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In this paper, we study the estimation of parameters for g-and-h distributions. These distributions find
applications in modeling highly skewed and fat-tailed data, like extreme losses in the banking and in-
surance sector. We first introduce two estimation methods: a numerical maximum likelihood technique,
and an indirect inference approach with a bootstrap weighting scheme. In a realistic simulation study,
we show that indirect inference is computationally more efficient and provides better estimates than the
maximum likelihood method in case of extreme features of the data. Empirical illustrations on insurance
and operational losses illustrate these findings.

Keywords: Actuarial Science; Tail Analysis; Advanced Econometrics; Computational Finance; Extreme
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1. Introduction

The g-and-h distribution (Tukey 1977) is a model for data featuring non-zero skewness and/or
excess kurtosis. It is defined by means of the following non-linear transformation of a standard
normal random variable:

X = a+ b
egZ − 1

g
e

hZ2

2 , Z ∼ N(0, 1), (1)

where a ∈ R is a location parameter, b ∈ R+ is a scale parameter, g ∈ R and h ≥ 0 are shape
parameters. It is a very flexible model, since, as shown by Dutta and Perry (2006, Fig. 3), its
skewness-kurtosis region is very large compared to other commonly used distributions. If g = 0 the
distribution is symmetric, whereas if h = 0 it becomes a scaled lognormal; see Cruz et al. (2015,
Section 9.4.1).

In recent years, the increased computing power has made feasible the estimation of models with
intractable likelihood function. These procedures are based on the maximization of a likelihood
constructed from an approximation f̂ of the density. We treat f̂ as the true density and proceed to
numerical maximization of the approximated log-likelihood, as for classical MLE. For quantile dis-
tributions, it is possible to rely on the quantile function to compute f̂ . This idea has been exploited
by Rayner and MacGillivray (2002) and Prangle (2017) to find numerical approximations of the
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generalized g-and-h density. One of the goals of the present paper is to extend this procedure to the
g-and-h distribution. We develop a method for approximating the density and performing MLE of
the parameters, thus establishing the feasibility of a likelihood-based approach to estimating the
g-and-h distribution.

A second aim is to assess the improvement of the indirect inference (II) estimation procedure
using a bootstrap-based estimate of the optimal weighting matrix. Bee et al. (2019) use the identity
matrix as weighting matrix, since the properties of the estimator are asymptotically independent
from its specification. However, for finite sample sizes, the matrix does play a role, which may
be particularly relevant in insurance and risk management applications, where the datasets are
sometimes small.

The g-and-h distribution is also a member of the quantile distribution family. Hence, it can
equivalently be defined via its quantile function, which is given by (Cruz et al. 2015, p. 318)

Q(p;θ) = Q(zp;θ) = a+ b
egzp − 1

g
e

hz2p

2 , (2)

where p ∈ (0, 1) and zp is the p-quantile of the standard normal distribution. Without loss of
generality, we set a = 0 and b = 1 (Degen et al. 2007; Cruz et al. 2015).

The g-and-h distribution is particularly important when the main purpose of the analysis is
the estimation of extreme quantiles or, more generally, of quantities related to the tail of the
distribution. In general, Extreme Value Theory (EVT) is routinely used for this purpose, because
under fairly mild conditions (see, e.g., McNeil et al. 2015, Sect. 5.2) the distribution of the excesses
converges to the Generalized Pareto Distribution (GPD). EVT is often implemented via the Peaks-
over-Threshold (POT) method: given iid observations x1, . . . , xn from some distribution and a
threshold u large enough, the parameters are estimated employing the excesses xi − u, which are
assumed to be approximately GPD-distributed. The Value-at-Risk (VaR) is finally given in closed
form by the quantile of the fitted GPD.

However, the convergence of the g-and-h to the GPD is extremely slow (Degen et al. 2007).
Hence, as stressed by Cruz et al. (2015, Remark 9.6), if the true data generating process is g-and-
h, estimating the distribution of extreme losses via the GPD approximation may yield imprecise
results, even for large sample sizes. This distinguishing feature, with respect to other models for
skewed and/or heavy-tailed data, makes a substantial difference in applications: if the asymptotic
GPD approximation is poor, the estimated VaR based on the GPD will be quite different from the
true VaR, and the only way of computing an accurate estimate of the VaR is to fit the g-and-h
distribution.

From a modeling perspective, the g-and-h distribution has often been found to be appropriate
for operational risk measurement (e.g., Moscadelli 2004, Dutta and Perry 2006, Degen et al. 2007,
Cruz 2018, Sect. 9.4.1). On the other hand, it has been mostly ignored in actuarial applications.
Since this may mostly be due to its limited analytical tractability (Peters et al. 2016), one of the
goals of our paper is to draw some attention on the potential of the g-and-h to model non-life
insurance losses.

