
19 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

COUNTDOWN: A Run-Time Library for Performance-Neutral Energy Saving in MPI Applications / Cesarini
D.; Bartolini A.; Bonfa P.; Cavazzoni C.; Benini L.. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-
9340. - ELETTRONICO. - 70:5(2021), pp. 9095224.682-9095224.695. [10.1109/TC.2020.2995269]

Published Version:

COUNTDOWN: A Run-Time Library for Performance-Neutral Energy Saving in MPI Applications

Published:
DOI: http://doi.org/10.1109/TC.2020.2995269

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/863161 since: 2022-02-21

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TC.2020.2995269
https://hdl.handle.net/11585/863161

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

D. Cesarini, A. Bartolini, P. Bonfà, C. Cavazzoni and L. Benini, "COUNTDOWN: A Run-
Time Library for Performance-Neutral Energy Saving in MPI Applications," in IEEE
Transactions on Computers, vol. 70, no. 5, pp. 682-695, 1 May 2021

The final published version is available online at:

https://doi.org/10.1109/TC.2020.2995269

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1109/TC.2020.2995269

1

COUNTDOWN: a Run-time Library for
Performance-Neutral Energy Saving

in MPI Applications
Daniele Cesarini, Andrea Bartolini, Member, IEEE, Pietro Bonfà,

Carlo Cavazzoni and Luca Benini, Fellow, IEEE

F

Abstract—Power and energy consumption are becoming key chal-
lenges for the supercomputers’ exascale race. HPC systems’ proces-
sors waist active power during communication and synchronization
among the MPI processes in large-scale HPC applications. However,
due to the time scale at which communication happens, transitioning
into low-power states while waiting for the completion of each communi-
cation may introduce unacceptable overhead.

In this paper, we present COUNTDOWN, a run-time library for iden-
tifying and automatically reducing the power consumption of the CPUs
during communication and synchronization. COUNTDOWN saves en-
ergy without penalizing the time-to-completion by lowering CPUs power
consumption only during idle times for which power state transition over-
head is negligible. This is done transparently to the user, without requir-
ing labor-intensive and error-prone application code modifications, nor
requiring recompilation of the application. We test our methodology on
a production Tier-1 system. For the NAS benchmarks, COUNTDOWN
saves between 6% and 50% energy, with a time-to-solution penalty
lower than 5%. In a complete production — Quantum ESPRESSO
— for a 3.5K cores run, COUNTDOWN saves 22.36% energy, with a
performance penalty below 3%. Energy saving increases to 37% with
a performance penalty of 6.38%, if the application is executed without
communication tuning.

Index Terms—HPC, MPI, profiling, power management, energy/power
saving, idleness, DVFS, DDCM, C-states, P-states, T-states.

1 INTRODUCTION

In today’s supercomputers, the total power consumption of
CPUs limits practically achievable performance. This is a

• D. Cesarini is with the Department of SuperComputing Applications and
Innovation, CINECA, 40033 Casalecchio di Reno (BO), Italy (e-mail:
d.cesarini@cineca.it).

• A. Bartolini is with the Department of Electrical, Electronic and Infor-
mation Engineering ”Guglielo Marconi”, University of Bologna, 40136
Bologna, Italy (e-mail: a.bartolini@unibo.it).

• P. Bonfà is with the Department of Mathematical, Physical and Com-
puter Sciences, University of Parma, 43121 Parma, Italy (e-mail:
pietro.bonfa@unipr.it).

• C. Cavazzoni is with the Department of Chief Technology and
Innovation Officer, Leonardo S.p.A., 00195 Roma, Italy (e-mail:
carlo.cavazzoni@leonardocompany.com).

• L. Benini is with the Department of Information Technology and Electrical
Engineering, Swiss Federal Institute of Technology in Zurich, 8092
Zurich, Switzerland and with the Department of Electrical, Electronic
and Information Engineering ”Guglielo Marconi”, University of Bologna,
40136 Bologna, Italy (e-mail: lbenini@iis.ee.ethz.ch).

direct consequence of the end of Dennard’s scaling, which
in the last decade has caused a progressive increase in the
power density required to operate each new processor gen-
eration at its maximum performance. Higher power density
implies more heat to be dissipated and increases cooling
costs. These altogether worsen the total costs of ownership
(TCO) and operational costs: limiting de facto the budget
for the supercomputer computational capacity.

Low power design strategies enable CPUs to trade-off
their performance for power consumption employing low
power modes of operation. These states obtained by Dy-
namic and Voltage Frequency Scaling (DVFS) (also known
as performance states or P-states [1]), clock gating, or
throttling states (T-states), and idle states which switch off
unused resources (C-states [1]). Power states transitions
are controlled by hardware policies, operating system (OS)
policies, and with an increasing emphasis in recent years, at
user-space by the final users [2], [3], [4], [5] and at execution
time [6], [7].

While OS policies try to maximize the usage of the CPU
— increasing the processor’s speed (P-state) proportion-
ally to the processor’s utilization, with a specific focus on
server and interactive workload — two main families of
power control policies are emerging in scientific computing.
The first is based on the assumption that the performance
penalty can be tolerated to reduce the overall energy con-
sumption [2], [3], [4], [8]. The second is based on the
assumption that it is possible to slow down a processor
only when it does not execute critical tasks: to save energy
without penalizing application performance [5], [6], [7], [9].
Both approaches are based on the concept of application
slack/bottleneck (memory, IO, and communication) that
can be opportunistically exploited to reduce power and
save energy. However, there are drawbacks which limit the
usage of these concepts in a production environment. The
first approach causes overheads in the application time-to-
solution (TTS) limiting the supercomputer throughput and
capacity. The second approach depends on the capability of
predicting the critical tasks in advance with severe perfor-
mance loss in case of mispredictions.

A typical HPC application is composed of several pro-
cesses running on a cluster of nodes that exchange messages

2

through a high-bandwidth, low-latency network. These
processes can access the network sub-system through a
software interface that abstracts the network level. The
Message-Passing Interface (MPI) is a software interface for
communication that allows processes to exchange explicit
messages abstracting the network level. Usually, when the
scale of the application increases, the time spent by the
application in the MPI library becomes not negligible and
impacts the overall power consumption. By default, when
MPI processes are waiting in a synchronization primitive,
the MPI libraries use a busy-waiting mechanism. However,
during MPI primitives the workload is primarily composed
of wait times and IO/memory accesses for which running
an application in a low power mode may result in lower
CPU power consumption with limited or even no impact
on the execution time.

MPI libraries implement idle-waiting mechanisms, but
these are not used in practice to avoid performance penal-
ties caused by the transition times into and out of low-
power states [10]. As a matter of fact, there is no known
low-overhead and reliable mechanism for reducing energy
consumption selectively during MPI communication slack.

In this paper, we present COUNTDOWN1, a run-time
library, analysis tool, and methodology to save energy in
MPI-based applications by leveraging the communication
slack. The main contribution of this manuscript are:

i) An analysis of the effects and implications of fine-grain
power management in today’s supercomputing systems
targeting energy saving in the MPI library. Our study shows
that in today’s HPC processors there are significant latencies
in the hardware (HW) to serve low power states transitions.
We show that this delay is at the source of inefficiencies
(overheads and saving losses) in the application for fine-
grain power management in the MPI library.

ii) Through the first set of benchmarks running on a
single HPC node we show that: (a) there is a potential saving
of energy with negligible overheads in the MPI communica-
tion slack of today’s HPC applications; (b) these savings are
jeopardized by the time that HW takes to perform power
state transitions; (c) when combined with low-power states,
Turbo logic can help improving execution time.

iii) The COUNTDOWN, which consists of a run-time
library able to automatically track at fine granularity MPI
and application phases to inject power management calls.
COUNTDOWN can identify MPI calls with energy-saving
potential for which it is worthwhile to enter a low power
state, leaving low-wait-time MPI calls unmodified to pre-
vent overheads caused by low power state transitions. We
show that COUNTDOWN’s principles can be used to inject
DVFS calls as well as to configure the MPI run-time library
correctly and take advantage of MPI idle-waiting mech-
anisms. COUNTDOWN works at execution time without
requiring any off-line knowledge of the application, and it
is completely plug-and-play ready: it does not require any
modification of the source code and compilation toolchain.
COUNTDOWN can be dynamically linked with the appli-
cation at loading time: it can intercept dynamic linking to
the MPI library instrumenting all the application calls to
MPI functions before the execution workflow jumps to the

1. Github Repository: https://github.com/EEESlab/countdown

library. The run-time library also provides a static version of
the library which can be connected with the application at
linking time. COUNTDOWN supports C/C++ and Fortran
HPC applications and most of the open-source and commer-
cial MPI libraries.

iv) We evaluate COUNTDOWN with a wide set of
benchmarks and low power state mechanisms. In large HPC
runs, COUNTDOWN leads to savings of 23.32% on average
for the NAS [11] parallel benchmarks on 1024 cores and to
22.36% for an optimized QuantumESPRESSO (QE) [12] on
3456 cores. When we run QE without communication tuning
the savings increases to 37.74%.

