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Abstract:We explore algebraic strategies for numerically solving linear elliptic partial differential equations
in polygonal domains. To discretize the polygon by means of structured meshes, we employ Schwarz–
Christoffel conformal mappings, leading to a multiterm linear equation possibly including Hadamard prod-
ucts of some of the terms. This new algebraic formulation allows us to clearly distinguish between the role of
the discretized operators and that of the domain meshing. Various algebraic strategies are discussed for the
solution of the resulting matrix equation.

Keywords: elliptic partial differential equations, Schwarz–Christoffel mapping, matrix equations, iterative
methods
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1 Introduction
We are interested in exploring matrix-oriented algebraic strategies for numerically solving two-dimensional
partial differential equations (PDEs) of the type

− α1uxx − α2uyy +wT ⋅ ∇u + βu = f, (x, y) ∈P (1.1)

where u = u(x, y), f = f(x, y), P ⊂ ℝ2 is the interior of a polygon, the vector wT = (w1(x, y), w2(x, y))
accounts for the convection, and α1, α2, β are coefficients possibly also depending on the space variables.
Dirichlet conditions are considered throughout the whole domain boundaries.

Commonly employed discretizationmethods such as finite elements lead to large-scale sparse linear sys-
tems to be solved, typically by means of preconditioned Krylov subspace methods (see, e.g., [18, 28, 32]).
Recently, the use of tensor basis discretizations such as finite differences (FD), spectral methods and Isoge-
ometric Analysis (ISA) (see, e.g., [6, 29, 33]) has shown that under certain hypotheses on the domain and
coefficients, it is possible to write the discretized version of (1.1) in terms of linearmatrix equations; in addi-
tion to a better understanding of the structural properties of the discretized quantities, this perspective can
allow significant savings not only in memory requirements, but also in computational costs. In particular,
the FD approach presented in [29] focussed on the case of rectangular domains.

Our aim is to significantly expand thematrix-oriented FD discretization approach by addressing the case
where P is a more general domain, such as a polygon. In our context, this can be addressed by using struc-
tured grids. A large range of computational strategies to associate the physical domain with a simpler refer-
ence domain such as rectangles or disks have been proposed in the literature. Classically, bilinear projectors
havebeenused in case of curvedboundaries andare at thebasis of transfinite interpolation in twoand threedi-
mensions (see, e.g., [19, 25]). Nonetheless it is recognized that, at least fromamathematical standpoint, itmay
be advantageous to embed the problem in the complex plane and use conformal and quasi-conformal map-
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pings, although their use is strictly constrained to two-dimensional problems¹. Other explored approaches
include variational and other PDE based methods, especially elliptic grid generators, extensively employed
in fluid and air dynamics in the 1980s. The literature is extremely vast, here we give the reader a couple of
pointers [7, 25, 38]. In this paper we probe the applicability of conformal Schwarz–Christoffel (SC) mappings,
which have several theoretical and computational advantages, not least the fact that quite reliable easy-to-
use Matlab software is available [13, 14]; other available software leading to the same matrix setting could
effectively be employed, such as that described in the Chebfun environment²; see also [41].

Our aim is to provide a proof of concept methodology that leads to new algebraic formulations for the
differential problem in (1.1) defined in a polygonal domain. To this end, we propose a general use of the
Schwarz–Christoffel mappings, that goes beyond the standard Laplacian, which is the most natural operator
for Schwarz–Christoffel mappings [15, Ch. 5]. To the best of our knowledge, this application of SC mappings
is new.

We take advantage of the recently developed matrix equation framework for solving PDEs discretized
using tensor bases [35], and bridge the gap between these bases and the treatment of more general, convex
domains for which alternative discretization strategies are commonly employed. Our derivation discusses
in detail some of the building blocks, the most crucial one being that the Jacobian determinant of the SC
mapping depends on the reference domain variables, giving rise to more complex computations involving
Hadamardproducts, if the tensor basis framework is to be exploited.Wediscuss hownumerical linear algebra
techniques need to adapt to the considered operator, while pinpointing both memory and computational
properties. In particular, both vector and matrix oriented equations are presented, and their pros and cons
outlined. In our numerical experience, it is possible to take advantage at various stages of the properties
of the involved operators, as opposed to other discretization strategies such as finite elements, where the
differential operator and grid contributions cannot be distinguished.

The outline of the paper is as follows. After a brief introduction of the Schwarz–Christoffel conformal
mapping in Section 2, we explore the application of this mapping to the numerical discretization of PDEs in
polygonal domains in Section 3, which leads to a linear matrix equation framework. Then several specific
examples of classes of PDEs are given in Sections 4 and 5 to illustrate the derivation of the algebraic formula-
tion. In Section 6, various algebraic strategies are considered for solving the resulting matrix equation, and
numerical experiments are discussed in Section 7 to show the performance of the discretization procedures
and of the adopted solvers. We also analyze the selection of the grids in Section 8. Finally, conclusions of this
work are given in Section 9.

All numerical computations throughout the paper were performed inMatlab v.2019a [27] on a Dell laptop
using Intel Core i7-3687U with 4 CPUs at 2.10GHz.

2 Discretization and coordinate transformations
Discretization strategies usually aim at transforming a physical region associated with a possibly complex
geometry to a simple region through automatic transformations; these transformations can be constructed at
the global level (such as in spectralmethods) or at the local level (IGA, finite elements). Thesemappings allow
one to then state the problem as an algebraic equation, whose solution approximates the given problem’s
continuous solution in the original (physical) domain.

A large class of two-dimensional regions can be parameterized by means of special coordinate systems.
This is the case for a circle andmore generally, for a sector or an annulus, for which computational boundary-
conforming grids such as polar coordinates, log-polar coordinates, parabolic cylinder coordinates, elliptic
cylinder coordinates and bipolar coordinates transformations can be employed. It should be noticed, how-

1 As it will be clear in the following, the numerics will all be performed in real arithmetic.
2 https://www.chebfun.org/examples/complex/ConformalMapping.html



Y. Hao and V. Simoncini, Matrix equation solving of PDEs in polygonal domains | 223

ever, that if either the region or the boundary parameterization is changed, even slightly, these coordinates
system may become useless.

As an illustrative example we consider the Poisson equation −∆u = f with zero boundary conditions, de-
fined (in Cartesian coordinates) in the annulus sector P = {(x, y) : x = r cos ϑ, y = r sin ϑ, r ∈ [r(0), r(1)], 0 ⩽
r(0) < r(1), ϑ ∈ [0, π/4]}. Using polar coordinates (r, ϑ), the Poisson equation is given by

−r2urr − uϑϑ − rur = r2f(r, ϑ), (r, ϑ) ∈ [r(0), r(1)] × [0,
π
4 ]

.

Thediscretizationof this equation in (r(0), r(1))×(0, π/4)byFDgives the linearmatrix equation (see, e.g., [29]):

Φ2TU + UT − ΦBU = F̃.

The entry Ui,j of the matrix U approximates u at the grid node (ri , ϑj), where ri’s and ϑj’s are the interior
discretization nodes of the intervals [r(0), r(1)] and [0, π/4], respectively. The matrices B, T ∈ ℝn×n account
for the discretization coefficients of the first and second order one-dimensional derivatives, respectively (see
Section 3.1 for additional details). Finally,Φ = diag(r1, r2, . . . , rn). Here and in the following, we denote with
diag(d) the diagonal matrix having the components of the vector d on the diagonal.

Although a variety of special coordinate systems are available (see, e.g., [25, Ch. 1]) that can lead to the
use of tensor-product based domains, this is not so for simple domains such as polygons with more than four
edges. Moreover, it is important to have a computational procedure that automatically transforms a given
two-dimensional domain into a rectangle. In the following we explore the use of the Schwarz–Christoffel
mapping, a convenient conformal mapping whose computational realization is available via the Matlab soft-
ware package SC [13, 14].

Other transformations could be considered to arrive at our algebraic framework, as long as the physical
domain can be brought into a rectangular computational domain, on which the transformed problem can be
solved; we refer the reader to, e.g., [25] for a broad discussion of mappings associated with grid generations.

