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The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is having a massive impact
on public health, societies, and economies worldwide. Despite the ongoing vaccination program, treating COVID-19 remains a high
priority; thus, a better understanding of the disease is urgently needed. Initially, susceptibility was associated with age, sex, and
other prior existing comorbidities. However, as these conditions alone could not explain the highly variable clinical manifestations
of SARS-CoV-2 infection, the attention was shifted toward the identification of the genetic basis of COVID-19. Thanks to
international collaborations like The COVID-19 Host Genetics Initiative, it became possible the elucidation of numerous genetic
markers that are not only likely to help in explaining the varied clinical outcomes of COVID-19 patients but can also guide the
development of novel diagnostics and therapeutics. Within this framework, this review delineates GWAS and Burden test as
traditional methodologies employed so far for the discovery of the human genetic basis of COVID-19, with particular attention to
recently emerged predictive models such as the post-Mendelian model. A summary table with the main genome-wide significant
genomic loci is provided. Besides, various common and rare variants identified in genes like TLR7, CFTR, ACE2, TMPRSS2, TLR3, and
SELP are further described in detail to illustrate their association with disease severity.
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INTRODUCTION
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and
consequent COVID-19 have resulted in a serious threat to human health
and public safety. For almost 2 years now, both scientists and clinicians
have been trying to understand why a large group of individuals are
asymptomatic, while others undergo life-threatening viral pneumonia
and acute respiratory distress syndrome. Age, sex, and comorbidities
are relevant clinical variables in determining the response to SARS-CoV-
2 infection [1]. Nevertheless, these risk factors do not explain the
severity of COVID-19, particularly in healthy young subjects.
COVID-19 has demonstrated itself to be a complex multifactorial

disease, but its main environmental factor (SARS-CoV-2) is easily
detectable by a PCR-base swab test. Thus, it represents an accessible
disorder for identifying the role of human genetics in susceptibility
to infection. Indeed, classical twin studies have already stressed the
fact that there is a genetic component associated with the highly
varied clinical outcomes of COVID-19. A research team, based on
data from over 3000 TwinsUK volunteers completing the C-19
symptoms tracker app, found a substantial genetic influence for
delirium (heritability of 49%), diarrhea (heritability of 31%), fatigue
(heritability of 31%), anosmia (heritability of 19%), and for predicted
COVID-19 (heritability of 31%) [2]. Moreover, a recent work
compared the concordance rate in 10 pairs of young twins, 5
monozygotic (MZ), and 5 dizygotic (DZ), and reported a higher
concordance rate in the MZ group (83%), further supporting the
significant role of the genetic make-up in the variable clinical
manifestations of COVID-19 [3] (Fig. 1). On these bases, several
methods have been employed to reveal the genomic determinants
of COVID-19 susceptibility and severity. The classical approach,

based on genome-wide association studies (GWAS), has identified
some common polymorphisms in relevant genes [4–8], while the
Burden test, focused only on rare coding variants, has not identified
any significant associations until recently [8, 9]. On the other hand, it
is worth emphasizing the fast-growing role of machine learning
(ML) models in classification or clustering tasks in genomic datasets
[10]. One can expect that the latter will help in resolving the genetic
variation underlying COVID-19 by combining rare and common
variants into an overall predictive model.
Despite the ongoing vaccination programs and other preventive

measures, treating the disease remains a high priority. Thus, delineating
the virus-host interactions will be crucial to elucidate further COVID-19
pathogenesis and to translate these findings to improve patient care
and further drug developments for new virus variants as they arise.
This review summarizes the main approaches used thus far for

unbiased gene discovery and highlights relevant identified genes
associated with susceptibility or severity to COVID-19. While the
data reported here are definitely relevant for discussing COVID-19
prevention and treatment, this review will focus mainly on
methodology and disease mechanism, leaving therapeutic aspects
to another specific review.

HOW TO STUDY GENETIC SUSCEPTIBILITY OF COVID-19—
METHODOLOGIES FOR UNBIASED GENE DISCOVERY AND
MODEL PREDICTIVITY
GWAS
The most robust and traditional approach for gene discovery is
GWAS [11]. GWAS study single-nucleotide polymorphisms (SNPs)
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that are reported as clusters of correlated variants demonstrating
a statistically significant association with complex disorders.
These studies require sample sizes of ten/hundred thousand

subjects to have sufficient statistical power to detect a moderate
association while analyzing hundreds of thousands to millions of
SNPs Predominately, GWAS focus mainly on common variants,
usually with a minor allele (MAF) ≥5% whose effects are relatively
small. However, the inclusion of variants with a frequency of up to
1% can be achieved.
The GWAS approach is based on a straightforward comparison

