
�j Assembling cost €/unit
�j Assembling time min/unit

�j Purchasing lead time days/unit

Global parameters
Symbol Description Unit

MTS Total cost of MTS entities €

P Total Production cost €

PDPD Production cost of product variants i ∶ �i = 1 €

PMTO Production cost of product variants i ∶ �i = 0 €

RDPD Responsiveness of product variants i ∶ �i = 1 Min

RMTO Responsiveness of product variants i ∶ �i = 0 Min

R Total responsiveness Min

V Number of SKUs in the warehouse Unit

Yi Demand of variant i Unit/year

�1 Reduction of platforms’ inventory costs %

�1 Reduction of platforms’ production costs %
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Harris’s model [33, 34], the total cost of the MTS policy 
depends on whether a product is bought from a supplier 
or is manufactured by the company. In the first case, the 
total cost of the buy policy includes the purchasing cost, 
the order emission cost, and the storage cost. In the sec-
ond case, the total cost of the make policy includes the 
production cost, the setup cost, and the storage cost. In the 
case under analysis, components are bought from suppli-
ers, while the product platforms are assembled internally 
by the company.

The total cost provided by the Harris’s model for the buying 
lot is given by Eq. (7):

where the buying lot size EOQj and the demand of the com-
ponent j Dj are given Eqs. (8) and (9), respectively, while 
and  p′

j
 depends on the relationship between the resulting 

EOQj and qj.

The total cost provided by Harris’s model for the production 
lot is given by Eq. (10):

where the manufacturing lot size EOQl the demand dl , the 
storage cost Hl , the production rate � , and the production 
cost pl of each product platform are given by Eqs. (11, 12, 
13, 14, 15), respectively.

(7)MTSc =

M
∑

j=1

(

p�
j
(q)Dj +

c�Dj

EOQj

+ hj

EOQj

2

)

�j

(8)EOQj =

√

2c
�
Dj

hj

(9)Dj =

N
∑

i=1

Yixijs, j = 1,… ,M, s = 1,… , Si

(10)MTSL =

L
∑

l=1

(

plDl +
Dl

EOQl

+ Hl

EOQl

2

� − Dl

�

)

zl

(11)EOQl =

√

2cDl

Hl

√

�

� − Dl

(12)Dl =

N
∑

i=1

Yizil

(13)Hl = �1
∑N

i=1

∑M

j=1

∑�l

s=1
hjxijszil �1 ∈ {0, 1}

(14)� =

N
∑

i=1

L
∑

l=1

2Dlzil

Finally, the total MTS cost is given by Eq. (16):

Variety arises because of product platforms and MTS 
components introduced in the warehouse. According to the 
most adopted definition of product variety, i.e. the number 
of stock-keeping units (SKUs) [35. ], the variety can be com-
puted as the number of product platforms and the number 
of components included in at least one product platform, as 
indicated by Eq. (17):

Responsiveness is defined as the order fulfilment cycle 
time, i.e. the time needed to realize a finished product from 
the arrival of a customer’s order [36]. In this context, because 
the product platforms are made to stock, regardless the exist-
ence of a specific customer order, responsiveness depends on 
the product variant’s management strategy. In the case of DPD, 
the responsiveness of a product variant i only considers the 
time to assemble the customization components to the product 
platform from which the product variant is derived. For these 
components, two cases can be distinguished: the customiza-
tion component is managed through the MTS strategy, i.e. 
∃l, i

�

≠ i ∶ zi� l = 1 ∧ ∃s ∈ [1,… ,�l] ∶ xi� js = 1 , or the cus-
tomization component is managed through the MTO strategy. 
In the first case, the component j is in the warehouse when the 
customer order arrives and the responsiveness only includes the 
assembling time. In the second case, the component has to be 
ordered, and the responsiveness also includes the supplying lead 
time.

Therefore, if a product variant is managed through a DPD 
strategy, the total time needed to personalize all platforms to 
get all DPD variants is given by Eq. (18):

where the first term corresponds to the assembly time of 
customization components managed with the MTS strategy 
( j ∶ �j = 1 ) and the second term corresponds to the lead 
time and assembly time of the customization components 
managed with the MTO strategy ( j ∶ �j = 0 ). Note that 
Eq. (18) also applies to product variant managed with the 
MTS strategy. Indeed, in these cases, the structure of the 
product variant is equal to the structure of the product plat-
form, and its responsiveness is equal to zero.

If products variants cannot be built from any product plat-
form, they are managed with the MTO strategy. Therefore, in 

(15)pl = �2
∑N

i=1

∑M

j=1

∑�l

s=1
�jxijszil �2 ∈ {0, 1}

(16)MTS = MTSc +MTSL

(17)V =

M
∑

j=1

�j + L

(18)RDPD =

N
∑

i=1

Yi

(

M
∑

j=1

Si
∑

s=(�l+1)

�jxijszil�j +

M
∑

j=1

Si
∑

s=(�l+1)

(�j + �
j
)xijszil(1 − �j)

)

�i
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this case, the responsiveness considers all components in the 
product variant’s technological cycle (Eq. (19)). Similarly to 
the case of DPD strategy, MTS components and MTO com-
ponents have to be considered separately.

