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LOS/NLOS Near-Field Localization with a Large
Reconfigurable Intelligent Surface

Davide Dardari, Senior Member, IEEE, Nicoló Decarli, Member, IEEE,
Anna Guerra, Member, IEEE, Francesco Guidi, Member, IEEE

Abstract—This paper considers a scenario where a recon-
figurable intelligent surface (RIS) is deployed to allow the
localization of mobile users adopting a single anchor node,
even under non-line-of-sight (NLOS) channel conditions. When
the RIS is large and the operating frequency is high, as
in the millimeter-wave band, the system is likely to operate
in the near-field propagation regime, which can be exploited
to obtain robust localization. To this purpose, two practical
signaling and positioning algorithms, based on an orthogonal
frequency division multiplexing (OFDM) downlink system, are
proposed along with methods to design the RIS time-varying
reflection coefficients. In the numerical results, the two algorithms
are compared in terms of performance in the presence of a
synchronization mismatch and considering trade-offs between
bandwidth, overhead, operating frequency, and latency. Finally,
we provide an analysis of the soft-coverage capability, i.e., on the
possibility of maintaining a high level of localization accuracy
when in the presence of increasing levels of obstruction of the
RIS.

Index Terms—Holographic localization, reconfigurable intelli-
gent surfaces, near-field positioning, NLOS, OFDM

I. INTRODUCTION

STARTING from fifth-generation (5G) wireless networks,
localization has become a by-design and essential feature

which is fundamental not only to enable new location-aware
services but also to assist communication tasks. Recently,
the focus of research has shifted to next-generation wireless
networks (6G) that are expected to be characterized by very
stringent requirements in terms of localization accuracy, reli-
ability, and latency [1]. The adoption of new frequency bands
at millimeter-wave (mmWave) and terahertz guarantees higher
available bandwidths, corresponding to potentially higher po-
sitioning accuracies [2]–[5] but, at the same time, it opens up
new challenges in terms of coverage and reliability because
signals can be blocked by obstacles and the multipath may
not be sufficient to guarantee a suitable coverage in non-line-
of-sight (NLOS) channel conditions. In this context, the main
question becomes how to ensure an ultra-reliable localization
and communication in harsh propagation environments, such
as in industrial Internet of Things (IoT) applications, without
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a massive and costly deployment of base stations (BSs) (i.e.,
cell densification).

A promising technology to tackle this problem is repre-
sented by metasurfaces made up of metamaterials, which allow
the realization of programmable intelligent surfaces offering
a high degree of flexibility in managing the electromagnetic
(EM) field. Initially introduced to boost the communication
performance in terms of coverage and channel rank im-
provement, active and passive intelligent surfaces have also
been proposed to enhance the localization of mobile user
equipments (UEs) in the presence of only one BS (often
called anchor node). Indeed, active intelligent surfaces can be
successfully adopted to realize very large antennas allowing
single-anchor localization by exploiting the wavefront cur-
vature occurring in (radiating) near-field propagation condi-
tions, as investigated in [6], [7], thus extending the results
already available for traditional large antenna arrays [8]–[10].
In order to reduce the complexity, very large antennas can
also be realized by combining a passive intelligent surface
acting as a lens and a single antenna forming a transmitarray
configuration [7], [11]. On the other hand, single-anchor local-
ization can also be achieved by deploying passive reflecting
reconfigurable intelligent surfaces (RISs) [12]. Nevertheless,
improving localization by leveraging passive reflecting cells is
not new. In [13], ultrawide bandwidth (UWB) passive relays
were introduced to generate artificial multipath which can be
exploited to allow positioning when the number of visible
anchor nodes is not sufficient to infer the position of the mobile
UE. Following a similar philosophy, the authors in [14]–[16]
proposed the exploitation of natural specular reflections caused
by the environment in order to generate “virtual anchors”
providing position information from different points of views.

Centimeter-level accuracy has been demonstrated theoret-
ically and experimentally in [17]–[19] using passive UWB-
radio frequency identification (RFID) tags whose reflection
properties change with time according to some unique se-
quences (backscatter modulation). The way each tag works
is similar to that of each cell of a RIS. In fact, in both
cases, the reflection coefficient is dynamically changed to
allow the extraction of the tag/cell-reflected signal component
that can be exploited for localization. The authors in [17]–
[19] have shown that, by properly designing the sequences
and processing schemes, it is possible to isolate the signal
component of each tag from the dominant clutter generated by
the surrounding environment, thus allowing reliable detection
and precise ranging by measuring the round-trip time of the
signal. Thanks to this similarity, some solutions designed for



UWB-RFID tags can be adapted and successfully applied to
a RIS as well, as done in Sec. III.

More recently, scenarios with RIS-assisted localization have
been considered, as already mentioned, where the signal
emitted by a BS is reflected in a controlled manner by
the RIS and then exploited to localize a UE [12]. In some
sense, RIS-based localization can be seen as the fusion of
the aforementioned approaches, where each cell of the RIS
employs backscatter modulation and the reflected signals are
considered to be generated by intelligent virtual anchors. In
this context, some papers have focused on the derivation of
fundamental limits. Specifically, in [20] the position error
bound (PEB) is derived in an uplink scenario showing the
improvement of the localization accuracy obtainable when a
RIS is present. In [21], the Cramér-Rao bound (CRB) has been
examined in an uplink scenario where a single-antenna UE
sends a UWB signal which is received by a multi-antenna BS.
The BS takes advantage of the time resolution offered by the
UWB signals to discriminate the signal components coming
from the cells of the RIS. The authors in [22] investigate in
terms of CRBs in a downlink scenario the advantage of RISs
over schemes that exploit only the natural scattering of the
environment. A similar scenario is analyzed in [23], where
the position and the orientation error bounds are derived in a
multiple-input multiple-output (MIMO) configuration.

