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Abstract

The milk addiction paradox refers to an empirical �nding in which consumption of non-

addictive commodities such as milk appears to be consistent with the theory of rational ad-

diction. This paradoxical result seems more likely when consumption is persistent and with

aggregate data. Using both simulated and real data, we show that the milk addiction paradox

disappears when estimating the data using an AR(1) linear speci�cation that describes the

saddle-path solution of the rational addiction model, instead of the canonical AR(2) model.

The AR(1) speci�cation is able to correctly discriminate between rational addiction and simple

persistence in the data, to test for the main features of rational addiction, and to produce un-

biased estimates of the short and long-run elasticity of demand. These results hold both with

individual and aggregated data, and they imply that the AR(1) model is a better empirical

alternative for testing rational addiction than the canonical AR(2) model.
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1 Introduction

The milk addiction paradox refers to the surprising �nding that the consumption of milk appears

to be addictive when estimated using the empirical model of rational addiction of Becker et al.

(1990, 1994). The spurious evidence on milk addiction seems to be more likely when the data are

aggregated and serially correlated, two common features of time series (Auld and Grootendorst,

2004). The milk addiction paradox, and the additional observation that the canonical AR(2)

addiction model features an explosive root (Laporte et al., 2017), has had wide resonance in the

literature, and it has raised the question of whether the rational addiction model can be estimated

altogether.

In this paper we provide a positive answer, and we show that the rational addiction theory can

indeed be tested, provided one considers the AR(1) addiction model derived in Dragone and Raggi

(2018), instead of the canonical AR(2) speci�cation. Using both simulated and real data, we show

that the AR(1) model is able to correctly discriminate rational addiction from simple persistence

in the data. Moreover, it produces unbiased estimates of the short and long-run elasticity of

demand. These results hold both with individual and aggregated data, and they are robust to the

possible endogeneity of prices and of lagged consumption. They are likely due to the fact that the

AR(1) model is stationary (while the AR(2) model is explosive) and that it does not su�er of the

endogeneity concerns that arise when including lead consumption in the estimating equation.

To introduce the reader to the theoretical background, in section 2 we present the rational

addition model and the two speci�cations used in the empirical literature: the AR(1) equation

describing the saddle path solution of the model (Dragone and Raggi, 2018), and the AR(2)

equation describing the corresponding Euler equation (Becker et al., 1990, 1994). While the

former only includes lagged consumption in the estimating equation, the latter, which is the

canonical speci�cation used in the empirical literature, includes both lead and lagged consumption

terms (Becker et al., 1990; Chaloupka, 1991; Becker et al., 1994; Chaloupka, 1996; Grossman and

Chaloupka, 1998; Chaloupka and Warner, 2000; Cawley and Ruhm, 2012).

In section 3 we test the performance of the AR(1) addiction model through a battery of Monte

Carlo experiments. We �rst generate trajectories that feature no addiction by construction, then

we estimate the corresponding parameters using the AR(1) addiction model. The results correctly

show that the simulated trajectories are not consistent with rational addiction, that there is no

tendency of the AR(1) addiction model to detect addiction when there is just spurious correlation

in the data, and that the corresponding estimates of the short and long-run elasticity of demand

are unbiased. As a validation exercise, we also check whether the AR(1) is able to correctly
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detect rational addiction when, in fact, the simulated consumption trajectories do feature rational

addiction. As shown in Laporte et al. (2017), an analog exercise can produce unreliable estimates

if one generates and estimates addiction trajectories using the canonical AR(2) model. On the

contrary, when using the AR(1) model we �nd that the results are reliable and unbiased.

Notably, all results hold irrespective of whether we consider individual or aggregate consump-

tion data, a reassuring �nding that mitigates the concerns raised by Auld and Grootendorst (2004)

about testing rational addiction with aggregate data. To further explore the sensitivity of the

AR(1) model, and to address some endogeneity concerns that have been raised in the literature,

section 4 performs two additional sets of experiments as robustness checks. In the �rst set, we gen-

erate price trajectories that have both an exogenous and an endogenous component. In the second

set of experiments, lagged consumption is explicitly considered to be endogenous. In the literature

these endogeneity concerns have been addressed using further leads and lags of prices, or taxes,

as instruments (see, for example, Chaloupka, 1991; Becker et al., 1994; Gruber and Köszegi, 2001;

Baltagi and Geishecker, 2006). We proceed along the same lines and �nd that the IV estimates

are still unbiased (although, as expected, the IV estimates are less e�cient). We conclude that the

AR(1) correctly discriminates between persistence and rational addiction, and that aggregation,

endogeneity of prices and endogeneity of lagged consumption pose no signi�cant threat to testing

the theory of rational addiction.

In section 5 we extend the analysis to real data, and we estimate the demand for milk, oranges,

eggs and cigarettes using the same Canadian dataset analyzed in Auld and Grootendorst (2004).

Instead of using the canonical AR(2) model, however, we estimate the AR(1) addiction equation.

This allows to directly address the milk addiction paradox, and to compare the performance of the

AR(1) addiction model with the results of Auld and Grootendorst (2004). Our results show no

evidence of milk being rationally addictive, and they allow us to conclude that the milk addiction

paradox is an artifact of using the Euler equation rather than the AR(1) solution of the model. In

fact, in our estimations the consumption of milk, oranges and eggs is not consistent with the theory

of rational addiction, while smoking, as expected, is rationally addictive. Section 6 concludes.

2 The rational addiction model

Consider an intertemporal problem in which an agent allocates income between an addictive good

c and a numeraire good q. Consumption of the addictive good increases the stock A of addiction

according to A (t) = c (t− 1)+(1− δ)A (t− 1) , where δ ∈ (0, 1] describes the degree of persistence

of the state of addiction and t is time. Becker and Murphy (1988)'s model of rational addiction as-
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sumes that the marginal utility of current consumption is higher, the higher the consumption stock

(UcA > 0) . This property, called reinforcement, represents the e�ect of a learning-by-consuming

process in which the more an agent consumes, the more she appreciates the good (at the margin).

The marginal utility of addiction is negative if the addictive commodity is harmful, and positive

if it is bene�cial. As usual, the per-period utility is increasing in the two consumption goods, and

concave.

While reinforcement describes the e�ect of past choices on current preferences, the second

main feature of rational addiction, forward-looking behavior, implies that current choices take into

account expectations about future events and how current behavior will a�ect future preferences.