Therefore, the total responsiveness of all product variants 
is given by Eq. (20):

About the variants production cost, as demonstrated by 
[36], the MTO strategy is more expensive than the MTS strat-
egy in terms of production costs due to the higher complexity 
of operational activities. Indeed, the cost of assembling one 
component to an existing product platform when an order 
is released is higher than the cost of assembling the same 
component within a product platform. Therefore, the product 
variants’ production costs change depending on whether they 
are managed through a DPD or MTO strategy. In the first 
case, the production cost is given by the platform’s produc-
tion cost and the customization cost. In the second case, the 
product variant is managed with the MTO strategy, and only 
the customization cost is considered. Like responsiveness, the 
customization cost depends on the components’ management 
strategy in both cases. For MTS components, only the com-
ponents’ assembly cost is considered since the component is 
available in the warehouse. In the case of MTO components, 
the production cost also includes the components’ buying 
cost.

In the DPD context, the production cost of a product variant 
is given by Eq. (21):

where the first term corresponds to the product platform 
production cost, given by Eq. (14), the second term cor-
responds to the assembly cost of the customization com-
ponents managed through the MTS strategy, and the third 
term corresponds to the assembly cost of the customization 
components managed through the MTO strategy.

In the MTO context, the production cost of a product vari-
ant is given by Eq. (22):

Therefore, the total production cost is given by Eq. (23):

(19)

RMTO =

N
∑

i=1

Yi

(

M
∑

j=1

Si
∑

s=1

�jxijszil�j +

M
∑

j=1

Si
∑

s=1

(�j + �
j
)xijszil(1 − � j)

)

(1 − �i)

(20)R = RDPD + RMTO

(21)

PDPD =

N
�

i=1

Yi

⎛

⎜

⎜

⎝

plzil +

M
�

j=1

Si
�

s=(�l+1)

�jxijszil�j +

M
�

j=1

Si
�

s=(�l+1)

(p
�

j

�

qj
�

+ �
j
)xijszil(1 − �j)

⎞

⎟

⎟

⎠

�i

(22)PMTO =

N
∑

i=1

Yi

(

M
∑

j=1

Si
∑

s=1

�jxijszil�j +

M
∑

j=1

Si
∑

s=1

(p
�

j
(qj) + �

j

)xijszil(1 − �j)

)

(1 − �i)

(23)P = PDPD + PMTO

4 � Industrial application

This section applies the proposed methodology to an Ital-
ian industrial case study, representative of a company pro-
ducing a family of 38 plastic valve variants involving 93 
different operations. In the past years, the company handled 
5 different valve models. Subsequently, an increasing num-
ber of customers asked for novel customization elements 
in the product, e.g. in the colour, shape, and insertion of 
their brand. All these requests led to increase complexity 
in the product operations and the product mix management 
because of the number of different models to design, pro-
duce, and schedule rose to 38. Hence, the company had to 
face this complexity, investigating the possibility of imple-
menting new production logics and strategies to stream-
line the production, storage, and delivery phases. Great 
attention is paid to DPD, rising as a novel strategy able to 
support companies in better managing the production mix.

An example of a reference product variant is shown in 
Fig. 5, while the technological cycles of the product variants 
and the demand data are in Appendix 1. Appendix 2 details 
the values of the parameters listed in Table 4, e.g. the cost of 
one-order emission and the holding costs of the components 
adopted in the case study. The methodology has been coded 
in MATLAB and executed on a PC with 16 GB of RAM 
and Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz. The 
execution time of the methodology depends on the number 
of iterations needed to find the best number of clusters k . 
Considering 38 product variants and 93 components, each 
iteration is executed in less than 2 s on average.

According to the proposed methodology, the first step 
consists in identifying the set of the longest common sub-
sequences among all the product variant couples that corre-
spond to the potential product platforms. The application of 
the mLCS and the subsequent filtering step led to identify-
ing 25 non-identical subsequences, summarized in Table 5. 
Then, the similarity matrix between the product variants 
and the potential product platforms is built using the simi-
larity index in Eq. (1). Finally, the clustering algorithm is 
applied to the similarity matrix for k = 2,… , 25 and, at each 
iteration, the four metrics described by Eq. (16), Eq. (17), 
Eq. (20), and Eq. (23) are computed.

Table 6 shows the clusters created at each iteration, the 
product platforms associated to each cluster, and the total 
similarity among the elements in the new cluster, computed 
as the sum of the similarity indexes of all the product vari-
ants with the product platforms.

For 2 ≤ k ≤ 14 , the number of product platforms 
equals the number of clusters k minus one because there 
is always a partition to which a product platform cannot 
be associated. For 15 ≤ k < 21 , the number of product 
platforms does not change. However, wider platforms 
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replace some product platforms selected in previous 
iterations. Consequently, the number of product variants 
managed with the DPD strategy increases until k ≤ 14 , 
representing the iteration in which the maximum number 
of product variants is associated to product platforms. 
Then, for 15 ≤ k < 21 , the number of product variants 
subject to the DPD strategy decreases. Conversely, the 
number of components managed with the MTS strategy 
at each iteration is equal to or greater than the number 
of components included in the same set in the previous 
iteration. Indeed, a component may be part of one or more 
product platforms. Therefore, their number depends on the 
platform width rather than the platform number.