Although the rationale behind the construction of (1) is quite intuitive, practical application
of the g-and-h distribution is hindered by the lack of closed-form density. As a consequence, the
literature has often considered maximum likelihood estimation (MLE) as problematic, and most
research has focused on estimation approaches based on either known features of the distribution
or on computer-intensive techniques.

Along the first line, the earliest approach exploits the quantile function, which is explicitly known:
the quantile-based method (Hoaglin 1985) estimates the parameters by matching theoretical and
empirical quantiles. More recently, since the r-th moment (r = 1, . . . , 4) of the distribution only
exists if h ∈ [0, 1/r) (Cruz et al. 2015, p. 320), Peters et al. (2016) fit the distribution via L-
moments. In the second group of methods, the straightforward simulation procedure of the g-and-
h distribution has been used to develop approximate maximum likelihood estimation (Bee and
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Trapin 2016) and indirect inference (Bee et al. 2019).
Our simulation experiments suggest that II is better in terms of computational cost. On the

other hand, from the point of view of statistical efficiency, an overall winner does not emerge. As
for parameter estimation, MLEs mostly exhibit a smaller root-mean-squared-error (RMSE), but in
some cases are more biased, especially when the true distribution is highly skewed and leptokurtic.
The latter result is consistent with the unbiasedness property of II estimators (Gouriéroux et al.
2000). However, when one considers VaR estimation, the unbiasedness of II estimators does not
necessarily extend to unbiasedness of the corresponding VaR estimate. The MLE method is better
at estimating VaR in the majority of setups, but with a significant exception when both g and h
are large. This is an important result since most applications are characterized by such features.

The empirical analysis of actuarial and operational risk data confirms the preceding remarks:
when the empirical distribution of the losses exhibits extreme skewness and kurtosis, II is more
precise than numerical MLE.

The paper is organized as follows. In Section 2 we review the g-and-h distribution and develop
the MLE and II estimation approaches; in Section 3 we describe the simulation experiments and
comment the outcomes; in Section 4 we apply the methods to two real data-sets; in Section 5 we
discuss the results and conclude.

2. The g-and-h distribution and its estimation

Existing estimation methods for the g-and-h distribution include Hoaglin (1985) quantile-based
method, Dupuis and Field (2004) robust approach, Peters et al. (2016) L-moments-based method
and Bayesian techniques (see, e.g., Peters and Sisson 2006).

The derivation of the quantile-based estimators exploits the closed-form formula (2). The esti-
mator of the location parameter a is just the median of the observations: â = median{x1, . . . , xn}.

To find ĝ notice that, for 0 < p < 0.5, the following holds:

x1−p − x0.5

x0.5 − xp
=

a+ b e
−gzp−1
g ehz

2
p/2 − a

a−
(
b e

−gzp−1
g ehz

2
p/2 + a

) = e−gzp .

Accordingly, the value of g that matches the quantiles xp and x1−p is given by

gp = − 1

zp
log

(
x1−p − x0.5

x0.5 − xp

)
.

The value of gp depends on p, so that ĝ is usually taken to be equal to the median of the ĝp’s over
a grid of quantiles (Cruz et al. 2015, p. 325).

The estimates of b and h are found by means of linear regression. To do this, the upper half

spread UHSp
def
= x1−p − x0.5 is divided by (e−gzp − 1):

UHS∗p =
g(x1−p − x0.5)

(e−gzp − 1)
= behz

2
p/2,

so that log(UHS∗p) = log(b) +hz2
p/2. Accordingly, l̂og(b) and ĥ are respectively the estimates of the

intercept and of the slope in the corresponding linear regression model, and b̂ = exp(l̂og(b)).
Dupuis and Field (2004) proposed an estimation method whose main advantage is the robustness

with respect to outliers. They estimate the parameters g and h using Huber (1981) “Proposal 2”.
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After fixing a set of quantiles, Dupuis and Field (2004) employ the function ρ((x− y)/y), where

ρ(x) =

{
x2/2, if |x| < c1

c1|x| − c2
1/2, otherwise

is Huber’s ρ function and cl ∈ R+. The estimates are the solution of the problem

min
g,h

n∑
i=1

ρ((xi − yi)/yi)

over the chosen range of quantiles.
Both methods are easy to implement, but depend on the quantile levels they are based upon.

Moreover, Bee et al. (2019) find via Monte Carlo experiments that II outperforms both Hoaglin
(1985) quantile-based method and Dupuis and Field (2004) robust approach.

To introduce moment-based approaches, notice that, provided 0 < h < 1/r, the moments E(Xr),
r = 1, . . . , 4, can be computed in closed form (Cruz et al. 2015, p. 320):

E(X) =
e

g2

2−2h − 1

g
√

1− h
,

E(X2) =
1− 2e

g2

2−4h + e
2g2

1−2h

g2
√

1− 2h
,

E(X3) =
3e

g2

2−6h + e
9g2

2−6h − 3e
2g2

1−3h − 1

g3
√

1− 3h
,

E(X4) = s(g, h)
e

8g2

1−4h

g4
√

1− 4h
,

where

s(g, h) = 1 + 6e
6g2

4h−1 + e
8g2

4h−1 − 4e
7g2

8h−2 − 4e
15g2

8h−2 .