This property is in stark contrast with myopic models, where current behavior only depends on

past events and choices, and not on future events and expectations (see, for instance, the habit

formation model presented in Pollak, 1970, or in Gilleskie and Strumpf, 2005). Finally, agents are

assumed to be time consistent. Accordingly, unless new information arrives, any optimal plan will

be faithfully implemented and no self-control failure should be observed. This property is explicitly

required by Becker and Murphy (1988) and is formally obtained assuming that the discount factor

β ∈ (0, 1) is constant.1

Under the above assumptions, the rational addiction model can be formalized as the following

intertemporal problem

max
c,q

∞∑
t=0

βtU (c (t) , q (t) , A (t)) (1)

s.t. A (t) = c (t− 1) + (1− δ)A (t− 1) (2)

M (t) = p (t) c (t) + q (t) (3)

where p (t) is the price of the addictive good at time t, M (t) is income and A (0) = A0.

When the utility function is quadratic, the solution of problem 1 to 3 satis�es the following

second-order di�erence equation (see Appendix A.1 for details):2

c (t) = α0 + α1p (t− 1) + α2c (t− 1) + α3p (t) + α4c (t+ 1) + α5p (t+ 1) (4)

1To address self-control in a rational addiction context, Gruber and Köszegi (2001) augment the Becker and

Murphy (1988) model and allow for time-inconsistent preferences through quasi-hyperbolic discounting. They show

that forward-looking behavior and the e�ect of announced tax changes can still be tested, but since the time-

consistent and the time-inconsistent solutions are isomorphic, it is not possible to derive a sharp empirical test that

distinguishes the augmented model from the original one.
2The quadratic speci�cation is standard in the rational addiction literature as it allows to obtain a closed-form

analytical solution (see, e.g., Becker and Murphy, 1988; Chaloupka, 1991; Becker et al., 1994). Alternatively, one

can consider a more general utility function and take a linear approximation of the �rst-order conditions. Note that

Chaloupka (1991) and Becker et al. (1990, 1994) allow for saving and borrowing and consider the case in which the
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which, if δ = 1, simpli�es to

c (t) = α0 + α2c (t− 1) + α3p (t) + α4c (t+ 1) . (5)

Equation 4 (or 5) is the Euler equation of the rational addiction problem, and it constitutes the

canonical model used in the empirical literature to estimate the demand for addictive goods (see,

Cawley and Ruhm, 2012, for an overview). A positive sign of α2 is consistent with reinforcement.

When this is the case, past and current consumption are positively correlated, a property called

adjacent complementarity (Ryder and Heal, 1973). Forward-looking behavior is assessed from the

coe�cient α4 of lead consumption being positive (Chaloupka, 1990, 1991; Becker et al., 1994).3

A so far overlooked observation is that the Euler equation describes an in�nity of candidate

solutions. Among them, only one is optimal and stationary, while the others are explosive (Laporte

et al., 2017). To see it, consider the family of consumption paths that satisfy the Euler equation

4:

c (t) = [c (0)− P (0)−K]λt +Kλt
1 + P (t) for t ≥ 1, (6)

where

P (t) = g0 + g1p (t) + g2

∞∑
s=1

λs [p (t− s) + βsp (t+ s)] (7)

is a function of prices. It can be shown that root λ ∈ (0, 1) if reinforcement is not too strong.

The second root λ1, instead, is always larger than one. Hence, for all K ̸= 0 the term Kλt
1 in 6

quickly diverges to in�nity as time advances. When K = 0, instead, this explosive dynamics is

neutralized and equation 6 describes a saddle path that smoothly converges to a steady state level

of consumption.

Given the in�nite time-horizon of problem 1 to 3, the saddle path is the appropriate solution of

the rational addiction model.4 Since it is stationary, it can be estimated with standard time series

marginal utility of wealth is constant. This produces the same solution and the same Euler equation of the model

presented here.
3Saddle-point stability requires α2 + α4 < 1, which in turn implies the restriction α2, α4 ∈ (0, 1). In addition,

β = α4/α2, a property that has sometimes been used as a restriction, or to test the validity of the rational addiction

model (Auld and Grootendorst, 2004; Baltagi and Geishecker, 2006). As shown in Laporte et al. (2017), however,

these theoretical properties cannot be reliably estimated because of the existence of an explosive root in the general

solution of the Euler equation (see eq. 6).
4See Dragone and Raggi (2018) for a justi�cation of in�nity as the appropriate time-horizon in a scenario in

which lifetime is uncertain, and of the saddle path as the appropriate solution to consider. Note that the saddle

path to the steady state was already the focus of Becker and Murphy (1988)'s analysis. Here we consider a discrete-

time analogue, with the major di�erence that we allow prices to vary over time. More in general, focusing on

the steady state is an approach that is typically taken to generate estimable consumption equations derived from
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econometrics (provided the time series of prices is also non-explosive). For empirical purposes,

however, equation 6 is not ideal. By shifting equation 6 one period forward, and replacing c(0),

the saddle path can be equivalently described by the following AR(1) equation (see Appendix A.2

for details),

c (t) = λc (t− 1) + φ1p (t− 1) + φ2p (t) +
∞∑
s=1

φ3 (s) p (t+ s) + φ0 (8)

or, when δ = 1,

c (t) = λc (t− 1) + φ2p (t) +
∞∑
s=1

φ3 (s) p (t+ s) + φ0. (9)

Equation 8 (or 9) states that optimal current consumption depends on past consumption and on

current and future prices. The signi�cance and sign of the estimated coe�cients allow to test the

main properties of the rational addiction model. Reinforcement implies that λ is expected to be

positive, i.e. adjacent complementarity between past and current consumption, analogously to the

role played by α2 > 0 in the Euler equation. Saddle path stability further requires λ < 1.

Forward-looking behavior implies that φ3 ̸= 0. A positive value of φ3 means that a future

expected price increase triggers an increase in current consumption, a behavior that is consistent

with stockpiling today as a response to the announcement or expectation of a future price increase

(see, for instance, Gruber and Köszegi, 2001). A negative value of φ3, instead, reveals the opposite

reaction in which consumption today decreases in expectation of a future price or tax increase.

The fact that future prices can either have a positive or negative e�ect on current consumption

contrasts with the Euler equation, in which the sign of future price or consumption on current

consumption can only be positive. Finally, current consumption is predicted to negatively depend

on its current price (as in the Euler equation), so that the (static) law of demand applies.

Testing the rational addiction model using the AR(2) Euler equation can be problematic (see

for example Auld and Grootendorst, 2004; Baltagi and Geishecker, 2006; Laporte et al., 2017). In

particular, Auld and Grootendorst (2004) observe that the empirical model based on the AR(2)

Euler equation tends to �nd rational addiction when in fact the commodity under investigation

does not feature addiction.5 For example, when estimating the demand for Canadian milk, they

�nd the puzzling result that milk would be more addictive than smoking. Auld and Grootendorst

the optimization problem of a representative consumer, as in growth models based on the Ramsey-Cass-Koopmans

model or the Blanchard (1985)'s model of perpetual youth.
5In this paper we denote as "rational addiction", or simply "addiction", the case in which both adjacent comple-

mentarity and forward-looking behavior are satis�ed. The case where only adjacent complementarity holds (which

in the literature is sometimes denoted as myopic habit formation or myopic addiction) is labelled "persistence in

consumption".
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(2004) suggest that this paradox and, more in general, the tendency of the Euler equation to

produce false positives and erroneously classify a non-addictive good as rationally addictive, can

be due to the endogeneity arising from the presence of a lead and lag consumption term in the

AR(2) model, and to the use of aggregate data. To explore these possible explanations, they

generate simulated consumption trajectories that feature persistence, but not rational addiction.