The relationships between the number of clusters and 
the three involved entities, i.e. product platforms, product 

variants managed with the DPD strategy, and MTS compo-
nents, is shown in Fig. 6.

Because disassembly operations are not allowed to 
derive a product variant from a product platform, the wider 
the platforms, the less the number of product variants that 
can be derived from it. The k-medoids algorithm groups 
the product variants that provide the higher total intra-
cluster similarity index. In general, the higher similarity 
value corresponds to product platforms of middle-length. 
Indeed, when a small platform is selected, the number of 
associated product variants is high, but their total similar-
ity to the platform decreases. Conversely, when a product 
platform is wider, the number of associated product vari-
ants is low, but their total similarity is high. Therefore, the 
selected product platforms depend on (1) the number of 

Fig. 5   Example of a valve variant and its components

Table 5   Components included in the technological cycle of the identified potential product platforms

a �a Technological cycle a �a Technological cycle a �a Technological cycle

1 2 c10, c15 10 6 c78, c79, c84, c86, c87, c88 19 8 c13, c40, c41, c42, c43, c44, c45, c46, c47

2 3 c10, c15, c16 11 2 c1, c2 20 5 c2, c7, c10, c13, c15

3 4 c10, c15, c16, c17 12 3 c1, c2, c4 21 9 c2, c7, c10, c13, c15, c16, c18, c20, c21

4 3 c10, c15, c25 13 7 c1, c2, c4, c7, c8, c9, c10 22 9 c2, c7, c10, c13, c15, c25, c27, c29, c30

5 4 c10, c15, c25, c26 14 3 c2, c6, c7 23 9 c13, c34, c35, c36, c37, c38, c39, c40, c41

6 7 c10, c15, c78, c79, c80, c81, c82 15 4 c2, c6, c7, c10 24 2 c1, c3

7 8 c10, c15, c78, c79, c80, c81, c82, c84 16 5 c2, c6, c7, c10, c16 25 2 c10, c50

8 2 c78, c79 17 3 c13, c40, c41

9 3 c78, c79, c84 18 9 c13, c40, c41, c48, c49, c50, c51, c52, c53
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product variants belonging to a cluster and (2) the simi-
larity indexes between variants and platforms. In general, 
the methodology looks for product platforms providing the 

best trade-off between the number of product variants and 
their similarity to the product platform.

Finally, the clusters with feasible platforms created for 
a certain value of k are retained in the subsequent run for 
k ≤ 14 . Hence, the algorithm first tries to cover the whole 
space by balancing the number of product variants and their 
similarity index with the corresponding platform. Then, it 
replaces existing platforms with wider platforms, preferring 
a high similarity index to the number of product variants 
exploiting the DPD strategy.

Figure 7 shows the trend of each metric against the num-
ber of clusters. The values of each metric are detailed in 
Appendix 3.

The platform cost, which includes the management 
cost of platforms ( MTSp ) and MTS components ( MTSc) , 
increases as the number of clusters increases. In particular, 
MTSc increases both when a higher number of platforms is 
selected (for k < 14 ) and when wider platforms are selected 
(for k > 14 ). Conversely, MTSp decreases when the algo-
rithm replaces existing platforms with wider platforms (for 
k > 14) . This trend occurs because of the lower number of 
product variants built from the platform and, therefore, the 
lower platform demand. However, the total platform cost 
increases when more platforms are selected because the  
MTSc has a more significant impact.

As in the case of the platform cost, the variety increases 
when the number of clusters increases. In particular, the 
number of product platforms naturally increases by one 
as a new platform is selected. Conversely, the number 

Table 6   Clustering process

k Product variants (i) Associated product 
platforms (a)

Intra-cluster 
similarity

2 I = {25, 26, 29, 30} A = {6} 3.625
3 I ∪ {2, 5, 6} A ∪ {15} 2.600
4 I ∪ {24, 35, 38} A ∪ {4} 2.500
5 I ∪ {23, 34, 37} A ∪ {2} 2.500
6 I ∪ {28, 31, 32} A ∪ {9} 2.000
7 I ∪ {8, 11} A ∪ {21} 2.000
8 I ∪ {9, 12} A ∪ {22} 2.000
9 I ∪ {7, 10} A ∪ {13} 2.000
10 I ∪ {15, 18} A ∪ {19} 2.000
11 I ∪ {14, 17} A ∪ {18} 2.000
12 I ∪ {13, 16} A ∪ {23} 2.000
13 I ∪ {20, 21} A ∪ {25} 2.000
14 I ∪ {22, 33} A ∪ {24} 2.000
15 I A -
16 I − {28} A − {9} ∪ {10} 2.000
17 I − {37} A − {2} ∪ {3} 2.000
18 I − {38} A − {4} ∪ {5} 2.000
19 I − {6} A − {15} ∪ {16} 2.000
20 I − {25} A − {6} ∪ {7} 3.000
21 –25 I A

Fig. 6   Relationships between the number of clusters and the number of product platforms, variants managed with the DPD strategy, and the 
number of MTS components
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of MTS components grows rapidly at the beginning 
to remain almost the same when wider platforms are 
selected because of the possibility that the components 
added to the wider platform are already managed with 
the MTS strategy.

