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1 Signal Derivation

1.1 TRUECARS signal
The TRUECARS signal is finally given by: [1]

S(ws, T) = 2Im / AtES(ws)En(t — T)e s =T (% (1) [ [¥ (1)) 1)

where “Im” denotes the imaginary part, £y, p is a hybrid narrow (2 femtosecond) /broadband (500
attosecond) Gaussian pulse envelope (Figure 1a), w; is the central probe frequency, T is the time
delay between the pump and the probe. The relevant time-dependent material quantity for this
signal is the expectation value of the polarizability operator « that can be calculated by

ke = [9K) oKy (91 @)
the corresponding expectation value is given by:
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By plugging Eqn 2 into Eqn 3, we get:
(F(0) ke[ (1)) = Y cmen(mlxn) Y (a') al (@] (9% gL (¢1|9T) (4)
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We now invoke the approximation (see Eqn 24 in Ref [2])
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Using the orthonormality of the adiabatic basis:
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we get:
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Plugging Eqn 7 into Eqn 4, simplifying the Kronecker deltas, and substituting the index | into I
gives:
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The transition polarizability ag; is calculated from the transition charge density, ox;, where
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using the state charge density matrices Prs, and the basis set of atomic orbitals ¢, (r). Populations
do not contribute to the signal, since agx is zero along the the diagonal, and only the transition
polarizabilities (off-diagonal elements) between electronic states are finite. The effective polar-
izability value is computed from the transition charge density at 200 eV. For example, the effec-
tive transition polarizability along z-axis is calculated, ac(q) = o(q) at gx = 0, g, = 0, and
g- = |kz| = ws/c, where w; is the probe carrier frequency and c is the speed of the light, 137.036
a.u.. The TRUECARS signal is calculated for a randomly oriented ensemble by averaging over the
x, y, and z axes. We shall display the Frequency resolved optical-gating (FROG) spectrogram of
the TRUECARS signal given by Ref[3], by convolving a temporal trace S(t) at a constant w,, with
a Gaussian gating function Egate (t) with a full width at half-maximum (fwhm) of 0.484 fs,
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S(T) oscillates with frequencies that correspond to the energy splitting between the relevant vi-
bronic coherences, and the FROG spectrogram reveals the transient energy splitting along the tra-
jectory. The FROG spectrograms are scanned and integrated over negative Raman shift (w, < 0)
window to capture the evolution of the signal away from w, = 0.

1.2 Time-resolved X-ray Diffraction

The gas phase (single-molecule) TRXD signal of a sample with N non-interacting molecules reads[4],

[5]
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where,
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It can be expanded into
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If we use the identity relation (Eqn 5):
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A reasonable approximation would be
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however, we do not have access for the moment to the mixed matrix elements, (¢’ |o(q,t)|¢}) or
(@' (—q,t)|¢¥%)- A cruder approximation is

4
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which gives
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where, (¢]'o-(=q, DIgY) = (o), (9Lle(a, DIg}) = oty and (9]¢} = S} Neglecting elec-
tronic wavefunction overlap may be inaccurate when the nuclear configuration m and n are far
from each other. However, the nuclear overlap (x|x») should go to zero too, hence, the corre-
sponding error should vanish.

2 Loop Diagram Rules

The loop diagram of the optical pump off-resonant X-ray probe signal is shown in Fig. 1 in main
text and Fig. S1. The Diagram rules are as follows:

¢ Time runs along the loop clockwise from bottom left to bottom right.

¢ Each field interaction is represented by an arrow, which either points to the right (photon
annihilation and excitation of the molecule) or to the left (photon creation and de-excitation
of the molecule).

¢ Free evolution periods on the left branch indicate forward propagation in real time, and on
the right branch to backward propagation, respectively.

¢ The last field interaction is the detected photon mode. In addition, the grey bar represents
the period of free evolution.

3 Supplementary Figures
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Figure S 1: Loop diagrams for single-molecule X-ray scattering process. The shaded area rep-
resents an excitation that prepares the system in S3 state and a field-free nonadiabatic dynamics
during time delay T. We denote modes of the X-ray probe pulse with p and p’, whereas s and s’
represent relevant scattering modes. Elastic scattering process are denoted by black field arrows.
Inelastic processes are denoted by purple arrows. The indices n and m runs over excited states, S;
to 54.
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Figure S 2: The averaged (ensemble) TRUECARS signal calculated with a constant (geometry
independent) transition polarizability operator, which equals to the vibronic coherence magnitude
(Fig. 2f). The panel b and c separately shows TRUECARS signal for S;/S; and S,/S3 coherence,

respectively.
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Figure S 3: The TRUECARS signal for trajectory 3. The yellow lines indicate the cloning events.
The TRUECARS signal (a) calculated with the expectation value of the transition polarizability op-
erator (c). The TRUECARS signal (b) calculated with a constant (geometry independent) transition
polarizability operator, which equals to the vibronic coherence magnitude (d).



(a)at w, = 0.03 eV
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Figure S 4: Transient frequency-resolved optical-gating spectrogram (eq 10 in ESI) with signal trace
taken at w, = (a) 0.03, (b) 1.04, and (c) 2.05 eV.



(a) State density (S;) (b) Transition density (S;S,) (c) Transition density (S,S;)
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Figure S 5: Real-space charge densities of COT at S; minimum geometry. isovalue 0.1/0.005 for
state/transition densities, respectively
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Figure S 6: The optimized geometries (from Ref [6]) of (a) Sp minimum, (b) S; minimum, (c) CI;,
(d) Clst, (e) SBV, and their two-dimensional TRXD elastic scattering pattern, projected on the xy
plane. Calculated with CASSCF(8e/80), involving all 7t and 7t* orbitals at 6-31G* basis set
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Figure S 7: The two-dimensional XRD elastic scattering pattern, projected on the xy (left), xz
(middle), and yz (right) plane for elastic (top), inelastic (middle), and mixed elastic/inelastic (co-
herence, bottom) scattering at (a) Sy minimum and (b) S; minimum geometry. Calculated with
CASSCEF(8e/80), involving all 7t and 7t* orbitals at 6-31G* basis set
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