Then they estimate the corresponding parameters using the Euler equation to check for possible

biases. The results show that the estimates are often unstable and very sensitive to the choice of the

instruments, with a tendency to produce false positives that is more likely when the data generating

process exhibits high serial correlation. This �nding is particularly problematic, since time series

typically display high serial correlation, in particular when data are aggregated. Accordingly, Auld

and Grootendorst (2004) conclude that "time-series data will often be insu�cient to di�erentiate

rational addiction from serial correlation in the consumption series".

In the following sections we show that the above claims do not hold when the empirical model

is the AR(1) equation describing the saddle path, instead of the AR(2) equation describing the

Euler equation. We claim that the better performance of the AR(1) model over the AR(2) model is

likely due to the fact that the Euler equation is not the solution of the model, but an intertemporal

necessary condition that the solution of the rational addiction model must satisfy. Moreover, the

Euler equation is intrinsically unstable because it has at least one root that is explosive, as shown by

Laporte et al. (2017). This violates the basic assumptions needed to perform econometric analysis

of time series and it could produce erroneous estimates. On the contrary, the AR(1) speci�cation is

stationary. Moreover, since it does not contain the lead of consumption, the endogeneity concerns

a�icting the AR(2) model are likely to be less severe.

3 Monte Carlo experiments

In this section we run a set of Monte Carlo experiments to investigate whether rational addiction

can be detected and distinguished from non-addictive consumption that features persistence but no

forward-looking behavior. Di�erently from the Monte Carlo experiments of Auld and Grootendorst

(2004) and Laporte et al. (2017), who estimate the simulated trajectories using the AR(2) Euler

equation, we use the AR(1) addiction model.

We consider consumption trajectories generated using two alternative data generating processes

(DGP). The �rst one corresponds to the process considered in Auld and Grootendorst (2004).

It consists of a static demand model where prices and errors are autocorrelated. Speci�cally,

consumption is assumed to depend on current price and errors, ct = −ηpt + ut, where prices
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and errors are autocorrelated according to pt = ρppt−1 + νt and ut = ρut−1 + ϵt. Parameters

ρp, ρ ∈ (0, 1), while ut, νt and ϵt are sequences of i.i.d. Gaussian shocks.

Manipulating the above equations yields

ct = ρct−1 + γ1pt−1 + γ2pt + γ0 + ϵt (10)

where γ1 = ηρ and γ2 = −η = −γ1/ρ. Since ρ ∈ (0, 1), the trajectories generated by 10 are

stationary and persistent (in the form of adjacent complementarity in consumption). This model,

however, does not allow for forward-looking behavior. In fact, it formally resembles the solution

of a myopic habit or taste formation model in which current consumption only depends on current

and past variables (see, e.g. Pollak, 1970; Becker et al., 1994; Gilleskie and Strumpf, 2005; Dragone

and Raggi, 2018). In the following we refer to 10 as to the non-addiction DGP.

The second DGP features rational addiction. Based on the saddle path solution 8, the con-

sumption trajectories are generated according to the following process

ct = ρct−1 + γ1pt−1 + γ2pt + γ3pt+1 + γ0 + ϵt, (11)

while the price and error dynamics follow the same autoregressive processes used for the non-

addiction DGP. As emphasized in Becker et al. (1991), testing for the e�ects of future prices on

current consumption distinguishes rational models of addiction from myopic models. Accordingly,

the main di�erence with respect to the non-addiction DGP is that the addiction DGP features

forward-looking behavior (γ3 ̸= 0).6

Equation 11 is the AR(1) addiction equation used to generate trajectories compatible with the

theory of rational addiction, and it will also be used as the empirical model for testing rational

addiction. Given that the only di�erence between the two DGPs is the presence of the lead of

price, we expect the estimated γ3 to be non statistically signi�cant when the trajectory is generated

by the non-addiction process (eq. 10), and to be di�erent from zero when it is generated by the

addiction process (eq. 11).

For later reference, the short and long-run response of consumption to a permanent price

increase are, respectively,

CS = γ2 + γ3 < 0, CL =
γ1 + γ2 + γ3

1− ρ
< 0. (12)

where γ3 = 0 when the DGP features non-addiction.

6Di�erently from equation 10, in equation 11 the coe�cients ρ, γ1 and γ2 are independent. The assumption of

exogenous prices is relaxed in the robustness checks in Section 4.
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3.1 Experiment 1: Estimating non-addictive consumption

In the �rst set of experiments we generate individual consumption trajectories using the non-

addiction DGP described in equation 10. We randomly select ρ and γ1 from a uniform distribution

(0, 1) and compute γ2 = −γ1/ρ to generate 2, 000 di�erent sets of parameters αi = (ρ, γ1, γ2)i.

Each set of parameters represents an individual i and determines the individual short and long-run

elasticity according to equations 12. We assume that prices are strictly exogenous and we keep

ρp �xed. Then, for each set, we generate 1000 di�erent trajectories of length 500 of consumption

and prices, which are meant to represent alternative life courses of individual i, depending on the

sequence of random shocks experienced by i over her lifetime. Using the AR(1) addictive model,

we estimate αi over the 1000 alternative life courses of i, that is, α̂i,j , j = 1, . . . , 1000. Since we

know the true values of the DGP, we can compute the (relative) estimation bias bi,j for each i

using the formula bi,j = (α̂i,j −αi)/(1+αi). Aggregating these individual biases yields a measure

of the average bias b̄i =
1

1000

∑
j bi,j that results when using individual level data.

Figure 1: Estimation bias when consumption is not addictive
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Notes: Left panel: estimation of the relative bias b̄i on individual trajectories. Right panel: estimation of the

relative bias b̄k on aggregate trajectories. Non-addictive consumption trajectories are generated according to 10,

and estimated using 11 and OLS. The vertical bars represent the 95% con�dence intervals for the estimated bias.
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The left panel of Figure 1 reports the average bias b̄i obtained using OLS.
7 The results show no

notable bias in the estimation of the true parameters of the data generating process. In particular,

the AR(1) model correctly �nds that the lead price coe�cient is not statistically signi�cant, which

is indeed the case because the DGP features non-addiction. If anything, there is a slight downward

bias in the estimation of the parameter of lag consumption, but its is negligible (less than 1%)

with respect to the true value of ρ. In addition, the short and long-run elasticities estimated using

the individual trajectories are unbiased. In contrast with the �ndings of Auld and Grootendorst

(2004), these results suggests that the AR(1) empirical addiction model is not prone to wrongly

detect rational addiction when the data display persistence but no forward-looking behavior.

