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ABSTRACT

Gene enrichment analysis is a common technique
for highlighting molecular pathways and biological
processes of a phenotype. Such technique has
recently evolved exploiting the information contained in
biological networks. We developed NET-GE, a web
server for network-based gene enrichment analyses.
NET-GE defines functional associations between a list
of genes/proteins and biological processes or pathways
by identifying function-specific modules in a molecular
interaction network. The peculiarity of NET-GE is the
possibility to enrich terms not detectable by standard
enrichment procedure. Here, we highlight with two
specific applications the performances of NET-GE
by computing which functional phenotypes can be
associated with two different sets of genes related
to Attention Deficit Hyperactivity Disorder and to an
Obsessive-compulsive disorder, respectively.
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INTRODUCTION

Technologies capable of investigating the organism
complexity at different levels of resolution have been
revolutionizing healthcare practice [1]. Genomic data
are generated more and more to better define, at
molecular levels, the origin of the different phenotypes.
From a precision/genomic medicine prospective, such
phenotypes need annotations in order to reconcile
specific variations with common biological processes
and pathways, such as GENE ONTOLOGY [2],
KEGG [3] and REACTOME [4] pathways. For this
purpose, functional association is routinely performed
by applying gene enrichment analysis, a technique that
assesses the statistically over-represented biological
processes and pathways of a given gene/protein set [5].

Presently, enrichment analysis methods mainly
group into two classes, standard and network-based.
While standard methods rely only on the annotations
characterizing the genes/proteins included in the input

set, network-based methods consider them in the
context of their interaction network. Thus, such methods
exploit information derived from functional biological
networks, modelling the complexity of the processes
occurring in the cell, and implement algorithms that
exploit graph properties (such as shortest paths and
node degrees).

In the last year, several approaches exploiting the
interaction networks for functional association analysis
have emerged (see [6–8] for a comprehensive list
of available tools). They may be classified into
two main categories: A) methods that exploit the
topology of the network to infer how similar are sets of
genes/proteins, and B) methods that identify functionally
related modules, inferring biological features from them.
Among the available tools that perform network-based
enrichment analysis, EnrichNet [9] and PINA v2.0 [10]
are two of the most cited methods, representative of the
A and B categories, respectively.

We recently developed NET-GE, a network-based
gene enrichment analysis tool [11, 12]. NET-GE falls
within the class B and it is based on a pre-processing
phase aimed at identifying interconnected and compact
modules in a molecular interaction network. However,
differently from all the other approaches in class B, the
modules found by our method are function-specific by
construction, since they are built starting from seed sets
collecting all the proteins related to a specific biological
annotation

One of the main features of NET-GE is the possibility
to enrich terms that are not originally present in the
annotation of the starting gene/protein set (and thus
not detectable through a standard enrichment). When
tested on benchmark sets retrieved from the Online
Mendelian Inheritance in Man (OMIM) resource (https:
//www.omim.org), NET-GE was able to enrich sets of
genes related to the same disease, also highlighting new
terms (i.e. terms not included in the annotations of the
input set) [11].

Here, we present two study cases, demonstrating how
NET-GE can help the interpretation and prioritization of
variations in sets of genes associated with two complex
disorders: the Attention Deficit Hyperactivity Disorder
(ADHD) and the Obsessive-compulsive disorder (OCD).
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METHODS

NET-GE background

The network-based enrichment makes use of
precomputed annotation terms, as previously
described [11]. Briefly, the human molecular-interaction
network was downloaded from STRING v.10
(http://string-db.org). A second version of
STRING, named STRING0.9, was obtained by retaining
only the links with the STRING combined score ≥ 0.9.
The database for annotating features were: GENE
ONTOLOGY (as retrieved from the UniProt-GOA human
145 web resource: http://www.ebi.ac.uk/GOA);
KEGG PATHWAY v77 and REACTOME PATHWAY v53.
For each annotating feature, proteins sharing the same
annotation term were collected in a seed set and then
extended into a compact and connected module of
the molecular-interaction network. Thus, the module
was determined by computing all the shortest paths
among the seeds genes/proteins and then by reducing
the resulting sub-network into the minimal connecting
network that preserves the distances among seeds.
The minimal connecting network adds to the seeds a
set of connecting nodes that are more reliably related
to the reference annotation. Details about annotations
and module extraction can be found in [11] and [12],
respectively.