2.1 Schwarz–Christoffel mapping

Conformal mappings provide a mathematically robust tool for handling complex two-dimensional geome-
tries, also allowing for an easy representation of the physical boundary conditions. From a numerical view-
point, the resulting grids have the desirable property of being orthogonal, i.e., the tangents to the coordinate
curves are perpendicular, which leads to reduced truncation errors when dealing with the transformed dif-
ferential equations. Moreover, the Jacobian is positive definite by construction, so that the mapping is guar-
anteed to be well defined (one-to-one), thus preserves the type of partial differential equation after trans-
formation. A conformal mapping can be constructed algebraically or by solving either an integral equa-
tion [15, 20, 23, 37, 39], or (systems of) partial differential equations [8, 9, 26]. The Schwarz–Christoffel map-
ping is one such operator, expressed as an integral [7, 15], e.g., mapping the complex upper half-plane into
the interior of a polygon. The ‘polygon’ may in fact be a quite general region, and may have cracks or vertices
at infinity.

A typical example of the Schwarz–Christoffel (SC) map is given by the following function g, which maps
from the upper half of the complex plane to the interior of a polygon. Let the polygon vertices be denoted by
z1, . . . , zn, and let the numbers φ1π, . . . , φnπ be the interior angles at the vertices. The pre-images of the
vertices, or pre-vertices, are real and denoted by ω1, . . . , ωn, and satisfy ω1 < ω2 < ⋅ ⋅ ⋅ < ωn =∞. The map
g is defined as

g(ω) = g(ω0) + c∫
ω

ω0

n−1
∏
j=1
(ζ − ωj)φj−1 dζ (2.1)

where ω0 is a point contained in the upper half of the complex plane, and c is a complex constant. This is
known as the Schwarz–Christoffel formula [15, Th. 1.1].

There are twomain difficulties associated with computing conformal maps from the Schwarz–Christoffel
formula: (i) determining the pre-vertices ωj, which is the first step for any SC mapping (the so-called SC pa-
rameter problem), and (ii) integrating the right-hand side of (2.1). Except for special cases, the pre-vertices ωj
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cannot be determined in closed form; solving the system of equations for the pre-vertices can be a compu-
tationally expensive process. As of (ii), finding an explicit expression by evaluating the integral analytically
can significantly reduce the time needed to compute themap. Historically, these problems have been difficult
to implement numerically, and first successful attempts have been reported in the early 1980s [23, 40]. In the
past few years the Schwarz–Christoffel Toolbox for Matlab [13, 14] has arisen as a numerical reliable tool for
computationally handling these mappings; the toolbox can solve the parameter problem for various typical
domains, and obtain the forward and inverse mappings. That provides us with a powerful and effective tool
to numerically solve partial differential equations in a polygonal domain by the FDmethod, leading tomatrix
equations. Other software packages associated with conformal or other mappings could also be considered,
whenever available (see, e.g., [25, 41]).

3 Schwarz–Christoffel mappings for PDEs in polygonal domains
The Schwarz–Christoffel conformal function hmapping the interior of the rectangular domain Π = (a1, a2)×
(b1, b2) (canonical domain) onto the physical domain P can be obtained as the function h(ω) = g(l(ω)),
where lmaps the rectangle to the upper half-plane, obtained as the Jacobi elliptic function sn(z|m), while g
maps the upper half-plane to the physical polygon P, as before. The functions are related by the chain-rule
relation h(ω)/l(ω) = C∏n

k=1(l(ω) − l(ωk))φk−1 with C and ωk to be determined [15, formula (4.1)]. Computa-
tional and stability arguments lead to the use of an additional intermediate mapping passing through a strip;
more details on the actual implementation can be found in [15, Sect. 4.3], and [22]. The rectangle vertices are
obtained as pre-images of the polygon vertices chosen as reference (control) points to construct the map; see
Section 7.

The cost of using such transformation is an increase in the complexity of the transformed equations, but
the domain becomes much simpler, the equations and the boundary conditions become easier to be approx-
imated accurately by the FD method.

Let (x, y) ∈P and (ξ, η) ∈ Π. Identifying these two setswith corresponding regions in the complex plane,
there holds

z = h(ω) = h(ξ + iη) = x(ξ, η) + iy(ξ, η) (3.1)

where x = x(ξ, η) and y = y(ξ, η) are real valued functions. Since h is a conformal mapping, the Cauchy–
Riemann equations hold, that is

xξ = yη , xη = −yξ . (3.2)

The functions u(x, y) and f(x, y) in P are transformed to functions ũ and f̃ in Π using

ũ = ũ(ξ, η) = u(x(ξ, η), y(ξ, η)), f̃ = f̃ (ξ, η) = f(x(ξ, η), y(ξ, η))

and similarly for αi(x, y), wi (i = 1, 2), and β(x, y). Without ambiguity, we use ũ, f̃ , α̃i, w̃i, and β̃ to denote
these transformed functions in the sequel.

The Jacobian matrix of the transformation h is

J = [
xξ xη
yξ yη
] .

Thanks to (3.2) its determinant satisfies

J =J (ξ, η) = xξ yη − xηyξ = x2ξ + x
2
η > 0.

Therefore, the relations ũξ = uxxξ + uyyξ and ũη = uxxη + uyyη yield

ux =
1
J
(ũξ yη − ũηyξ ) =

1
J
[(ũyη)ξ − (ũyξ )η]

uy =
1
J
(ũηxξ − ũξ xη) =

1
J
[(ũxξ )η − (ũxη)ξ ] .

(3.3)
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Combining with (3.2) gives

uxx =
1
J
[

[
(
ũξ x2ξ + ũηxξ xη

J
)
ξ

+ (
ũηx2η + ũξ xξ xη

J
)
η

]

]

uyy =
1
J
[

[
(
ũξ x2η − ũηxξ xη

J
)
ξ
+(

ũηx2ξ − ũξ xξ xη
J

)
η

]

]
.

(3.4)

Using the formulas (3.2)–(3.4) and after simple calculations, the partial differential equation (1.1) in the
physical domain P can be transformed into the following equation in the canonical domain Π,

− (α̃1x2ξ + α̃2x
2
η)ũξξ − (α̃1x2η + α̃2x2ξ )ũηη − 2(α̃1 − α̃2)xξ xη ũξη

+J [(w̃1xξ − w̃2xη) −
1

J 2 (α̃1 − α̃2)(3xξ x
2
ηxξξ + x3ηxξη − x3ξ xξξ − 3x

2
ξ xηxξη)] ũξ

+J [(w̃1xη + w̃2xξ ) −
1

J 2 (α̃1 − α̃2)(x
3
ηxξξ + x3ξ xξη − 3xξ x

2
ηxξη − 3x2ξ xηxξξ )] ũη

+J 2 β̃ ũ =J 2 f̃ , (ξ, η) ∈ Π (3.5)

or, with obvious notation,

− γ1ũξξ − γ2ũηη + γ3ũξη + γ4ũξ + γ5ũη + γ6ũ = f̂ , (ξ, η) ∈ Π. (3.6)

The transformed equation thus includes mixed second-order derivatives, in addition to the first and second
order derivatives of the original problem. Clearly, the problemsimplifies if, for instance, α̃1 = α̃2. In particular,
for α̃1 = α̃2 = 1 from (3.5) we obtain

−J ũξξ −J ũηη +J (w̃1xξ − w̃2xη)ũξ +J (w̃1xη + w̃2xξ )ũη +J 2 β̃ ũ =J 2 f̃

where a factor J can be eliminated throughout and the vector w̃ highlighted, so that

− ũξξ − ũηη − w̃TJ∇ũ +J β̃ ũ =J f̃ , ∇ũ = (ũξ , ũη)T . (3.7)

This simplified form stresses the role of the mapping on the various terms, elegantly and clearly discern-
ing between the operator and domain discretization parts of the numerical procedure.

3.1 Discretization of the transformed PDE

To approximate the transformed equation (3.6) by FDs, we define the grid points (ξi , ηj) ∈ Π = (a1, a2) ×
(b1, b2) by

h1 =
a2 − a1
n1 + 1

, ξi = a1 + ih1, 1 ⩽ i ⩽ n1

h2 =
b2 − b1
n2 + 1

, ηj = b1 + jh2, 1 ⩽ j ⩽ n2

where n1 and n2 are the number of interior grid points in the intervals (a1, a2) and (b1, b2), respectively. To
avoid a pedantic notation, with some abuse of notation in the following we shall not distinguish between ni
and ni + 2, which corresponds to either include or exclude the interval boundary points.