of about 700,000 genomic SNPs frequencies in cases/controls.
Over 90% of GWAS variants fall in non-coding regions of the
genome and therefore do not directly affect the coding sequence
of a gene. Thus, deeper follow-up analyses are needed to pinpoint
the relevant genes. The coverage of the coding SNPs is usually
performed throughout imputed data, e.g., imputing 2 million SNPs
from 700k SNPs by linkage disequilibrium. A major limitation of
genome-wide approaches is the necessity to choose a high level
of significance, p < 5 × 10−8, because of the multiple independent
tests. Ultimately, the “missing heritability” problem of GWAS can
be partially explained by rare variants.
GWAS for COVID-19 have been facilitated by international

collaborations [12] that are sharing scientific methods and
resources to shed light on the genetic determinants of SARS-
CoV-2 infection and the outcomes of the resulting disease. Up to
date, multiple GWAS have successfully identified various genome-
wide significant loci associated with some aspect of SARS-CoV-2 or
COVID-19 (Fig. 2A) [4–8].

Burden test
Since GWASs focus on identifying common variants, it is probable
that the analysis of rare variants (MAF < 0.5%) could further contribute
to clarifying the role of rare genetic determinants in the etiology of
SARS-CoV-2 infection. In this context, another robust and traditional
method is the Burden test [13]. This approach is based on an
aggregation of rare, protein-altering variants and a comparison
between case and control subjects. The reasoning behind the burden
testing is that grouping variants with a large effect size at a gene level
might improve power. Like GWAS, the Burden test method needs

hundreds of thousands of participants to detect statistically significant
associations. Thus far, many working groups have tried to characterize
rare variants and explain the biological mechanism of patients with
severe COVID-19, but with no considerable proof of association yet
(Fig. 2B) [8, 9].

HOW MANY GENES ARE EXPECTED TO BE INVOLVED IN
COMPLEX DISORDERS?
Both GWAS and Burden tests were able to identify some tens of
genes that were not sufficient to explain the heritability of the
disease and to fully predict severity. New methodologies able to
identify the entire genetic variability, and combine both common
and rare variants are necessary.
When talking about complex diseases, height is the archetype

of polygenicity [14]. Such complex traits are products of many
genes which interact together in a complex way. Hundreds of
common variants, as well as rare and low-frequency variants, have
been reported to be associated with height [14, 15]. As stated by
Boyle et al. [14], the disease risk is mostly determined by genes
not directly relevant to the disease and by a much smaller number
with direct effects. The authors suggested that genetic features for
complex traits could reach thousands or even hundreds of
thousands.
COVID-19 is a complex multisystem disorder, and as such, a

much greater number of genes are expected to be involved; much
greater than the tens reported by GWAS and Burden tests.

Post-Mendelian model
Methods neglecting the combined contribution of common and
rare variants were unlikely thus far to thoroughly characterize the
host genetics underlying COVID-19. Thus, new ML methods are
under development [16–18].
One of these novel predictive models is the Post-Mendelian

model which was proposed to aggregate the effects of all genetic
components into a score, named Integrated PolyGenic Score
(IPGS) [16, 17]. The main steps necessary for the definition of this
IPGS were: (i) the representation of the genetic variability into a
separate set of Boolean features, representing variants of different

Fig. 1 Twin concordance. Estimated monozygotic (MZ) and dizygotic (DZ) twin concordance rates for various medical disorders. The
percentage referred to the inheritance (h2) for each condition has been calculated using the formula: h2= (CMZ – CDZ) / (1 – CDZ). In each
multifactorial trait, the concordance rate in MZ twins exceeds that in DZ twins. The demonstrated percentages reflect the heritability of the
conditions: the higher the monozygotic concordance, the more important the genetic contribution, and the higher the heritability. COVID-19
seems to have a high heritability with a concordance rate of 80% in MZ twins. Nevertheless, these observations were derived from a recent
study performed on 10 pairs of young twins [3]. Thus, further studies in larger sample sizes are needed to better evaluate the precise
heritability of COVID-19. Modified from [49]. The heritability (in percentage) of COVID-19 reported here was calculated considering the twin
pairs of the study [3] and another MZ twin pair mentioned in the same paper [3].
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frequencies and different models of heritability; (ii) the selection of
the features more likely to be predictive for the clinical phenotype;
and (iii) finally the identification of the weighting factors required
to combine common and rare variants into a unique score. As
described in Fig. 3, the variants were binarized into 0 or 1 based
on the absence or presence of variants in each gene. In the case of
common polymorphisms, 1 corresponds to different combina-
tions. The representation of the genetic variability by Boolean
features responds to two requirements. Firstly, the usage of
summary features at the gene level widely reduces the number of
input features. Moreover, this combination of single genetic
variants into gene-level variables highly facilitates the interpreta-
tion of the results. Interpretability is an important characteristic of