Over-representation analysis is performed by mapping
the input set on each module and determining, through
a Fisher’s exact test, whether there are significant
overlaps between the input set and the modules (seed
sets in the case of standard enrichment). Multiple
testing correction is then applied using the Bonferroni
or the Benjamini-Hochberg (False Discovery Rate, FDR)
procedure [13].

When we consider the standard enrichment, the
background set is totally disconnected. On the contrary,
with the network-based procedure we rely on the human
interactome to precompute the annotation modules.
Enrichment is computed over a changed reference set
that includes also all the nodes connecting seeds with
the same annotation. This may change the p-value.

NET-GE web server

A web server, implementing both a standard and a
network-based gene enrichment was implemented as
described in [12]. Briefly, NET-GE Web interface takes
as input a list of genes/proteins (allowed identifiers
are: UniProtKB AC, Ensembl and HGNC gene names).
The enrichment can be performed considering the
annotation modules based on STRING or STRING0.9.
The enriched terms can derive from the GENE
ONOLOGY (all the sub-ontologies), or from the KEGG
or the REACTOME PATHWAYS. The user can select
between two kinds of multiple testing correction methods
(Bonferroni or the Benjamini-Hochberg correction), and
the significance threshold. As output NET-GE reports: 1)
two enrichment tables (one for the standard enrichment
and one for network-based one), 2) a graph visualizing
how the enriched terms are linked, and 3) the complete

set of annotations (for both the enrichment modes).
Terms not included in the annotations of the input
proteins are highlighted with a double star.

RESULTS

To test the performance of NET-GE we used sets of
proteins involved in Mendelian diseases [11]. We tested
244 different genetic disorders, each one associated to
two or more proteins. Our method was able to detect
functional associations not detectable by the standard
enrichment. Moreover, the newly enriched terms that
were absent in the original annotations of the input
genes are likely to provide new knowledge on the
phenotype under examination [11].

Here, we present two cases of study demonstrating
how NET-GE can help the interpretation and
prioritization of variations in sets of genes associated
with two complex disorders: the Attention Deficit
Hyperactivity Disorder and the Obsessive-compulsive
disorder.

Attention Deficit Hyperactivity Disorder

In the following, we deal with a specific test set (http:
//net-ge.biocomp.unibo.it/enrich/tutorial) that
includes two input proteins related to Attention Deficit
Hyperactivity Disorder (ADHD; OMIM #143465), a
neurodevelopmental disease of childhood affecting the
cognitive and behavioral functions. The genetic disease
is associated to variations in the dopamine receptors
DRD4 (UniProtKB AC: P21917) and DRD5 (UniProtKB
AC: P21918). Using as input the DRD4 and DRD5
genes, we carried out enrichment analyses by setting
the significance threshold at 0.05 on the Bonferroni
corrected p-values. Standard and network-based
enrichments ran over the KEGG database. Terms
enriched by NET-GE are shown in Figure 1. The
standard enrichment on KEGG highlights neuroactive
ligand-receptor interaction and dopaminergic synapse
as the most significant pathways. The network-based
procedure adds new terms, not associated to the
input proteins, and involved in ADHD, considering the
statistically significant subnetworks. The pathways
sorted by significance are: circadian entrainment,
morphine addiction, retrograde endocannabinoid
signaling and glutamatergic synapse.

Interestingly enough, the enriched pathways had
been previously described in literature as being
diseases-related. Different experiments have described
different pathways [14–17] and the network-based
enrichment method retrieved them all from the inclusion
of the connecting nodes in the annotation modules.

In Figure 1 the difference in annotation between the
standard enrichment procedure and the network-based
is shown. As explained in the Methods section, standard
enrichment is computed over a totally disconnected
reference set. The network-based procedure relies on
the precomputed annotation modules and the reference
set includes all the nodes that connect seeds with the
same annotation. This may increase the p-value as in
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Figure 1: Output of NET-GE for the enrichment of KEGG pathways in the ADHD study case. Enrichment analysis was
carried out using as input the DRD4 and DRD5 genes. The upper panel shows the graph of the enriched terms and their relations.
Box filling color represents the corrected p-value associated to the enriched term, while contour color represents its information
content (see [11] and [12] for details). The lower panel presents the enriched terms in a tabular format. Terms highlighted with a
double star are new annotations, not associated to the input proteins and enriched with the network-based procedure. p-values
are corrected with the Bonferroni procedure.
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Figure 2: Graph of the first protein neighbours in the
ADHD study case. The graph of the KEGG term hsa04723
(Retrograde endocannabinoid signaling) shows the two input
proteins (in purple) and the first protein neighbours highlighted
as seeds (in yellow) and new connecting genes (in blue).
The connecting genes are added to the graph with the
network-based enrichment procedure.

the case of the neuroactive ligand receptor interaction
that is no longer listed among the terms obtained with
the network-based procedure.