The paper is organized as follows. Section 5, presents
the state-of-the-art in power and energy management ap-
proaches for scientific computing systems. Section 2 intro-
duces the key concepts on power-saving in MPI phases of
the application. Section 3 explains the COUNTDOWN run-
time library and the characterizations of real HPC applica-
tions. Section 4 characterizes the COUNTDOWN library and
report experimental results in power saving of production
runs of applications on a Tier-1 supercomputer.

2 BACKGROUND

In this section, we show the implications and challenges of
transitioning into low power states (P/C/T-states) during
synchronization and communication primitives for energy-
savings on two practical examples.

As a test platform we have used a compute node
equipped with two Intel Haswell E5-2630 v3 CPUs, with
8 cores at 2.4 GHz nominal clock speed and 85W Thermal
Design Power (TDP) and the production software stack of
Intel systems. We use Intel MPI Library 5.1 coupled with
Intel ICC/IFORT 18.0 as our toolchain. We choose the Intel
software stack because it is currently used in our target
systems as well supported in most HPC machines based
on Intel architectures. We use a single compute node for the
following exploration because this is a worst-case scenario
for energy-saving strategies in MPI applications due the
communications happen in a very short time.

For all the tests in this Section, we have been used a
real scientific application, namely QuantumESPRESSO [12],
which is a suite of packages for performing Density Func-
tional Theory based simulations at the nanoscale and it is
widely employed to estimate ground state and excited state
properties of materials ab initio. For these single nodes tests,
we used the CP package parallelized with MPI. We use QE
because it is a paradigmatic application that shows the typi-
cal behaviors of HPC codes. QE main computational kernels
include dense parallel linear algebra (diagonalization) and
3D parallel FFT, which makes the following exploration
work relevant for many HPC codes2.

To exploit the system behavior for different workload
distribution in a single node evaluation, we focused the
computation of the band structure of the Silicon along with

2. QE mostly used packages are: (i) Car-Parrinello (CP) simulation,
which prepares an initial configuration of a thermally disordered
crystal of chemical elements by randomly displacing the atoms from
their ideal crystalline positions; (ii) PWscf (Plane-Wave Self-Consistent
Field) which solves the self-consistent Kohn and Sham (KS) equations
and obtain the ground state electronic density for a representative case
study [13].

https://github.com/EEESlab/countdown

3

(a) All MPI processes are involved in the diagonalization QE-CP-EU (b) Single MPI process is involved in the diagonalization QE-CP-NEU

Fig. 1. Overhead, energy/power saving, average load and frequency for QE-CP-EU (a) and QE-CP-NEU (b). Legend: C-state (CS), P-state (PS)
and T-state (TS) mode. Baseline is busy-waiting mode (default mode) of MPI library.

the main symmetry. When executed by a user with no
domain expertise and with default parameters, QE runs
with a hybrid MPI parallelization strategy: one MPI pro-
cess performs the matrix diagonalization kernel and the
remaining ones perform the FFT kernel. We will later refer
to this case as QuantumESPRESSO CP Not Expert User (QE-
CP-NEU). Differently, when an expert user runs the same
problem, he changes the parameters to better balance the
workload by using multiple MPI processes to parallelize
also the diagonalization kernel. We will later refer to this
case as QuantumESPRESSO CP Expert User (QE-CP-EU). In
the QE-CP-NEU case, when a single process works on the
linear algebra kernel, the other ones remain in busy waiting
on the MPI call. In the following text, we will compare fine-
grain power management solutions with the busy-waiting
mode (default mode) of the MPI library, where processes
continuously poll the CPU for the whole waiting time in
MPI synchronization points.

2.1 Wait-mode/C-state MPI library
Usually, MPI libraries use a busy-waiting policy in collective
synchronizations to avoid performance penalties. This is
also the default behavior of the Intel MPI library. This library
can also be configured to release the control to the idle
task of the operating system (OS) during the waiting time
to leverage the C-states of the system. This allows cores
to enter in sleep states and being woken up by the MPI
library when the message is ready through an interrupt
routine. In the Intel MPI library, it is possible to configure the
wait-mode mechanism through the environment variable
I MPI WAIT MODE. This allows the library to leave the
control to the idle task, reducing the power consumption for
the core waiting in the MPI. The transitions in and out from
the sleep mode induce overheads in the execution time.

In figure 1 are reported the experimental results, the
wait-mode strategy is identify with CS. From it, we can see
the overhead induced by the wait mode w.r.t. the default
busy-waiting configuration, which worsens by 25.85% the
execution time. This is explained by the high number of
MPI calls in the QE application which leads to frequent
sleep/wake-up transitions and high overheads. From the
same figure, we can also see that the energy saving is
negative, which is -12.72%, this is because the power sav-
ings obtained in the MPI primitives do not compensate
for the overhead induced by the sleep/wake-up transitions.
Indeed, the power reduction is of 12.83%. This is confirmed

by the average load of the system, which is 83.02% as the
effect of the C-states activity in the MPI primitives. The
average frequency is 2.6GHz, which is the standard turbo
frequency of our target system.

Surprisingly, the QE-CP-NEU case has a negative over-
head (-1.08% overhead is a speedup). This speedup is given
by the turbo logic of our system. Indeed, we can see
that the average frequency is slightly higher than 2.6GHz,
which means that the process doing the diagonalization can
leverage the power budget freed by the other processes not
involved in the diagonalization while they are waiting in
a sleep state in the MPI run-time library. In figure 2, we
report the average frequency of the process working on
the diagonalization and the average frequencies of all the
other MPI processes. In the target system, a single core can
reach up to 3.2 GHz if only one core is running, this is what
happens when all cores are waiting in a sleep state for the
termination of the diagonalization workload. The benefit of
this frequency boosting unleashed by the idle mode on the
MPI library and the unbalanced workload can save up to
16.69% of energy with a power saving of 20.86%.

As a conclusion of this first exploration, we recognize
that it is possible to leverage the wait mode of the MPI
library to save power without increasing the execution time,
but energy savings and impact on the TTS depends on the
MPI calls granularity which can lead to significant penalties
if the application is characterized by frequent MPI calls.

2.2 DVFS/P-state MPI library
To overcome the overheads of C-state transitions, we fo-
cus our initial exploration of the active low power states
(C-state) and DVFS (P-state). Intel MPI library does not
implement such a feature, so we manually instrumented
all the MPI calls of the application with a epilogue and
prologue function to scale down and raise up the frequency
when the execution enters and exits from an MPI call. To
avoid interference with the power governor of the operating
system, we disabled it in our compute node granting the
complete control of the frequency scaling. We use the MSR
driver to change the current P-state writing IA32 PERF CTL
register with the highest and lowest available P-state of the
CPU, which corresponds to the turbo and 1.2GHz operating
points. In figure 1 we report the results of this exploration,
where the P-state case is labelled with PS.

In the overhead plot, in figure 1.a, we can see that the
overhead is significantly reduced w.r.t C-state mode, reduc-

4

Fig. 2. Time plot of frequency for QE-CP-NEU identifies the frequency of
the MPI process working on the diagonalization, No Diag is the average
frequency of MPI processes not involved in the diagonalization.

ing the 25.85% overhead obtained previously to 5.96%. This
means that the overhead of scaling the frequency is lower
respect to the sleep/wake-up transitions cost. However, the
energy and power savings are almost zero. Similarly to QE-
CP-EU, this happens because all the MPI processes partici-
pate in the diagonalization, thus we have a high number of
MPI calls with a very short duration. This is also confirmed
by the average frequency, which does not show significant
variations w.r.t. the busy waiting, with a measured average
frequency of 2.4GHz. The load bar reports 100% of activity,
which means that there is no CPU idle time as expected.

Focusing in the QE-CP-NEU case, in figure 1.b, the
overhead is 3.88% which is reduced w.r.t. QE-CP-EU. In
addition, in this case, we have significant energy and power
saving, respectively of 14.74% and 14.75%. These savings
are due to the workload unbalance and to the long time
spent in the MPI calls from the processes not involved in
the diagonalization. This is confirmed by the lower average
frequency (1.95GHz). The load is unaltered as expected.

In conclusion, using DVFS for fine-grain power manage-
ment instead of the idle mode allows controlling the over-
head for both balanced and unbalanced workload better.
However, the overhead is still significant and in HPC the
TTS is the prime goal.