Some practical RIS-aided localization algorithms can be
found in [24]–[28]. In [24], [25], a received signal strength
(RSS)-based multi-user positioning scheme is proposed in
which the phase profile of the RIS’ cells is optimized to
obtain a favorable RSS distribution in space, and thus better
discrimination of the RSS signature of neighboring locations.
In [26], a machine learning method for RSS-based finger-
print localization is investigated. The authors demonstrate that
the diversity offered by RISs can be successfully used to
generate reliable radio maps. Although RSS-based techniques
require simple hardware, in general they do not provide the
same performance as schemes that take full advantage of the
characteristics of the received signal. The authors in [27],
[28] consider a single-input single-output (SISO) orthogonal
frequency division multiplexing (OFDM) downlink scenario
with a RIS in far-field regime. Starting from the derivation of
the PEB, they propose a low-complexity localization algorithm
that estimates the time-of-arrival (TOA) of the direct path and
the path reflected by the RIS, as well as the angle-of-departure
from the RIS, to infer the position of the UE also considering
the synchronization mismatch. The estimation of signal delays
is obtained by accumulating a large number of pilot symbols
and considering a random phase configuration of RIS’ cells,
as also proposed in some RIS-aided channel state information
(CSI) estimation algorithms (see, for example, [29]).

The main limitation of previous literature on localization
algorithms is that the RIS is considered in the far-field
propagation regime with respect to the BS and UE, thus
simplifying the problem because only a couple of parameters
is sufficient to describe its reflection capability. Indeed, the
proposed schemes require the visibility of the BS from the
UE to compare the signal reflected by the RIS with that
received directly from the BS. Furthermore, the component

of the signal reflected by natural scatterers (clutter), which
may be dominant with respect to the signals reflected by the
RIS, especially in the presence of metal, is often neglected in
the analysis. To implement practical localization systems, it
is of interest the design of localization algorithms capable of
providing satisfactory performance when the UE and the BS
are in NLOS, and with a RIS partially obstructed with respect
to the UE. Moreover, an analysis of the trade-offs between
bandwidth, overhead, and latency in RIS-aided localization is
still missing to the best of the authors’ knowledge.

In this paper, we consider the problem of single-anchor
localization assisted by RIS, where a large RIS is used to
address the issue of coverage in scenarios characterized by
frequent NLOS conditions. Unlike the situations studied in
previous papers, where RISs are assumed to work in far-
field conditions with respect to BS and UE positions, here
the presence of a large RIS makes the far-field hypothesis
no longer valid at practical distances and at high frequencies.
For instance, the Fraunhofer distance, which conventionally
determines the boundary between the (radiating) near- and far-
field regions [30], is approximatively 2 ·103 m and 19 ·103 m at
3 GHz and 28 GHz, respectively, for a RIS of size D = 10 m.
Therefore, indoor positioning systems are expected to operate
primarily in the near-field propagation regime.1 Although the
near-field condition renders most of the previously-proposed
positioning approaches not applicable, it opens up new op-
portunities to localize the UE even under NLOS conditions
providing a soft-coverage capability, i.e., the maintenance of
high localization accuracy with different levels of obstruction
of the RIS, as will be investigated in this paper. In this
context, we propose two methods of signaling and positioning,
characterized by different complexity, performance, latency,
and overhead requirements. Both approaches can work with
an asynchronous OFDM SISO system in the presence of a
synchronization mismatch, under NLOS conditions, and with
a potentially unlimited number of UEs since the localization
process relies on downlink signals only. The first positioning
method works with both narrowband and wideband signals,
whereas the second only works with wideband signals.

To exploit the near-field condition, an electrically large RIS
is needed. However, in a typical scenario where the required
positioning is almost 2D, it is sufficient that the RIS is large
only in one dimension. Therefore, for a fixed area (i.e., cost) of
the RIS, a stripe-like RIS, briefly referred to as linear RIS,2

is more appealing than a conventional square-shape RIS. In
addition, a linear RIS allows for an easier deployment along
the room’s perimeter than a planar RIS which might occupy
large portions of the wall. Compared to the situation typically
faced in which one or more squared RISs are considered, the
adoption of a large linear RIS has the advantage to reduce
the possibility that the whole RIS is completely obstructed by
obstacles with respect to the BS and UE, thus leading to a

1A more accurate investigation of the near-field condition for localization
goes beyond the definition of the Fraunhofer distance, as investigated in [6]–
[10].

2In this paper, we use the term linear for convenience only, although the
RIS is not mono-dimensional, but simply to denote that its height is much
smaller than its width.
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Fig. 1. Scenario employing a large RIS.

soft-coverage capability with reduced area, as it will be pre-
sented in this paper. For these reasons, although the proposed
solutions apply to RISs of any shape, we focus our numerical
investigations on large linear RISs. In the numerical results,
the trade-off between bandwidth (number of subcarriers) and
the number of pilot symbols (i.e., OFDM symbols) dedicated
to positioning is examined, which indirectly provides the
trade-off between the overhead for positioning and latency.
Comparisons in terms of design strategies of RIS coefficients
and carrier frequencies are shown to illustrate their effect and
impact on localization accuracy and coverage. Finally, the
analysis of the soft-coverage capability is provided.

The remainder of this paper is organized as follows. In
Sec. II, the models of the RIS, the channel, and the OFDM-
based system are described. The properties of the RIS coef-
ficients required to allow the extraction of the signal com-
ponents related to the direct link, multipath, and RIS tiles,
are introduced in Sec. III. In Sec. IV and Sec. V, a direct
and two-step positioning algorithms exploiting the various
signal components are proposed. For comparison, theoretical
performance bounds are derived in Sec. VI. Numerical results
and discussions are presented in Sec. VII. Finally, conclusions
are drawn in Sec. VIII.