The classical method of moments has been developed by Headrick et al. (2008). However, it cannot
be used when h ≥ 0.25, because in this case E(X4) does not exist. This drawback is overcome
by the L-moments-based estimation method proposed by Peters et al. (2016): indeed, L-moments
always exist (if h < 1) and L-moments-based estimation is known to be more efficient than classical
moment-based estimation (Vogel and Fennessey 1993, Hodis et al. 2012). L-moments estimators
are found by iterative minimization of the objective function

(τ3 − τ̂3)2 + (τ4 − τ̂4)2, (3)

where τ3 = `3/`2 and τ4 = `4/`2 are the L-skewness and L-kurtosis respectively, `r is the r -th
L-moment, τ̂3 and τ̂4 are the corresponding sample counterparts. The computation of L-moments
of the g-and-h distribution requires numerical integration (Peters et al. 2016, Proposition 5.4), and
further numerical work is required for the solution of (3).

Finally, Bayesian estimation techniques have been used for the g-and-h distribution in operational
risk applications. In particular, Peters and Sisson (2006) have developed a Markov Chain Monte
Carlo - Approximate Bayesian Computation method; see Cruz et al. (2015, Sect. 9.4.4) for details.

In the following we detail two additional estimation techniques. The first one (numerical MLE)
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exploits an approximation of the density based on the quantile function (2). The second one relies
on an auxiliary model, in the idea of Gourieroux et al. (1993).

2.1. Maximum likelihood estimation

The g-and-h random variable X ∼ gh(a, b, g, h) is defined in (1), and we let θ = (a, b, g, h)′ be
the vector of its parameters. The quantile function (2) can be used for computing a numerical
approximation of the density.

Similarly to the approaches proposed for the generalized g-and-h by Rayner and MacGillivray
(2002) and Prangle (2017), we employ the following basic result from probability theory: if the
random variable V has density fV and h(v) is a differentiable 1-1 transformation, the density of
W = h(V ) is equal to

fW (w) =
fV (v)

h′(v)
, where v = h−1(w). (4)

Combining (1) and (4), and setting h(·) equal to the quantile function (2), the approximated density
is given by

f̂(x) =
φ(zp)

Q′(zp;θ)
, zp = F (x;θ), (5)

where φ(·) is the standard normal density, Q′(zp;θ) is the derivative of (2) and F (x;θ) is the
g-and-h distribution function.
Q′(zp;θ) is known in closed form (Cruz et al. 2015, Eq. 9.33):

Q′(zp;θ) = egzp+
hz2p

2 +
h

g
zpe

hz2p

2 (egzp − 1).

On the other hand, F (x;θ) has to be computed via numerical inversion of (2) using some root-
finding technique.

Given a random sample x1, . . . , xn, a pseudo-code describing this procedure is given by Algorithm
1 below.

Algorithm 1

1. For each observation xi (i = 1, . . . , n):
(a) Evaluate zpi = F (xi;θ) by numerical inversion of (2);

(b) Compute f̂(xi) = φ(zpi)/Q
′(zpi;θ).

2. Treat f̂ as the true density and proceed to numerical maximization with respect to θ of the
approximated log-likelihood function ˆ̀(θ;x1, . . . , xn) =

∑n
i=1 f̂(xi;θ).

Step 1(a) is the key computational issue, as numerical root-finding is typically rather slow. It
follows that the total computational burden, which is almost entirely related to step 1(a), increases
linearly with the number of observations.

2.2. Indirect inference

Indirect inference is a simulation-based estimation method introduced by Gourieroux et al. (1993).
Analogously to other computer-intensive techniques, it only requires the ability to sample the dis-
tribution of interest. This makes the method particularly valuable when the density is not explicitly
available. With respect to other simulation-based methods, its desirable asymptotic properties are

5
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another advantage (Gourieroux et al. 1993, Section 3; Calzolari et al. 2004).
Although the II approach can be generalized to problems with dependent observations, here we

describe it in the iid case, since this is the relevant setup in the present paper.

Consider a random sample x1, . . . , xn
iid∼ F θ from a random variable X with cumulative dis-

tribution function F θ, θ ∈ Θ ⊆ R
d. Let M be an auxiliary random variable with density

fM (m;ψ), where ψ is a vector of parameters. The log pseudo-likelihood function `n(ψ|F θ) =∑n
i=1 log fM (xi;ψ) is constructed using the density of M and the sample x1, . . . , xn from F θ.
The auxiliary parameter vector ψ(θ) ∈ Ψ ⊆ Rq, q ≥ d, is implicitly defined by the relationship

ψ(θ) = arg maxψ `n(ψ|F θ). The function θ → ψ(θ) is called binding function, and the pseudo-
true values ψ(θ) are expected to be highly informative about θ. In practice, the binding function
must typically be estimated via simulation.