ML models for predicting COVID-19 phenotypes, as only an easily
interpretable model can be useful in clinical practice and
significantly contribute to diagnostic and therapeutic targeting.
The total number of input features with binary classification is
much lower than the number of genetic variants, but still, Boolean
features vastly outnumber the number of individual patients.
Logistic regression models with L1 regularization were used to
identify the most important subset of input features for predicting
the clinical phenotype. In L1 regularization, model parameters are
forced to be zero for any parameter associated with an input
feature that is not significantly predictive of the target variable (as
the derivative of the cost function with respect to a model
parameter does not depend on the magnitude of the parameter).
This procedure identified around 8000 features, corresponding to
around 4000 involved genes. This high number of genes is in
sharp contrast with the results described in previous sections
regarding GWASs and Burden test. However, it should be noted
that the aims of these three methods are also different. The scope
of the GWASs and Burden test is to identify variants that are
associated with the phenotype with some statistical significance.
Instead, the gene selection procedure described here identifies a
large set of genes likely to be predictive of the clinical phenotype.
The statistical significance is tested for the clinical predictions of
the model (i.e., testing that the final model is statistically more
predictive than a model not including IPGS), not for each single
input feature selected. For the definition of a predictive score
combining common and rare variants, it is important to keep in
mind the observation that variants at different frequencies are
expected to contribute differently to the phenotype, almost by
definition. The weighting factors of the various frequency terms
were estimated by optimizing the separation between mild and
severe cases provided by the IPGS.
To sum up, the final testing of the model in independent

cohorts proved that a model including IPGS was statistically more
predictive than a model predicting the severity from age and sex
alone. Furthermore, the high number of predicted genes (≈4000)
might be consistent with the “omnigenic” model of complex traits

Fig. 2 Methodologies for features selection. A Genome-wide association studies methodology for the study of SNPs. B Burden test
methodology for the study of rare coding variants. C Post-Mendelian model for the study of both common and rare coding variants.

Fig. 3 Boolean representation of genetic variants in the post-
Mendelian model. The upper chart demonstrates that the feature
“Mutated gene A” is defined by considering possible variants (ultra-
rare, rare, and low-frequency) of gene A. The feature “Mutated gene
B” is defined by the combination of two or more different common
coding variants.
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introduced by Boyle et al. In this context, the results of the post-
Mendelian model might offer good bases for further investigation
on peripheral genes, as well as explain the missing heritability in
COVID-19 (Fig. 2C).

Genes involved in COVID-19
As in all infectious diseases, besides the important role of
pathogen genetics, host genetics and physiology are essential
elements in defining the clinical course of disease in COVID-19
patients. Numerous studies have identified thus far several human
genetic variants that contribute to different responses to SARS-
CoV-2 infection.

GWASs and eQTL
Up to date, multiple GWASs have successfully identified various
genome-wide significant loci associated with clinical phenotypes
of COVID-19 susceptibility/severity that are summarized in Table 1.
The first GWAS detected the 3p21.21 locus (rs11385942) and

9q34.2 locus (rs657152) with a significance at the genome-wide
level of p < 5 × 10−8 [4]. The 3p21.21 locus was associated with
severe COVID-19 and respiratory failure, while the association
signal at locus 9q34.2 coincided with the ABO blood group locus.
In the cohort of this study, a blood-group-specific analysis was
further performed, which showed a higher risk in the A blood
group, and a protective effect in the O blood group compared
with other blood groups.
Another paper within the GenOMICC study was performed on

critically ill patients with COVID-19. The association signals
discovered were at locus 12q24.13 (rs10735079), 19p13.2
(rs74956615); 19p13.3 (rs2109069); and 21q22.1 (rs2236757) all
with a significance of p < 5 × 10−8. These signals were additionally
replicated and linked with life-threatening COVID-19 [5].
A more recent study brought together the largest number of