II. SYSTEM MODEL

With reference to Fig. 1, we consider an OFDM SISO
system where one BS, located in position pTX, acts as trans-
mitter (TX) and one mobile UE as receiver (RX) that aims
to estimate its own position p by exploiting the presence of
a RIS synchronized with the BS. To accomplish this task, the
BS sends T OFDM pilot symbols {xt,n}, with t = 1, 2, . . . ,T
and n = 1, 2, . . . , N , where N denotes the number of sub-
carriers used by the pilot symbols out of a total number
of subcarriers Nt. The generic subcarrier n has frequency
fn = fc + (n− (N + 1)/2)∆ f , n = 1, 2, . . . , N , with fc being the
carrier frequency, and ∆ f the subcarrier spacing.

The RIS consists of K tiles located in known positions pk ,
k = 1, 2, . . . ,K , each of them composed of Ne sub-wavelength
unit cells arranged to form a planar array of Nx × Ny cells of
size At = Lx × Ly with spacing dx and dy , respectively. The
organization of a RIS in tiles follows the approach proposed
in [31] to make large RISs optimization scalable so that

the number of parameters to be optimized and hence the
implementation complexity of the RIS are reduced. If the
EM wavefront can be approximated as plane within the area
of each tile, then the flexibility of the RIS to transform the
impinging EM wave is not significantly compromised with
respect to a RIS where all the cells are programmed indepen-
dently [31]. Accordingly, we suppose that the phase of the
reflection coefficient of each tile (common to all its cells) can
be programmed independently from the other tiles and can be
dynamically modified during the reflection of the pilot symbols
according to some predefined sequence that will be specified in
Sec. VII. In particular, considering each tile (but not the entire
RIS in general) in far-field condition, the reflection coefficient
at time t ∈ {1, 2, . . .T} of tile k ∈ {1, 2, . . .K}, in the presence
of an incident plane wave with 3D angle Θ(i)

k
=

(
θ(i)
k
, φ(i)

k

)
and

observed at angle Θ(r)
k
=

(
θ(r)
k
, φ(r)

k

)
, is modeled as3 [31]–[33]
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where

AF(Θ) =
1
√

Ne

sin
(
πNxdx

λ sin θ sin φ
)

sin
(
πdx

λ sin θ sin φ
) · sin

(
πNydy

λ sin θ cos φ
)

sin
(
πdy

λ sin θ cos φ
)
(2)

is the array factor of the tile [30], [31], F(Θ) is the normalized
power radiation pattern that accounts for the non-isotropic
behavior of the single cell of the tile, Gc is the boresight cell
gain, Ψt,k is the reflection phase, λ = c/ fc is the wavelength
and c is the speed of light. For instance, in [33], [34] the
following parametric shape for F(Θ) is considered

F(Θ) =
{

cosq(θ) θ ∈ [0, π/2] , φ ∈ [0, 2π)
0 otherwise (3)

where parameter q depends on the specific technology as well
as on the size of the cell, and it is related to the boresight gain
Gc = 2 (q + 1). Following an approach similar to that in [33],
one possibility is to set Gc so that the effective area of the cell
is equal to its geometric area Ac, i.e., Gc = Ac 4π/λ2, assuming
an ideal radiation efficiency. Considering, for instance, a cell
with square area Ac = (λ/2)2, it follows that Gc = π ' 5 dBi,
and q = 0.57. Regarding the reflection phase Ψt,k , in the
numerical results we will consider the ideal case where it can
take any value in the range [0, 2π), and a more practical case
where it can take only the binary values {0, π}.

The (complex) coefficient representing the direct channel
between the TX and the UE for subcarrier n is indicated as

h(d)n = h(dp)
n + h(mp)

n (4)

where h(dp)
n is the direct path component, different from zero

when the UE is in line-of-sight (LOS) with respect to the BS,

3We adopt the conventional spherical coordinate system centered at the tile,
where φ ∈ [0, 2π) (azimuth) and θ ∈ [0, π) (inclination), with respect to the
plane of the tile, as shown in Fig. 1.



and h(mp)
n is the multipath component. Specifically, the direct

path component is given by

h(dp)
n =ξ0

√
GT GR PT/Nt λn

4π ‖pTX − p‖

· exp
(
− 

2π fn
c
‖pTX − p‖ + 2π fnt0 + φ0

)
(5)

where t0 and φ0 are the clock and phase offset between the TX
and RX, respectively, λn = c/ fn, PT is the total transmitted
power, GT is the TX antenna gain and GR is the RX antenna
gain. Note that, in an asynchronous system, t0 and φ0 are not
known (synchronization mismatch). The random coefficient ξ0
indicates the LOS/NLOS state of the direct path, i.e., ξ0 = 0
if the direct path is obstructed (NLOS), whereas ξ0 = 1 if in
LOS. For what the simulation of the multipath component is
concerned, we assume the widely-used L-path model

h(mp)
n =

L∑
l=1

αl exp (− 2π fn(τl + τd − t0)) (6)

with τd = ‖pTX − p‖ /c being the TOA of the direct path, αl
and τl being random variables (RVs) expressing, respectively,
the amplitude and delay (relative to τd) of the lth path.