To assess whether the results above are robust to using aggregate data, we consider a second

set of experiments. We consider 2000 villages k, each composed of 100 individuals j. Each

individual is characterized by a di�erent set of parameters αj
k = (ρ, γ1, γ2)

j
k, j = 1, 2, . . . , 100,

k = 1, 2, . . . , 2000, which are used to generate individual consumption trajectories of length 500.

For a given village k, we aggregate the corresponding 100 individual trajectories to obtain a

village-speci�c trajectory with average parameters ᾱk =
∑

αj
k and average short and long-run

elasticity C̄S,k and C̄L,k. Generating 1000 alternative life courses for each individual, we generate

1000 alternative life courses of village k. We thus estimate 1000 times αk using the aggregated

trajectories, and we compute ĈS,k,i and ĈL,k,i, i = 1, . . . , 1000, which we compare to the true

values to measure the village-speci�c relative bias bk,i = (α̂k,i − ᾱk)/(1 + ᾱk). (The same formula

is used to measure the relative bias for elasticity). We de�ne b̄k = 1
1000

∑
i bk,i as the average bias

over the 1000 trajectories for each village, and we report it with 95% con�dence intervals in the

right panel of Figure 1.

The results are consistent with those obtained with individual data, and they show that the

AR(1) model correctly detects that the aggregated data feature no forward-looking behavior.

Hence it does not erroneously detect addiction when there is no addiction in the data. Consid-

ering the estimated coe�cients, we �nd an upward bias for the lagged variables, a result that is

not surprising because aggregation tends to increase the persistence in time series (Granger and

Morris, 1976; Havranek et al., 2017). Importantly, despite the overestimation in the persistence

7For Figures 1 and 2 we consider ρp = 0.9, as in Auld and Grootendorst (2004). The results are qualitatively

similar in a sensitivity analysis (available upon request) where ρp varies between 0.5 and 0.95, a range that is

consistent with the empirical �nding that prices are persistent but stationary. Note that we refer to (un)biasedness

because we use trajectories of 500 steps, which is a rather large number, but not in�nite. The results do not change

if we consider more iterations, hence one could also claim the results to be consistent. The results obtained with

IV estimation are presented in Section 4.
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of consumption, the estimated coe�cient of future price is unbiased and equal to zero, which is

indeed correct because the non-addiction DGP features no forward-looking behavior. Moreover,

the estimates of short and long-run elasticity are unbiased. Similar results hold also when we run

additional regressions using 2SLS and prices as instruments for lagged consumption (see Section

4.2). We can therefore conclude that, even with aggregated data, the AR(1) model is able to prop-

erly distinguish pure autocorrelation from rational addiction, and to correctly detect persistence

in consumption and the absence of forward-looking behavior in the data.

3.2 Experiment 2: Estimating addictive consumption

Laporte et al. (2017) show that generating and estimating consumption series using the AR(2)

Euler equation can produce unreliable estimates. In this subsection, we show that this is not the

case when using the AR(1) model. We run additional Monte Carlo experiments with individual

and aggregate trajectories generated and estimated as in the previous subsection. The di�erence

is that we now generate trajectories that display forward-looking behavior (with γ2 and γ3 selected

from a uniform distribution with support (−1, 0) and (−1, 1), respectively), and that we use the

AR(1) model both as the DGP and as the empirical model.

Figure 2: Estimation bias when consumption is addictive
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Notes: Left panel: estimation of the relative bias b̄i on individual trajectories. Right panel: estimation of the

relative bias b̄k on aggregate trajectories. Addiction consumption trajectories are generated according to 11, and

estimated using 11 and OLS. The vertical bars represent the 95% con�dence intervals for the estimated bias.

The estimated biases using individual and aggregate trajectories and OLS are reported in Fig-

ure 2 (left and right panel, respectively). The results show that the AR(1) model produces unbiased

estimates of the parameters and of the corresponding elasticities, both when using individual and
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aggregate data. With respect to the previous Monte Carlo experiments, here the coe�cient of lead

price is estimated to be di�erent from zero, which is correct because the DGP is addictive. The

lagged variables are precisely estimated. Given that the estimates of the coe�cients are unbiased,

the estimation of the short and long-run elasticity is also unbiased. We conclude that the AR(1)

model is able to correctly detect rational addiction when the data truly feature rational addiction,

and that using aggregated data pose no particular threat for the empirical estimation.

4 Robustness checks

4.1 Endogenous prices

In the previous section we have shown that the AR(1) empirical model can reliably test rational

addiction, both with individual and aggregate data. The results were obtained assuming that

prices are exogenous. As a robustness check, in this section we investigate the performance of the

AR(1) model when prices are endogenous. Speci�cally, we consider the case in which the observed

price can be decomposed as follows

pt = aτt + (1− a)πt (13)

where a ∈ [0, 1]. The term τt is exogenous, and it can be interpreted as taxes, or as the e�ect of a

regulation that a�ects the opportunity cost of consuming the good (e.g. smoking bans). The term

πt is endogenous and is assumed to be negatively correlated with contemporaneous consumption.8

Parameter a describes the relative weight of the exogenous with respect to the endogenous

component of price. Accordingly, the limit case a = 1 implies that prices are fully exogenous.

The case where a < 1 seems to be more realistic, with various degrees depending on the speci�c

application. For example, in the US cigarette taxation has changed substantially over time. In

the seventies Federal and State taxes per pack were about 50% of the total price. In the following

decades the impact of taxation declined over time, down to an average level of 21% at the end of

the nineties. Since then, average taxation has increased up to 46% in 2016. Consistently, variation

8We assume πt = ρππt−1 + ξt and τt = ρττt−1 + νt, where ξt, νt are Gaussian i.i.d. sequences, corr(ξt, ϵt) = r,

and ϵt is the error used in Section 3. Figure 3 displays the results corresponding to ρπ = ρτ = 0.7, r = −0.5 and

either a = 0.2 or a = 0.8. Similar results are obtained in a sensitivity analysis (available upon request) where r is

picked randomly from a uniform distribution with support (−0.8,−0.2) and (ρπ, ρτ ) from uniforms with support

(0.5, 0.95). Di�erent values of a, ranging between 0.2 and 0.9, deliver equivalent qualitative results. When the

exogenous component accounts for less than 1/3 of the price, the estimates are less e�cient, likely because the

instruments become weak.
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on taxation represents the major cause of variations in prices, raising from an average 55% in the

period 1970�2000 to about 85% over the period 2000�2016 (Orzechowski and Walker, 2017).