COVID-19 host genetics studies thus far employing standardized
methods [6]. This case–control GWAS meta-analysis of 46 studies
from 19 countries identified 13 distinct loci associated with SARS-
CoV-2 infection or COVID-19 with a significance of p < 1.67 × 10−8.
The strongest signal for increased susceptibility to SARS-CoV-2
infection was at the ABO locus, with variants in two additional loci
(PPP1R15A and SLC6A20). Nine loci were associated with an
increased risk of developing severe COVID-19 symptoms, includ-
ing variants in DPP9 (OR 1.29, p= 2.0 × 10−12) and FOXP4 (OR 1.2,
p= 6.0 × 10−13) that were previously shown to increase the risk for
interstitial lung disease. The lead variant in TYK2 (rs74956615)
(19p13.2), previously identified as an autoimmune disease-
protective variant, conferred an increased risk for hospitalization
due to COVID-19 (OR 1.43, p= 9.71 × 10−12). On the other hand,
the intronic variants 1q22 and rs1819040 in KANSL1 (17q21.31) (OR
0.96, p= 1 × 10−20) were associated protectively against COVID-
19-related hospitalization. Interestingly, the heritability of SARS-
CoV-2 infection was enriched in genes expressed in the lung
(p= 5 × 10−4). Overall, this meta-analysis suggests a polygenic
architecture of SARS-CoV-2 infection and COVID-19 severity.
The GenOMICC study on medRxiv and their latest published

work reported 22 replicated genetic associations with severe
COVID-19 and 3 additional loci discovered in 7491 critically ill
patients [7, 8]. Several variants associated with the life-threatening
disease were related to interferon (IFN) signaling, e.g., variants in
IL10RB (rs8178521) or PLSCR1 (rs343320). In addition, significant
associations were found in several genes implicated in B-cell
lymphopoiesis and differentiation of myeloid cells with the
strongest fine-mapping signal at 5q31.1 (chr5:131995059:C:T,
rs56162149). A new genetic association at 13q14 (rs1278769), in
ATP11A, has been already reported to be involved in lung disease.
Through transcriptome-wide association and colocalization, the
researchers found evidence that the reduced expression of the
membrane flippase ATP11A and increased mucin expression MUC1
(as the mediator of the association with rs41264915) contribute to

the development of critical disease. Ultimately, the set for the
FUT2 locus including the stop-gain, non-secretor allele (rs492602),
was shown to be protective against life-threatening COVID-19.
The GWAS conducted up to now have identified variants mainly

in the non-coding region of the genome, and therefore potentially
involved in gene regulation. The analyses of such variants in a
gene expression level have been done through studies on
expression quantitative trait loci (eQTLs) in an effort to pinpoint
the likely causative gene(s) at the associated loci and conse-
quently to discover the molecular pathways driving disease
pathogenesis.
Thus far, eQTL analyses have identified several likely causal

variants for the increased/decreased expression of relevant genes
associated with COVID-19 severity. For example, rs505922, a trans-
eQTL of CD209 was found to be associated with increased CD209
levels and COVID-19 severity. On the other hand, rs505922 was
interpreted as a cis-eQTL of the ABO protein and thus, it was
hypothesized that the decreased ABO plasma protein levels might
exert protective effects [19]. Another study identified five common
variants (rs3787946, rs9983330, rs12329760, rs2298661, and
rs9985159) at TMPRSS2/MX1(21q22.3) locus which were associated
with less severe disease [20]. While the key role of TMPRSS2 in viral
fusion is already explained in the above sections, MX1 is a
guanosine triphosphate-metabolizing protein involved in the
cellular antiviral response and induced by both type I and III IFN
pathways [21]. Of note, all five SNPs showed eQTL signals for MX1
in blood tissue. Specifically, the minor alleles of the five
polymorphisms correlated with an increased level of MX1
expression and were associated with a reduced risk of developing
COVID-19. These results demonstrate that MX1might be related to
the diverse clinical outcomes of COVID-19 and suggest that its
encoded protein could be a potential therapeutic target.
Regarding the OAS genes, which play an important role in the
innate immune response to viral infections, the intronic variant
rs4767027 resulted in increasing the expression of OAS1 and thus
decreasing the hospitalization risk [19]. Moreover, a recent study
characterized the association between COVID-19 GWAS loci and
eQTLs in 69 human tissues identifying colocalization of GWAS and
eQTL signals with an expression of 20 genes in 62 tissues [22].
Among them, the rs1886814 of the FOXP4 gene associated with
the severity of COVID-19, colocalized with a lung-specific eQTL
leading to an increased FOXP4 expression.