The coefficient of the channel between the TX and the kth
tile of the RIS for subcarrier n (kth forward channel) is

g
(r)
n,k
= g
(dp)
n,k
+ g
(mp)
n,k

(7)

with g
(dp)
n,k

and g
(mp)
n,k

representing the direct and multipath
forward components, respectively, with the latter modeled ac-
cording to the statistical model as in (6). The direct component
of the kth forward channel can be written as

g
(dp)
n,k
=ξk

√
GT PT/Nt λn

4π | |pTX − pk | |

· exp
(
− 

2π fn
c
| |pTX − pk | | + 2π fnt0 + φ0

)
(8)

where the coefficient ξk denotes the LOS/NLOS state of
the kth forward channel. Similarly, the channel coefficient
between the kth tile of the RIS and the UE for subcarrier
n (kth backward channel) is

b(r)
n,k
= b(dp)

n,k
+ b(mp)

n,k
(9)

with the direct backward component given by

b(dp)
n,k
= ηk

√
GR λn

4π | |p − pk | |
exp

(
− 

2π fn
c
| |p − pk | |

)
(10)

where ηk denotes the LOS/NLOS state of the kth backward
channel. Note that (5), (8), and (10) are general as they are
valid both in near- and far-field conditions. When the far-
field approximation holds, for example with reference to (10),
all the tiles experience the same path loss and a phase shift
with constant gradient along the RIS’ aperture (plane wave
propagation), i.e.,

exp
(
− 

2π fn
c
| |p − pk | |

)
' exp

(
− φn,k

(
Θ

(r)
))
, (11)

where φn,k
(
Θ(r)) depends only on the direction of the UE with

respect to the RIS, i.e., the reflection angle Θ(r)
k
= Θ(r) ∀k,

and on the spacing d among the tiles [30]. Similar consid-
erations can be drawn for (5) and (8). As a consequence,
all the tiles are subjected to the same incident/reflection
angles and approximatively the same TOA measurements. On
the contrary, in the near field, the incident/reflection angles
of the impinging/reflected waves are different for each tile
composing the RIS because the curvature of the EM wavefront
is not negligible considering the size of the RIS, as already
pointed out. Indeed, the TOAs of the reflected signals are in
general different. The diversity among the elements of (5), (8),
and (10) in the near field gives rise to the possibility to enrich
the set of measurements available for positioning that will be
exploited by the algorithms proposed in this paper.

Combining (7) and (9), the kth cascaded channel for sub-
carrier n is given by

h(r)
n,k
= g
(r)
n,k

b(r)
n,k

. (12)

For further convenience, we define the cascaded channel
coefficient related only to the direct path components, that
is,

h(dp)
n,k
= g
(dp)
n,k

b(dp)
n,k
= h(dp)

n,k
(p, t0, φ0) (13)

where it has been put in evidence its dependence on the
unknown position p of the UE, and the time and phase offsets
t0 and φ0, respectively.

The received signal at symbol time t and subcarrier n is
given by

yn,t = xn,t h(d)n + xn,t
K∑
k=1

βt,kh(r)
n,k
+ wn,t (14)

where wn,t ∼ CN
(
0, σ2) (circular symmetric complex Gaus-

sian RV) denotes the additive white Gaussian noise (AWGN)
with power σ2. Since the pilot symbols {xn,t } are known at
the receiver, without loss of generality, in the remainder of the
paper we will set xn,t = 1, ∀n, t.

Starting from the measurements {yn,t }, n = 1, 2, . . . N, t =
1, 2, . . .T , collected in T OFDM symbols and N subcarriers,
the UE aims to obtain the most accurate estimate of its
own position p. The purpose is to design practical estimation
algorithms, together with the phase sequences {Ψt,k} of the
RIS, which minimize the number T of required pilot symbols
and/or the number N of subcarriers. Note that the overhead
for positioning is given by the product N ·T , while the latency
is proportional to T . Therefore, performing localization with
small values of T is advantageous for both figures of merit.

III. EXTRACTION OF SIGNAL COMPONENTS

The position estimation algorithms, which will be described
in Secs. IV and V, require the separation of the direct
component and the components generated by the reflections
from the RIS. It is worth noting that, when present, the direct
path as well as the multipath components are, in general,
dominant with respect to the components reflected by the RIS
[17]. Consequently, special care must be taken when extracting
the RIS-reflected components from the overall received signal.
This process is similar to that done in UWB-RFID-based
localization systems where the signal backscattered by the tag,



modulated by a time-varying sequence, has to be extracted
from the received signal dominated by the clutter. To this
end, the adoption of balanced sequences ensures a complete
removal of the clutter [17], [18]. Thus, the RIS can be inter-
preted as a large set of reflecting tags whose reflection property
changes dynamically according to some unique sequence.

A. Extraction of the Direct Component

The extraction of the direct component, which includes
the direct link and the multipath from the environment (with
the exclusion of that coming from the RIS), can be easily
accomplished by designing the RIS sequences so that they
result balanced when observed for t = 1, 2, . . . ,T [17], [27],
that is,

T∑
t=1

βt,k = 0 k = 1, 2, . . . ,K (15)

and accumulating the received signals over T OFDM symbols
as

y
(d)
n =

1
T

T∑
t=1

yn,t = h(dp)
n + h(mp)

n +

K∑
k=1

h(r)
n,k

1
T

T∑
t=1

βt,k + w̃n

(16)

where w̃n ∼ CN
(
0, σ2) . It follows that, by exploiting property

(15), the third term in (16) becomes zero and hence the RIS
component is completely removed thus yielding to the direct
component (direct path plus multipath)

y
(d)
n = h(dp)

n + h(mp)
n + w̃n n = 1, 2, . . . , N . (17)

B. Extraction of the RIS Component

The RIS component can be easily isolated by simply sub-
tracting the direct component y

(d)
n in (17) from yn,t , which

gives

y
(r)
n,t = yn,t − y

(d)
n t = 1, 2, . . . ,T, n = 1, 2, . . . , N . (18)

As it will be described, the positioning algorithm proposed
in Sec. V requires also the knowledge of the contribution from
each single tile of the RIS. To this end, the contribution of the
generic tile m can be extracted by correlating y

(r)
n,t with the

complex conjugate of the time sequence {βt,m} adopted by
the mth tile as follows

u(m)n =
1

T β0

T∑
t=1

y
(r)
n,t β

∗
t,m (19)