2.3 DDCM/T-state MPI library
One crucial question is: are the overheads of fine-grain
power management strategies induced by the specific
power management states? To answer this question, we
considered duty-cycling low power states3. In Intel CPUs,
DDCM is used by the HW power controller to reduce the
power consumption when the CPU identifies thermal haz-
ards. Similarly to [14], we use DDCM to reduce the power
consumption of the cores in MPI calls. We manually in-
strumented the target as we did in the prologue function
of each MPI call to configuring DDCM to 12.5% of clock

3. In this Section we also tried to use the Dynamic Duty Cycle Mod-
ulation (DDCM) (also known as throttling states or T-states) available
in the Intel architectures which are characterized by lower overhead.
DDCM has been supported in Intel processors since Pentium 4 and
enables on-demand software-controlled clock modulation duty cycle.

cycles, which means for each clock cycle we gate the next
7; while in the epilogue function, we restore the DDCM to
100% of clock cycles, we control it by writing to the DDCM
configuration register, called IA32 CLOCK MODULATION,
through the MSR driver.

In figure 1.a the DDCM results are reported with TS bars.
Surprisingly, the overheads induced by T-states are greater
than the wait mode and equal to 34.78%. As a consequence,
the energy saving is the worst, leading to an energy penalty
of 14.94%. The load is significantly reduced owing to the
throttling, at an average of 67.78%, while the frequency is
constant to 2.6GHz.

In figure 1.b, we report T-state results for QE-CP-NEU.
Even for this unbalanced workload case, the T-states are the
worst. T-state transitions introduce an overhead of 15.82%
consequent of the power reduction, with a very small energy
saving, only of the 4.75%, and a power saving of 21.97%. The
load of the system is reduced to 55.45%, similar to the idle
mode, and the frequency remained unchanged as expected.

As a matter of fact, we show that phase agnostic fine-
grain power management leads to significant application
overheads which may nullify the overall saving. Though,
we need to bring knowledge of the workload distribution
and the communication granularity of the application in
the fine-grain power management. In the next Sections, we
introduce the COUNTDOWN approach which addresses
this issue.

3 FRAMEWORK

COUNTDOWN is a run-time library for profiling and fine-
grain power management written in C language. COUNT-
DOWN is based on a profiler and on a event module to in-
spect and react to MPI primitives. The key idea in COUNT-
DOWN can be summarized as follows. Every time the appli-
cation calls an MPI primitive, COUNTDOWN intercepts the
call with minimal overhead and uses a timeout strategy [15]
to avoid changing the power state of the cores during fast
application and MPI context switches, where doing so may
result only in state transition overhead without significant
energy and power reduction.

In figure 3 the COUNTDOWN’s components are de-
picted. COUNTDOWN exposes the same interface as a
standard MPI library and intercepts all MPI calls from the
application. COUNTDOWN implements two wrappers to
intercept MPI calls: i) the first wrapper is used for C/C++
MPI libraries, ii) the second one is used for Fortran MPI
libraries. This is mandatory since C/C++ and Fortran MPI
libraries produce different assembly symbols. The Fortran
wrapper implements (un)marshalling interfaces to bind MPI
Fortran handlers into MPI C/C++ handlers.

When an application is instrumented with COUNT-
DOWN, every MPI call is enclosed in a corresponding
wrapper function that implements the same signature. The
wrapper function calls the equivalent PMPI call, but after
and before a prologue and an epilogue routine. Both routines
are used by the profile and by the event modules to support
monitoring and power management, respectively. COUNT-
DOWN interacts with the HW power manager through a
specific Events module in the library. The Events module can
also be triggered by system signals registered as callbacks

5

Logical View

Libcntd.so

Wrapper
C/C++

Wrapper Fortran

Binding C

MPI

Profiler

EventFine-grain

Profiler

Coarse-grain

Profiler

Runtime

Callback

MPI Interface

PMPI InterfaceLogging

Main(){
// Initialize MPI
MPI_Init()
// Get the number of procs
MPI_Comm_size(size)
// Get the rank
MPI_Comm_rank(rank)
// Print a hello world
printf(“Hello world from rank:“

“%rank%, size: %size%”)
// Finalize MPI
MPI_Finalize()

}

MPI_$CALL_NAME$(){
Prologue()
PMPI_$CALL_NAME$()
Epilogue()

}
Prologue(){

Profile()
Event(START)

}
Epilogue(){

Event(END)
Profile()

}

// PMPI Interface
PMPI_Init() {…}
PMPI_Comm_size() {…}
PMPI_Comm_rank() {…}
PMPI_ Finalize() {…}

// MPI Interface
MPI_Init() {…}
MPI_Comm_size() {…}
MPI_Comm_rank() {…}
MPI_ Finalize() {…}

App.x Libcntd.so Libmpi.so

D
y
n

a
m

ic

Li
n

k
in

g

D
y
n

a
m

ic

Li
n

k
in

g

Dynamic Linking

Fig. 3. Dynamic linking events when COUNTDOWN is injected at loading time in the application and logical view of all the components.

for timing purposes. COUNTDOWN configurations can
be done through environment variables, and it is possible
to change the verbosity of logging and the type of HW
performance counters to monitor.

The library targets the instrumentation of applications
through dynamic linking, as depicted in figure 3, without
user intervention. When dynamic linking is not possible
COUNTDOWN has also a fallback, a static-linking library,
which can be used while building the application, to add
COUNTDOWN at compilation time. The advantage of us-
ing the dynamic linking is the possibility to instrument
every MPI-based application without any modifications of
the source code nor the toolchain, even without recompiling
it. Linking COUNTDOWN to the application is straightfor-
ward: it is enough to configure the environment variable
LD PRELOAD with the path of the COUNTDOWN run-
time library and launch the application as usual.

3.1 Profiler Module

COUNTDOWN allows extracting traces, which can be
exploited to estimate application performance as [16].
COUNTDOWN uses three different profiling strategies tar-
geting different monitoring granularity.

(i) The MPI profiler is responsible for collecting all infor-
mation regarding the MPI activity. For each MPI process,
it collects information on MPI communicators, MPI groups,
and the coreId. In addition, the COUNTDOWN run-time
library profiles each MPI call by collecting information on
the type of the call, the entrance and exit times, and the data
exchanged with the other MPI processes.

(ii) The fine-grain micro-architectural profiler, collects
micro-architectural information at every MPI call along with
the MPI profiler. This profiler uses the user-space RDPMC
instruction to access the performance monitoring units im-
plemented in Intel’s processors. It monitors the average fre-
quency, the time stamp counter (TSC), and the instructions
retired for each MPI call and application phase. It can access
up to 8 configurable performance counters that can be used
to monitor user-specific micro-architectural metrics.

(iii) The coarse-grain profiler monitors a larger set of HW
performance counters available in the Intel architectures. In
Intel architectures, privileged permissions are required to
access HW performance counters. Such a level of permis-
sions cannot be granted to the final users in production

machines. To overcome this limitation, we use the MSR-
SAFE [17] driver, which can be configured to grant access
to standard users on a subset of privileged architecture
registers, while avoiding security issues. Moreover, we de-
ploy in our target HPC system a plugin for the workload
scheduler that restores the MSR registers of the compute
nodes at the end of each power-aware job. At the core level,
COUNTDOWN monitors TSC, instructions retired, average
frequency, C-state residencies, and temperature. At the un-
core level, it monitors CPU package energy consumption,
C-state residencies, and temperature of the packages. This
profiler uses Intel Running Average Power Limit (RAPL)
to extract energy/power information from the CPU. The
coarse-grain profiler, due to the high overhead needed by
every single access to the set of HW performance counters
monitored, uses a time-based sample rate. The fine-grain
micro-architectural profiler at every MPI calls checks the times-
tamp of the previous sample of coarse-grain profiler and, if it
is above Ts seconds, triggers it to get a new sample. These
capabilities are added to the application through the prologue
and epilogue functions as shown in figure 3.

COUNTDOWN also implements a logging module to
store profile information in a text file that can be written in
local or remote storage. While the log file of MPI profiler can
grow with the number of MPI primitives and can become
significant in long computation (thus the information is
stored in binary files), the logging module also reports a
summary of this information in an additional text file.

3.2 Event Module

COUNTDOWN interacts with the HW power controller of
each core to reduce the power consumption. It uses MSR-
SAFE to write the architectural register to change the current
P-state independently per core. When COUNTDOWN is
enabled, the Events module selects the performance level
at which to execute a given phase.