Responsiveness and production cost trends depend 
on two factors: the number of platforms and their width, 
which both determine the number of product variants 
managed with the DPD strategy. Indeed, as mentioned 
above, the number of platforms increases until the number 
of clusters is lower than 14. During these iterations, the 
number of variants associated to the product platforms 
increases because more platforms are selected. There-
fore, responsiveness decreases because of the time saved 
to assemble the components that, in the DPD strategy, 
belong to a product platform. Similarly, the production 
cost decreases due to the lower production cost of prod-
uct platforms compared to the assembly cost of the same 
components according to the MTO strategy. In addition, 
both the responsiveness and the production cost of a prod-
uct variant managed through the DPD strategy decrease 
because of the presence of some customization compo-
nents that are managed through the MTS strategy (since 
they belong to another product platform) and do not have 
buying lead time nor buying cost. As in Fig. 7, for k > 14 , 
the number of platforms does not change, while more 

wide platforms, i.e. characterized by a high number of 
components, are selected. For instance, as highlighted 
in Table 6, when k = 16 the platform a = 9 is replaced 
with platform a = 10 , which has 3 more components (see 
Table 5) and from which 2 product variants can be built 
instead of 3. As a result, the number of product variants 
associated to a product platform slightly decreases and 
both responsiveness and production cost increase.

Because of the conflicting trends, finding a trade-off 
between the metrics is crucial to select the best number and 
type of product platforms. Therefore, each metric is first nor-
malized in the range [0,1] through the min–max normali-
zation method, where 0 represents the best case and 1 the 
worst case. Then, the total value is computed as the weighted 
sum of the normalized values of all metrics, and the solution 
providing the minimum value is selected. When all metrics 
have an equal weight, at the two extremes, k = 2 and k = 25 , 
the total normalized function assumes the value 0.5, and the 
solution characterized by 9 clusters provides the minimum 
value of 0.4401. Compared to the solution obtained with 2 
clusters and one only product platform, at this point:

•	 The MTS cost increases from 487,333 to 2,300,094 euros 
(+ 371.9%)

•	 The variety increases from 8 to 32 units (+ 300.0%)

Fig. 7   Metrics’ trend against the number of clusters
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•	 The responsiveness decreases from 292,811 to 
165,486 min (− 76.9%)

•	 The production cost decreases from 6,685,558 to 
4,743,619 euros (− 40.9%)

Figure 8 shows the normalized values of the four metrics 
against the number of clusters. Table 7 shows the product plat-
forms and the associated product variants corresponding to the 
selected solution, while Fig. 9 shows the system configuration 
corresponding to the best solution. Twenty-two product vari-
ants are managed with the DPD strategy, while the remaining 
16 with the MTO strategy. The number of MTS components is 
equal to 24, and the number of product platforms is equal to 8.

To highlight the impact of the proposed methodology on 
the industrial field, an alternative widespread method for 

product platform design is used as benchmark, i.e. the bio-
inspired MJPN algorithm. By applying this method to the 
above presented industrial case study, a set of 15 platforms 
rises covering the whole production mix. On the other hand, the 
application of the methodology proposed in this paper leads to 
the creation of 7 platforms able to manage 22 variants, while the 
remaining 16 are managed through a more suitable production 
strategy, i.e. MTO. Table 8 shows the values of the four metrics, 
i.e. the MTS cost, the variety, the responsiveness, and the 
production cost, computed for the solution obtained with the 
MJPN algorithm and the solution selected in this paper.

The proposed methodology leads to significantly lower 
values of the MTS cost and the variety and higher values of 
the responsiveness and the production cost. However, the last 
two metrics are computed not considering the precedence 

Fig. 8   Normalized metrics’ trend at each iteration

Table 7   Output of the 
methodology at k = 9

a ∶ yla = 1 Product platforms’ technological cycle l �l i ∶ zil = 1
∑

i �i = 1
∑

j �j = 1

2 {c10, c15, c16} 1 3 {23, 34, 37} 22 24
4 {c10, c15, c25, c26} 2 3 {24, 35, 38}

6 {c10, c15, c78, c79, c80, c81, c82} 3 7 {25, 26, 29, 30}

9 {c78, c79, c84} 4 3 {28, 31, 32}

13 {c1, c2, c4, c7, c8, c9, c10} 5 7 {7, 10}

15 {c2, c6, c7, c10} 6 4 {2, 5, 6}

21 {c2, c7, c10, c13, c15, c16, c18, c20, c21} 7 9 {8, 11}

22 {c2, c7, c10, c13, c15, c25, c27, c29, c30} 8 9 {9, 12}
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constraints, rising as a significant limitation of the MJPN. 
In fact, according to the hypothesis of the MJPN algorithm, 
an assembling/disassembling task is performed regardless 
the position of the component in the technological cycle. 
Hence, both platforms and product variants are considered 
as ensembles of components, in which a component is 
added or removed without disassembling and re-assembling 
other components. Therefore, in real-word scenarios, both 
responsiveness and production costs would be higher.