The transformation x = x(ξ, η) and y = y(ξ, η) carries the canonical-space grid to a physical-space grid
(xi,j , yi,j), where

xi,j = x(ξi , ηj), yi,j = y(ξi , ηj), 1 ⩽ i ⩽ n1, 1 ⩽ j ⩽ n2.

One of the convenient features of these conformal mappings is that the derivatives xη , xξ can cheaply and
accurately be computed by using the mapping itself [14, Table III]. In matrix notation, these will be denoted
by (Xη)ij ≈ xη(ξi , ηj) and (Xξ )ij ≈ xξ (ξi , ηj).
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The discretization also induces discrete values for all of the transformed variables in (3.6). For example,
ũi,j = ũ(ξi , ηj) = u(x(ξi , ηj), y(ξi , ηj)) = u(xi,j , yi,j) = ui,j .

Let Ui,j be the value of the approximation to ui,j. In order to attain second-order accuracy of the dis-
cretization of the two-dimensional problems (3.6), the following standard FD approximations are adopted
for i = 1, . . . , n1, j = 1, . . . , n2,

ũξξ (ξi , ηj) ≈
Ui+1,j − 2Ui,j + Ui−1,j

h21

ũξη(ξi , ηj) ≈
Ui+1,j+1 − Ui+1,j−1 − Ui−1,j+1 + Ui−1,j−1

4h1h2

ũηη(ξi , ηj) ≈
Ui,j+1 − 2Ui,j + Ui,j−1

h22

ũξ (ξi , ηj) ≈
Ui+1,j − Ui−1,j

2h1

ũη(ξi , ηj) ≈
Ui,j+1 − Ui,j−1

2h2
.

(3.8)

These approximations, performed element-wise in the grid, allow one to derive linearmatrix equations in the
unknownmatrix Ui,j, directly associated with the grid points (ξi , ηj), and thus with the corresponding nodes
(xi,j , yi,j) in the physical domain. In particular, by collecting the coefficients in the linear combinations of
adjacent nodes, we see that (see, e.g., [29]):

ũξξ (ξi , ηj) ≈ (T1U)i,j , T1 =
1
h21

[[[[[[[[

[

2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1
−1 2

]]]]]]]]

]

∈ ℝn1×n1 (3.9)

and

ũηη(ξi , ηj) ≈ (UT2)i,j , T2 =
1
h22

[[[[[[[[

[

2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1
−1 2

]]]]]]]]

]

∈ ℝn2×n2 . (3.10)

A more detailed description of the other terms will be given in later sections.
In the following, several specific examples of classes of PDEs are given to illustrate the derivation of the

actual matrix equation formulation.

4 Poisson equation
The simplest possible case to be considered is the following Poisson equation

− uxx − uyy = f, (x, y) ∈P (4.1)

with Dirichlet boundary conditions. The Laplace operator is the most representative of the strength of
Schwarz–Christoffel transformations, as the operator is invariant under conformal mappings (see, e.g.,
[2, 8, 15]). Hence, according to (3.7), the transformed equation associated with (4.1) is

− ũξξ − ũηη =J f̃ , (ξ, η) ∈ Π. (4.2)
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Fig. 1: Convex domain. Grid of the Schwarz–Christoffel mapping over
the physical domain.

We note that this problem serves as an introduction to more involved equations, since built-in solvers for
problems only involving the Laplace operator are already available in the SC Toolbox.

With the FD approximations (3.9)–(3.10), the discretized matrix form of equation (4.2) is given by

T1U + UT2 = F (4.3)

where
F = F̃ + b.c., F̃i,j = (J f̃ )(ξi , ηj), 1 ⩽ i ⩽ n1, 1 ⩽ j ⩽ n2. (4.4)

The linear equation (4.3) is a Sylvestermatrix equation, and can be solved by the Bartels–Stewartmethod
or its variants [1, 21, 36], or by iterativemethods [35], depending on thematrix size.Wenote that the right-hand
side matrix F is computed element-wise as (J f̃ )(ξi , ηj). Let J be the matrix accounting for J (ξi , ηj) for all
interior grid nodes. The occurrence of element-wise computations with J provides an important challenge in
the solution of thematrix equation form, which will become apparent when solvingmore involved equations
in the next sections.

Let P be the interior of the hexagon in Fig. 1 having vertices³ (which are ordered counter-clock-wise)

z1 = (2.06107, −2.59033), z2 = (2.91603, 0.38168), z3 = (1.22646, 2.58015)

z4 = (−1.90840, 2.47837), z5 = (−2.92621, 0.58524), z6 = (−1.19593, −2.30534).

Using the SC Matlab Toolbox [13, 14], the obtained canonical (rectangular) domain is given by rectangle
Π = [−1.60167736, 1.60167736] × [0, 2.71248244]. A sample of the graphical representation of this grid
mapped by h to P is also shown in Fig. 1, while a finer grid (with n1 = n2 = 30 grid points in each direction
in Π) is used in our experiment. We solve the problem using two different settings: we first use homogeneous
(zero) Dirichlet boundary conditions, and then, denoting zi = (xi , yi), we use the following boundary condi-
tions:

u = (x − x1)(x − x3) + (y − y1)(y − y3) + 1 on edges z1 − z2 and z2 − z3
u = 1 on other edges

(4.5)

ensuring the solution continuity at the boundary.
The approximate solution U to (4.1) for f = 1 so that F = J under zero boundary conditions is displayed in

Fig. 2 (left), while that associated with the non-uniform boundary conditions is reported in Fig. 2 (right). Due
to the small problem size, the computational results were obtained with the Matlab function lyap [27].

3 The polygon was obtained by hand using the SC Toolbox polyedit graphical editor (see Section 7). This explains the seemingly
peculiar choice of the vertices {zi}, whose first 6 significant digits are reported here.
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Fig. 2: Poisson equation solution U in the physical domain —P with homogeneous (left) and non-constant (right) Dirichlet
boundary conditions.

5 Beyond the Laplace operator
In (1.1), the presence of space-dependent coefficients α1, α2, w, and β provides an important challenge
to the discretized matrix equation setting. If P were a rectangle, non-constant but separable coefficients
would be easy to deal with. For the sake of the discussion, let us consider the zero-order term. Assum-
ing for instance that β(x, y) = β1(x)β2(y), then the term βu would be discretized as βββ1Uβββ2, where βββ1 =
diag(β1(x1), . . . , β1(xn1 )) and analogously for βββ2 (see, e.g., [29]). In the case of a polygon, equation (3.7)
shows that the term βu is replaced by J β̃u, where all quantities depend on the space variables, thus the
product needs to be carried out element by element, even in the case that β is separable, since β̃ and J are
not separable functions in general.

If G denotes the matrix associated with the discretization of J β̃, then the term J β̃u leads to a matrix
term in the matrix equation of the form G ∘ U, where ‘ ∘’ denotes the (element-wise) Hadamard product. It
should be noticed, however, that if G is a low rank matrix, that is it satisfies G = ZQT with Z = [z1, . . . , zℓ],
Q = [q1, . . . , qℓ] and ℓ ≪ min{n1, n2}, then thanks to the properties of the Hadamard product, we could
write G ∘U = diag(z1)Udiag(q1)+ . . . +diag(zℓ)Udiag(qℓ), Hence, in the case G can be well approximated by
a low rank matrix, the Hadamard product can be substituted with a sum of matrix terms in the usual matrix
product.

In the next sections we dwell with the algebraic formulations for a few classes of differential problems.

5.1 The Poisson equation with a reaction term

Consider the numerical solution of

{
{
{

−∆u + βu = f, (x, y) ∈P

u = 0, (x, y) ∈ ∂P .
(5.1)

The addition of the quantity βu, with β = β(x, y), increases the difficulty of the algebraic setting, since it adds
a composite term to the matrix equation. Using (3.7) we can write

{
{
{

−ũξξ − ũηη + (J β̃ )ũ =J f̃ , (ξ, η) ∈ Π
ũ = 0, (ξ, η) ∈ ∂Π.