COUNTDOWN implements a timeout strategy through
the standard Linux timer APIs, which expose the system
calls: setitimer() and getitimer() to manipulate user-space
timers and register callback functions. This methodology is
depicted in figure 4 in the top part. When COUNTDOWN
encounters an MPI phase, which opportunistically can save
energy by entering a low power state, registers a timer
callback in the prologue function (Event(start)), after that the

6

Application MPI Library Application MPI Library Application

Callback Delay

S
p

in

Callback Delay

Core Logic

R
e

se
t

P
-S

ta
te

S
e

t
Lo

w

P
-S

ta
te

Max frequency

Min frequency

Process

D
is

a
b

le

C
a

ll
b

a
ck

Core

Callback

Frequency

Time

Application MPI Library Application MPI Library Application

Core Logic

Busy Waiting Busy Waiting

Idle time
Idleness

Core

Busy

Waiting

Process

R
e

g
is

te
r

C
a

ll
b

a
ck

S
p

in Y
ie

ld

R
e

tu
rn

C
o

n
tr

o
l

In
te

rr
u

p
t

R
e

g
is

te
r

C
a

ll
b

a
ck

Fig. 4. On the upper side is depicted the timer strategy utilized in COUNTDOWN, while in the lower side is depicted the idle-wait mode with timer
implemented in the Intel MPI library.

execution continues with the standard workflow of the MPI
phase. When the timer expires, a system signal is raised,
the “normal” execution of the MPI code is interrupted,
the signal handler triggers the COUNTDOWN callback, and
once the callback returns, execution of MPI code is resumed
at the point it was interrupted. If the “normal” execution
returns to COUNTDOWN (termination of the MPI phase)
before the timer expiration, COUNTDOWN disables the
timer in the epilogue function and the execution continues
like nothing happened. The callback can be configured to
enter the lower T-state (12.5% of load), later referred to
as COUNTDOWN THROTTLING, or in the lower P-state
(1.2GHz) later referred to as COUNTDOWN DVFS.

Intel MPI library implements a similar strategy, but
it relies on the sleep power states of the cores. Its be-
havior is depicted in the bottom part of figure 4. If the
environment variable I MPI WAIT MODE, presented in
Section 2.1, is combined with the environment variable
I MPI SPIN COUNT, it is possible to configure the spin
count time for each MPI call. When the spin count becomes
zero, the MPI library leaves the execution of the idle task of
the CPU. This parameter does not contain a real-time value
but includes a value that is decremented by the spinning
procedure on the MPI library until it reaches zero. This
allows the Intel MPI library to spin on a synchronization
point for a while, and after that, enter in an idle low power
state to reduce the power consumption of the core. The
execution is restored when a system interrupt wakes up the
MPI library signaling the end of the MPI call. Later, we will
refer to this mode as MPI SPIN WAIT.

In the next Section, we will clarify though experiment
on why the timeout logic introduced by COUNTDOWN is
effective in making fine-grain power management possible
and convenient in MPI parallel applications.

4 EXPERIMENTAL RESULTS

In this Section, we present: (i) an overhead analysis of
COUNTDOWN, (ii) the effect of timeout strategy using
different timeout delays, and (iii) the evaluation on a single
node and a production HPC system with real scientific
applications.

4.1 Framework Overheads

We evaluate the overhead of running MPI applications
instrumented with the profiler module of COUNTDOWN
without changing the cores’ frequency. We run QE-CP-EU
on a single node, which is the worst case for COUNTDOWN
in terms of number and granularity of MPI calls to profile
because all network-related overheads in MPI calls are nul-
lified and intra-chip communication and synchronization
are orders-of-magnitude faster than the inter-chip or inter-
node ones. Hence, MPI wait-times exploitable for power
management are generally much shorter.

In this run, there are more than 1.1 million MPI primi-
tives for each process in the diagonalization task: our run-
time library needs to profile on average an MPI call every
200us for each process. We measured the overhead compar-
ing the execution time with and without COUNTDOWN
instrumentation. We repeated the test five times, and we
report the median case. Our results show that even in this
unfavorable setting, the COUNTDOWN profiler introduces
an overhead in the execution time which is less than 1%.
We repeated the same test changing the cores’ frequency to
assess the overhead of a fine-grain DVFS control. To mea-
sure only the overhead caused by the interaction with the
DVFS knobs, we force COUNTDOWN to force always the
highest P-state in the DVFS control registers. Thus, we avoid
application slowdowns caused by frequency variation, and

7

Fig. 5. Impact of MPI phases duration on the overheads, energy, and power savings of C/P/T-state for QE-EU and QE-NEU.

we obtained only the overhead caused by the register access.
Our experimental results report of 1.04% of overhead to
access the DVFS control register and for the profile routines.

These results prove that the source of the overheads of
phase agnostic fine-grain power management is not related
to issuing the low power state transition (DVFS in this case).
Figure 5 focuses on understanding the source of this by
replicating the tests of Section 2 for both QE-CP-EU and
QE-CP-NEU, but now entering in the low power state only
for MPI phases longer than a given time threshold. For the
P-state and T-state (Figure 5.b and Figure 5.c) we obtained
that by profiling in advance the duration of each MPI phase
and instrumenting with the low power command only the
phases which had a duration longer than the threshold.
We report on the x-axes the time threshold value. For C-
state (Figure 5.a) we leveraged the COUNTDOWN MPI
logic, I MPI SPIN COUNT parameter to filter out short
phases. On the x-axis, we report the I MPI SPIN COUNT
parameter.

From the plot, we can recognize that there is a well-
defined threshold of 500us for the T-state and P-state case
and of 10K iteration steps for the C-state after which the
overhead introduced by the fine-grain power management
policy is reduced and the energy savings becomes positive
for the QE-CP-EU. In the next Section, we will analyze why
this happens by focusing on the P-state case.

The overhead in terms of memory is negligible since
the memory required by COUNTDOWN is just a few
megabytes for each MPI process.

4.2 DVFS Overheads and Time Region Analysis
To find the reason of the higher overhead when frequency
reduction is applied in all the MPI phases as highlighted in
the previous Section, we report two scatter plots in which
we show on the x-axis of the left plot the time duration

of each MPI phase and on the right plot the time duration
of each application phase. For both plots, we report on the
y-axes the measured average frequency in that phase. This
test is conducted by instrumenting each MPI call through
COUNTDOWN with a prologue routine to set the lowest
frequency (1.2GHz) and with an epilogue routine to set the
highest frequency (Turbo).

In theory, we would have expected that all MPI phases
had executed at the minimum frequency and application
phases had always run at maximum frequency. It is a matter
of fact that MPI phases running at high frequencies may
cause energy waste, while application phases running at low
frequencies cause a performance penalty to the application.
Our results show that for phases with a time duration
between 0us and 500us, the average frequency varies in
the interval between the high and low CPU’s frequency
values, while above it, it tends to the desired frequency
for that phase. This can be explained by the response time
of HW power controller in serving P-state transition of our
Intel Haswell [10], we discover the same behavior on Intel
Broadwell architecture. The HW power controller periodically
reads the DVFS register to check if the OS has specified a
new frequency, this interval has been reported to be 500us in
a previous study [10] and matches our empirical threshold.

This means that every new setting for the core’s fre-
quency faster than 500us could be applied or completely
ignored, depending on when the register was sampled the
previous time. This can cause all sorts of average frequen-
cies. Clearly, application phases that execute at a lower
frequency than the maximum one may lead to a slowdown
in the application, while MPI phases that execute at a higher
frequency than the minimum one may lead to energy saving
loss. It is nevertheless interesting to notice that phases with a
duration from 0s to 500us are more likely to have the highest
frequency for the MPI phases and the lowest frequency

8

Fig. 6. Average frequency and time duration of Application/MPI phases for the single node benchmark of QE-CP-EU (16 MPI ranks).

Fig. 7. Time and average frequency of Application/MPI phases for the single node benchmark for QE-CP-EU (16 MPI ranks).

for the application phases, which is the opposite of what
expected. We will explain it with the next analysis.

Thus, it is not possible to have effective control on the
frequency selection for phases shorter than 500us, while
for longer phases we have an asymptotic trend toward the
requested frequency. We hypothesize that in phases shorter
than 500us the average frequency depends more on the
previous phase frequency than the requested one.

Following this intuition, in Figure 7, we correlate the
time duration of each application phase with the time dura-
tion of the following MPI phase and its average frequency.
We report in the y-axis the time duration of the application
phase, in the x-axis the time duration of the subsequent
MPI phase, and with the color code, we report the average
frequency. In the left plot, we report the average frequency
of the MPI phase, while in the right plot we report the
average frequency for the application phase. For both plots,
we can identify four regions/quadrants:

(i) Application & MPI>500us: this region contains long
application phases followed by long MPI phases. Points in
this region show low frequency in MPI phases and high
frequency in application phases. This is the ideal behavior,
where applying frequency scaling policy reduces energy
waste in MPI but with no impact on the performance of
the application. Phases in this region are perfect candidates
for fine-grain DVFS policies.