For comparison, the normalized values of each metric and 
total normalized value are shown in Table 9. The proposed 
solution, considering both DPD and MTO strategies, leads to 
a reduction of this value. On the contrary, the solution obtained 
through the MJPN algorithm, including only the DPD strategy, 
leads to an increase in the total normalized value.

Globally, the proposed methodology overcomes some 
drawbacks of the MJPN:

•	 Existing studies applying MJPN lie on the assumption 
that all the product variants included in the production 
mix are managed with the same production strategy. This 
could be not realistic in the industrial practice, where 
different strategies coexist.

•	 MJPN allows disassembly operations, in addition to 
assembly, to derive final variants from platforms. While this 
aspect is useful to further delay the differentiation point, 
the presence of disassembly operations rises complexity in 
manufacturing industries due to reverse logistics activities 
connected to disassembled components, e.g. in terms of 
time and costs, so that, it must be avoided, if possible.

•	 Existing MJPN-based applications allow the creation 
of platforms according to the similarity of components 
located in any part of the product variant production 
cycle, neglecting the respect of the precedence con-
straints. In this study, a variant can be derived from a 

Fig. 9   System configuration 
corresponding to the best solu-
tion

Table 8   Comparison between 
metrics obtained with the MJPN 
algorithm and with the proposed 
methodology

Method MTS Cost (€) V (unit) R (min) P (€)

MTSp MTSc L |

|

CMTS
|

|

RDPD RMTO ProdDPD ProdMTO

MJPN 2,251,300 2,267,100 15 63 50,029 0 3,198,710 0
Proposed 

methodol-
ogy

822,033 1,478,061 8 24 66,874 98,612 2,419,218 2,324,401
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platform only if the variant and the platform technologi-
cal cycles share the initial part.

All these elements prompted the company to prefer apply-
ing the proposed methodology to designing platforms, as 
it collapses some constraints rose by other methodologies, 
allowing to assign the most suitable production strategy to 
each product variant and to manage production and storage 
processes in a streamlined way.

4.1 � Discussions and implications for industrial 
companies

The case study analysed in the previous section leads to three 
main considerations that can strongly affect industrial decisions.

First, the mLCS proposed in this paper provides a sequence 
of operations satisfying the precedence constraints imposed by 
the technological cycle of the product variants. The advantage 
of this method is that the product variants can be directly built 
from the platforms, with no disassembly activities. From the 
industrial point of view, this advantage implies an easier pro-
duction management and an improved resource exploitation.

The second consideration concerns the advantage of 
considering metrics of a different nature. Indeed, consider-
ing only responsiveness and production costs would lead 
to selecting the maximum number of platforms, i.e. 13, 
obtained at the 18th iteration, in which both responsiveness 
and production cost are minimal. However, both metrics 
increase if wider platforms are selected, meaning that both 
responsiveness and production costs depend on the platform 
width rather than the platform number. Conversely, platform 
costs and variety depend on the platform number and are 
obviously minimal at the first iteration because they arise 
from the introduction of the DPD strategy. Therefore, all the 
aspects need to be considered.

Finally, the last consideration concerns the possibility of 
performing a global analysis of the production mix. Indeed, 
although the longest common subsequences identified 
through the mLCS are non-identical, it is possible to identify 
some pattern among groups of subsequences. Several groups 
of subsequences can be identified, in which a sequence 
represents a root, and the other subsequences can be created 
by adding components to the root sequence. Hence, the 

introduced methodology also allows dividing the production 
mix into product families that can be analysed separately.

In the case under analysis, nine (9) product families can 
be identified. Each of them can have different levels of 
differentiation. For instance, consider the subsequences 
a = 1,… , 7 in Table 5. The potential product platform a = 1 
represents the root sequence from which all the others can 
be derived. In particular, it identifies a product family, within 
which the differentiation point can be delayed at three levels: 
if a = 1 is selected as product platform, all the product 
variants within the product family can be built by assembling 
the customization components. If a = 2 , a = 4 , and a = 6 
are selected, they can be used to derive ten product variants 
out of eleven. Finally, If the widest platforms of the product 
family are selected, i.e. a = 5 and a = 7 are selected, only 
seven variants would exploit the DPD strategy. Therefore, 
the step 1 of the methodology allows grouping the product 
variants into product families and identifying different 
delayed product differentiation points within each product 
family. The relationship between the platform width and the 
four metrics is linear in this case. Figure 10 shows the trend 
of the four metrics against the level of differentiation for the 
six product families generated in the case under analysis, 

where 

PF1 = {a ∶ a = 1,… , 7},PF2 = {a ∶ a = 8,… , 10},

PF3 = {a ∶ a = 11,… , 13},

PF4 = {a ∶ a = 14,… , 16},PF5 = {a ∶ a = 17,… , 19},

PF6 = {a ∶ a = 20,… , 22}

The MTS cost increases as the differentiation point is 
delayed because of the storage cost of both product platforms 
and components. Similarly, the variety increases when the 
product platforms contain more components because of 
a higher number of component managed with the MTS 
strategy On the contrary, responsiveness and production cost 
decrease if the product platform’s width increases.