(5.2)
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Proceeding with the FD discretization, we denote⁴

G6(i, j) := (J β̃ )(ξi , ηj), 1 ⩽ i ⩽ n1, 1 ⩽ j ⩽ n2 (5.3)

thus giving the following matrix equation, corresponding to equation (5.2),

T1U + UT2 + G6 ∘ U = F (5.4)

where T1, T2 and U, F are defined in Section 3.1.

5.2 Variable coeflcient diffusion equation

Consider the variable coefficient equation

{
{
{

−α1uxx − α2uyy = f, (x, y) ∈P

u = 0, (x, y) ∈ ∂P
(5.5)

with αi = αi(x, y), i = 1, 2. According to (3.6), the transformed equation is

{
{
{

−γ1ũξξ − γ2ũηη + γ3ũξη + γ4ũξ + γ5ũη = f̂ , (ξ, η) ∈ Π
ũ = 0, (ξ, η) ∈ ∂Π

(5.6)

with
γ1 = α̃1x2ξ + α̃2x

2
η , γ2 = α̃1x2η + α̃2x2ξ , γ3 = 2(α̃2 − α̃1)xξ xη

γ4 =
1
J
(α̃2 − α̃1)(3xξ x2ηxξξ + x3ηxξη − x3ξ xξξ − 3x

2
ξ xηxξη)

γ5 =
1
J
(α̃2 − α̃1)(x3ηxξξ + x3ξ xξη − 3xξ x

2
ηxξη − 3x2ξ xηxξξ )

(5.7)

and f̂ =J 2 f̃ . Given the ζ × ζ matrix

B =

[[[[[[[[

[

0 1
−1 0 1

. . . . . . . . .
−1 0 1
−1 0

]]]]]]]]

]

(5.8)

we denote by

B1 := 1
2h1

B ∈ ℝn1×n1 , ζ = n1

B2 := 1
2h2

BT ∈ ℝn2×n2 , ζ = n2

the matrices associated with the discretization of the first order derivative in ξ and η, respectively, and for
ℓ = 1, . . . , 5 we set

(Gℓ)i,j = γℓ(ξi , ηj), i = 1, . . . , n1, j = 1, . . . , n2. (5.9)

With these notations, we get the following matrix equation for the problem (5.6):

G1 ∘ (T1U) + G2 ∘ (UT2) + G3 ∘ (B1UB2) + G4 ∘ (B1U) + G5 ∘ (UB2) = F (5.10)

where T1, T2 and U, F are defined in Section 3.1.

4 The subscript in G6 accounts for more terms that will arise in the following, associated with the discretization of higher order
terms.
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5.3 Convection–diffusion equation

Consider the numerical solution of the partial differential equation

{
{
{

− ε∆u + ux = f, (x, y) ∈P

u = 0, (x, y) ∈ ∂P .
(5.11)

According to (3.7) the corresponding transformed equation is

{
{
{

− ε(ũξξ + ũηη) + xξ ũξ + xη ũη =J f̃ , (ξ, η) ∈ Π
ũ = 0, (ξ, η) ∈ ∂Π.

(5.12)

Using the approximations in (3.8) gives the following matrix equation

ε(T1U + UT2) + Xξ ∘ (B1U) + Xη ∘ (UB2) = F (5.13)

where T1, T2, U, F and B1, B2 are defined in Section 3.1 and after (5.8), respectively, while we recall that

(Xξ )i,j = xξ (ξi , ηj), (Xη)i,j = xη(ξi , ηj), i = 1, . . . , n1, j = 1, . . . , n2.

6 Numerical solution of the matrix equation
Discretization of the transformed equation (3.5) by standard FDs leads to a medium scale linear matrix equa-
tion, This may be considered the major advantage over vector oriented discretizations. In fact, if the original
PDE were to be solved by a method leading to a vector-based algebraic equation, one would be then faced
with the solution of a linear system of size of the order of n1n2, for a comparable discretization accuracy. In
that case too, a direct solution would be unfeasible. On the other hand, the presence of coefficient matrices
involving the Hadamard product may make the computations more cumbersome.

The complexity of the solution strategy and its computational costs for solving discretized PDEs in the
form (1.1) usually depend on whether the differential operator is diffusion dominated or convection domi-
nated. In our matrix oriented context, we experienced a similar situation, therefore more than one method
may be considered.

6.1 Fixed point iteration

Let us write the left-hand side of matrix equation (5.10) as the sum of two matrix terms, so that

L(U) −N(U) = F

where the choice of L depends on the actual continuous problem. Assuming L to be an invertible operator,
and given a starting approximation U0, a sequence of approximates {Uk} can be obtained by a stationary
iteration

Solve L(Uk+1) = F +N(Uk), k = 0, 1, . . .

or, alternatively,Uk+1 = Uk+Zk, where Zk solvesL(Zk) = Rk and Rk = F−L(Uk)+N(Uk) is the current residual
matrix. This approach is classical in the matrix equation context, and has led to ADI-type iterations already
in the 1960s [17, 42]. Since then, fixed point iterations and splitting approaches have led to a rich literature
for linear and nonlinear matrix equations with two or more terms, possibly under particular hypotheses, to
ensure that the iteration is convergent and computationally feasible (see, e.g., [3, 4, 10–12, 24, 34]).

The effectiveness of the approach depends on the cost of solving with the chosen operator L, and on the
number of iterations needed to reach the required accuracy, which in turn depends on the spectral properties
of the iteration operator, that is ofL−1(N(⋅)). In general, we found it hard to get convergence of this approach
without any a priori spectral knowledge of the operators involved.
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6.2 Vector iterative solver with matrix-oriented preconditioning

A typically effective alternative to stationary iterations is the use of standard (vector) iterative solvers. The
discretization by FDs (or other methods) of (3.6) in the rectangle Π classically leads to a system of the form
(see, e.g., [28, 32]):

Au = f (6.1)

where the components of u collect the entries of Uij in lexicographic order, while A accounts for the dis-
cretization of all derivatives in the two space variables. In our context, we can derive the vector form by using
the Kronecker operator, defined as (see, e.g., [21, Sect. 1.3.6]):

A ⊗ B =
[[[

[

A1,1B ⋅ ⋅ ⋅ A1,nB
...

. . .
...

An,1B ⋅ ⋅ ⋅ An,nB

]]]

]

.

This matrix product satisfies
vec(AXB) = (BT ⊗ A) vec(X) (6.2)

where vec(X) stacks the columns of X one below the other.We also recall that vec(G∘M) = diag(vec(G))vec(M)
for any matrices G,M of equal dimensions. The vectorization of (5.10) is thus given by (6.1) obtained as

(D1(I ⊗ T1) + D2(TT2 ⊗ I) + D3(BT
2 ⊗ B1) + D4(I ⊗ B1) + D5(BT

2 ⊗ I))u= f

where Di = diag(vec(Gi)). Using classical strategies, the system to be solved has very large dimensions, with a
sparseA of size n1n2×n1n2, so that preconditioned iterative Krylov subspacemethods are usually employed,
such as CG, MINRES or GMRES [32]. To limit memory consumptions forA nonsymmetric, a restarted version
is usually employed, with a restart occurring every m iterations.

A large variety of preconditioners can be employed, such as incomplete LU, algebraic multigrid, and
also operator strategies (see, e.g., [5, 18, 28]). In the last class we can include operators that take into ac-
count the matrix equation structure of the problem, resulting from the performed transformation. This last
approach has recently been used in algebraic equations stemming from different discretization techniques
(see, e.g., [29, 33]). The performance of the iterative scheme thus strongly depends on the effectiveness of the
preconditioner. We shall see that operator based preconditioners can be quite robust, and may lead to mesh
independent performance, in terms of number of iterations; see, e.g., [28, Ch. 4] for a general discussion on
mesh independence of preconditioning strategies.

6.3 Galerkin projection method

An approach that has recently shown its effectiveness in solving linear matrix equations with several terms
consists of reducing the problem dimension by projecting the equation onto a smaller space.