Given this setup, the II method is based on the two steps described in Algorithm 2.

Algorithm 2

(i) Compute the pseudo-maximum likelihood estimate Ψ̂(θ) = arg maxΨ `n(Ψ|F θ) by maxi-
mizing the log pseudo-likelihood function using the observed data x1, . . . , xn;

(ii) Simulate ns observations x̃1, . . . , x̃ns
from the true model F θ and compute a new pseudo-

MLE ψ̂
s
(θ) = arg maxψ `ns

(ψ|F θ) using the simulated data. Compute the indirect inference
estimator

θ̂ = arg min
θ

(Ψ̂
s
(θ)− Ψ̂(θ))′Ξ−1(Ψ̂

s
(θ)− Ψ̂(θ)),

where Ξ is a weighting matrix.

When the number of parameters of the true and auxiliary model is the same, i.e. when d = q,
the limiting distribution of θ̂ does not depend on Ξ (Gourieroux et al. 1993, Proposition 5), and
this result can be invoked to justify the use of the identity matrix as weighting matrix. However, in
finite samples, θ̂ depends on Ξ, and Gourieroux et al. (1993) show that there is an optimal choice
of this matrix.

2.3. Optimal indirect inference for the g-and-h distribution

The skewed-t distribution St(x;ω, κ, λ, ν) of Fernández and Steel (1998) is a generalization of the
classical Student-t distribution. ω ∈ R is a location parameter, κ ∈ R+ is a scale parameter,
λ ∈ R+ and ν ∈ R+ are shape parameters accommodating skewness and kurtosis, respectively.
An estimation method for the g-and-h distribution based on II, and using as an auxiliary model
the skewed-t distribution with Ξ = I has been proposed in Bee et al. (2019). Here we extend their
approach by developing an estimate of Ξ and employing it in the II estimation program.

An estimation method for the g-and-h distribution based on II, and using as an auxiliary model
the skewed-t distribution with ... = ... has been proposed in

In finite samples, the choice of the instrumental distribution M plays a very important role:
as pointed out by Garcia et al. (2011), it is advisable to use an auxiliary model such that the
parameters of the instrumental and true distribution have the same interpretation. λ and ν in the
skewed-t distribution govern skewness and kurtosis, exactly as g and h in the g-and-h. Hence, the
skewed-t model is a suitable candidate. Moreover, Garcia et al. (2011) have shown that it performs
well in II estimation of the stable distribution.

In an exactly identified setup (i.e., when d = q), the optimal weighting matrix is the asymptotic

covariance matrix of ψ̂ (Jiang and Turnbull 2004), and is given by a sandwich formula that requires
the first two derivatives of the auxiliary log-likelihood; see Gourieroux et al. (1993, p. S112) for
details.

An appealing alternative, which avoids the computation of the first two derivatives of `n(ψ|F θ)

6
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at the expense of a modest computational effort, is the use of the non-parametric bootstrap. Given
a sample x1, . . . , xn from X ∼ gh(θ), the bootstrap estimate of Ξ is obtained as follows:

Algorithm 3 (Non-parametric bootstrap estimate of the weighting matrix)

(i) Sample with replacement n observations x∗1, . . . , x
∗
n from x1, . . . , xn;

(ii) Use x∗1, . . . , x
∗
n to maximize the pseudo log-likelihood function and compute the pseudo-

maximum likelihood estimators ψ̂(θ) = (ω̂, κ̂, λ̂, ν̂)′ of the skewed-t distribution;
(iv) Repeat steps (i)-(ii) B times;

(iv) The bootstrap estimate of Ξ (Ξ̂
∗
, say) is the empirical covariance matrix of the skewed-t

parameter estimates obtained in the B replications.

The maximization of the pseudo-log-likelihood function at Step (ii) is performed by means of
standard optimization techniques. We use the quantile estimates of the g-and-h parameters (com-
puted using the observed data) as starting values for the skewed-t parameters. Some experiments
with different initializations have always given the same parameter estimates. Jiang and Turnbull
(2004) show that the II and ML estimators have similar asymptotic properties under some reg-
ularity conditions. However, the finite-sample behavior of the estimators is likely to be different.
Moreover, in the present paper we are maximizing an approximation of the likelihood function,
and this may to have an impact on the precision of the MLEs. Hence, we explore via simulation
the relative efficiency of the two approaches.

3. Simulation experiments

In this section we perform a Monte Carlo analysis of the II and numerical MLE approaches outlined
above. We use some of the setups employed in Bee et al. (2019) as well as one additional parameter
configuration with values of the parameters similar to those found in the first empirical application
(see Section 4 below).