The analysis performed at a product family level will always 
lead to platforms of medium length and to select one product 
platform for each product family. Conversely, the solution 
provided by the global analysis consists of three platforms 
belonging to PF1 and two platforms belonging to PF6 . In 
addition, no product platforms are selected for family PF5 . 
Therefore, the proposed methodology not only addresses the 
product platforms’ design and selection issue, but also supports 
the decision on which strategy, among MTO and DPD, in more 
convenient considering the whole productive mix.

Table 9   Comparison between 
results obtained with the MJPN 
algorithm and with the proposed 
methodology

Bold represent the main result of the paper

Method MTS Cost V R P Total normalized 
value

€ Norm Unit Norm Min Norm € Norm

MJPN 4,518,440 1.495 78 1.273 50,029  − 0.159 3,198,710  − 0.330 0.5700
Proposed methodology 2,300,094 0.672 32 0.436 165.486 0.392 4,743,619 0.259 0.4401
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5 � Conclusions and future research

Changing customer requirements and regulations and 
dynamic market demands are leading to a huge increase 
of product variety. In this context, product platforms rise 
as an effective strategy implemented by several industrial 
companies to best cope with product variety. This paper 
contributes in proposing a two-step methodology for 
product platform design and assessing which allows 
to solve large-scale industrial problems thanks to the 
adoption of efficient algorithms. In particular, a novel 
algorithm for solving the LCS problem is developed, 
which, together with the k-medoids clustering algorithm, 
allows designing platforms that respect the precedence 
constraints of product variants’ technological cycle, 
deciding whether a product variant should be managed 
with a DPD or MTO strategy, and assigning the DPD 
product variants to a product platform. In addition, a set 
of metrics to assess the impact of platform candidates 
on company and customer parameters is introduced in a 
second stage. The application of this methodology to a 
real case study involving the manufacturing of a family of 
plastic valves highlights the potential of product platforms 
to reduce the global impact of company and customer 
parameters. All potential product platform configurations 
are investigated and evaluated in terms of MTS cost, 
variety, responsiveness, and variant production cost. It 
emerged that all metrics are strictly correlated to both 
the number and width of product platforms. In particular, 
MTS costs and variety increase when the number 

and width of product platform increase. Conversely, 
responsiveness and variants production costs decrease 
when the number of product platforms increases until too 
wide platforms are selected. At this point, responsiveness 
and production costs start to increase because of the lower 
number of product variants that exploit the advantages of 
the DPD strategy. Furthermore, according to the proposed 
methodology, the product variants clustering led to the 
definition of a solution corresponding to the best trade-
off among these four metrics. This solution, consisting 
of eight (8) product platforms from which twenty two 
(22) variants may be derived, allows reducing the sum 
of the metrics by 11.89% compared to the first solution 
( k = 2 ), consisting of one product platform from which 
four (4) variants can be derived. For k < 9 , the product 
platform costs and the variety, occurring due to both 
product platforms and components managed with the 
MTS strategy, are lower than the total responsiveness 
and the total production cost. Conversely, for k > 9 , 
the responsiveness and production costs are lower than 
the other two metrics because of the reduced assembly 
time and cost resulting from a reduced number of 
customization components. For k = 9 , the best trade-off 
between the four metrics is obtained.

Future research will integrate the product platform design 
and assessment in a unique step that uses results obtained for 
one solution to generate a better solution. In addition, a similar-
ity index considering other factors, e.g. the variants’ demand, 
will be investigated. Finally, more comprehensive metrics will 
be included to assess the partition of the productive mix.

Fig. 10   Metrics’ trend against the level of differentiation within each product family
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Appendix 1

Table 10

Table 10   Technological cycles 
of product variants

Product variant Technological cycle Demand Yi(
Unit

year
)