Figure 3: Estimation bias when prices are endogenous
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Notes: Scenario 1: prices are mildly exogenous (a = 0.2). Scenario 2: prices are almost exogenous (a = 0.8). The

left panel reports the results obtained with a non-addictive data generating process. The right panel reports results

obtained from trajectories featuring addiction. All individual trajectories are estimated using 11 and 2SLS. The

vertical bars represent the 95% con�dence intervals for the estimated bias.

In the following we consider two di�erent values of a: a = 0.2 ('mild exogeneity') and a = 0.8

('almost exogeneity'). For each value of a we generate price trajectories and we perform the same
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exercise of the previous experiments, both with individual and aggregate data, with the di�erence

that we use 2SLS and instrument for prices using τt−1 up to τt+2 (see, for example, Gruber and

Köszegi, 2001; Gruber et al., 2003).

The results using individual data are reported in Figure 3. They show no signi�cant bias,

both when estimating the non-addictive and the addictive trajectories. A possible exception is

the bias in the coe�cient of lagged consumption when prices are almost exogenous and the DGP

features non-addiction (bottom-left panel). This bias, however, is negligible (less than 1%) and,

importantly, it does not bias the estimation of lead terms, nor the short and long-run elasticity

of consumption. When using aggregate data, instead of individual trajectories, the results (not

shown and available upon request) are similar to those obtained in the previous simulations with

exogenous prices. We can therefore conclude that, even when prices are endogenous, the AR(1)

model is able to correctly distinguish between pure persistence and rational addiction, and to

produce unbiased estimates of the elasticity of demand.

4.2 Endogenous lagged consumption

When estimating rational addiction using the AR(2) model (eq. 5), Becker et al. (1994) observe

that past and future consumption can be endogenous, and they suggest using past and future

prices as instruments. The AR(1) model does not contain future consumption, but the presence

of a past consumption term can still raise legitimate endogeneity concerns. To address them, in

this subsection we re-run the analysis presented in Section 3, with the only di�erence that we use

2SLS, with pt−2 and pt+2 as instruments (overidenti�cation), rather than OLS.

In Figure 4 we report the estimation bias obtained when the DGP features non-addiction

and the estimating model is the AR(1) equation 11. This experiment is analog to the �rst one

reported in Section 3, which uses OLS estimation, and the results are similar. We �nd (i) no

signi�cant bias when considering individual trajectories, (ii) a positive bias on the lag coe�cients

when using aggregate trajectories, and (iii) unbiased estimates of the short and long-run elasticity,

both when using individual and aggregated consumption series. As expected, since IV estimation

is less e�cient than OLS estimation, the con�dence intervals are wider.

As an additional check, we also re-run the experiment when the DGP features rational addic-

tion, as in the second experiment reported in Section 3. The IV estimates (not reported here and

available upon request) are similar to those obtained when estimating with OLS and they show

non signi�cant bias. We can therefore conclude that the endogeneity concerns due to presence

of lag consumption in the estimating equation do not pose a relevant threat for the empirical

estimation.
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Figure 4: Estimation bias when lagged consumption is endogenous
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Notes: Left panel: estimation on individual trajectories. Right panel: estimation on aggregate trajectories.

Consumption trajectories are generated according to the non-addiction process 10, and estimated using 11

and 2SLS. The vertical bars represent the 95% con�dence intervals for the estimated bias.

5 Is milk really rationally addictive? No.

In this section we use real data to investigate the Auld and Grootendorst (2004)'s result about

milk rational addiction. To allow for a direct comparison, we consider the same Canadian dataset

containing annual aggregate national data on consumption and prices for milk, oranges, eggs and

cigarettes (Auld and Grootendorst, 2004).9 Instead of the AR(2) equation 5 used by Auld and

Grootendorst (2004), here we use the AR(1) empirical model (eq. 11). Accordingly, rational ad-

diction predicts the coe�cient of ct−1 to be positive and less than one, the coe�cient of pt to be

negative, and the coe�cient of pt+1 to be signi�cantly di�erent from zero. The �rst prediction re-

veals adjacent complementarity and is consistent with reinforcement in preferences, the second one

shows consistency with the law of demand, and the third one reveals forward-looking behavior and

is the main test to distinguish between rational addiction and simple persistence in consumption.

As a preliminary analysis, we test for stationarity, a necessary condition for both the rational

addiction theoretical model and for the empirical estimation. A battery of stationarity tests (the

9We thank M. Christopher Auld and Paul Grootendorst for kindly sharing the data used in Auld and Grooten-

dorst (2004). Our analysis spans over the same time period they consider. More precisely, oranges are observed

starting from 1960, eggs and milk starting from 1961, cigarettes starting from 1968. Prices are expressed in real

terms by adjusting by all-items CPI (1992 = 100). All quantities (liters for milk, dozens for eggs, kilos for oranges)

are in per-capita terms. As in Auld and Grootendorst (2004), cigarette consumption includes cigars and is computed

as the sum of domestic and export sales to account for smuggling between Canada and the USA. Real per-capita

outlays on consumer non-durables are used as a proxy for permanent income.
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Augmented Dickey-Fuller, the GLS Dickey-Fuller, and the Zivot-Andrews tests) consistently rejects

the unit-root hypothesis only for oranges. For milk, eggs and cigarettes, instead, we are unable

to reject the null hypothesis of non-stationarity, both for consumption and prices. Additional

testing shows that there exists a cointegration relationship between consumption and prices for

milk, eggs and cigarettes. Hence, when estimating the parameters for milk, eggs and cigarettes, we

follow the two-step Engel-Granger procedure for cointegration modeling. We consider the Error

Correction Mechanism (ECM) representation of the AR(1) model 11 and we apply Dynamic OLS

for estimation (Stock and Watson, 1993). As shown in Appendix B.2, this is relatively easy to

implement using our linear AR(1) model. For oranges, we simply use OLS.10

A potential concern for the empirical analysis is that the AR(1) model can su�er of endogeneity,

due to the inclusion of a lag consumption term (Gilleskie and Strumpf, 2005). This concern is also

present (and actually more pervasive) when using the AR(2) Euler equation, due to the existence of

both a lead and a lag term, and it has been addressed in the literature using instrumental variables

and GMM (Becker et al., 1990; Chaloupka, 1991; Auld and Grootendorst, 2004; Baltagi and

Geishecker, 2006). The post-estimation analysis (available upon request) shows that the model's

residuals are uncorrelated, which corroborates the exogeneity assumption of lag consumption. In

addiction, the results of the Monte Carlo simulations reported in the previous sections show that

endogeneity is a minor concern when testing the rational addiction model using the AR(1) model.

According to these preliminary considerations, we consider ct−1 to be exogenous and we run OLS

when stationarity is satis�ed (i.e. for oranges), and the two-step procedure described in Engle and

Granger (1987) when the data are non-stationary but cointegrated (cigarettes, milk and eggs).