Specifically, we sample the gh(0, 1, g, h) distribution in the following six configurations of the
parameters.

(1) g = 0.5, h = 0.1 (sk. = 3.41; kurt. = 44.24);
(2) g = 0.8, h = 0.1 (sk. = 9.27; kurt. = 606.61);
(3) g = 0.2, h = 0.05 (sk. = 0.79; kurt. = 5.10);
(4) g = 0.2, h = 0.2 (sk. = 2.81; kurt. = 155.98);
(5) g = 2, h = 0.2 (sk. = 7.76× 1010; kurt.= 1.08× 1058);
(6) g = 2.5, h = 0.3 (sk.= 9.76× 10101; kurt.= +∞).

Note that setups (5) and (6), which according to Dutta and Perry (2006) are likely to be relevant
for operational risk modeling, are extreme in terms of skewness and kurtosis. Since E(Xr) only
exists if h ∈ [0, 1/r), the kurtosis is undefined in Setup (6).

All experiments are carried out with sample size n ∈ {100, 1000}; the number of replications is
B = 200 and the number of observations simulated from the auxiliary model is ns = 5000. The
numerical value of ns has been chosen according to the outcomes of a preliminary simulation study
where II estimation has been repeated with ns ∈ {1000, 3000, 5000, 7500, 1000}: whereas moving
from ns = 1000 to ns = 3000 and from ns = 3000 to ns = 5000 yields better estimators in terms
of RMSE, values of ns larger than 5000 did not produce any improvement. Hence, we employ
ns = 5000 throughout1

1The detailed results are available upon request.
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3.1. Parameter estimation

Figures 1 and 2 show the bias and the RMSE of the II and ML estimators of g and h in the six
setups. In both figures, panels (a) and (b) refer to the n = 100 case, (c) and (d) are based on
n = 1000. The II approach uses the bootstrap estimate of the optimal weighting matrix.
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Figure 1.: Bias of the II and MLE estimators of g (panels (a) and (c)) and h (panel (b) and (d)); panels (a) and (b) are based

on n = 100, (c) and (d) on n = 1000.

Before commenting the results, it is worth pointing out that MLE has failed (i.e., aborted without
convergence) 6 times in Setup 6 with n = 100. Even though, in the same instances, the II algorithm
has always converged, we have discarded the samples and replaced them with new ones. The
outcomes of unreported simulation experiments suggest that MLE failure becomes more and more
frequent when the sample size decreases: for example, for n = 20, MLE does not converge in about
20% of the cases, whereas we are always able to compute an II estimate.

In terms of bias (see Fig. 1), II is better than MLE, more notably in setups 5 and 6 and for
n = 100. This seems to suggest that in settings characterized by large (or even infinite) skewness
and kurtosis, MLE is more biased for small sample size. This result is not surprising, since it is well
known that II is a bias-correction method (Gouriéroux et al. 2000), whereas MLEs are consistent
but biased.

On the other hand, in terms of RMSE (see Fig. 2), MLE is better for n = 100 in all setups
except 4. For n = 1000 the two approaches are approximately equivalent in the first 4 parameter
configurations, and MLE is preferable in the last two setups.

Table 1 shows the average computational cost of the two procedures for each of the six parameter
configurations. The computing times are similar when n = 100, whereas II is much faster than ML
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Figure 2.: RMSE of the II and MLE estimators of g (panels (a) and (c)) and h (panel (b) and (d)); panels (a) and (b) are

based on n = 100, (c) and (d) on n = 1000.

Table 1.: Computing times (in seconds) of II and MLE in the six setups.

Sample size Method Setup

1 2 3 4 5 6

n = 100
II 15.31 12.14 19.59 16.44 15.25 9.28

MLE 11.98 13.68 10.87 14.67 10.02 14.01

n = 1000
II 14.15 13.32 18.24 15.17 10.38 9.90

MLE 155.41 145.16 152.86 151.60 167.84 182.97

in all setups when n = 1000.

3.2. A comparison of standard and optimal indirect inference

Figures 3 and 4 compare the performance of the II methods based on Ξ = Ξ̂
∗

(from now on
“optimal”) and Ξ = I (from now on “standard”). The plots show the RMSEs of the estimators
of g and h obtained in the two cases with B = 200 and ns = 5000, when n = 100 (Figure 3) and
n = 1000 (Figure 4).

When n = 100, the optimal II method is better than standard in the last two setups, especially for
h. The outcomes are more similar when n = 1000, which is justified by the asymptotic equivalence
of the two approaches. The only relevant difference is observed in Setup 3, where the RMSE of the
optimal estimator of g is approximately 30% smaller.
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Figure 3.: RMSE of the optimal and standard II estimators of g (panel (a)) and h (panel (b)) for n = 100.