P1 c1, c2, c3, c4, c5, c6, c7, c8, c9, c10 1,267
P2 c2, c6, c7, c10, c16, c17, c18, c19, c20, c21 1,316
P3 c2, c6, c7, c25, c26, c27, c28, c29, c30 1,238
P4 c1, c2, c4, c5, c6, c7, c8, c9, c10, c54 1,184
P5 c2, c6, c7, c10, c16, c18, c19, c20, c21, c55 1,170
P6 c2, c6, c7, c10, c25, c27, c28, c29, c30, c56 1,049
P7 c1, c2, c4, c7, c8, c9, c10, c11, c12, c13, c14, c15 1,300
P8 c2, c7, c10, c13, c15, c16, c18, c20, c21, c22, c23, c24 1,168
P9 c2, c7, c10, c13, c15, c25, c27, c29, c30, c31, c32, c33 1,093
P10 c1, c2, c4, c7, c8, c9, c10, c12, c13, c14, c15, c57 1,296
P11 c2, c7, c10, c13, c15, c16, c18, c20, c21, c22, c23, c24, c58 782
P12 c2, c7, c10, c13, c15, c25, c27, c29, c30, c32, c33, c59 952
P13 c13, c34, c35, c36, c37, c38, c39, c40, c41 781
P14 c13, c40, c41, c42, c43, c44, c45, c46, c47 910
P15 c13, c40, c41, c48, c49, c50, c51, c52, c53 619
P16 c13, c34, c35, c36, c37, c38, c39, c40, c41, c60 754
P17 c13, c40, c41, c42, c43, c44, c45, c46, c47, c61 677
P18 c13, c40, c41, c48, c49, c50, c51, c52, c53, c62 549
P19 c10, c15, c50, c51, c52, c63, c64, c65, c66 519
P20 c10, c50, c52, c64, c66, c67, c68, c69 947
P21 c10, c50, c51, c52, c63, c64, c65, c70, c71 210
P22 c1, c3, c8, c9, c10, c15, c72, c73, c74, c75 386
P23 c10, c15, c16, c17, c19, c20, c21, c72, c74, c75, c76 280
P24 c10, c15, c25, c26, c28, c29, c30, c72, c74, c75, c77 331
P25 c10, c15, c78, c79, c80, c81, c82, c83, c84 493
P26 c10, c15, c78, c79, c80, c81, c82, c83, c84, c85 364
P27 c78, c79, c83, c84, c86, c87, c88 500
P28 c78, c79, c84, c85, c86, c87, c88 329
P29 c10, c15, c78, c79, c80, c81, c82, c84, c89 473
P30 c10, c15, c78, c79, c80, c81, c82, c84, c90 297
P31 c78, c79, c84, c86, c87, c87, c89 215
P32 c78, c79, c84, c86, c87, c88, c90 343
P33 c1, c3, c4, c5, c8, c9, c10, c15, c91, c92, c93 389
P34 c10, c15, c16, c17, c18, c19, c20, c21, c91, c92, c93 237
P35 c10, c15, c25, c26, c27, c28, c29, c30, c91, c92, c93 344
P36 c1, c4, c5, c8, c9, c10, c15, c54, c91, c92, c93 264
P37 c10, c15, c16, c18, c19, c20, c21, c55, c91, c92, c93 239
P38 c10, c15, c25, c27, c28, c29, c30, c56, c91, c92, c93 314
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Appendix 2 Parameter values

Tables 11 and 12
Table 11   Component-independent parameters

c
′ Cost of one order emission 2 €/order
c Cost of one setup 50 €/setup
�1 Percentage of the sum of inventory costs 

of components included in a platform
80%

�2 Percentage of the sum of assembling 
costs of components included in a 
platform

80%

Table 12   Component-
dependent parameters

Component j pj(qj < 5k)

(€/unit)
pj(qj = [5k;10k])

(€/unit)
pj(qj = [10k;15k])

(€/unit)
pj(qj > 15k)

(€/unit)
hj(€/unit*year) �j

(€)
�j(min) �j(min)

c1 12 9.6 7.2 4.8 2.4 9.00 1.80 480
c2 8 6.4 4.8 3.2 1.6 18.00 0.90 480
c3 9 7.2 5.4 3.6 1.8 9.00 0.90 1440
c4 9 7.2 5.4 3.6 1.8 18.00 1.80 960
c5 9 7.2 5.4 3.6 1.8 9.00 1.80 480
c6 11 8.8 6.6 4.4 2.2 18.00 0.90 960
c7 9 7.2 5.4 3.6 1.8 27.00 0.90 480
c8 10 8.0 6.0 4.0 2.0 27.00 1.80 960
c9 9 7.2 5.4 3.6 1.8 9.00 0.90 480
c10 10 8.0 6.0 4.0 2.0 27.00 1.80 960
c11 11 8.8 6,6 4.4 2.2 27.00 0.90 1440
c12 12 9.6 7.2 4.8 2.4 9.00 0.90 960
c13 9 7.2 5.4 3.6 1.8 9.00 0.90 1440
c14 12 9.6 7.2 4.8 2.4 9.00 0.90 1440
c15 8 6.4 4.8 3.2 1.6 9.00 1.80 960
c16 8 6.4 4.8 3.2 1.6 27.00 1.80 960
c17 9 7.2 5.4 3.6 1.8 18.00 1.80 1440
c18 8 6.4 4.8 3.2 1.6 27.00 1.80 960
c19 12 9.6 7.2 4.8 2.4 9.00 0.90 960
c20 11 8.8 6.6 4.4 2.2 18.00 1.80 960
c21 11 8.8 6.6 4.4 2.2 9.00 1.80 480
c22 10 8.0 6.0 4.0 2.0 27.00 0.90 480
c23 10 8.0 6.0 4.0 2.0 18.00 0.90 480
c24 11 8.8 6.6 4.4 2.2 27.00 1.80 480
c25 8 6.4 4.8 3.2 1.6 9.00 0.90 480
c26 11 8.8 6.6 4.4 2.2 18.00 0.90 960
c27 12 9.6 7.2 4.8 2.4 27.00 0.90 1440
c28 12 9.6 7.2 4.8 2.4 27.00 1.80 480
c29 9 7.2 5.4 3.6 1.8 18.00 1.80 480
c30 12 9.6 7.2 4.8 2.4 18.00 1.80 960
c31 9 7.2 5.4 3.6 1.8 27.00 0.90 1440
c32 9 7.2 5,4 3.6 1.8 18.00 0.90 1440
c33 12 9.6 7,2 4.8 2.4 18.00 0.90 1440
c34 12 9.6 7,2 4.8 2.4 18.00 0.90 480
c35 9 7.2 5,4 3.6 1.8 9.00 1.80 960
c36 9 7.2 5,4 3.6 1.8 27.00 1.80 960
c37 11 8.8 6,6 4.4 2.2 9.00 1.80 480
c38 8 6.4 4,8 3.2 1.6 9.00 1.80 1440
c39 12 9.6 7,2 4.8 2.4 9.00 0.90 960
c40 9 7.2 5,4 3.6 1.8 9.00 0.90 1440
c41 9 7.2 5,4 3.6 1.8 9.00 1.80 1440
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Table 12   (continued) Component j pj(qj < 5k)