= h(r)n,m
1

T β0

T∑
t=1
|βt,m |

2 +
∑
k,m

h(r)
n,k

1
T β0

T∑
t=1

βt,k β
∗
t,m + zn

where β0 = Ne Gc is the maximum gain of the tile, and
zn ∼ CN

(
0, σ2) , n = 1, 2, . . . N . Suppose now that the RIS

sequences satisfy the following orthogonality property
T∑
t=1

βt,k β
∗
t,m = 0 ∀k , m . (20)

If property in (20) holds, then (19) reduces to

u(m)n = β0 h(r)n,m + zn (21)

and the mth component can be successfully extracted. It is
worth noticing that, for very large T we have that properties
(15) and (20) are approximatively satisfied using random zero
mean phase sequences

{
Ψt,k

}
, according to the law of large

numbers. Examples of sequences satisfying (20) when T ≥ K
are given by the exponentials of the discrete Fourier transform
(DFT) and the Hadamard codes (for the binary case) [35].
The adoption of DFT-based sequences has been investigated
also in [29], [36] for CSI estimation purposes. As it will be
discussed in Sec. V, when T < K , the orthogonality property
(20) cannot be always satisfied. In such a case, inter-tile
interference may arise and compromise the performance of the
positioning scheme proposed, if adequate countermeasures are
not taken.

In the next sections, we will illustrate two position estima-
tion algorithms. The first aims to estimate the position directly
from the extracted signal components (17) and (18) (direct po-
sitioning), whereas the second follows a traditional pragmatic
two-step approach where, first TOA/time difference-of-arrival
(TDOA) estimates are obtained from (17) and (21), then the
position is computed by exploiting geometrical relationships
(two-step positioning). It is worth noticing that regardless of
the algorithm used, when operating in far-field conditions,
no enough information is available to infer the UE position
without ambiguities, and localization schemes designed for
the far-field condition cannot be applied to single-antenna
devices. In fact, the localization in far-field condition requires
the availability of multiple antennas at the terminals in order
to collect at least 2 angle-of-arrival (AOA) measurements, one
for the BS-UE link and one for the RIS-UE link. If the BS-
UE link is in NLOS, the localization is not possible even with
multiple antennas (in an asynchronous system). Therefore, the
proposed algorithms assume the system operates in the near-
field condition, which is the typical case when working at high
frequency and with large RISs, as already mentioned in Sec. I.

IV. DIRECT POSITIONING

Direct position estimation can be realized by deriving the
maximum likelihood (ML) estimator of the unknown param-
eters Ω = [p, t0, φ0] (asynchronous system) or Ω = [p, φ0]
(synchronous system), through the exploitation of the model
of the direct path component of the channel in (13) and
the received signal component

{
y
(r)
n,t

}
in (18). Neglecting the

presence of the multipath, whose effect will be accounted for
in the numerical results (thus introducing a model mismatch),
the log-likelihood function of the vector of measurements{
y
(r)
n,t

}
is given by

f
({
y
(r)
n,t

} ��Ω)
= −

1
σ2

N∑
n=1

T∑
t=1

�����y(r)n,t − K∑
k=1

βt,k h(dp)
n,k
(Ω)

�����2 (22)

= −
1
σ2

N∑
n=1

T∑
t=1

���y(r)n,t − an,t (p) exp ( φt (p) + 2π fnt0 + φ0)
���2

where

an,t (p) =

����� K∑
k=1

βt,k h(dp)
n,k
(Ω)

����� (23)



and

φt (p) = arg

(
K∑
k=1

βt,k h(dp)
n,k
(Ω)

)
− 2π fnt0 − φ0 (24)

in which we took out the common terms 2π fnt0 + φ0 so that
φt (p) depends only on p and t. The ML estimate can be
obtained by maximizing the log-likelihood function over the
unknown parameters Ω as

Ω̂ = arg max
Ω

f
({
y
(r)
n,t

} ��Ω)
. (25)

In a real scenario, the amplitude coefficients
{
an,t (p)

}
could

be not completely known, since this would require the perfect
knowledge of the UE’ orientation, the fading condition, as well
as the perfect knowledge of the LOS / NLOS condition (i.e., of
the coefficients {ξk} and {ηk}). For this reason, we assume the
amplitudes

{
an,t (p)

}
as unknowns (i.e., nuisance parameters

to be estimated, then no longer function of p). Therefore, the
log-likelihood (22) is modified as

f
({
y
(r)
n,t

} ��Ω , {an,t }) (26)

= −
1
σ2

N∑
n=1

T∑
t=1

���y(r)n,t − an,t exp ( φt (p) + 2π fnt0 + φ0)
���2

where amplitudes
{
an,k

}
are added in the list of the unknown

parameters to be estimated. An analytical solution of (25)
using (26) appears difficult to be found as all the optimization
methods based on the derivation of the gradient cannot be
used. Therefore, the simplest method to solve it is through
an exhaustive search. Unfortunately, the minimization also
involves t0, φ0, and the unknown amplitudes {an,t }, thus
significantly augmenting the dimension of the search space
and making the search not practical.

To significantly reduce the search space, a log-likelihood
function independent of {an,t } can be obtained by considering
an estimate ân,t of an,t into (26), for any n, t, that is,

f
({
y
(r)
n,t

} ��Ω)
= f

({
y
(r)
n,t

} ��Ω, {an,t } = {ân,t }) . (27)

By fixing n and t, adopting again the ML criterion for the
amplitude estimate, we have

ân,t = arg max
an, t

f
({
y
(r)
n,t

} ��Ω , {an,t })
= arg max

an, t

(
−a2

n,t + 2an,t ãn,t cos
(
φ̃n,t − φt (p) − 2π fnt0 − φ0

) )
= ãn,t cos

(
φ̃n,t − φt (p) − 2π fnt0 − φ0

)
(28)

where ãn,t =
��yn,t �� and φ̃n,t = arg

(
yn,t

)
are the amplitude

and argument of the observed signal yn,t , respectively. Then,
combining (26), (27), and (28), we obtain

f
({
y
(r)
n,t

} ��Ω)
= −

N∑
n=1

T∑
t=1

ã2
n,t

σ2 sin2 (
φ̃n,t − φt (p) − 2π fnt0 − φ0

)
.