To derive the method in its generality, we write the linear matrix equation as

G1 ∘ (T1U) + G2 ∘ (UT2) + G3 ∘ (B1UB2) + G4 ∘ (B1U) + G5 ∘ (UB2) + G6 ∘ U = F

or, in short, S(U) = F.
Let V andW be two subspaces of ℝn (here for simplicity we assume n1 = n2 = n), and let the k columns

of Vk (Wk) be orthonormal bases for V (W) with k ≪ n. Then we look for an approximation

U(k) = VkYkWT
k ≈ U (6.3)

and let
Rk := F − S(U(k)) (6.4)
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be the associated residual. To determine Yk, an orthogonality (Galerkin) condition is imposed on the residual
matrix. With the matrix inner product, this corresponds to imposing

VT
k RkWk = 0 (6.5)

that is
VT
k S(VkYkWT

k )Wk = VT
k FWk .

As an example, consider equation (5.4), where G1 = G2 = 1 (the matrix of all ones) so that G1 ∘ (T1U) = T1U
and analogously for G2, while all other Gis are zero except G6. We thus obtain

VT
k T1VkYk + YkWT

k T2Wk + VT
k (G6 ∘ (VkYkWT

k ))Wk = VT
k FWk . (6.6)

This reduced dimension equation is solved by resorting to its vectorization bymeans of the Kronecker product
in (6.2). Therefore, we can write u(k) := vec(U(k)) = (Wk ⊗ Vk)vec(Yk). For the example above, we thus have

Aky := (I ⊗ (VT
k T1Vk))y + ((WT

k T
T
2Wk) ⊗ I)y + (Wk ⊗ Vk)TD6(Wk ⊗ Vk)y = fk (6.7)

where D6 = diag(vec(G6)) and fk = (Wk ⊗ Vk)Tvec(F). This system can be solved by either direct or iterative
methods. In the absence of ad-hoc effective methods for solving multiterm small size dense matrix equations
such as (6.6), in our experimentsweusedMatlab backslash forAk. The iterative solution of (6.7) exploiting the
matrix-oriented form has been explored in similar contexts though here the coefficients are generally dense.
The iteration would lead to a so-called inner-outer scheme (see, e.g., [31] and references therein). However,
appropriately designed procedures addressing the generic case (6.6) would be desirable.

To make the whole procedure efficient, the cost of forming the third term in the coefficient matrix in (6.7)
should be decreased, as it involves matrices with dimension n vectors. The following results show how this
computational cost can be significantly decreased.

Proposition 6.1. LetM, N ∈ ℝn×k1 , Z, S ∈ ℝn×k2 , and let D ∈ ℝn×n be diagonal. Define the k1k2 × k1k2 matrix

H := (M ⊗ Z)Tdiag(vec(D))(N ⊗ S) =
[[[[[[

[

H11 H12 ⋅ ⋅ ⋅ H1k1
H21 H22 H2k1
. . . . . . . . .

...
. . . Hk1k1

]]]]]]

]

, Hij ∈ ℝk2×k2 . (6.8)

Then the (i, j)-block ofH is
Hij = ZT D̂i,jS, D̂i,j = diag (D(M:,i ∘ N:,j)) (6.9)

where M:,i (N:,j) denotes the ith column of M (the jth column of N).

Proof. LetDi = diag(D:,i) ∈ ℝn×n. Then for the (i, j)-block ofH, we have

Hij =
n
∑
l=1

Ml,iZTDlNl,jS = ZT (
n
∑
l=1

Ml,iDlNl,j) S = ZTdiag(D (M:,i ∘ N:,j) )S. (6.10)

This completes the proof.

The next result describes how to update the matrixH when the building blocks increase their size.

Proposition 6.2. Assume the notation of Proposition 6.1 holds, and that the columns of the matrices M, N
and Z, S are increased by one, i.e., their dimensions are n × (k1 + 1) and n × (k2 + 1), respectively.
(i) If i ⩽ k1 and j ⩽ k1, then

Hij = [
ZTk2 D̂i,jSk2 ZTk2 D̂i,jS:,k2+1

ZT:,k2+1D̂i,jSk2 ZT:,k2+1D̂i,jS:,k2+1
]

where Zk2 collects the first k2 columns of Z. In particular, the first block ZTk2 D̂i,jSk2 is the matrix Hij in the
previous step;
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(ii) If i = k1 + 1 or j = k1 + 1, then Hij = ZT D̂i,jS.

The results in (6.1)–(6.2) give a simplifiedway to compute thequantityVT
k (G6∘(VkYkWT

k ))Wk andother similar
quantities that arise in explicitly computingVT

k S(VkYkWT
k )Wk. In particular, usingD6 = diag(vec(G6))wecan

write the (i, j)-block of (Wk ⊗ Vk)TD6(Wk ⊗ Vk) as

[(Wk ⊗ Vk)TD6(Wk ⊗ Vk)]ij = VT
k diag (G6(W:,i ∘W:,j)) Vk .

Here and in the following we denote by W:,i the ith column of the matrix Wk, omitting the subscript k to
lighten the notation.

The following result provides the application of the expressions above.

Proposition 6.3. Partition the matrixAk ∈ ℝk
2×k2 in the equation (6.7) into k × k blocks with the size of each

block being k × k, then the (i, j)-block of matrixAk is A(k)ij = V
T
k Gi,jVk, where

Gi,j := diag (W:,i ∘W:,j) T1 + diag (W:,i ∘ (T2Wk):,j) + diag (G6(W:,i ∘W:,j)) .

Note that the expression for A(k)ij can be given in a simplified formula as follows:

A(k)ij = δijV
T
k T1Vk + (WT

k T2Wk)i,j I + VT
k diag (G6(W:,i ∘W:,j)) Vk

where δij is the Kronecker delta function. Furthermore, when the dimension of the subspaces V and W is
increased by one, the (i, j)-block of matrixAk+1 is

{{{{{{
{{{{{{
{

A(k+1)ij = [

[

A(k)ij VT
k Gi,jV:,k+1

VT
:,k+1Gi,jVk VT

:,k+1Gi,jV:,k+1

]

]
, i ⩽ k and j ⩽ k;

A(k+1)ij = V
T
k+1Gi,jVk+1, i = k + 1 or j = k + 1.

It was shown in [30] that if the operator associated with the problem is symmetric and positive definite, then
the Galerkin projection is optimal, in the sense that it minimizes the error in the corresponding norm. More
precisely, the following result holds (see [30]).

Proposition 6.4. Let S(X) = F with S : X → ∑ℓj=1 AjXBj be a symmetric and positive definite operator⁵, with
Aj ∈ ℝn1×n1 , Bj ∈ ℝn2×n2 . Let U⋆ be the exact solution to the problem S(U) = F, and let range(Vk), range(Wk)
be the constructed approximation spaces, so that Uk = VkYkWT

k is the Galerkin approximate solution. Then

‖U⋆ − Uk‖S = min
Z=VkYW

T
k

Y∈ℝk×k

‖U⋆ − Z‖S

where the norm is defined as ‖X‖2S = trace (∑
ℓ
j=1 XTAjXBj).

In our setting the situation may be different whenever Hadamard product terms occur in the operator.
Nonetheless, this is not the case for the constant coefficient Poisson equation in (4.1), where indeed error
minimization is achieved. This property will be used in the discussion of Section 8.1.

In terms of memory requirements, the advantage of the matrix projection approach over vector methods
is that only vectors of length n1 and n2 are stored, as opposed to vectors of length n1n2. Their number depends
on the maximum dimensions of the spaces that need to be generated, and this number is hard to determine
a priori. Nonetheless, some intuition can be obtained by a preliminary experiment with a coarse grid, since
we have experimental evidence that the space dimensions grow only sublinearly with the number of nodes
in each direction. Clearly, the effectiveness of the projection approach also depends on the fact that k ≪ n,
to ensure that handling vectors of length k2 does not provide a significant overload. The selection of the
approximation spaces is thus crucial.

5 The operator S is symmetric and positive definite if and only if its Kronecker form matrix∑ℓj=1 B
T
j ⊗ Aj is.
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6.4 Choosing the approximation spaces

The choice of the approximation space is important for the overall effectiveness of the projection. To this end,
we consider rational Krylov subspaces, which have been shown to be applicable to the case of multiterm
linear matrix equations [35]. In its general form, a rational Krylov space is defined as

RKk(𝔸,𝔹, V0) = range([V0, (𝔸 + s2𝔹)−1V0, . . . ,∏
k
ℓ=2(𝔸 + sℓ𝔹)

−1V0])

where V0 is a tall matrix with ℓ̂ linearly independent columns, and𝔸 and 𝔹 are matrices of equal size, com-
patible with those of V0. The space dimension will thus be not greater than ℓ̂k. The parameters sj can be
computed a priori or dynamically during the iteration. We remark that an orthonormal basis for this space
is determined by an Arnoldi-type procedure, which allows one to add vectors to the basis in an incremental
fashion [35].