(€/unit)
pj(qj = [5k;10k])

(€/unit)
pj(qj = [10k;15k])

(€/unit)
pj(qj > 15k)

(€/unit)
hj(€/unit*year) �j

(€)
�j(min) �j(min)

c42 8 6.4 4,8 3.2 1.6 27.00 0.90 960
c43 8 6.4 4,8 3.2 1.6 18.00 0.90 1440
c44 11 8.8 6,6 4.4 2.2 9.00 1.80 1440
c45 8 6.4 4,8 3.2 1.6 18.00 0.90 960
c46 12 9.6 7,2 4.8 2.4 18.00 0.90 960
c47 10 8.0 6.0 4.0 2.0 9.00 1.80 960
c48 10 8.0 6.0 4.0 2.0 27.00 0.90 960
c49 8 6.4 4,8 3.2 1.6 27.00 1.80 1440
c50 8 6.4 4,8 3.2 1.6 18.00 1.80 1440
c51 12 9.6 7,2 4.8 2.4 9.00 0.90 480
c52 10 8.0 6.0 4.0 2.0 27.00 1.80 960
c53 8 6.4 4,8 3.2 1.6 9.00 1.80 480
c54 10 8.0 6.0 4.0 2.0 9.00 0.90 960
c55 12 9.6 7,2 4.8 2.4 9.00 0.90 1440

c56 9 7.2 5,4 3.6 1.8 18.00 1.80 480
c57 12 9.6 7,2 4.8 2.4 18.00 1.80 1440
c58 9 7.2 5,4 3.6 1.8 9.00 1.80 960
c59 12 9.6 7,2 4.8 2.4 18.00 0.90 960
c60 10 8.0 6.0 4.0 2.0 18.00 1.80 1440
c61 11 8.8 6,6 4.4 2.2 18.00 1.80 960
c62 11 8.8 6,6 4.4 2.2 9.00 0.90 960
c63 9 7.2 5,4 3.6 1.8 9.00 1.80 1440
c64 11 8.8 6,6 4.4 2.2 18.00 0.90 480
c65 10 8.0 6.0 4.0 2.0 18.00 1.80 960
c66 11 8.8 6,6 4.4 2.2 27.00 0.90 1440
c67 10 8.0 6.0 4.0 2.0 9.00 1.80 960
c68 11 8.8 6,6 4.4 2.2 18.00 0.90 480
c69 9 7.2 5,4 3.6 1.8 9.00 1.80 1440
c70 9 7.2 5,4 3.6 1.8 18.00 0.90 480
c71 11 8.8 6,6 4.4 2.2 9.00 0.90 480
c72 11 8.8 6,6 4.4 2.2 9.00 1.80 480
c73 11 8.8 6,6 4.4 2.2 27.00 1.80 960
c74 8 6.4 4,8 3.2 1.6 27.00 0.90 960
c75 11 8.8 6,6 4.4 2.2 9.00 1.80 960
c76 8 6.4 4,8 3.2 1.6 9.00 1.80 960
c77 12 9.6 7,2 4.8 2.4 27.00 1.80 960
c78 8 6.4 4,8 3.2 1.6 18.00 0.90 480
c79 12 9.6 7,2 4.8 2.4 9.00 1.80 960
c80 8 6.4 4,8 3.2 1.6 27.00 1.80 480
c81 9 7.2 5,4 3.6 1.8 18.00 0.90 960
c82 9 7.2 5,4 3.6 1.8 18.00 0.90 1440
c83 9 7.2 5,4 3.6 1.8 18.00 1.80 1440
c84 10 8.0 6.0 4.0 2.0 9.00 0.90 960
c85 10 8.0 6.0 4.0 2.0 18.00 1.80 960
c86 12 9.6 7,2 4.8 2.4 18.00 0.90 480
c87 12 9.6 7,2 4.8 2.4 27.00 1.80 480
c88 10 8.0 6.0 4.0 2.0 27.00 0.90 1440
c89 8 6.4 4,8 3.2 1.6 18.00 1.80 1440
c90 11 8.8 6,6 4.4 2.2 27.00 1.80 1440
c91 11 8.8 6,6 4.4 2.2 9.00 1.80 960
c92 8 6.4 4,8 3.2 1.6 18.00 0.90 480
c93 9 7.2 5,4 3.6 1.8 27.00 1.80 480
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