0.075

0.100

0.125

0.150

1 2 3 4 5 6

Setup

R
M

S
E

optimal

standard

(a) Estimators of g: RMSE (n = 1000)

0.02

0.04

0.06

0.08

1 2 3 4 5 6

Setup

R
M

S
E

optimal

standard

(a) Estimators of h : RMSE (n = 1000)

Figure 4.: RMSE of the optimal and standard II estimators of g (panel (a)) and h (panel (b)) for n = 1000.

3.3. VaR estimation

Another interesting quantity to look at is the VaR (or quantile) estimate, for a level far in the tail.
Indeed, most applications of the g-and-h distribution (and in particular those considered in Section
4) eventually aim at computing such quantities.

Once the parameters of the g-and-h distribution are estimated, the VaR is computed in

closed form by plugging the estimates into (2). Figures 5 to 10 show the relative bias RBα
def
=

bias(V̂aRα)/VaRα and the RMSE of the II and MLE estimators of the VaR in each of the six
setups. The RMSE graphs (panels (b)) are on logarithmic scale.

In terms of bias, according to panel (a) of figures 5 to 10, the two estimators are overall equivalent
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Figure 5.: Setup 1. Relative bias (panel (a)) and log-RMSE (panel (b)) of the II and MLE estimators of the VaR for different

values of α.
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Figure 6.: Setup 2. Relative bias (panel (a)) and log-RMSE (panel (b)) of the II and MLE estimators of the VaR for different

values of α.

when n = 1000, with minor differences in specific setups. On the other hand, when n = 100 the II
estimator of VaR is biased for α close to 0 in the first 5 setups, whereas the results are reversed in

Setup 6 (Fig. 10), where V̂aR
MLE

has a large positive bias. This is likely to be related to the bias

of ĝMLE and especially of ĥMLE (see Fig. 1).
At first sight, the non-negligible bias of the II estimators in the first 5 setups with n = 100 is

surprising, since ĝII and ĥII are less biased than the corresponding MLEs (see Fig. 1). However,
since the g-and-h VaR is computed via (2), which is a non-linear function of g and h, unbiasedness
of the estimators of g and h does not imply unbiasedness of the estimator of the VaR.
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Figure 7.: Setup 3. Relative bias (panel (a)) and log-RMSE (panel (b)) of the II and MLE estimators of the VaR for different
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Figure 8.: Setup 4. Relative bias (panel (a)) and log-RMSE (panel (b)) of the II and MLE estimators of the VaR for different
values of α.

An intuitive explanation is as follows. Since, from Fig. 2, RMSE(ĝII) > RMSE(ĝMLE) and

RMSE(ĥII) > RMSE(ĥMLE), it must also be true that var(ĝII) > var(ĝMLE) and var(ĥII) >

var(ĥMLE). Figure 11 shows the function:

DQα(g, h) = Q(α; 0, 1, g, h)−Q(α; 0, 1, g∗, h∗),

which measures the difference between the quantile corresponding to parameters (g, h) ∈ R × R+

and the quantile obtained with g∗ = h∗ = 0.2 for α = 0.995. It is clear that the difference increases
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Figure 9.: Setup 5. Relative bias (panel (a)) and log-RMSE (panel (b)) of the II and MLE estimators of the VaR for different

values of α.
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Figure 10.: Setup 6. Relative bias (panel (a)) and of the log-RMSE (panel (b)) of the II and MLE estimators of the VaR for

different values of α.

sharply when both g and h become larger than the true parameters g∗ and h∗. The larger variance
of the II estimators implies that this happens more frequently for II than for MLE, so that the II
(but not the MLE) VaR has a positive average bias. Notice also that this bias disappears when
n = 1000, since for larger sample size the variance of the II estimators is smaller.

Figure 12 illustrates this phenomenon in Setup 1 with n = 100 and α = 0.999: panels (a), (b)

and (c) of the plot display the histograms of the simulated distributions of ĝII , ĥII and V̂ aR
II

respectively. The relative biases of each estimator are also reported in the three panels. The dis-

tributions of ĝII and ĥII are approximately unbiased, whereas the distribution of V̂ aR
II

has a
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Figure 11.: Quantile difference as a function of g and h for α = 0.995.

positive bias. As an aid to the interpretation, it is interesting to note that the two largest values

of V̂ aR
II

in panel (c) correspond to the two largest values of ĝII in (a).

Figures 5 to 10 (panel (b)) suggest that, when n = 100, V̂aR
MLE

has a smaller RMSE in the

first 5 settings. On the other hand, in Setup 6, the RMSE of V̂aR
II

is smaller than V̂aR
MLE

. When
n = 1000, the outcomes obtained with the two methods are not very different from each other: the
II approach is better in Setup 1 (at least for the smallest values of α) and 5, MLE is preferable in
setups 2, 3, 4, whereas in Setup 6 there is no clear winner.