(ii) Application>500us & MPI<500us: this region con-
tains long application phases followed by short MPI phases.
Points in this region show for both application and MPI
phases high average frequency. This is explained by the
short duration of the MPI phases, which does not give
enough time to the HW power controller to serve the request
to scale down the frequency (prologue) before this setting
is overwritten by the request to operate at the highest
frequency (epilogue). For this reason, fine-grain DVFS control
in this region does not have an impact on the energy saving

9

(a) All MPI processes diagonalization QE-CP-EU (b) Single MPI process diagonalization QE-CP-NEU

Fig. 8. Overhead, energy/power saving, average load, and frequency using COUNTDOWN for QE-CP-EU (a) and QE-CP-NEU (b). Legend: C-state
(CS), P-state (PS) and T-state (TS) mode. The baseline is the busy-waiting mode of the MPI library.

as the frequency reduction in MPI phases is negligible, but it
also does not deteriorate the performance as the application
phases are executed at the maximum frequency. Phases in
this region should not be considered for fine-grain DVFS
policies, being preferable to leave frequencies unaltered at
the highest level.

(iii) Application<500us & MPI>500us: this region con-
tains short application phases followed with long MPI
phases. This is the opposite case of Application>500us &
MPI<500us region. Points in this region show for both
application and MPI phases low average frequency. This is
explained by the short duration of the application phases,
which does not give enough time to the HW power controller
to serve the request to raise up the frequency (requested
at the exit of the previous MPI phase), before this setting
gets overwritten by the request to operate at the lowest
frequency (at the entrance of the following MPI phase).
Applying fine-grain DVFS policies in this region can save
power, but detriments the overall performance, as applica-
tion phases are executed at low frequencies. Phases in this
region should not be considered for fine-grain DVFS policies
due to the high overheads in the application execution time.

(iv) Application & MPI<500us: This region shows the
opposite behavior of Application & MPI>500us region. Both
application and MPI phases execute randomly at high and
low average frequencies due to the inability of the HW
power controller to capture and service the requested fre-
quency changes. The average frequency at which MPI and
application phases execute are strictly related to the type
of the previous long phase: if it was an application phase
the following short phases will execute at high frequency
in average; On the contrary, if it was an MPI phase the
following short phases would execute at low frequency in
average. Applying fine-grain DVFS policies in this region
leads to unexpected behaviors that can detriment applica-
tion performance. Fine-grain power managers should never
consider all phases shorter than 500us.

4.3 Single-node Evaluation

We repeated the experiments of Section 2 using COUNT-
DOWN. We configure COUNTDOWN to scale down the P-
and the T-states 500us after the prologues of MPI primitives.

To reproduce the same timeout strategy leveraging the
C-states, we configure MPI SPIN WAIT as described in 3.2
with 10K as MPI spin counter parameter.

The HW power controller of Intel CPUs, has a different
transition latency for sleep states w.r.t. DVFS scaling, as
described in [10]. For this reason, we empirically determine
the best spin counter setting to maximize energy efficiency
and to minimize the overhead for the target application.

Figure 8 report the experimental results using COUNT-
DOWN THROTTLING, COUNTDOWN DVFS and MPI
SPIN WAIT. We can see that in all cases the overhead,
the energy saving, and the power saving are significantly
improved w.r.t. the baseline (only MPI library).

Figure 8.a shows the experimental results for QE-CP-EU.
For the C-state mode the overhead decrease from 25.85%
to 1.70% by using MPI SPIN WAIT. Instead, for the P-state
using COUNTDOWN DVFS the overhead decreases from
5.96% to a negligible overhead, and for the T-state using
COUNTDOWN THROTTLING the overhead decreases from
5.96% to 0.29%. All evaluations report a non-negative energy
saving, as it was for the MPI library without timeout strat-
egy, but with better results. Energy saving shows 21.80%,
14.94%, and 11.16% improvements and power saving report
6.55%, 5.77%, and 2.47% respectively for C-state, P-state, and
T-state. These experimental results confirm our exploration
of the time duration of MPI phases reported in figure 6.
Most of the MPI calls of this benchmark have been skipped
due to their short duration to avoid overheads.

Figure 8.b show similar improvements for QE-CP-NEU.
In this configuration, for C-State mode the speed-up in-
creases from 1.08% to 6.14% using MPI SPIN WAIT. Instead
of using COUNTDOWN, the overhead of P-state decreases
from 3.88% to 1.25%, and for the T-state from 15.82% to
2.19%. As a result, the energy saving is 21.80%, 14.94%, and
11.16% while power saving corresponds to 24.61%, 19.84%,
and 15.23% respectively for C-state, P-state, and T-state.

4.4 HPC Evaluation
After we have evaluated our methodology in a single
compute node, we extend our exploration in a real HPC
system. We use a Tier-1 HPC system based on an IBM
NeXtScale cluster which is currently classified in the Top500
supercomputer list [18]. The compute nodes of the HPC
system, are equipped with 2 Intel Broadwell E5-2697 v4
CPUs, with 18 cores at 2.3 GHz nominal clock speed and
145W TDP and interconnected with an Intel QDR (40Gb/s)
Infiniband high-performance network.

To benchmark the parallel performances in our target
HPC system we focused on three sets of applications. The

10

EP CG MG FT BT SP LU
0
5

10
15
20
25
30
35
40
45
50
55

Ov
er
he
ad
 [%

]
(a) NAS Overhead

EP CG MG FT BT SP LU
0
5

10
15
20
25
30
35
40
45
50
55

En
er
gy
 S
av
in
g
[%

]

(b) NAS Energy Saving

EP CG MG FT BT SP LU
0
5

10
15
20
25
30
35
40
45
50
55

Po
we

r S
av
in
g
[%

]

(c) NAS power Saving

Overhead Energy
Saving

Power
Saving

0
5

10
15
20
25
30
35
40
45
50
55

Va
lu
e
[%

]

(d) OMEN

Fig. 9. Results on NAS parallel benchmarks suite and OMEN with COUNTDOWN on 1024 MPI rank/cores. The baseline is the busy-waiting mode.

first one is the NAS parallel benchmark suite [11] with the
dataset E. We executed the NAS parallel benchmarks on 29
compute nodes with a total core count of 1024 cores. We
use 1024 cores due the execution time of the application
run using dataset E is on average ten minutes for each
benchmark. The NAS parallel benchmarks are composed
of 7 benchmarks which implement different mathematical
workloads that are very representative of HPC scientific
kernels, such as FFT, differential equations, ordering, etc.
We select these benchmarks because they create a wide
range of workloads. The second benchmark is OMEN, an
atomistic quantum transport simulator that can compute
the I-V characteristics of nano-devices ab-initio (from first
principles) [19]. The code has been optimized to run on
the largest supercomputers, winning the ACM Gordon Bell
Prize in 2019 [19] and reaching two times the final in 2011
and 2015. In our runs, a transistor with a 2-D crystal as
channel material serves as a benchmark. The last bench-
mark is QuantumESPRESSO PWscf configured for complex
large-scale simulation. For this purpose, we performed ten
iterative steps of the self-consistent loop algorithm that opti-
mizes the electronic density starting from the superposition
of atomic charge densities. To obtain a reasonable scaling up
to the largest set of nodes, we chose an ad-hoc dataset.

During each iteration, the CPU time is mostly spent
in linear algebra (matrix-matrix multiplication and matrix
diagonalization) and FFT. Both these operations are dis-
tributed on multiple processors and operate on distributed
data. As a consequence, FFT requires many AllToAll MPI
communications while parallel diagonalization, performed
with the PDSYEVD subroutine of SCALAPACK and re-
quires mostly MPI broadcasting messages. We run QE on
96 compute nodes, using 3456 cores and 12 TB of DRAM
due our target HPC machine allows application runs with
at maximum 100 nodes. We use an input dataset capable
of scaling on a such number of cores, and we configure
QE using a set of parameters optimized to avoid network
bottlenecks, which would limit the scalability. We name this
configuration QuantumESPRESSO Expert User (QE-PWscf-
EU), to differentiate it from the same problem but solved
without optimizing the internal parameter as it was run by
a user without domain-specific knowledge which we call
QuantumESPRESSO Not Expert User (QE-PWscf-NEU).