Common coding variants
For cell entry, the S protein of SARS-CoV-2 undergoes a two-step
cleavage before fusion. The first cleavage occurs between the S1
and S2 domain and it is performed by host cell proteases Tmprss2
and furin. The second cleavage occurs in the S2 domain to allow
membrane fusion. The TMPRSS2 gene variants have been shown
to play an important role in the interindividual differences in
COVID-19 susceptibility and severity. For example, the variant p.
(Val197Met) (rs12329760) emerged as a common variant, with a
minor allele frequency of 0.23 (European non-Finnish), in an Italian
cohort of 1177 COVID-19 affected patients and it was shown to
have a protective effect particularly in young males and elderly
women [23]. This missense mutation located at the exonic splicing
enhancer has a deleterious effect that weakens Tmprss2 stability.
As Tmprss2 protein promotes cellular entry of SARS-CoV-2, a faulty
expression of the protease may contribute to asymptomatic or
mild patients.
Coagulation abnormalities, like significantly increased levels of

P-selectin and other prothrombotic biomarkers, have been already
reported in severe COVID-19 patients [24]. P-selectin is a cell
adhesion molecule responsible for mediating the interaction of
activated platelets with leukocytes. Its involvement in thrombotic
events in various conditions has already been described [25]. A
recent study performed within the Italian GEN-COVID cohort
identified an association between the homozygous state of the
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Table 1. GWAS loci in COVID-19.

Locus chr:
pos (hg38)

REF ALT rs OR Consequence Genes References

1 1:155066988 C T* rs114301457 2.40 Synonymous EFNA4 [7, 8]

2 1:155175305 G A* rs7528026 1.39 Intron TRIM46 [7, 8]

3 1:155197995 A* G rs41264915 1.20 Intron THBS3 [7, 8]

4 2:60480453 A* G rs1123573 1.13 Intron BCL11A [7, 8]

5 3:101705614 T* C rs11919389 1.02 Downstream ZBTB11, RPL24, CEP97, NXPE3 [6]

6 3:146517122 G A* rs343320 1.25 Missense PLSCR1 [7, 8]

7 3:45796521 G T* rs2271616 1.26 5’UTR SLC6A20 [7, 8]

3:45823240 T C* rs10490770 1.88 Downstream LZTLF1 [6]

3:45834968 AA AAA* rs11385942 1.77 Intron SLC6A20, LZTFL1, FYCO1, CXCR6, XCR1, and CCR9. [4]

3:45859597 C T* rs73064425 2.71 Intron LZTLF1 [7, 8]

8 5:131995059 C T* rs56162149 1.20 Intron ACSL6 [7, 8]

9 5:132441275 T C* rs10066378 1.20 Intron IRF1-AS1 [7]

10 6:41534945 A C* rs1886814 6.17 eQTL, Intron FOXP4 [6, 22]

11 6:29831017 A* G rs9380142 1.3 3’UTR HLA-G [5]

12 6: 32180146 A G* rs3131294 1.1 Intron NOTCH4 [5]

13 6:32623820 T* C rs9271609 1.14 Upstream HLA-DQA1 [7]

14 6:41515007 A* C rs2496644 1.45 Intron LINC01276 [7]

15 8:124324323 T C* rs72711165 1.227 Intron TMEM65 [6]

16 9:133257521 A C* rs657152 1.32 Intron ABO [4]

9:133274084 C* T rs912805253 1.14 eQTL, Intron ABO [6, 22]

17 11:34482745 G* A rs61882275 1.27 Intron ELF5 [7, 8]

18 9:21206606 C G* rs28368148 1.45 Missense IFNA10 [7]

19 12:113363550 C T* rs6489867 1.3 Intron OAS1–OAS3 [5]

12:112919388 G A* rs10774671 1.2 eQTL, Splice
Acceptor
Variant

OAS1–OAS3 [6, 22]

12:113380008 G A* rs10735079 1.3 Intron OAS1–OAS3 [5]

20 12:132489230 GC G* rs56106917 1.13 eQTL,
Upstream

FBRSL1 [7, 8]

12:132479205 G A* rs4883585 1.13 Upstream FBRSL1 [7]

21 13:112889041 C T* rs9577175 1.18 Downstream ATP11A [7, 8]

22 15:93046840 T* A rs4424872 1.04 Intron RGMA [7, 8]

23 16:89196249 G* A rs117169628 1.18 eQTL,
Missense

SLC22A31 [7]

24 17:46142465 T* A rs1819040 1.1 eQTL, Intron ARHGAP27, PLEKHM1, LINC02210-CRHR1, CRHR1,
SPPL2C, MAPT, STH, KANSL1, LRRC37A, ARL17B,
LRRC37A2, ARL17A, NSF, WNT3

[6, 22]

25 17:49863260 C A* rs3848456 1.50 regulatory – [7, 8]