The empirical results shown in Table 1 suggest that only cigarettes are consistent with the

Becker and Murphy (1988)'s theory of rational addiction. As predicted by the theory, the coef-

�cient of lagged consumption is positive and less than one, that of current price is negative, and

the coe�cient of lead price is di�erent from zero. These results are statistically signi�cant, and

they imply that that law of demand holds and that the demand for cigarettes features adjacent

complementarity and forward-looking behavior.11 These results are consistent with those obtained

estimating the AR(1) model using US aggregate data (Dragone and Raggi, 2018). On the contrary,

10In both models deterministic trends have not been included, because of their irrelevant impact on the results.

As in Auld and Grootendorst (2004), we add outlays as a control variate. Additional information on the unit-root

and cointegration tests is reported in Table 2 in Appendix B.1. Details on the ECM representation and on the

estimation procedure of the AR(1) model are in Appendix B.2.
11Although our goal is not to provide new estimates for the elasticity of demand, note that estimated values of

the short and long-run elasticity are −0.23 and −0.59, respectively. These values are compatible with those found

by Gruber et al. (2003), who report an elasticity of the demand for Canadian cigarettes in the range from −0.45 to
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Table 1

Coe�cient Cigarettes Milk Eggs Oranges

ρ (ct−1) 0.879∗∗∗ (0.100) 0.772∗∗∗ (0.160) 0.832∗∗∗ (0.088) 0.751∗∗∗ (0.134)

γ2 (pt) -0.093∗∗ (0.045) -0.478∗∗ (0.175) -0.087 (0.052) -0.634∗∗∗ (0.142)

γ3 (pt+1) -0.140∗∗∗ (0.015) 0.285 (0.169) 0.021 (0.050) 0.136 (0.120)

Rational

Addiction?

Yes No No No

Notes: Estimation of the demand for cigarettes, milk, eggs and oranges using the AR(1) model 11 and the data

considered in Auld and Grootendorst (2004). Dependent Variable = ct; * p < 0.10, ** p < 0.05, *** p < 0.01;

standard errors in parentheses. Prices are expressed in real terms by adjusting by all-items CPI (1992 = 100). All

quantities are in per-capita terms. Cigarette consumption includes cigars and is the sum of domestic and export

sales to account for smuggling between Canada and the USA. Rational addiction predicts the coe�cient of ct−1

to be positive and less than one, the coe�cient of pt to be negative, and the coe�cient of pt+1 to be signi�cantly

di�erent from zero. Only cigarettes are consistent with rational addiction. Milk, eggs and oranges are consistent

with persistence in consumption, but do not display forward-looking behavior.

for milk, eggs and oranges there is not evidence of forward-looking behavior, because the coe�cient

on future price is not statistically signi�cant. Hence it is consistent with a myopic habit formation

(or myopic addiction) model, but not with rational addiction, which requires also forward-looking

behavior.

Our result that the consumption of milk, oranges, and eggs does not feature forward-looking

behavior is at odds with Auld and Grootendorst (2004)'s �nding. We suspect a main reason for

this discrepancy is the role played by the lead term of consumption ct+1 in the AR(2) equation they

use to test rational addiction. Theoretically, the coe�cient of ct+1 signals the existence of forward-

looking behavior. Empirically, however, its estimate is very unstable and sensitive to the choice

of the instruments (see, for example, Baltagi and Geishecker, 2006, and Auld and Grootendorst,

2004), which suggests that endogeneity is a serious problem when estimating an AR(2) model, and

that it is empirically di�cult to handle it by using instrumental variable estimators. Fortunately,

the Monte Carlo experiments presented in the previous sections suggest that the AR(1) model

does not particularly su�er from endogeneity. This is further corroborated by a robustness check

in which we instrument for the lagged consumption of oranges (for which we know that non-

−0.47, as well as with the estimates obtained using US data (Chaloupka and Warner, 2000; Gruber and Köszegi,

2001; Callison and Kaestner, 2014; Zheng et al., 2017).
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stationarity can be rejected) and we �nd that the IV estimates are qualitatively similar to the

ones obtained with OLS, although they are more imprecise, as expected.

An additional reason for the discrepancy between our empirical results and Auld and Grooten-

dorst (2004) is that some of the time series under examination are non stationary. This may have

produced unreliable estimates, even in absence of endogeneity. To address this concern, before

running our analysis we have tested the data for stationarity and cointegration. This has allowed

to distinguish between cases in which stationarity holds and OLS can be used (oranges), and cases

in which one should follow a di�erent route, such as the two-step procedure of Engle and Granger

(1987).

6 Conclusion

The evidence on milk addiction found by Auld and Grootendorst (2004) has raised the question of

whether the AR(2) model typically used to test the model of rational addiction is an appropriate

empirical speci�cation. The AR(2) model tends to �nd spurious evidence for rational addiction

and it is very sensitive to the choice of the instrumental variable estimators, a result that is more

likely when the consumption series display high persistence (Auld and Grootendorst, 2004). In

addition, Laporte et al. (2017) show that the AR(2) model is intrinsically explosive, which makes

estimating and testing the rational addiction model problematic. In this paper we have shown that

the above results do not hold when, instead of the AR(2) equation, a linear AR(1) model is used.

This speci�cation describes the saddle path solution of the rational addiction model, it retains

the main theoretical predictions that have been investigated in the literature using the canonical

AR(2) model, and it is empirically simpler to estimate.

Using Monte Carlo simulations, we �rst show that the AR(1) model does not produce false

positives and is able to correctly detect rational addiction. Moreover, it produces unbiased esti-

mates of the short and long-run elasticity of consumption, and it does not su�er of the endogeneity

concerns that may arise when using lag consumption in the estimating equation. These results

hold both with individual and aggregate data, a �nding that is particularly appealing because

consumption series are typically available as aggregate data.

To directly address the milk addiction paradox, we then consider the same Canadian data used

by Auld and Grootendorst (2004) and we proceed with the empirical analysis using the AR(1)

model, instead of the AR(2) model. This allows to show that the milk addiction paradox is only

apparent. In fact, using the AR(1) addiction model, we �nd that milk is not compatible with the

rational addiction model, while cigarettes are, as expected.
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These results allow us to conclude that the AR(1) model is a reliable candidate to test the

theory of rational addiction. We claim that the better performance of the AR(1) model over

the AR(2) is likely due to the fact that the Euler equation is not the solution of the model,

but an intertemporal necessary condition that the solution of the rational addiction model must

satisfy. Moreover, the Euler equation is intrinsically unstable, because it has at least one root

that is explosive (Laporte et al., 2017). This violates the basic assumptions needed to perform

econometric analysis of time series and it could produce erroneous estimates. On the contrary, the

AR(1) speci�cation we propose is stationary and, since it does not contain the lead of consumption,

the endogeneity concerns a�icting the AR(2) model are likely to be less severe.