In these tests, we exclude the T-state mode, because, in
the single-node evaluation, it always reported the worst
results that the P-state mode. We also excluded the C-
state mode as when we started the configuration of the
Intel MPI library for HPC experiments using idle mode. We
discover that this feature is not supported in a distributed
environment. The Intel MPI library overrides the request of
idle mode with the busy-wait mode when the application
runs on multiple nodes. For this reason, we only use the P-
state mode (COUNTDOWN DVFS) in the HPC evaluation.

We run the benchmark with and without COUNT-
DOWN on the same nodes, and we compared the results.

Figure 9 shows the results for the NAS parallel bench-
mark suite and OMEN when executed on 1024 cores, while
figure 10 shows the results for the QE-PWscf-* application
when executed on 3456 cores. The different plots for Figure
9 reports the time-to-solution overhead, the energy, and
power saving for the different large-scale benchmarks and
application run. All the values are normalized against the
default MPI busy waiting policy. From Figure 9.c, we can
see that COUNTDOWN is capable of significantly cutting
the energy consumption of the NAS benchmarks from 6%
to 50%. From the overhead plot (Figure 9.a) we can see that
all these energy savings happen with a very small time-
to-solution overhead, on average below 5%. The results for
OMEN, in Figure 9.d, confirms the one obtained for the
NAS benchmarks with an overhead of 3.22% and an energy
and power saving of 24.72% and 34.28% respectively. These
results are very promising as they are virtually portable to
any application, without the need to touch the application
binary. When looking at the QuantumEspresso (QE-PWscf-
*) case reported in figure 10, we see that COUNTDOWN
attains similar results of NAS also with real production run
optimized for scalability COUNTDOWN saves 22.36% of
energy with an overhead of 2.88% in the QE-PWscf-EU case.

Figure 10.a shows the total time spent in the application
and in MPI phases which are shorter and longer than 500us
for the QE-PWscf-EU case. On the x-axis, the figure reports
the Id of the MPI rank, while in the y-axis reports in the
percentage of the total time spent in phases longer and
shorter than 500us. We can immediately see that in this real
and optimized run, the application spends a negligible time
in phases shorter than 500us. In addition, the time spent

11

a) QE-PWscf-EU b) QE-PWscf-NEU

Fig. 10. (a,b) Sum of the time spent in phases longer and shorter than 500us for QE-PWscf-EU and QE-PWscf-NEU for 3,456 MPI rank/cores.

in the MPI library and the application is not homogeneous
among the MPI processes. This is an effect of the workload
parameters chosen to optimize the communications, which
distribute the workload in subsets of MPI processes to
minimize broadcast and All-to-All communications. Using
this configuration, our experimental results report 2.88% of
overhead with an energy saving of 22.36% and a power
saving of 24.53% thanks to COUNTDOWN.

Figure 10.c shows that for the case QE-PWscf-NEU
where the parameters are not optimized, all MPI processes
have the same workload composition as they are part of the
same workgroup and due the large overhead in the broad-
cast and All-to-All communications. Most of the processes
spend almost 80% of the time in the MPI library. Even if
it is suboptimal, this happens to HPC users running the
application without being domain experts or before tuning
the execution parameters. This is a rather typical scenario in
scientific computing as only runs that are repeated multiple
times are carefully optimized by domain experts.

In this situation, COUNTDOWN increases its benefits,
reaching up to 37.74% of energy saving and a power saving
of 41.47%. In this condition, we also notice that COUNT-
DOWN induces a small but relevant overhead of 6.38%.
We suspect that some MPI primitives suffer more than
others from the frequency scaling. We will analyze in depth
this problem in our future works aiming to guarantee that
the COUNTDOWN overhead always remains negligible.
However, we remark that an overhead well below 10%
is more than acceptable in many HPC facilities, especially
when considering the massive energy savings.

In summary, we can conclude that results achieved by
COUNTDOWN in production scale and application are
very promising and if systematically adopted would dra-
matically reduce the TCO of today supercomputers.

Future works will analyze the source of the small over-
head introduced by the COUNTDOWN algorithm aiming
to zero it by challenging the assumption that all the MPI
phases are composed only by slack time not dependent on
the frequency at which they are executed.

5 RELATED WORK

Several works focused on mechanisms and strategies to
maximize energy savings at the expense of performance.
These works focus on operating the processors at a reduced
frequency for the entire duration of the application [2], [3],
[4]. The main drawback of these approaches is the negative

impact on the application performance which is detrimental
to the data center cost efficiency and TCO.

Fraternali et al. [2], [8] analyzed the impact on frequency
selection on a green HPC machine which can lead a sig-
nificant global energy reduction in real-life applications but
can also induce significant performance penalties. Auweter
et al. [3] developed an energy-aware scheduler that relies
on a predictive model to predict the wall-time and the
power consumption at different frequency levels for each
running applications in the system. The scheduler uses
this information to select the frequency to apply to all the
nodes executing the job to minimize the energy-to-solution
allowing unbounded slowdown in the TTS.

The main drawback of the works mentioned so far is
that they lead to a systematic increase of TTS, which may
be acceptable for the user, but it is not easily acceptable by
the facility manager since it reduces the data center cost
efficiency and TCO [20]. For this reason, there is a trend in
the literature towards HPC energy reduction methodologies
with negligible or low impact on TTS of the applications.

Sundriyal et al. [21], [22], [23], [24] analyze the impact
of fine-grain power management strategies in MVAPICH2
communication primitives, with a focus on send/receive
[21], All-to-All [22], and AllGather communications [23].
In [21] the authors propose an algorithm to lower the P-
state of the processor during send and receive primitives.
The algorithm dynamically learns the best operating points
for the different send and receive calls. In the [22], [23],
[24] works, the authors propose to lower also the T-state
during the send-receive, all-gather, and all-to-all primitives
as this increases the power savings. These approaches show
that power saving can be achieved by entering in a low
power mode during specific communication primitives but
they depend on a specific MPI implementation. Differently,
we show that significant savings can be achieved without
impacting the implementation of the MPI library. The work
also proposed complex mathematical models on several
MPI primitives taking into account the overheads of low
power modes to predict the expected time of communica-
tion. This is in contrast with the philosophy of COUNT-
DOWN, which leverages on a reactive mechanism making
it robust to miss-predictions on communication time of
learning approaches [25].

Rountree et al. [26] analyze the energy savings which
can be achieved on MPI parallel applications by slowing
down the frequencies of processors that are not in the
critical path. Authors of the paper define tasks as the region

12

of code between two MPI communication calls, we will
refer later in this paper to tasks as phases. The critical
path is defined as the chain of the tasks which bounds the
application execution time. Indeed, cores executing tasks in
the critical path will be the latest ones to reach the MPI
synchronization points, forcing the other cores to wait. In
[26] authors propose a methodology for estimating offline
the minimum frequency at which the waiting cores can
execute without affecting the critical path and the TTS. In
the same work, the authors suggest that the core’s frequency
cannot be changed too often without causing overheads. For
this reason, the authors introduce a timer logic set at 10ms
to avoid changing the core’s frequency too often. This value
is empirically found. With COUNTDOWN we demonstrate
that in modern CPUs the best setting for this timer value
corresponds to the built-in HW power controller latency.

A later work of the same authors [6], implements an
online algorithm to identify the task and the minimum
frequency at which it can be executed without worsening
the critical path. This is done with a slack reclamation policy
which is based on the measurement of the blocking time
of the previous MPI primitive. If this was at least twice
longer than an empirical time threshold (100ms) a timer is
set to the empirical threshold when the MPI primitive is
encounter again. If the timer expires, the core’s frequency is
set to the minimum available. This, in essence, implements
a last-value prediction logic to determine if there will be
enough blocking time which could be exploited to save
energy. COUNTDOWN uses a timeout policy as well, but
it applies it for each MPI phase without trying to predict its
duration. This is a significant difference w.r.t to the [6] which
makes it robust to miss-predictions [15]. Similarly, Kappiah
et al. [9] developed Jitter, an online run-time library based
on the identification of the critical path on the application
among compute nodes involved in the application run. Liu
et al. [27] use a similar methodology as Kappiah et al. [9] but
they apply it to a multi-core CPU. Zhai et al. [16] propose a
method for estimating the duration of an MPI application.

The authors of [28], as in [6], [26], focus on saving power
by entering a low power state for processes which are not in
the critical path. The authors propose an algorithm to save
energy by reducing application unbalance. This is based on
measuring the start and end time of each MPI Barrier and
MPI Allreduce primitives to compute the duration of appli-
cation and MPI code. Based on that the authors propose a
feedback loop to lower the P-state and T-state if in previous
compute and MPI region the overhead was below a given
threshold. The algorithm is based on the assumption that
the duration of the current application and MPI phases will
be the same as the previous ones. In COUNTDOWN we
target recent HW and larger production runs where we do
not use any previous information on MPI and application
phase duration, which may lead to costly performance
overhead in case of misprediction in particular in irregular
applications [25]. Instead, COUNTDOWN relies only on a
pure-reactive timer-based logic. It is worth to notice that
differently from [6], the COUNTDOWN logic does not use
any pre-characterization of the message-transfer time of the
MPI library to estimate the communication blocking time
due to this can change depending to the network congestion
of the high-performance interconnect.