26 17:49863303 C T* rs77534576 1.45 Downstream KAT7, TAC4 [6]

27 19:10466123 T C* rs11085727 1.3 eQTL, Intron TYK2 [5, 22]

19:10317045 T A* rs74956615 1.6 eQTL,
Downstream

ICAM1, ICAM4, ICAM5, ZGLP1, FDX2, RAVER1, ICAM3,
TYK2

[5, 6]

19:10352442 G* C rs34536443 1.5 eQTL,
Missense

TYK2 [7, 8]

19:10305768 G A* rs73510898 1.24 eQTL, Intron ZGLP1 [7, 8]

28 19:4719431 A G* rs2109069 1.4 Intron DPP9 [5]

19:4717660 A G* rs12610495 1.3 Intron DPP9 [7, 8]

29 19:48697960 C T* rs368565 1.15 eQTL, Intron FUT2 [7, 8]

30 19:48867352 G* T rs4801778 1.1 Intron PLEKHA4, PPP1R15A, TULP2, NUCB1 [6]

31 21:33230000 C A* rs17860115 1.24 eQTL, 5’UTR IFNAR2 [7, 8, 22]

21:33242905 T* C rs13050728 1.23 eQTL, Intron IFNAR2 [6, 22]

32 21:33287378 C T* rs8178521 1.18 eQTL, Intron IL10RB [7, 8, 22]

33 21:33959662 T TAC* rs35370143 1.26 Intron LINC00649 [7, 8]

21:33914436 A G* rs12626438 1.22 Intron LINC00649 [7]

REF reference allele, ALT alternate allele, OR odds ratio of the risk allele.
Asterisk (*) corresponds to the risk allele.
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functional polymorphism p.(Asp603Asn) (rs6127) in P-selectin
gene (SELP) and COVID-19 severity in a subcohort of 513 male
subjects [26]. Indeed, the SELP rs6127 has been already linked with
thrombotic risk since, jointly with other coding polymorphisms, it
makes the P-selectin more efficient at recruiting leukocytes to the
endothelium [27].
Another characteristic observed in severe patients is impaired

consciousness, including delirium [28]. On this basis, ApoE e4
alleles have been tested in an attempt to find a correlation with
COVID-19 severity, as ApoE e4 genotype has been associated with
both dementia and delirium [29]. Interestingly, individuals
homozygous for ApoE e4 (rs429358) have twice the risk of severe
COVID-19 compared to the most common ApoE e3e3 genotype.
This increased incidence of severe COVID-19 might be due to the
regulation of proinflammatory pathways and lipoprotein function
being affected by the ApoE e4 genotype [30].
Common coding polymorphisms linked with COVID-19 severity

have been identified also in genes of the innate immune system
like the TLR3 gene. Given the protective role of TLR3 in other
infectious diseases [31], an association between the functional
variation in its gene and COVID-19 incidence was hypothesized.
Specifically, the common missense variant in exon 4, p.
(Leu412Phe) (rs3775291) was considered since it has been already
reported to affect TLR3 expression and the subsequent activities
needed for proper signaling [32]. This variant showed a poor
recognition of SARS-CoV-2 dsRNA compared to the wild type in
molecular docking analysis, suggesting impaired immune protec-
tion. A population-scale study performed a Pearson correlation
coefficient analysis on data from 40 countries (p value <0.05 was

considered significant) to identify a probable genetic association
of Toll-like receptor (TLR) mutant rs3775291 with COVID-19
susceptibility, mortality, and percentage recovery [33]. Indeed,
this statistical analysis demonstrated that even though there was
no correlation between rs3775291 mutant and percentage
recovery of COVID-19 patients, there was a significant positive
correlation of TLR3 mutant (rs3775291) with SARS-Cov2 suscept-
ibility and mortality due to COVID-19 with p values of 0.0137 and
0.0199, respectively. Further evidence for the TLR3 polymorphism
rs3775291 was given by a nested case–control study within the
Italian GEN-COVID cohort [34]. In this study, the Italian group not
only found a prevalence of the variant in cases rather than in
controls, but the performed experiments also suggested the
importance of autophagy downstream of the TLR3 receptor. An
abolished production of TNF-α is translated in absence of
autophagy and thus in susceptibility to infections, including
SARS-CoV-2.
Some of the above-described genes with common coding

variants implicated in COVID-19 are illustrated in Fig. 4 (left panel).