For equations with several terms, there is no obvious recipe on which matrices 𝔸,𝔹 should be used to
build the left and right approximation spaces. The principle is that the generated space should well approx-
imate the spectral properties of all coefficient matrices. To this end, various strategies have been devised to,
e.g., transform the coefficientmatrices so that they all have eigenvalues in the same spectral interval, possibly
of moderate length (see, e.g., [31]). Clearly, available a priori spectral information is crucial for the success of
this procedure. In our case, except for the Hadamard product, the coefficient matrices stem from operators of
different orders, ofwhich the second order onesmay be dominant.We tested different options, and found that
the choice 𝔹 = I and𝔸 = L−1j BjL−Tj was the most appropriate, where Tj = LjLTj is the Cholesky factorization
of Tj, j = 1, 2; the choice j = 1wasmade for the spaceV, and j = 2 forW. The presence of theHadamard prod-
uct makes any theoretical analysis very hard, since this product does not easily preserve spectral properties.
A deeper study would be of great interest, but it is beyond the goals of this paper.

For selecting the shifts sj we followed the greedy procedure first proposed in [16] in the nonsymmetric
case, and used the projectedmatrices VT

k (T1+B1)Vk andWT
k (T2+B2)Wk for that purpose.We refer the reader

to [16, 35] for additional details and a more general picture associated with the actual procedure.
In our context the selection of V0 for each space was also to be made. Since the right-hand side F is not

low rank, the truncated singular value decomposition (SVD) of F was performed, namely F ≈ PℓΣℓZTℓ , where
Pℓ, Zℓ have ℓ columns each, while Σℓ = diag(σ1, . . . , σℓ) and the σjs are the first ℓ singular values of F, in
decreasing order. Hence, the first ℓ̂ ⩽ ℓ columns of Pℓ (of Zℓ) were selected to start building Vk (Wk), where ℓ̂
is the first integer such that

∑ℓ̂j=1 σj
∑ℓj=1 σj

> 1 − tol (6.11)

where tol is the tolerance used in the stopping criterion of the projection method.
The method did not seem to be overly sensitive to the choice of ℓ̂: while changing the tolerance in (6.11)

changed ℓ̂, the final subspace dimensions to reach convergence did not significantly differ, for the given grid
selection.

7 Numerical illustration
In this section, we discuss some of our numerical experiments to illustrate the performance of the discretiza-
tion procedures andof the adopted solvers. In the followingwe report the CPU time required to reach adesired
accuracy, which is measured in terms of the relative residual

Res := ‖Rk‖F
‖F‖F

(7.1)

where ‖ ⋅ ‖F is the Frobenius norm. For both theoretical purposes and approximation quality evaluation, the
relative error norm is also of interest,

Err := ‖Uk − U⋆‖F
‖U⋆‖F

(7.2)
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Fig. 3: The physical domain P. Left: convex polygon. Right: L-shaped domain.

where U⋆ is the exact algebraic solution, obtained by solving the discretized problem by a direct solver, while
Uk is the current approximation.

For simplicity of exposition, in all reported experiments we take n1 = n2 = n and f(x, y) ≡ 1, and ex-
cept where explicitly stated, we consider two different physical domains: a convex polygon and an L-shaped
domain (cf. Fig. 3).

A sample of the commands used to create the mapping (via the SC Toolbox) and the associated cartesian
grid is given by the following commands:

p=polyedit; % draw the polygon using the Toolbox Editor

t=[1 2 4 6]; % select the `control' vertices to build SC map

f=rectmap(p,t); % generate the SC map

a1=eval(inv(f),p.vertex(4));

a2=eval(inv(f),p.vertex(1)); % define the \xi-interval

b1= 0;

b2=imag(eval(inv(f),p.vertex(2))); % define the \eta-interval

plot(f) % plot the resulting grid on the polygon

n=2^6; % select the number of nodes on each edge

[xi,eta]=meshgrid(linspace(a1,a2,n),linspace(b1,b2,n)); % compute the nodes

df=evaldiff(f,xi+1i*eta); % compute the derivative of the SC map at the nodes

The computational cost, all concentrated in the function rectmap, significantly varies depending on the
choice of the vertices in t. In some unfortunate cases, the map computation was too expensive to be com-
pleted, while for the majority of choices of t it took a small portion of the overall cost. We did not make any
changes to the default parameters so as to ameliorate this occasional problem.

The reported numerical results were obtained with the choice of discretization grid that gave us consis-
tently the best results. A detailed discussion on the grid selection is postponed to Section 8.

A few comments on the implementation details of the considered algorithms are in order.
The stationary iteration requires a Lyapunov solver at each iteration. Whenever the coefficient matrices

are the same, these are eigendecomposed once for all, and the Lyapunov solution is explicitly written down
(see, e.g., [35, Sect. 4]). Otherwise, the call to the Matlab function lyap is performed. The residual matrix is
computed explicitly. All these computations are affordable for n = O(10d) with d moderate, say d ⩽ 3, de-
pending on the availablemachine. This is not restrictive for a two-dimensional problem, and a good accuracy
of the sought after solution is obtained already for n ≈ 1000.

Preconditioned restarted GMRES(m) is restarted every m = 20 iterations, as commonly done [32]. Dif-
ferent preconditioning strategies could be employed. For simplicity, here we consider two alternatives: (i)
incomplete LU preconditioning⁶, after permutation of the coefficient matrix rows and columns with symmet-

6 ILU factorization with threshold and pivoting was employed, with droptol tolerance 10−3.
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Tab. 1: Example of Section 7.1 in the L-shaped domain.

direct stationary ILUT Lyap
iteration GMRES(20) GMRES(20)

n time #iter time #rest time #rest time

64 0.007 20 0.016 1(6) 0.106 1(4) 0.033
128 0.047 19 0.027 1(11) 0.107 1(5) 0.027
256 0.183 19 0.121 2(1) 0.552 1(5) 0.124
512 0.677 18 0.617 3(12) 4.741 1(5) 0.683

1024 4.348 18 4.481 6(19) 53.686 1(5) 4.666

ric minimum degree ordering; (ii) operator preconditioning, which consists of solving a Lyapunov equation
with a portion of the coefficient matrix, typically the terms associated with the second order operator [29].

7.1 A reaction–diffusion problem

Consider the problem discussed in Section 5.1 with β = 1, that is

− ∆u + u = f, (x, y) ∈P

with f identically one. The discretized problem takes the form in (5.4), with G6 = J and F = J ∘ 1 = J, where
we recall that the (i, j)th entry of J corresponds to J (ξi , ηj).

Table 1 shows the results of solving (5.4) in theL-shapeddomain, for anSCgrid takingas reference vertices
the nodes [1246] (ordered counterclock-wise), where the first node is (3.2010, −2.7532). All iterations also
checked the true error, and at completion the method had an error Err below 10−5. In general, the relative
residual norm in (7.1) was smaller or significantly smaller than the relative error norm in (7.2).

As expected, the direct method (Matlab backslash [27]) becomes more and more expensive as n grows,
having to solve an n2×n2 system.Here and later on,we stress that comparingwith the directmethod is unfair,
as the direct method employs a built-in Matlab function at its highest efficiency, whereas all other methods
mainly rely on interpreted commands in Matlab. Comparisons between the stationary iteration and restarted
preconditioned GMRES is more appropriate. The number of GMRES iterations in the last restart is reported
in parentheses. For this simple operator, taking the second-order operator as preconditioner is clearly an
advantage over a classical incomplete LU preconditioning, and this is also shown by the good performance
of the stationary iteration, which uses the same operator. We also observe that the number of iterations for
these two methods is independent of the number of grid nodes. This is related to the fact that the iteration
operator (or preconditioned operator) is given (in Kronecker form) by

L−1(L + G) = I + L−1G

whereL accounts for the Laplace operator while the diagonal matrix G collects the Jacobian determinant en-
tries. For a dominant Laplace operator, the eigenvalues of I +L−1G tend to tightly cluster, so that convergence
of Krylov subspace methods can be faster [28, Ch. 4].