(29)

In (29), the set of measured phase values
{
φ̃n,t

}
is properly

correlated with an hypothetical set {φt (p)} depending on the
position p under test. In particular, each phase measurement is
weighted by the corresponding received signal-to-noise ratio

(SNR) ã2
n,t/σ

2. In this manner, the phase values related to a
larger SNR have a greater impact on the overall likelihood
function and contribute heavily to the position estimation. It
is worth noticing that in the derivation of the estimator, we
have not considered the direct path component. Its inclusion
in the derivation would have brought an additional term in (29)
weighted with the SNR of the direct path which, when present,
is in general much larger than the SNR of the components
related to the RIS. While in theory the direct path brings
additional information, the huge SNR discrepancy between
the direct and RIS components could mask significantly the
contribution of the RIS thus making the log-function close to
being periodic4 with the consequence of severe ambiguities in
the estimation. For this reason, in (29) we consider only the
contribution from the RIS.

To further reduce the search space, and hence the com-
plexity, we propose the following modification in which N
position estimates are obtained by considering each individual
subcarrier separately (narrowband signals). In this case, for a
fixed n, it turns out that the phase term 2π fnt0 in (29) is fixed
and it can be embedded in φ0, thus obtaining

p̂(n) = arg min
{p,φ0 }

T∑
t=1

ã2
n,t

σ2 sin2 (
φ̃n,t − φt (p) − φ0

)
(30)

for n = 1, 2, . . . , N . It is worth underlining that the localization
exploiting the phase profile of a narrowband signal (i.e., single-
carrier) is one of the techniques used in RFID systems [37].
The difference is that here the phase profile is generated by
different RIS configurations over T pilot symbols, while in
RFID systems it is obtained through the observation of the
signal from spatially distinct positions using different receiving
antennas. The final position estimate can be obtained by taking
the average of the N estimates

{
p̂(n)

}
. However, numerical

evaluations have revealed that operating like this increases the
possibility that some estimates are completely wrong (outliers)
because considering each subcarrier separately increases the
possibility of ambiguities, i.e., many positions with similar
phase profile, compared to the situation in (29) where many
more terms are present in the minimization thus reducing the
occurrence of ambiguities. To overcome this issue, we propose
to apply an outlier removal algorithm and then to take the
average considering only the residual “good” estimates, that
is,

p̂ =
1
P

∑
p∈P

p̂(p) (31)

where P is the set of elements with cardinality P = |P | result-
ing from the outlier removal procedure. The considered outlier
removal procedure consists in removing all the estimates that
fall outside the confidence region [µp−η σp, µp+η σp], where
µp and σp are the sample mean and standard deviation of
the sequence

{
p̂(n)

}
, respectively. Parameter η defines the

width of the confidence region. A small value of η makes the
outlier removal scheme more severe with the risk of discarding
also good measurements, whereas a large value can result in

4When only one phase measurement is considered, all the locations spaced
apart of a wavelength λ experience the same phase value.



outliers being included in the output set. In the numerical
results, we set η = 1 obtained as a reasonable compromise
from simulative investigations. In general, the reliability of
the outlier removal scheme improves when the number of
subcarriers is large because the sample mean and variance
tend to approach the true ones.

An advantage of the proposed algorithm is that it can work
both with wideband signals (N > 1) and narrowband signals
(N = 1), as will be shown in the numerical results. The main
drawback is the possible complexity in finding the absolute
minimum in (29), especially at high frequencies, considering
that the width of the minimum is of the order of λ since it is
related to interfering effects of multiple components close to
the central frequency. Expectation-maximization or alternating
projection methods can be used to refine the search grid [38],
[39].

The complexity of the direct positioning algorithm, associ-
ated with the minimization of (29) (N times), is O (N T M),
where M represents the number of test points in case of a
brute-force minimization method is used (worst case). The
choice of M depends on the desired positioning resolution ∆,
the size of the search area A, and the number of test values P
for φ0 (in our simulation we have seen that P = 10 values are
sufficient), specifically, M = P A/∆2. Since the complexity is
relatively independent from K (actually T is somehow related
to K), this algorithm is especially suited for very large RISs,
relatively small operating areas, and a small number N of
subcarriers. The search area A, and hence the number of search
iterations, can be greatly reduced if the estimation takes into
account past estimates within a tracking process. This aspect
will be the subject of a future work.

V. TWO-STEP POSITIONING

In this section, we propose a two-step positioning approach
in which the TOA of each signal component is estimated
and then the position is inferred by leveraging on classical
geometric localization schemes.

A. Estimation of the TOAs

The estimation of the TOA of the direct path (when present)
can be obtained by computing the time-domain waveform from
the direct component

{
y
(d)
n

}
in (17) through an inverse discrete

Fourier transform (IDFT) operation over the subcarrier index
n {

z(d)j
}
= IDFT

[{
y
(d)
n

}]
(32)

with j = 1, 2, . . . , J, with J = N Fo being the size of the IDFT,
and Fo the oversampling factor. Once the time-domain signal{

z(d)j
}

is obtained, the TOA of the first arriving path can be
estimated using any of the numerous algorithms present in the
literature

τ̂d = TOA
[{

z(d)j
}]

(33)

where TOA[·] denotes any estimator of the first arriving path
[40]. Among them, the simplest algorithm is that detecting the
location of the highest peak.