Rare coding variants
Delineating the role of rare variants in COVID-19 is important to
elucidate the pathogenic mechanisms in various subsets of SARS-
CoV-2-positive individuals. Thus far, different studies have
reported several rare variants that might influence COVID-19
outcomes.
ACE2 has been a target gene for research works, as it is

indispensable for SARS-CoV-2 to enter cells. An early study
performed on the Italian population mined whole-exome

Fig. 4 Examples of genes involved in COVID-19 through either common or rare variants. The figure illustrates examples of common (left)
and rare (right) variants contributing to either COVID-19 severity or mildness. = contributing to COVID-19 severity; = contributing to
COVID-19 mildness. Pink faces = contributing to females only; Blue faces = contributing to males only; Pink/Blue faces = contribution in both
sexes. In parentheses: AD= autosomal-dominant inheritance; AR= autosomal-recessive inheritance; XL= X-linked recessive inheritance.
A The common coding polymorphisms p.(Leu412Phe) in the TLR3 gene and p.(Asp603Asn) in the SELP gene were associated with COVID-19
severity. The coding polymorphisms denoted with an asterisk, are in LD with genomic SNPs already associated with critical illness: SFTDP gene
encoding for SP-D protein, PPP1R15A gene encoding for GADD34 protein. OAS1 haplotype A= c.1039-1G>A, p.(Gly162Ser), p.(Ala352Thr), p.
(Arg361Thr), p.(Gly397Arg), p.(Thr358Profs*26). OAS1 haplotype B= haplotype without the variant combination in haplotype A. B Rare
mutations in the Toll-like receptors TLR7, TLR3, and TICAM1 (encoding TRIF protein), already reported associated with XL, AR, and AD
inheritance, impair type I IFN cell-intrinsic immunity. The specific location of TLR7/8 (on the X chromosome) is responsible for opposite effects
in males and females. In lung epithelial cells, ACE2 rare variants exert protective effects presumably due to lowering virus entrance. Rare
variants of the CF-causing rare variants are associated with severity in both sexes.
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sequencing data of 6930 Italian controls individuals from five
different centers looking for ACE2 variants [35]. Besides identifying
more common variants potentially affecting protein structure, the
research group also revealed rare variants that might explain a
diverse affinity for the SARS-CoV-2 S protein. Three missense
variants p.(Val506Ala), p.(Val209Gly), and p.(Gly377Glu) were
predicted to destabilize the protein structure. Likewise, the rare
variants namely p.(Pro389His) and the p.(Leu351Val) were
predicted to cause conformational changes in ACE2, thus affecting
the internalization process of the virus.
Furin protease, ubiquitously expressed, is considered a key

player that mediates the maturation of S protein processing and
recognition of membrane proteins. This evidence makes furin a
crucial molecule for SARS-CoV-2 and ACE2 receptor interaction. In
particular, recent data correlates the role of furin protein with
severe cardiovascular events in COVID-19 patients, a hypothesis
supported by a high level of furin in the peripheral blood of heart
failure patients [36]. A variant, p.(Arg298Gln) (rs769208985) was
identified in COVID-19 patients among other rare variants in the
furin gene PCSK3 [37]. The amino acid change from arginine to
glycine occurred in a very highly conserved position near the
substrate-binding residues. In silico analyses showed that the
variant might not alter the structure of the protein, but it could
affect furin recognition of the SARS-CoV-2 S protein.
If the virus makes it through the target cell, the host immune

system recognizes it, eliciting the innate or adaptive immune
response. TLRs are key elements in the activation of innate
immune responses to a variety of pathogens, generating the
production of proinflammatory cytokines such as TNF-α, IL-1, IL-6,
and type I and II IFNs. Among different types of TLRs, TLR7
recognizes single-stranded RNA of many viruses including SARS-
CoV-2 [38]. In July 2020, van der Made et al. [39] reported rare,
deleterious germline variants in the TLR7. In this case series of four
young men from two unrelated families with severe COVID-19, the
identified variants were a maternally inherited 4-nucleotide
deletion (c.2129_2132del; p.(Gln710Argfs*18)), and a missense
variant (c.2383G>T; p.(Val795Phe)). These unique loss-of-function
variants were linked with abrogated production of type I and II IFN
responses in the patients’ peripheral blood mononuclear cells

when stimulated with the TLR7 agonist, imiquimod. Furthermore,
a more recent nested case–control study identified in the TLR7
gene, loss-of-function variants such as p.(Ser301Pro), p.
(Arg920Lys) (rs189681811), and p.(Ala1032Thr) (rs147244662)
found in 2.1% of young males with severe COVID-19 [40].
Examples of families affected by severe CVOID-19 due to TLR7
are depicted in Fig. 5. The corresponding functional gene
expression analysis was in line with the previously described
study; reduced expression of TLR7 in cases compared to controls
and impairment in type I and II IFN responses. These findings
elucidate the crucial role of TLR7 in the recognition of SARS-CoV-2
and in the following elicitation of an early antiviral immune
response that could prevent the progress into a severe form of
COVID-19.
Besides TLR7, inborn errors of type I IFN immunity were found