We ran the methods for the convex domain as well, with the direct and GMRES methods behaving the
same as for the L-shaped domain. On the other hand, the stationary iteration failed to converge. This appears
to be due to the different determinant, J, whose discretized version J provides different spectral properties
of the iteration matrix in this case.
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Tab. 2: Example of Section 7.2 in the convex polygon, with nodes [1235].

direct Projection ILUT Lyap
method GMRES(20) GMRES(20)

n time space dim time #rest time #rest time

64 0.056 29 1.320 1(9) 0.073 3(16) 0.079
128 0.114 42 5.867 1(17) 0.166 4(17) 0.340
256 0.519 46 10.481 2(20) 1.066 6(12) 1.924
512 1.995 59 28.983 5(17) 13.927 8(18) 17.787

1024 11.738 66 82.368 14(2) 119.030 11(18) 135.400

Tab. 3: Example of Section 7.2 in L-shaped domain, with nodes [1246].

direct Projection ILUT Lyap
method GMRES(20) GMRES(20)

n time space dim time #rest time #rest time

64 0.019 13 0.241 1(9) 0.083 5(17) 0.146
128 0.097 23 0.698 1(16) 0.153 10(20) 1.291
256 0.467 33 2.668 2(18) 0.868 25(12) 7.634
512 1.995 50 13.700 4(13) 6.917 33(18) 77.751

1024 10.334 70 100.430 9(2) 72.063 — (—) —

7.2 A simple elliptic problem

Consider the partial differential equation

{
{
{

−(x2 + 1)uxx − (y2 + 1)uyy = 1, (x, y) ∈P

u = 0, (x, y) ∈ ∂P
(7.3)

in the above two physical domains. The equation has non-constant coefficients, leading to the presence of
the Jacobian determinant in the discretized matrix equation, as shown in (3.6). The numerical results for
the convex polygonal domain are listed in Table 2, showing that for the finest grid the projection method
performs the best in terms of CPU time. This is related to the fact that the GMRES-basedmethods are sensitive
to the grid size, requiring a growing number of iterations as the grid is refined. On the other hand, the space
dimension of the Galerkin method — and thus its computational cost — grows only mildly with increasing
grid fineness. The results obtained with our experiments in the L-shaped domain are reported in Table 3. As
before, timings for the direct method should not be comparedwith those of the other non-built-in algorithms.
Note that GMRES preconditioned by the Lyapunov operator in this case is not effective, taking too long for the
finest grid; it was thus stopped prematurely. This could be predicted as in this case the non-constant operator
coefficients are not well approximated by the unit constant value. The projection method behaves quite well,
using significantly lower memory than GMRES with a quite dense preconditioner.

7.3 A convection–diffusion problem

We consider the PDE
− uxx − uyy +wT ⋅ ∇u = f, (x, y) ∈P (7.4)

with wT = (ω, 0) and homogeneous (zero) Dirichlet boundary conditions, in the same polygonal convex
domain considered earlier, using t = [1235] as vertices. Discretization leads to thematrix equation in (5.13).

Here we analyze how the performance of the iterative algebraic solvers varies as ω increases, so as to
make the problem more convection dominated. To this end, we focus on number of iterations, rather than
on CPU times. The results are reported in Table 4. We clearly see that GMRES(20) with the operator precon-
ditioner is insensitive to the meshsize variation, and it is only marginally affected by the increase of ω. ILUT
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Projection ILUT Lyap
method GMRES(20) GMRES(20)

ω n space dim #rest(its) #rest(its)

128 28 1(13) 1(9)
1 256 36 2(13) 1(9)

512 42 5(6) 1(9)
1024 45 9(16) 1(9)
128 40 1(9) 2(19)

10 256 48 1(17) 2(19)
512 54 7(19) 2(19)

1024 67 14(4) 2(19)
128 52 1(6) 6(8)

30 256 62 1(11) 6(7)
512 80 2(5) 6(6)

1024 87 9(14) 6(6)

Tab. 4: Performance of iterative solvers on the convection–diffusion
problem in (7.4) for the convex domain.
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Fig. 4: General non-convex polygon. The physical domain P and an SC
grid.

preconditioning does not share similar properties in terms of meshsize, while analogous results can be ob-
served asω varies. These results are similar to those observedwhenusing operator preconditionerswith other
discretization approaches. It is interesting, however, that here the conformal mapping affects the convection
terms in a different way than in other discretizations, as the partial derivatives Xξ and Xη explicitly arise.

The projection method seems to be the most sensitive method to both meshsize and convection. On the
other hand, it should be noticed that the projection method requires O(n ⋅ (space dim))memory allocations,
which in the worst case amounts to O(87 ⋅ 1024), whereas GMRES(20) requires O(20 ⋅ n2) allocations, which
goes up toO(20 ⋅10242) allocations for the largest problem considered, without taking into account themem-
ory required for the factors in the ILUT preconditioning. Hence, if memory is a constraint, GMRES methods
on the vector problem can be largely penalized.

To complete this experimental analysis, we consider a different non-convex domain, displayed in Fig. 4,
for the vertex choice t = [1468] (the first vertex is the most south-east one). Schwarz–Christoffel mappings
are particularly appropriate to handle this type of complex domain. Table 5 reports the results of our experi-
ments for problem (7.4) andω = 1, the number of iterations, space dimensions and CPU times to be compared
with those in Table 4 for the same choice ofω. The performance of allmethods is completely analogous to that
for the polygonal convex domain, emphasizing that once a good vertex choice is made, the performance of
this discretization procedure is algebraically robust. Indeed, for the projectionmethodwe found the selection
of the ‘control’ vertices to be quite crucial, and this is further discussed in the next section.
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Tab. 5: Performance of iterative solvers on the convection–diffusion problem in (7.4) for ω = 1, with the non-convex domain
in Fig. 4.

Projection ILUT Lyap
method GMRES(20) GMRES(20)

n space dim time #rest(its) time #rest(its) time

128 34 2.4 1(14) 0.1 1(8) 0.06
256 44 7.1 2(13) 0.7 1(8) 0.2
512 50 16.3 4(16) 7.4 1(8) 0.6

1024 57 51.7 10(19) 87.0 1(8) 9.1

8 Analysis of the grid selection
In our numerical experiments with the Galerkinmethodwe found that themethodwas overly sensitive to the
grid choice, or more precisely, to the selection of the four control vertices to be mapped to the four rectangle
vertices. In particular, the number of iterations, and thus the space dimension of Vk and Wk, varied quite
significantly for different vertex selections. We quote a paragraph from Trefethen and Driscoll’s book [15] as
a warning for such an occurrence:

An inspection ofmany of the figures in this bookmakes it clear that the size of equally spaced cells in the computational
domain can vary greatly and rapidly in the physical domain [. . . ]. This variationmakes a certain amount of physical sense, at
least in some contexts, but is undesirable in many applications. A particular problem [. . . ] in SC mapping is the presence of
singularities in f due to the corners. As a mapping, the SC formula handles corners elegantly and completely, but here they
remain a significant challenge in the computational domain.

Beforewe continuewewish to stress thatwedid not encounter any performance sensitivity in using the vector
orientedGMRES.Hence,we conjecture that the computational sensitivity ariseswhen thematrixproperties of
J play a role, whereas the vectorized version ofJ only influences the computation with its positive entries.

We thus proceed with a deeper analysis of the role of J in the algorithmic performance of the Galerkin
approach for the convex polygon. A corresponding analysis was performed for the other considered domains
with similar results, hence these are not reported. We focus our analysis on the Poisson equation in (4.2),
where J only enters in the right-hand side and it is easier to analyze. Moreover, we distinguish between a
good grid, for which we experienced fast convergence, and a bad grid, which led to a significant delay as the
discretization is refined.

With the good grid t = [1235], for instance, the Galerkinmethod appliedwith n = 210 selects an approx-
imation to the right-hand side of rank 17, and with a space of dimension 45 reaches the accuracy required
by (7.1). On the contrary, with the bad grid t = [1236], in spite of a smaller rank for the right-hand side
approximation (rank 11), the method does not reach completion within a space of dimension 100. We stress
that the singular values ofJ in the two cases show similar patterns and they did not appear to play any role
in the different behavior.