Our results suggest a word of caution when interpreting past studies that use the canonical

AR(2) model, but they do not imply that the corresponding results are necessarily �awed. In

fact, as shown in Laporte et al. (2017), over a short time horizon the explosive root of the AR(2)

model plays a negligible role. Accordingly, it is possible to obtain reasonable estimates of the

associated parameters. Given the tendency to produce false positives, however, we believe that

the estimates obtained from the AR(2) canonical model cannot be the basis of a satisfactory test

of the theory of rational addiction. Similarly, it is unlikely that a good test of the theory consists in

checking whether the discount factor computed from the coe�cients of the AR(2) canonical model

is economically meaningful. Although this exercise has been sometimes used in the literature as a

test for the validity of the rational addiction model, the formula to compute the discount factor is

non linear and very sensitive to minor variations in the coe�cients of lead and lag consumption.

Since the estimates of these coe�cients tend to be unstable and unreliable, it is possible that

meaningless estimates of the discount factor can result even when the data are truly consistent

with rational addiction and, on the contrary, that apparently meaningful estimates result when in

fact the data are not consistent with rational addiction.

Our approach to the demand for addiction makes simplifying assumptions about preferences,

constraints, and expectations, that could be modeled more explicitly to obtain richer structural

models, such as those proposed in the recent literature by Darden (2017) and Hai and Heckman

(2019). A limitation of the AR(1) model we propose and, more in general, of the theory of

rational addiction, is the assumption that the individual is capable of calculating a lifetime optimal

consumption trajectory of an addictive commodity. In particular, all consequences of current

actions are known with certainty and individuals have rational expectations about the trajectory

of future prices (or, in the empirical speci�cation we test, of the next period's price). In addition,

consumers are assumed to be price takers. This partial equilibrium approach ignores the possible

strategic interaction between �rms and consumers and how pricing strategies may respond to the
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demand for addictive goods. For example, it does not take into account that a seller can initially set

a low price to capture the consumer, and then increase the price once the consumer is su�ciently

addicted. Our approach also abstracts from the possible substitutability between multiple addictive

goods, which is a mechanism that likely underlies the demand of, e.g. legal, bootleg cigarettes and

vaping, or the demand for conventional and synthetic opioids, or for marijuana and opioids. These

extensions are interesting and possible (see, e.g. Becker et al., 1990; Orphanides and Zervos, 1995;

Driskill and McCa�erty, 2001; Bask and Melkersson, 2003, 2004), and they can be dealt within

the benchmark framework considered in this paper. Since they are out of the scope of this paper,

they are left for future research.
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Appendices

A Theoretical background: Supplementary material

A.1 Deriving the solution

Replacing the budget constraint in the utility function, the Bellman equation associated to the

rational addiction problem can be written as

V (A (t)) = max
c(t)

{U (t) + βV (A (t+ 1))} (14)

where U (t) ≡ U (c (t) ,M (t)− p (t) c (t) , A (t)) . The associated �rst order and envelope condition

are, respectively,

∂U (t)

∂c (t)
+ β

∂V (A (t+ 1))

∂c (t)
= 0 (15)

∂V (A (t))

∂A (t)
=

∂U (t)

∂A (t)
+ β (1− δ)

∂V (A (t+ 1))

A (t)
(16)

which yields the Euler equation

∂U (t)

∂c (t)
= β

[
(1− δ)

∂U (t+ 1)

∂c (t+ 1)
− ∂U (t+ 1)

∂A (t+ 1)

]
(17)

Considering the quadratic utility function,

U (c (t) , q (t) , A (t)) = ucc (t) + uAA (t) +
ucc
2

c2 (t) +
uAA

2
A2 (t) + ucAc (t)A (t) + q (t) (18)

with uc > 0, ucc, uAA < 0, uccuAA − u2cA > 0 and ucA > 0, and using the law of motion of the

addiction stock, the Euler equation becomes

c (t) = θc (t− 1) + θ1c (t+ 1) + α0 + α1p (t− 1) + α2p (t) + α3p (t+ 1) (19)

where

θ =
ucA − (1− δ)ucc

ω
> 0 if ucA > 0; θ1 = βθ > 0 if ucA > 0; (20)

α0 = δ
uc + β [uA − (1− δ)uc]

ω
; α1 =

1− δ

ω
≥ 0; (21)

α2 = −1 + (1− δ)2 β

ω
< 0; α3 = βα1 ≥ 0; (22)

ω = β(1− δ) [2ucA − (1− δ)ucc]− ucc − βuAA > 0. (23)

Solving the Euler equation yields the following family of consumption paths:

c (t) = [c (0)− P (0)−K]λt +Kλt
1 + P (t) , for t ≥ 1, (24)
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where

P (t) = g0 + g1p (t) + g2

∞∑
s=1

λs [p (t− s) + βsp (t+ s)] (25)

is a price index that depends on past, current and future prices,

λ =
1−

√
1− 4βθ2

2βθ
; λ1 =

1 +
√
1− 4βθ2

2βθ
; (26)

g0 =
α0

1− (1 + β) θ
> 0; g1 =

α1 + 2βλα2

1− 2βλθ
< 0; (27)

g2 = g1 +
α2

θ
< 0 ⇔ 1− δ < λ and θ > 0; (28)

and K is to be de�ned using the transversality condition. The price index P (t) in equation 25

shows that optimal consumption depends on the current price p(t), as well as on the history

of past and future prices. Past prices matter because they in�uence past consumption choices,

which determine the current taste for addiction; future prices matter because the agent is forward-

looking and takes into account future utility (which is discounted at rate β ∈ (0, 1) because of

the uncertainty about future lifetime). We require
∑∞

s=1 λ
s [p (t− s) + βsp (t+ s)] to exist and

be �nite for all t. Since parameter g1 is negative, consumption is predicted to respect the law of

demand with respect to simultaneous price changes. Note, however, that this is not necessarily

true for non-contemporaneous price shocks, because the coe�cient g2 can be either positive or

negative.

If the good displays reinforcement, the roots λ and λ1 of the Euler equation are positive. Note

that λ1 = 1/ (βλ) > 1, which quali�es it as the unstable root of the dynamic process. We need to

assess whether λ < 1 to avoid the dynamic process to be explosive. Three cases can occur:

1. If 0 < θ < 1
1+β both roots are reals with λ < 1 < λ1: saddle-point dynamics,

2. If 1
1+β < θ < 1

2
√
β
, both roots are real but larger than one: explosive trajectories,

3. If 1
2
√
β
< θ, both roots are complex and with modulus larger than one: explosive oscillations.

The second and third type of trajectories imply that the modulus of both λ and λ1 is larger than

one, hence they cannot be estimated with standard techniques. In the �rst type of trajectories,

instead, λ is smaller than one, hence stationarity can be exploited for the empirical estimation.