as well to be implicated in the development of a severe form of
COVID-19 [41]. The COVID Human Genetic Effort Consortium [42]
examined the genetic basis in cases with critical COVID-19
pneumonia and discovered rarely predicted loss-of-function
variants in human genes known to regulate TLR3 and the
interferon regulatory factor 7 (IRF7)-dependent type I IFN
immunity. Specifically, the disease-causing variants were found
in the following genes: TLR3, UNC93B1, TICAM1, TBK1, IRF3, IRF7,
IFNAR1, IFNAR2. From 659 tested unrelated patients, at least 3.5%
(23) of them suffered autosomal-recessive or autosomal-dominant
deficiencies at one of the eight mentioned loci. The results of this
study reinforce the key role of TLR3 as a double-stranded RNA
sensor and type I IFN cell-intrinsic antiviral immunity in hindering
SARS-CoV-2 infection.
Another interesting gene that has been under investigation is

CFTR. Given that either COVID-19 or cystic fibrosis (CF) affects the
respiratory tract, exploring the interaction between both diseases
may guide the development of future treatments. A research work
performed on a cohort study of 874 Italian individuals diagnosed
with COVID-19 identified validated CF-causing variants [43]. The
CF carriers represented 8.7% of mechanically ventilated patients
and were significantly younger compared to noncarriers with a
mean age of 51 and 61.42 years, respectively. These data suggest
that the individuals harboring CF-causing variants are more

Fig. 5 Families affected by severe COVID-19 due to TLR7. The disease segregates as an X-linked recessive trait conditioned by the viral
infection. Relatives mutated but not yet infected are at risk of severe COVID-19 if infected. Families on the left are reported in Fallerini et al.
[40]. Families on the right are reported in Mantovani et al. [50]. The specific TLR7 mutation is reported at the bottom of each pedigree. red X:
chromosome bearing the mutation; symbol of the virus: infected subject. Red symbol = severely affected COVID-19 patients. White symbol =
healthy subjects.
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susceptible to the severe form of COVID-19. The latter has also
been hypothesized by others [44].
The genes described in this section are depicted in Fig. 4 (right

panel).

Future perspectives
The methods for gene discovery described in this review are
based on the simplified assumption that cases and controls are
homogeneous. However, several pieces of evidence are suggest-
ing that COVID-19 is not the case. COVID-19 is a systemic disorder
involving several organs and tissues, not only the lungs.
Hierarchical clustering analysis indicates the presence of different
phenotypic clusters among severe cases [45]:

(A) severe multisystemic disease, with either thromboembolic
(A1) or pancreatic variant (A2);

(B) cytokine storm, either moderate (B1) or severe with liver
involvement (B2);

(C) moderate disease, either without (C1) or with (C2) liver
damage;

(D) heart-type, either with (D1) or without (D2) liver damage
(E) Also, mild cases can be divided at least in:
(F) mild disease, either with (E1) or without hyposmia (E2)

Furthermore, it is likely that by shifting the phenotypic level of
analysis from the clinical level to laboratory analysis, additional
heterogeneity will emerge. For example, concerning the immune
system, the group of Prof. Katsikis [46], using a relatively low
number of cases, and 17 laboratory variables, was able to identify
two different immunophenotypes in severe cases, which are
distinct from the immunophenotype of mild cases.
ML methods, considering this heterogeneity, are necessary for

further improving the post-Mendelian model. As an example, a
possible method that could be used to accomplish this aim is
topological data analysis (TDA). TDA is an emerging approach for
analyzing high-dimensional data using tools from the mathema-
tical field of algebraic topology [47], which is useful for gaining
insights into large-scale datasets, thanks to dimensionality
reduction and robustness to noise. By taking into account both
geometric and topological characteristics of multi-dimensional
data, TDA leads to better results than using traditional analytical
methods by preserving the complex relationships within the data
and examining them together. This approach has been already
used for biological issues but only at the transcriptional level [48],
while its use at the genomic level is still unexplored but very
promising. With the increase in data availability and a better
knowledge of the mechanisms involved in COVID-19 severity,
novel approaches for linking severity and susceptibility to the
disease to host genetics are likely to emerge.
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