4. Empirical applications

In this section we outline the results of applications to actuarial data (Section 4.1) and to opera-
tional risk measurement (Section 4.2). In both cases we employ the II and MLE approaches and
compare the outcomes. The II implementation is based on the bootstrap estimate of the weighting
matrix.

4.1. AON Re Belgium fire losses

The beaonre dataset from the CASdatasets R package contains 1823 fire losses collected by the
reinsurance broker AON Re Belgium and first used by Beirlant et al. (1999). With the aim of
ascertaining the difference between the two proposed approaches when the sample size is moderately
large, we use a random sample of 700 observations of the loss amount in thousand of Danish Krone
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and α = 0.999. The vertical lines represent the true values of g (panel (a)), h (panel (b)) and V aRα (panel (c)).

(variable ClaimCost in beaonre). For the subsequent analysis we standardize the observations1.
The data are shown in Figure 13, where we also report the empirical skewness and kurtosis.

The quantile-based estimates of the location and scale parameters are â = 8.798 and b̂ = 15.656.
Point estimates of g and h obtained by means of the optimal II and numerical MLE approaches
are shown in Table 2. Standard errors are computed via non-parametric bootstrap with 200 repli-
cations. Table 2 also reports the p-value of the Anderson-Darling (AD) test for the null hypothesis

that the observed data x1, . . . , xn arise from the g-and-h distribution with parameters (ĝII , ĥII)

and (ĝMLE , ĥMLE), respectively. To double-check the results, we show the p-values obtained by
means of both the asymptotic approximation and the simulation of the null distribution; see the
documentation of the kSamples R package (Scholz and Zhu 2019) for details.

Table 2.: Fire losses: Parameter estimates, bootstrap standard errors and p-value of the Anderson-Darling (AD) test.

g h Asym. AD p-value Sim. AD p-value

II
2.500 0.268

0.079 0.081
(0.130) (0.097)

MLE
2.237 0.070

0.061 0.058
(0.103) (0.028)

Looking at Table 2, we see that the II and MLE estimates of the parameters are quite different.
In particular, ĥII is much larger than ĥMLE . We discuss this issue in detail at the end of the
section. Standard errors of II estimators are larger, similarly to the next application (see Table 4
below). This may be related to the additional sampling variability associated to any simulation-
based procedure. In both cases, the p-values of the AD test do not yield a clear-cut result about
the g-and-h distributional assumption.

1Standardized observations are defined as (yi − â)/b̂, i = 1, . . . , n, where â and b̂ are the Hoaglin (1985) quantile estimators

(see Section 2).
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Figure 13.: AON Re Belgium fire losses.

Figure 14 shows the QQ-plot of the real data vs. observations simulated from the g-and-h dis-
tribution with parameters estimated via II (panel (a)) and via MLE (panel (b)); both plots are
restricted to quantiles larger than 0.9. The II estimation method fits better the majority of data,
but underestimates the largest observation. On the other hand, MLE is apparently more affected
by the largest observation, and consequently fits less well the rest of the data.

In summary, the outcomes of the AD-test and the evidence of the QQ-plots in Figure 14 suggest
that the two estimated g-and-h distributions yield a similar fit to the whole distribution, but the
II-based distribution works better in the tail.

Table 3 reports the VaR measures estimated by means of the g-and-h distribution. For compari-
son purposes, we employ two additional techniques: the POT method, which is the state-of-the-art
approach to the measurement of VaR in operational risk applications at large confidence levels
(Moscadelli 2004, Dutta and Perry 2006), and the näıve approach based on the lognormal approx-
imation of the loss distribution.

Table 3.: Fire losses: VaR estimates and bootstrap standard errors obtained by means of the g-and-h distribution estimated
via II and MLE, the POT method and the lognormal distribution. For comparison purposes, the empirical quantile is reported
in the last line.

α = 0.9 α = 0.95 α = 0.99 α = 0.995

II-VaR
12.656 35.232 292.427 658.164
(1.586) (6.691) (95.780) (256.696)

MLE-VaR
7.649 18.685 95.308 173.541

(1.469) (6.965) (110.288) (352.609)

POT-VaR
12.764 45.985 302.077 633.827
(3.071) (9.988) (92.917) (296.564)

Logn-VaR
9.672 20.495 81.022 133.404

(1.410) (3.381) (16.776) (29.843)
Emp. 12.765 42.022 270.568 491.888

The outcomes convey three messages. First, the II VaR is much closer to the empirical quantile
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Figure 14.: QQ-plot of the observed losses vs. observations simulated from the II-estimated g-and-h (upper panel) and of the
observed losses vs. observations simulated from the MLE-estimated g-and-h (lower panel).

than the MLE VaR, as expected given the better fit to the tail in Figure 14. Second, the VaR
computed by means of the g-and-h distribution estimated via II is approximately as precise as the
VaR obtained by means of the POT method. Finally, the lognormal VaR is too small at the highest
levels.