Similarly, the contribution from the mth tile of the RIS in the
time-domain can be obtained starting from the signal

{
u(m)n

}
in (19) through the IDFT operation over the subcarrier index
n {

z(m)j

}
= IDFT

[{
u(m)n

}]
(34)

from which the TOA can be estimated

τ̂m = TOA
[{

z(m)j

}]
. (35)

B. Estimation of UE’s Position

The TOA of the first arriving path in (33), when available
and correctly detected, can be written as

τ̂d =
1
c
‖pTX − p‖ − t0 + εd (36)

with εd being the estimation noise. Similarly, the TOA of the
component reflected by the mth tile of the RIS is

τ̂m =
1
c
‖pTX − pm‖ +

1
c
‖p − pm‖ − t0 + εm (37)

where εm is the estimation noise. Note that the first term in (37)
is known because it depends only on the position of the BS and
the tiles of the RIS that are known. Since in an asynchronous
system t0 is not known, the estimation of the UE’s position
must be performed starting from TDOA measurements so that
the common term t0 in the previous expressions simplifies. A
possible approach to form a certain number of reliable TOA
couples, from which to compute TDOA values, is described
in the following steps:

1) Consider only the subset of the I best TOA estimates
that are reliable, i.e., corresponding to a sufficiently large
SNR. Denote by b(i), i = 1, 2, . . . I, the index of the ith
best TOA measurement

t̂i = τ̂b(i) −
1
c
‖pTX − qi ‖ (38)

where qi = (xi, yi, zi) = pb(i) is the coordinate of the tile
of the RIS involved in the ith TOA measurement τ̂b(i).
When the UE and the BS are in LOS, it is likely that
the subset contains the TOA of the direct path between
the BS and the UE. In such a case, qi will be set to pTX,
and t̂i = τ̂d;

2) Compute I−1 TDOA values, r̂i = t̂i−t̂1, i = 2, . . . I, from
the I − 1 couples of TOA measurements with reference
to the most reliable TOA estimate (i = 1). All the TDOA
values will be independent of t0;

3) Estimate the UE’s position using any TDOA-based po-
sition estimation algorithm available in the literature. To
this purpose, a simple and efficient algorithm is given
by the linear least squares (LS) algorithm [41].

Regarding the complexity, it is mainly determined by the
FFTs required to obtain the response in the time-domain for
TOA estimation (at most K + 1), and the position estimation,
whose complexity depends on the number of considered
measurements (the best I < K measurements according to
our algorithm) and the specific method used to estimate
the position. Thus, the overall complexity is of the order
of O

(
K N F0 log2(N F0)

)
+ O

(
I3) , where the second term



accounts for the complexity of the LS-based localization
method involving the inversion of a matrix of dimension I× I.
Compared to the direct positioning approach in Sec. IV, the
proposed two-step approach is more convenient in wide area
scenarios, and it is expected to be more robust in the presence
of strong multipath (which leads to a model mismatch in
(29)), but it works only with wideband signals (large N) to
properly discriminate the first path from the multipath, and
it may suffer from inter-tile interference when T < K . In
fact, under such a condition, it is not possible to ensure that
all the K RIS sequences

{
βt,k

}
are perfectly orthogonal to

each other,5 with the consequence that the signal components
reflected by some couples of tiles may be characterized by not
negligible cross-correlation. This aspect will be investigated in
the numerical results. Another potential disadvantage of the
two-step positioning approach is that the contribution from
each tile of the RIS is considered separately from the others,
then the TOA estimation algorithm does not take advantage
of the SNR enhancement that would be obtained through the
coherent combination of contributions from many tiles of the
RIS, as intrinsically done in the direct positioning approach.

VI. PERFORMANCE BOUNDS

In this section, the derivation of the PEB on UE’s position
estimation error is provided as a benchmark for the algorithms
proposed in the previous sections. The PEB gives the perfor-
mance limit of any unbiased position estimator and it can be
obtained by computing the Fisher information matrix (FIM)
J (Ω) associated to the parameters Ω to be estimated and the
statistical model of the observations as [2], [3]

PEB ,
√

trace
[
J−1 (Ω)

]
. (39)

Since the two algorithms in Sec. IV (direct positioning) and
Sec. V (two-step positioning) consider different observations,
i.e., raw received signal and TDOA measurements, respec-
tively, in the following we derive the FIM for the two cases.

A. PEB using raw signals

Starting from the received signals
{
y
(r)
n,t

}
, we define the FIM

on UE’s position as

J (Ω) , −E
{
∇Ω

[
∇Ω f

({
y
(r)
n,t

} ��Ω)]T }
(40)

where we considered Ω = {p} by neglecting the terms due
to clock or phase asynchronism, i.e., t0, φ0, thus obtaining an
optimistic bound, ∇Ω =

[
∂
∂x ,

∂
∂y ,

∂
∂z

]
is the gradient operator of

the position coordinates, E{·} is the statistical expectation, and
the log-likelihood function is obtained from (22). The generic
element of the FIM in (40) is given by

[J (Ω)]i, j =
2
σ2<

{
N∑
n=1

T∑
t=1

∂sn,t (Ω)
∂Ωi

∂s∗n,t (Ω)

∂Ωj

}
(41)

5The motivation behind our claim is that it is impossible to obtain K
orthogonal vectors of length T when T < K [35].

with i, j = 1, 2, 3, sn,t (Ω) ,
∑K

k=1 βt,k h(dp)
n,k
(Ω) is the expected

received signal, and Ωi ∈ {x, y, z}. The first derivatives in
(41) are given by

∂sn,t (Ω)
∂Ωi

= − 
2π
λn

K∑
k=1

βt,k gn,k |bn,k | exp
(
− 

2π
λn

dk

)
∂dk
∂Ωi

(42)

where dk , ‖p − pk ‖ is the distance of the UE and the kth
tile of the RIS. The derivatives of such distances are given by