For comparison, we also tried PINA and
EnrichNET. Considering as significant p-values<0.05
Benjamini-Hochberg corrected, PINA (tool "Identify
enriched Interactome modules”) did not retrieve any
significantly over-represented module. EnrichNET
authors recommend to analyse sets with at least 10
genes/proteins for reasons of statistical reliability. As a
consequence, EnrichNET did not retrieve any significant
term.

As evaluate the robustness of the method for small
input sets composed of two to ten proteins, we computed
the effect on the final stability of the enrichment when
doubling (with random additions) the sizes of the input
sets. We obtain that under these extreme conditions of
noise, the stability of the enrichment ranges from 37 to
52%, depending on the annotation term and the network
type (see Figure S1).

In Figure 2, the two input proteins are shown in the
graph (purple circles) of the first protein neighbors, after
network-based enrichment, detailing protein seeds of
the Retrograde endocannabinoid signaling KEGG path
(hsa04723, Homo sapiens) in yellow and the connecting
nodes in blues (proteins that are retained after NET-GE
based enrichment). The whole annotation network is
downloadable (all seeds, nodes and arcs) and it is
available for display.

Obsessive-compulsive Disorder

Obsessive-compulsive disorder (OCD) is a severe
neuropsychiatric disorder characterized by the presence
of obsessions and compulsions [18]. This disorder has
been recently investigated in [18] by using whole-exome

sequencing (WES).

Twenty OCD cases and their unaffected parents
(parent–child trios) were screened for de novo
missense mutations (i.e. mutation present
only in the affected individual), identifying 27
OCD-related genes. Based on Ingenuity software
(https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis), three signaling
pathways were identified as disease-related [18]
sharing only one patient/one gene. In fact, among
the 27 genes, only SMAD4 (gene mutated in only one
patient) was present in the three enriched pathways.

With NET-GE we highlight four biological processes as
the most significant ones (Figure 3, panel A), all related
to the purine metabolism that has been proven to be
associated with several neurological disorders [19–21].
However, and interestingly enough, 10 of the 27 initial
genes have common annotations. Testing Molecular
Functions, the standard enrichment procedure
highlighted ATPase activity and the network-based
procedure enriched thyroxine 5’-deiodinase activity
(Figure 3, panel B), a new term not associated to the
input proteins and involved in OCD [22].

Our results highlight the involvement of processes
common to the gene panel and corroborates the notion
that network-based enrichment consistently derives
information from the connected annotation modules,
including genes corresponding to 9 of the 14 patients
analyzed in [18].

CONCLUSION

In this article, we presented the NET-GE web
server [12], developed for tackling the problem of the
human biological complexity. Specifically, NET-GE
is a tool for associating biological processes and
pathways with sets of human genes/proteins involved
in the same phenotype. It performs standard and
network-based enrichment analysis. The network-based
procedure extracts from the STRING human interactome
sub-networks of connecting proteins that share the same
annotation [11]. We benchmarked NET-GE on two
specific test cases, with a phenotype and its biological
functions already described in literature. On this
benchmark, the network-based procedure, considering
genes/proteins in the context of their functional
interaction network, enriched functional annotations that
are experimentally validated. This version of NET-GE is
preliminary to the inclusion of some additional features
that can eventually add to the relevance of detecting
emerging functional characteristics from a set of genes,
such as the inclusion of ranking scores (e.g. fold
of differentially expressed genes) or the usage of
tissue-specific interactomes.
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Figure 3: Output of NET-GE for Obsessive Compulsive Disorder for Biological Processes (panel A) and Molecular
Function (panel B). Genes are derived from [18]. Terms highlighted with a double star are new annotations, not associated
to the input proteins and enriched with the network-based procedure. p-values are corrected with the Bonferroni procedure.
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SUPPLEMENTARY DATA

High resolution figure files, together with
supplementary items listed below, are available at
Genomics and Computational Biology online.

Supplementary Figure S1. Testing the robustness
of the network-based enrichment methods. For
small input sets comprising from two to ten proteins
(derived from OMIM), we computed the effect of doubling
(with random additions) the size on the final stability of
the enrichment. This was done for all the annotation
terms and the two different version of STRING (see
Methods). Errors bars indicated standard deviations
over a reference of 123 gene sets.
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