The large difference between the II and MLE approach is rather surprising at first sight, since,
in the simulation experiments of Section 3, the outcomes are never so far away from each other.
A tentative explanation, in line with the properties of the method (Jiang and Turnbull 2004,
Sect. 2.5), is that II might be more robust than MLE with respect to possible misspecifications of
the model: as suggested by the outcomes of the AD test in Table 2, the distribution of the data
considered in the present application is likely to be not exactly g-and-h, and II may outperform
MLE in a setup where the true data-generating process is not g-and-h. Further investigation of this
conjecture is beyond the scope of this paper, but is one of the issues in our future research agenda.

4.2. Operational risk

In this section we analyze operational risk losses recorded at the Italian bank Unicredit; a detailed
description of the data can be found in Hambuckers et al. (2018). Here we use the 152 losses observed
in business line BDSF (Business Disruption and System Failures) between 2005 and 2014. Figure
15 displays the data, scaled by an unknown factor for confidentiality reasons, along with the sample
skewness and kurtosis.

The estimates of the location and scale parameters computed via the quantile-based method are
â = 4989.7 and b̂ = 5503.3. The II and MLE estimates of the parameters g and h obtained with
standardized observations are shown in Table 4. The two approaches yield quite similar results,
and the null hypothesis of identical distributions is not rejected. Figure 16 displays the QQ plot of
true vs. observations simulated form the estimated models. Analogously to the previous section, on
the upper panel we display the results obtained with simulated data from the II-based estimated
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Figure 15.: Operational risk losses.

g-and-h distribution, whereas on the lower panel we use data simulated from the MLE-based g-
and-h distribution. The graphs confirm that the two estimated g-and-h distributions are almost
identical.

Table 5 reports the VaR measures computed via the g-and-h distribution, the POT method and
the näıve lognormal approach, as well as the empirical quantile1. In this case the VaRs obtained

from the g-and-h estimated via II (V̂ aR
II

) and MLE (V̂ aR
MLE

) are similar, but again V̂ aR
II

is

closer to the empirical quantile. On the other hand, both V̂ aR
II

and V̂ aR
MLE

are in line with
the empirical quantiles reported in the last line of the table. In terms of standard deviation, their
performance is mostly better than POT. Analogously to the previous application, the lognormal
underestimates the tail of the distribution.

Table 4.: Operational risk: Parameter estimates, bootstrap standard errors and p-value of the Anderson-Darling (AD) test.

g h Asym. AD p-value Sim. AD p-value

II
1.969 0.029

0.807 0.800
(0.264) (0.199)

MLE
2.050 0.028

0.954 0.956
(0.140) (0.012)

5. Conclusion

In this paper we have developed two approaches to the estimation of the parameters of the g-and-
h distribution. The results of the simulation experiments suggest that the numerical maximum

1We do not report the 99.5% empirical quantile because it makes little sense with a sample size as small as n = 152.
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Table 5.: Operational risk: VaR estimates and bootstrap standard errors obtained by means of the g-and-h distribution

estimated via II and MLE and by means of the POT method. For comparison purposes, the empirical quantile is reported in
the last line.

α = 0.9 α = 0.95 α = 0.99 α = 0.995

II-VaR
6.187 12.933 52.997 88.506

(0.872) (3.990) (32.760) (70.726)

MLE-VaR
6.371 14.259 61.500 104.708

(0.760) (3.396) (25.474) (54.535)

POT-VaR
6.351 14.384 45.926 68.128

(0.908) (3.818) (40.645) (83.807)

Logn-VaR
5.142 9.936 32.459 49.684

(1.212) (2.536) (10.02) (16.497)

Emp. 5.848 12.461 48.940 -
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Figure 16.: QQ-plot of the observed losses vs. observations simulated from the II-estimated g-and-h (upper panel) and vs.
observations simulated from the MLE-estimated g-and-h (lower panel).

likelihood method is more efficient in terms of RMSE, but suffers from large bias when the dis-
tribution is highly skewed. Indirect inference performs better in the empirical applications and
has a lighter computational burden, in particular when the sample size gets large. Moreover, the
g-and-h distribution seems particularly well suited to model highly asymmetric and heavy-tailed
data. For moderately skewed data, the scaled lognormal obtained when h = 0 may be a more
parsimonious option. Hence, it would be important to devise a test of the hypothesis H0 : h = 0,
which would provide the investigator with a data-driven model selection tool. This issue requires
further research.

It may be worth investigating the use of instrumental models other than the skewed-t distribution.
In so doing, one should probably restrict the analysis to models with two shape parameters, related
to skewness and kurtosis respectively. A thorough analysis of this issue is open to further research.

On the empirical front, the practicability of the proposed estimation techniques opens the door
for a wider use of the g-and-h distribution. Beyond insurance and operational loss data, hedge
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funds returns (Ding and Shawky 2007) or health data (Rigby and Stasinopoulos 2005) could be
considered in future applications.
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