To save energy during MPI phases, Lim et at. [29]
propose to reduce core’s frequency in “long” MPI phases.
Subsequent short MPI phases are grouped and treated as a
single long MPI phase. They use an algorithm to select the
best P-state to be applied according to the micro-operation
throughput in the MPI phase. Similarly to [6], [26], this
approach is based on the assumption that the duration and
instruction composition of current MPI phase will be the
same as the previous ones. Moreover, by treating short MPI
phases as a single long one, the application phases between
them are executed at low frequency leading overheads.

Li et al. [30] use a similar approach to [29] to reduce
power consumption in synchronization points. This work
focuses on collective barriers for parallel applications in
shared-memory multiprocessors. Differently, from the pre-
vious approaches, instead of using P-state, they use idle
states (C-states) and specific hardware extensions to account
for their transitioning (sleep and wake-up) times. As in the
previously described approaches, this run-time library uses
a history-based prediction model to identify the duration of
the next barriers.

The authors of [31] show that the approaches in [6],
[26] and the ones which estimate the duration of MPI
and communication phases based on a last-value predic-
tion [29], [30] can lead to significant misprediction errors.
The authors propose to solve this issue by estimating the
duration of the MPI phases with a combination of com-
munication models and empirical observation specialized
for the different groups of communication primitives. The
authors of [31] focus on C-states as P-states are said to
be not compatible with production software. Assumptions
are then made to compute a time threshold for a C-state
transition time based on an accepted application overhead.
If the predicted execution time for the MPI phase is longer
than this threshold, the core is transitioned into the deeper
C-state. In COUNTDOWN, we focus on P-states for which
we show that the transition time is negligible, but the short
MPI phase should be filtered out as an effect of the polling
time of the power controller logic. Besides, we do not rely on
predicted execution time which can lead to miss-predictions.
COUNTDOWN proves that implementing a DVFS strategy
leveraging on PMPI interface and MSR-SAFE driver [17] is
an efficient and safe solution.

Li et al. [7] analyzed hybrid MPI/OpenMP applications
in terms of performance and energy saving and developed
a power-aware run-time library that relies on dynamic con-
currency throttling (DCT) and DVFS mechanisms. This run-
time library uses a combination of a power model and a
timing predictor for OpenMP phases to select the best cores’
frequency when application manifests workload imbalance.

The works in the second group, namely [7], [9], [27], [29],
[30], but also [6] in the slack reclamation policy, have in
common the prediction of future workload imbalances or
MPI phases obtained by analyzing previous communication
patterns. However, this approach can lead to frequent mis-
predictions in irregular applications [25] which cause per-
formance penalties. COUNTDOWN differs from the above
approaches (and complements them) because it is purely
reactive and does not rely on assumptions and estimation
of the future workload unbalance.

The power management literature has analyzed in depth

13

the issue of prediction inaccuracy and predictive model
overfitting [15]. One of the key outcomes of COUNTDOWN
is that timeout-based policies are effective if predictions are
not available (e.g. when data is being collected for building a
predictive model), and are also essential in mitigating miss-
prediction overheads.

Eastep et al. propose GEOPM [5], an extensible and plug-
in based framework for power management in large parallel
systems. GEOPM is an open-source project and exposes a
set of APIs that programmers can insert into applications to
combine power management strategies and HPC workload.
A plugin of the framework targets power constraint systems
aiming to speed up the critical path migrating power to
the CPU’s executing the critical path tasks. In a similar
manner, another plugin can selectively reduce the frequency
of the processors in specific regions of codes flagged by the
user by differentiating regions in CPU, memory, IO, or disk
bound. Today, GEOPM is capable of identifying MPI regions
and reducing the frequency based on MPI primitive type.
However, it cannot differentiate between short and long
MPI and thus cannot control the overhead caused by the
frequency changes in short MPI primitives. COUNTDOWN
addresses this limitation and can be integrated into future
releases of GEOPM, as its design principles are entirely
compatible with it (i.e. no application code modifications
are required).

An earlier version of the COUNTDOWN run-time li-
brary was presented in [32]. This paper adds in COUNT-
DOWN the support for two additional low power state
mechanisms (C-state and T-states) and their comparisons
with P-state. Moreover, we extended [32] with a detailed
analysis of the timeout configuration for the three different
low power state mechanisms, and the implication of the
timeout with the MPI and application phases duration. We
finally extended [32] with a broader set of experimental
results, including the NAS parallel benchmarks and an
additional QE large-scale run with different network opti-
mization, which is a common use-case in supercomputer
environment.

6 CONCLUSION

In this paper, we presented COUNTDOWN, a methodology,
and a tool for profiling HPC scientific applications and
for adding DVFS capabilities into standard MPI libraries.
COUNTDOWN implements a timeout strategy to avoid
application slowdown and exploiting MPI communication
slacks to reduce energy consumption drastically. COUNT-
DOWN has been demonstrated on real HPC systems and
workloads and does not require any modification to ap-
plication source code nor the compilation toolchain. The
COUNTDOWN approach can leverage several low power
state technologies — P/T/C states.

We compared COUNTDOWN with state-of-the-art
power management approaches for MPI libraries, which
can dynamically control idle and DVFS levels for MPI-based
applications. Our experimental results show that using our
tuned timeout strategy to make decisions on power control
can drastically reduce overheads, maximizing the energy
efficiency in small and large MPI communications. Our
run-time library can lead up to 14.94% energy saving, and

19.84% of power saving with a less than 1.5% performance
penalty on a single compute node. However, the benefits of
COUNTDOWN increase with the scale of the application. In
a 1K cores NAS run, COUNTDOWN always saves energy,
with a saving which depends on the application and ranges
from 6% to 50% at a negligible overhead (below 6%). In a
full-scale production run of QE on more than 3.4K cores,
COUNTDOWN saves 22.36% of energy with only 2.88%
performance overhead. Energy reduction reaches 37.74%
when the application is executed with a default conservative
parallelization setting.

COUNTDOWN is an effective, non-intrusive, and low
overhead approach to cut today’s supercomputing center
energy-consumption transparently to the user. In future
work, we plan to integrate it within standard power man-
agement infrastructure, such as GEOPM [5], and to com-
plement it with predictive and application-driven power
management techniques.

ACKNOWLEDGMENTS

Work supported by the EU FETHPC project ANTAREX (g.a.
671623) and EU H2020-INFRAEDI-2018-1 MaX ”Materials
Design at the Exascale” (g.a. 824143).

REFERENCES

[1] “Advanced Configuration and Power Interface (ACPI) Specifica-
tion,” [Online]; http://www.acpi.info/spec.htm, 2019, accessed 29
March 2019.

[2] F. Fraternali, A. Bartolini, C. Cavazzoni, G. Tecchiolli, and
L. Benini, “Quantifying the impact of variability on the energy
efficiency for a next-generation ultra-green supercomputer,” in
Proceedings of the 2014 International Symposium on Low Power Elec-
tronics and Design, ser. ISLPED ’14. New York, NY, USA: ACM,
2014, pp. 295–298.

[3] A. Auweter, A. Bode, M. Brehm, L. Brochard, N. Hammer, H. Hu-
ber, R. Panda, F. Thomas, and T. Wilde, “A case study of energy
aware scheduling on supermuc,” in International Supercomputing
conference. Springer, 2014, pp. 394–409.

[4] C. Hsu and W. Feng, “A power-aware run-time system for
high-performance computing,” in SC ’05: Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, Nov 2005, pp. 1–1.

[5] J. Eastep, S. Sylvester, C. Cantalupo, B. Geltz, F. Ardanaz, A. Al-
Rawi, K. Livingston, F. Keceli, M. Maiterth, and S. Jana, “Global
extensible open power manager: A vehicle for hpc community
collaboration on co-designed energy management solutions,” in
High Performance Computing. Springer International Publishing,
2017, pp. 394–412.

[6] B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W.
Freeh, and T. Bletsch, “Adagio: Making dvs practical for complex
hpc applications,” in Proceedings of the 23rd International Conference
on Supercomputing, ser. ICS ’09. New York, NY, USA: ACM, 2009,
pp. 460–469.