The corresponding condition 0 < θ < 1
1+β can be rewritten as ucA < βuAA+δ(1−β+δβ)ucc

(1−2δ)β−1 , which

implies an upper bound on reinforcement.

The general solution 24 satis�es the necessary conditions for optimality (including the Euler

equation) and it nests the solution presented in Becker et al. (1994), who restricts the attention
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to the special case δ = 1. The selection of the particular solution depends on the transversality

condition, which determines the value of the constant K. To eliminate the impact of the explosive

root λ1, we select K = 0. Hence the solution of the rational addiction model is the saddle path to

the steady state

c (t) = [c (0)− P (0)]λt + P (t) , (29)

which can be expressed as a function of initial consumption, time and prices in all periods. This

demand function asymptotically converges to the steady state css; it essentially represents the

discrete-time equivalent of the theoretical solution of the deterministic rational addiction model

presented in Becker and Murphy (1988). This can be appreciated �xing p (t) for all t, in which case

P (0) = P (t) = css and the demand function becomes c (t) = [c (0)− css]λt+css. In contrast with

the general solution 24 of the Euler equation, the saddle path does not contain explosive roots.

A.2 Deriving the AR(1) representation of the saddle path

To obtain the AR(1) version of the demand for addiction described in equation 8, shift equation

29 one period backward and solve for c (0). Replacing it back into 29 and rearranging yields the

AR(1) empirical model:

c (t) = λc (t− 1) + φ1p (t− 1) + φ2p (t) +

∞∑
s=1

φ3 (s) p (t+ s) + φ0 (30)

where

λ ∈ (0, 1); φ1 = (g2 − g1)λ ≥ 0; φ2 = g1 − βλ2g2 < 0; (31)

φ3 (s) = g2
(
1− βλ2

)
(βλ)s ; φ0 = (1− λ) g0. (32)

The key terms for testing rational addiction are λ and φ3 (s) . Note that φ3 (s) is zero in absence

of forward-looking behavior (β = 0). When β ̸= 0, it can either have a positive or a negative sign,

depending on the sign of g2 (see 28). When δ = 1, then φ1 = 0. It can be shown that φ1 > φ3 (1).
12

As an analytical exercise, one can compute the discount factor from the de�nition of φ3 (1)

β =
φ3 (1)

φ1 + λφ2
. (33)

However, this expression is highly non-linear, which may result in very unstable (and possibly non

meaningful) empirical estimates of β.13

12The term φ1 in equation 30 is non negative. This apparently counterintuitive result is a mathematical artifact

due to keeping yesterday's consumption �xed (see Becker et al., 1990, Chaloupka, 1991, Becker et al., 1994).
13Alternatively, using φ3(1) and φ3(2), one can compute β = φ3(2)/(λφ3(1)), which is also non-linear and possibly

unstable.
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B Empirical analysis: Supplementary material

B.1 Unit-root, cointegration tests

Table 2 shows the results of the the Augmented Dickey-Fuller test (ADF, Dickey and Fuller, 1979),

the GLS Dickey-Fuller test (DF-GLS, Cheung and Lai, 1995; Elliot et al., 1996), and the Zivot-

Andrews tests (ZA, Zivot and Andrews, 1992), to check for unit-roots in the data considered in the

empirical analysis of Section 5. The optimal number of lags is automatically selected. Since trends

appear to be non relevant, in the ZA test we allow for structural breaks only for the intercept.

Table 2: Unit-root and cointegration tests

Cigarettes Milk Eggs Oranges

price cons. price cons. price cons. price cons.

ADF test -1.208 0.355 -1.745 -1.791 -1.518 -1.533 -3.268 -2.954

z crit. value -2.623 -2.623 -2.614 -2.614 -2.616 -2.614 -2.613 -2.613

DF-GLS test -2.008 -1.107 -1.329 -0.349 -1.811 -1.599 -3.798 -3.016

z crit. value -3.020 -3.020 -2.960 -2.960 -2.960 -2.960 -2.952 -2.952

ZA test -3.227 -2.857 -2.769 -2.998 -3.559 -1.667 -6.635 -5.524

z crit. value -4.58 -4.58 -4.58 -4.58 -4.58 -4.58 -4.58 -4.58

Stationary? No No No No No No Yes Yes

GH/EG test -5.39 -3.651 -3.816 �

z crit. value -4.99 -3.497 -3.497 �

Cointegrated? Yes Yes Yes �

Notes: Unit-root and cointegration tests for prices and consumption; z is the critical value of each test

(10% for the unit-root tests, 5% for the cointegration tests).

For cigarettes we use the Gregory-Hansen cointegration test (GH, Gregory and Hansen, 1996)

to account for potential structural breaks due to the antismuggling policies implemented in the

early 1990s (Gruber et al., 2003). The p-values are smaller than 10% and allow to reject the

no-cointegration hypothesis. Similarly, for milk and eggs the Engle-Granger test (EG, Engle and

Granger, 1987) allows to reject no-cointegration at the 5% signi�cance level.
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B.2 AR(1) model and error correction mechanism

Based on the results presented in Table 2, consumption and prices of cigarettes, milk and eggs

are cointegrated. Accordingly, we follow the two-step Engel-Granger procedure for cointegration

modeling. We consider the Error Correction Mechanism (ECM) representation of the AR(1) model

11 and we apply Dynamic OLS for estimation (Stock and Watson, 1993), as explained below.

As a starting point, consider the AR(1) model 11

ct = ρct−1 + γ1pt−1 + γ2pt + γ3pt+1 + γ0 + ξt. (34)

Subtracting ct−1 and manipulating the above equation allows for the following Error Correction

Mechanism representation

∆ct = µ (ct−1 − γ0 + ωpt−1) + γ0ρ+ γ2∆pt + γ3∆2pt+1 + ϵt. (35)

where µ ≡ ρ − 1, ω ≡ γ1+γ2+γ3
µ , ∆ is the di�erence operator, and ∆2pt+1 ≡ pt+1 − pt−1.

This representation allows to describe consumption as a combination of a long run relationship

(ct−1 = γ0 − ωpt−1) , and a short run relationship (γ0ρ+ γ2∆pt + γ3∆2pt+1) between consumption

and prices.

Considering equation 35, estimates and inference for the parameters can be derived through

the two-step procedure described in Engle and Granger (1987). First, the long run relationship

ct−1 = γ0 − ωpt−1 is estimated using the Dynamic OLS procedure of Stock and Watson (1993),

which produces super-consistent estimators of γ0 and ω. The lagged residuals are then plugged

into equation 35 to obtain estimates of γ2, γ3 and ρ. Finally, using the de�nition of ω and µ, the

point estimate of γ1 can be computed as γ1 = µω − γ2 − γ3
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