Figure 5 displays the residual norm history as the space dimension grows, for the two cases, illustrating
the significantly different slopes in the convergence curve. The plot also includes the error F-norm history
(see (7.2)) for the two cases. We recall that the Galerkin method minimizes the S-norm of the error for the
given approximation space (see Proposition 6.4). Thus, the error behavior displayed in the plot, though in a
different norm, indicates that the space generated by starting with vectors from the bad grid does not provide
as good information as for the good grid. In passing, we also observe that the error is, in both cases, much
smaller than the residual norm would predict. This appears to be unrelated to the low rank truncation of
the right-hand side used to build the approximation space, but rather to classical results on the discrepancy
between error and residual norms. For this specific problem, this is given by

‖Rk‖F ⩽ ‖I ⊗ T1 + T2 ⊗ I‖ ‖Uk − U⋆‖F .
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Fig. 5: History of relative residual and error norm convergence for the good grid t = [1235] and for the bad grid t = [1236].

Tab. 6: Some sample grids discretizing the polygon, using n = 210 grid nodes on each side of the rectangle in (ξ, η).

good quality vertices aspect ratio max df maxmin ratio

✓ [1235] 1.10 16.33 389.4
✓ [1356] 1.18 14.71 258.8
✓ [1246] 1.06 12.30 106.7
✗ [1236] 1.17 19.60 413.9
✗ [3456] 1.14 25.21 769.1
✗ [1234] 1.31 15.44 678.0

Since T1 = T2 and they are tridiagonal, symmetric and Toeplitz matrices of size n as defined in Section 3.1,
we get

‖I ⊗ T1 + T2 ⊗ I‖ = λmax(I ⊗ T1 + T2 ⊗ I) = 2λmax(T1) =
2
h21
(2 + 2 cos( π

(n − 1)))
.

For n = 210, it thus holds that ‖I ⊗ T1 + T2 ⊗ I‖ ≈ 8 ⋅ 106, which largely accommodates the gap between error
and residual norms observed in the plot.

8.1 Action of good and bad grids

Table 6 reports some grid information for different selections of the polygon vertices that are used by themap-
ping h to construct the four rectangle pre-vertices. More precisely, for each vertex selection, the aspect ratio
is the ratio between the largest and smallest rectangle edges; max df is the maximum absolute value of the Ja-
cobian determinant square root,maxξ,η √x2ξ + x

2
η for the adopted grid; maxmin ratio is the ratio between the

longest and shortest grid edges on the polygon boundary for the chosen grid. The first three grid selections
in Table 6 lead to good performance of the Galerkin method, the second three choices lead to a delayed con-
vergence. The only parameter that seems to be in favor of the good grids is the maxmin ratio, which tends to
be smaller than for the bad grids. Figure 6 shows the grid mapped by the discretization of the corresponding
rectangle via the SC Toolbox, for two choices of vertices (a good grid on the left, a bad grid on the right).

The Schwarz–Christoffel mapping associated with these two grids leads to the Jacobian determinant
J =J (ξi , ηj), i, j = 1, . . . , n, in Fig. 7. The peaks refer to singularity approximations corresponding to the
disregarded polygon vertices. For the good choice t = [1235] the missing vertices [46] are not consecutive,
therefore each corresponds to a peak on a different axis direction. Two close peaks on a single edge occur
in the bad choice t = [1236], corresponding to the disregarded vertices [45]. We believe this is a key fact:
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Fig. 6: Typical meshes for the polygonal domain (coarse grids are shown). Left: Good grid t = [1235]. Right: Bad grid
t = [1236].

Fig. 7: Entry magnitudes of J for the (ξ, η) domain (log scale). Left: Good grid t = [1235]. Right: Bad grid t = [1236].
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alternating disregarded vertices lead to a better approximation of the solution for this particular problem.
We argue that this different behavior may affect the choice of the starting blocks generating the right and left
approximation spaces, Vk ,Wk, which in turn may lead to the generation of poor spaces.

We start by recalling that if T1 = QΛQT is the eigenvalue decomposition of T1 with Λ = diag(λ1, . . . , λn),
then

U = Q ((QT JQ) ⊘ (Λ ⊗ I + I ⊗ Λ))QT (8.1)

where ‘⊘’ denotes elementwise division. For this problem the solution nonsymmetry is only due to J. If J
were symmetric, then in the approximation VkYkWT

k ≈ U, the spaces Vk ,Wk could be taken to be equal.
Moreover, due to the expression in (8.1), a good approximation to U can be obtained only if the eigencompo-
nents corresponding to the smallest eigenvalues of T1 are well approximated in both spaces Vk ,Wk. Since
these eigencomponents are discretizations of smooth functions, it would be desirable that this type of vectors
could be readily detected in the spaces, hence the two spaces should behave somewhat similarly. Let us see
how these properties transfer into spectral requirements on J. Let J = PΣZT be the singular value decomposi-
tion of J. Some sort of symmetry in J is reflected in the left and right singular vectors of J behaving similarly.
This implies that taking the first left (resp., right) singular vectors to build Vk (resp.,Wk) then the generated
spaces would be similar. This behavior is displayed in Fig. 8 for J stemming from the good grid (left) and from
the bad grid (right). If J were symmetric, then PTZ = I. This is not the case for either grid, however the plots
show that for the good grid the neighboring vectors in P are close to the corresponding vectors in Z; this is not
the case for the bad grid, as vectors in P have large components ontomany column vectors in Z. By taking the
first columns of P and Z to build the two approximation spaces, the resulting spaces will significantly differ
for the bad grid.

The presence of peaks in J results into a corresponding structure in the vectors of P and Z. This is ex-
pected since the first ℓ singular triplets of J provide the best approximation to J of rank ℓ (see [21, Th. 2.4.8]).
Hence, if the first columns of P and Z have a non-smooth behavior (tomatch the occurrence of several peaks),
thesewill not be able to quickly approximate the smooth eigencomponents of the operator T1, leading to slow
convergence. In other words, the smoothness of the operator T1 should be well captured by the starting vec-
tors generating Vk ,Wk, for a fast approximation to take place. The bad grid (right plot of Fig. 7) has several
peaks on one side of the grid, and these are only taken care of by the left singular vectors. This seems to im-
ply that Vk and Wk will be very different, and that the space Wk will only slowly approximate the leading
eigencomponents in the solution U, causing a delay.

We also experimented with polygons having a larger number of vertices. It was observed that better per-
formance was obtained when unselected vertices were mapped close to each other on the rectangle edges —
which clustered the peaks in the Jacobian determinant— a somewhat positive effect of the SCmapping crowd-
ing phenomenon. This reflected in smoother leading singular vectors, strengthening the previous argument.

In summary, our very preliminary analysis seems to suggest that, to avoid a very oscillatory behavior
in the starting blocks of the approximation spaces, the control vertices should distribute somewhat evenly
among all polygon vertices, so as to avoid missing too many consecutive vertices. Moreover, clustering of
the unselected vertices on the rectangle edges appears to be beneficial. The problem clearly deserves further
deepening as a building block of the discretization procedure for the matrix-oriented formulation, given its
role in the performance of projection methods.

9 Conclusions
Wehave analyzed thematrix computational problems associatedwith the discretization of linear elliptic par-
tial differential equations defined in polygonal domains by means of the Schwarz–Christoffel mappings. The
matrix oriented formulation leads to special linear matrix equations, involving Hadamard products, which
make the use of matrix equation solvers quite challenging. On the other hand, iterative vector based meth-
ods such as GMRES preconditioned by the higher-order operator seem to behave quite well, with a number
of iterations that seems to be mesh-independent, and quite insensitive to possible corner singularities of the



Y. Hao and V. Simoncini, Matrix equation solving of PDEs in polygonal domains | 243

mapping. If memory allocations are an issue, then matrix-oriented methods should be preferred: a working
strategy with several implementation details is provided.

Our use of the Schwarz–Christoffel mappings was surely encouraged by the presence of an easy to use
Matlab Toolbox. However, it is well known that these mappings are restricted to two-dimensional domains.
Hence, the generalization of our methodology to three-dimensions would certainly need to significantly ex-
tend this setting, or employ different transformations for the generation of structured grids.
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