[7] D. Li, B. R. de Supinski, M. Schulz, K. Cameron, and D. S.
Nikolopoulos, “Hybrid mpi/openmp power-aware computing,”
in 2010 IEEE International Symposium on Parallel Distributed Process-
ing (IPDPS), April 2010, pp. 1–12.

[8] F. Fraternali, A. Bartolini, C. Cavazzoni, and L. Benini, “Quanti-
fying the impact of variability and heterogeneity on the energy
efficiency for a next-generation ultra-green supercomputer,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 7, pp.
1575–1588, July 2018.

[9] N. Kappiah, V. W. Freeh, and D. K. Lowenthal, “Just-in-time dy-
namic voltage scaling: Exploiting inter-node slack to save energy
in mpi programs,” in SC ’05: Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, Nov 2005, pp. 33–33.

[10] D. Hackenberg, R. Schne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An energy efficiency feature survey of the intel haswell
processor,” in 2015 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshop, May 2015, pp. 896–904.

http://www.acpi.info/spec.htm

14

[11] D. H. Bailey, NAS Parallel Benchmarks. Boston, MA: Springer US,
2011, pp. 1254–1259.

[12] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavaz-
zoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al.,
“Quantum espresso: a modular and open-source software project
for quantum simulations of materials,” Journal of physics: Condensed
matter, vol. 21, no. 39, p. 395502, 2009.

[13] G. Avvisati, S. Lisi, P. Gargiani, A. Della Pia, O. De Luca, D. Pacil,
C. Cardoso, D. Varsano, D. Prezzi, A. Ferretti, and M. G. Betti,
“Fepc adsorption on the moiré superstructure of graphene inter-
calated with a cobalt layer,” The Journal of Physical Chemistry C, vol.
121, no. 3, pp. 1639–1647, 2017.

[14] S. Bhalachandra, A. Porterfield, and J. F. Prins, “Using dynamic
duty cycle modulation to improve energy efficiency in high
performance computing,” in 2015 IEEE International Parallel and
Distributed Processing Symposium Workshop, May 2015, pp. 911–918.

[15] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design
techniques for system-level dynamic power management,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8,
no. 3, pp. 299–316, June 2000.

[16] J. Zhai, W. Chen, W. Zheng, and K. Li, “Performance prediction
for large-scale parallel applications using representative replay,”
IEEE Transactions on Computers, vol. 65, no. 7, pp. 2184–2198, July
2016.

[17] K. Hoga and B. Rountree, “Github scalability-llnl/msr-safe, 2014,”
[Online]; https://github.com/LLNL/msr-safe, 2019, accessed 29
March 2019.

[18] J. J. Dongarra, H. W. Meuer, E. Strohmaier et al., “Top500 su-
percomputer sites,” [Online]; https://www.top500.org/lists, 2019,
accessed 29 March 2019.

[19] A. N. Ziogas, T. Ben-Nun, G. I. Fernández, T. Schneider, M. Luisier,
and T. Hoefler, “A data-centric approach to extreme-scale ab
initio dissipative quantum transport simulations,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC 19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3295500.3357156

[20] A. Borghesi, A. Bartolini, M. Milano, and L. Benini, “Pricing
schemes for energy-efficient hpc systems: Design and explo-
ration,” The International Journal of High Performance Computing
Applications, vol. 32, pp. 1–19, 2018.

[21] V. Sundriyal, M. Sosonkina, and A. Gaenko, “Energy efficient
communications in quantum chemistry applications,” Computer
Science - Research and Development, vol. 29, no. 2, pp. 149–158, May
2014.

[22] V. Sundriyal and M. Sosonkina, “Per-call energy saving strategies
in all-to-all communications,” in European MPI Users’ Group Meet-
ing. Springer, 2011, pp. 188–197.

[23] V. Sundriyal, M. Sosonkina, and Z. Zhang, “Achieving energy
efficiency during collective communications,” Concurrency and
Computation: Practice and Experience, vol. 25, no. 15, pp. 2140–2156,
2013.

[24] V. Sundriyal, M. Sosonkina, and A. Gaenko, “Runtime procedure
for energy savings in applications with point-to-point communi-
cations,” in 2012 IEEE 24th International Symposium on Computer
Architecture and High Performance Computing, Oct 2012, pp. 155–
162.

[25] D. J. Kerbyson, A. Vishnu, and K. J. Barker, “Energy templates:
Exploiting application information to save energy,” in 2011 IEEE
International Conference on Cluster Computing. IEEE, 2011, pp. 225–
233.

[26] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R. de Supin-
ski, and M. Schulz, “Bounding energy consumption in large-scale
mpi programs,” in Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, ser. SC ’07. New York, NY, USA: ACM, 2007, pp.
49:1–49:9.

[27] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. J. Irwin,
“Exploiting barriers to optimize power consumption of CMPs,”
in 19th IEEE International Parallel and Distributed Processing Sympo-
sium, April 2005, p. 10.

[28] S. Bhalachandra, A. Porterfield, S. L. Olivier, and J. F. Prins, “An
adaptive core-specific runtime for energy efficiency,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2017, pp. 947–956.

[29] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, “Adaptive, trans-
parent frequency and voltage scaling of communication phases

in MPI programs,” in SC ’06: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, Nov 2006, pp. 14–14.

[30] J. Li, J. F. Martinez, and M. C. Huang, “The thrifty barrier: energy-
aware synchronization in shared-memory multiprocessors,” in
10th International Symposium on High Performance Computer Archi-
tecture (HPCA’04), Feb 2004, pp. 14–23.

[31] A. Venkatesh, A. Vishnu, K. Hamidouche, N. Tallent, D. Panda,
D. Kerbyson, and A. Hoisie, “A case for application-oblivious
energy-efficient MPI runtime,” in SC ’15: Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, Nov 2015, pp. 1–12.

[32] D. Cesarini, A. Bartolini, and L. Benini, “Countdown - a run-time
library for application agnostic energy saving in mpi communica-
tion primitives,” in Proceedings of the 2nd Workshop on AutotuniNg
and aDaptivity AppRoaches for Energy Efficient HPC Systems, ser.
ANDARE ’18, 2018, pp. 3:1–3:6.

Daniele Cesarini graduated in Computer En-
gineering from the University of Bologna (Italy)
in 2014, where he also earned his Ph.D. in
Electronics, Telecommunications, and Informa-
tion Technologies Engineering in 2019. He is
now an HPC Analyst at Cineca High Perfor-
mance Computing department where he works
in the area of performance optimization and eval-
uation of next-generation HPC architectures. His
research interests concern the development of
SW-HW co-design strategies as well as algo-

rithms for parallel programming support for energy efficient HPC sys-
tems. Andrea Bartolini received a Ph.D. degree in

Electrical Engineering from the University of
Bologna, Italy, in 2011. He is currently Assis-
tant Professor in the Department of Electrical,
Electronic and Information Engineering (DEI) at
the University of Bologna. Before, he was Post-
Doctoral researcher in the Integrated Systems
Laboratory at ETH Zurich. Since 2007 Dr. Bar-
tolini has published more than 80 papers in peer-
reviewed international journals and conferences
with focus on dynamic resource management for

embedded and HPC systems.
Pietro Bonfà received his B.Sc. degree in Phys-
ical Engineering (2008) in Politecnico di Milano,
the M.Sc. degree in Physics (2011) from Uni-
versity of Pavia and the Ph.D. in Physics (2015)
from University of Parma. He is now a Research
Associate at the Department of Mathematical,
Physical and Computer Sciences of the Univer-
sity of Parma. His research activities concern
solid-state physics and focus on experimental
and computational spectroscopy methods for the
characterization of the magnetic properties of

materials. Carlo Cavazzoni Carlo graduated in Physics
from the University of Modena and earned his
PhD Material Science at the International School
for Advanced Studies of Trieste in 1998. He has
authored or co-authored several papers pub-
lished in prestigious international review includ-
ing Science, Physical Review Letters, Nature
Materials. He spend many years in CINECA
HPC department as responsible for the R&D.
Presently he is the head of computational R&D
of Leonardo company and director of Leonardo

HPC corporate Laboratory.

Luca Benini is professor of Digital Circuits and
Systems at ETH Zurich, Switzerland, and is also
professor at University of Bologna, Italy. His re-
search interests are in system design of energy-
efficient multicore SoC, smart sensors and sen-
sor networks. He has published more than 800
papers in peer reviewed international journals
and conferences, four books and several book
chapters. He is a fellow of the ACM and Member
of the Academia Europea. He is the recipient
of the IEEE CAS Mac Van Valkenburg Award

2016.

https://github.com/LLNL/msr-safe
https://www.top500.org/lists
https://doi.org/10.1145/3295500.3357156

	Countdown copertina
	2020+-+COUNTDOWN+post-print_FP