∂dk
∂x
=

x − xk
dk

,
∂dk
∂y
=

y − yk

dk
,

∂dk
∂z
=

z − zk
dk

. (43)

B. PEB using TDOA measurements

Now we consider the case where the UE’s position is
inferred by processing an observation vector given by the
best I − 1 TDOA estimates r̂ = [r̂2, . . . , r̂i, . . . , r̂I ]T obtained
according to the approach proposed in Sec. V. Denote by
t = [t2, . . . , ti, . . . , tI ]T is the true TDOAs. A reasonable model
for the measurement error variance of the TDOA estimates
is given by the CRB defined as σ2

i =
1

8 π2 β2 γi
, where

β2 ' W2 is the squared effective bandwidth of the signal and
γi = (1/SNRi + 1/SNR1)

−1 is the combined SNR of the two
links involved in the TDOA estimate [40]. Given this model,
the log-likelihood function is

f (r̂|Ω) ∝ −
I∑

i=2

(r̂i − ti)2

2σ2
i

. (44)

Therefore, the FIM can be derived as

J (Ω) = E
{
∇T
Ω

f (r̂|Ω) ∇Ω f (r̂|Ω)
}
=

I∑
i=2

1
σ2
i

∇T
Ω

ti ∇Ωti (45)

where ∇Ω ti =
[
∂ ti
∂x ,

∂ ti
∂y ,

∂ ti
∂z

]
is the gradient of TDOAs, with

elements given by

∂ti
∂x
=

x − xi
c di

−
x − x1
c d1

∂ti
∂y
=

y − yi

c di
−

y − y1
c d1

∂ti
∂z
=

z − zi
c di

−
z − z1
c d1

. (46)

VII. NUMERICAL RESULTS

A. Case Study

This section presents some numerical results obtained using
the parameters summarized in Table I, unless otherwise spec-
ified. The considered scenario is represented in Fig. 1, where
a linear RIS of K = 100 tiles, with tile spacing d = 20 cm
is distributed along two adjacent walls of side 10 m at the
height of 3 m. More precisely, the linear RIS develops from
coordinate (−5, 0, 3)m to coordinate (5, 0, 3)m (first wall), and
from coordinate (5, 0, 3)m to coordinate (5, 10, 3)m (second
wall). The BS is located in position pTX = (0, 5, 3)m, whereas
the UE is randomly located with uniform distribution in the
area (−4, 1, 1)×(4, 10, 1)m2. We consider the most challenging
and interesting scenario where the BS and UE are always in



TABLE I
PARAMETERS USED IN THE SIMULATION

Parameter Symbol Value
Carrier frequency fc 3.5-28 GHz
TX antenna gain GT 6 dB
RX antenna gain GR 2 dB
Total number of subcarriers Nt 2048
Pilot subcarriers N 1-2048
Subcarrier bandwidth ∆ f 120 kHz
TX power per subcarrier PT/Nt -5 dBm
TX-RX clock uncertainty Ta 100 ns
UE noise figure nf 3 dB
Noise power σ2 = κ 290 nf ∆ f -120.2 dBm
Boltzmann constant κ 1.38 · 10−23 J/K
DFT oversampling factor Fo 8
DFT size J = Fo · N 8 × N
NLOS Path-loss exponent ne 3
Delay spread Sτ 20 ns
Number of paths L 10
Path arrival rate Tτ 8 ns
RIS cells per tile Nx × Ny = Ne 4 × 25 = 100
Cell size Lx , Ly λ/2, λ/2
RIS tiles spacing d 20 cm
RIS number of tiles K 100 tiles

NLOS, i.e., ξ0 = 0, so that the localization relies only on the
signals reflected by the RIS. Results refer to an asynchronous
system in which we model the clock and phase offsets t0
and φ0 as RVs uniformly distributed in [0,Ta] and [0, 2π),
respectively, where Ta denotes the clock mismatch uncertainty.

The statistical model in (6) is considered for the simula-
tions with the following parameters: τl are drawn from RVs
distributed according to a Poisson point process with arrival
rate Tτ ; αl ∼ CN (0,Λl), with {Λl} being the power delay
profile. The power delay profile is modeled according to the
one-sided exponential function, i.e., Λl =

Λ0
S exp

(
−
τl
Sτ

)
, for

l = 1, 2, . . . , L, with S =
∑

l exp
(
−
τl
Sτ

)
, and Sτ being the delay

spread. Λ0 is the distant-dependent path-loss gain of the NLOS
component, where Λ0 (dB) = −PL0 − 10 ne log10 d, with PL0
denoting the path-loss (in dB) at the reference distance of one
meter, d the distance between the considered devices, and ne
the path-loss exponent [42].

Regarding the RIS sequences, we consider the following
choices: (i) Random uniform: Reflection phases {Ψt,k} uni-
formly and independently distributed in [0, 2π); (ii) Random
binary: Independent random reflection phases {Ψt,k} taking
the values {0, π} with identical probability; (iii) DFT: Reflec-
tion phases {Ψt,k} designed as follows

Ψt,k =
2π k t

T
t = 1, 2, . . .T, k = 1, 2, . . . ,K (47)

which give perfectly orthogonal balanced sequences when
T > K . As will become evident later, the inter-tile interference
arising when T ≤ K can be significantly mitigated by consid-
ering the following modified DFT-based phase sequences

Ψt,k =
2π t bk T/Kc

T
t = 1, 2, . . .T, k = 1, 2, . . . ,K (48)

with bxc returning the largest integer smaller than x, which
corresponds to assigning the same sequence to adjacent tiles
so that inter-tile interference will result into a small TOA
estimation error.
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Fig. 2. Average localization error with the direct positioning algorithm.
Random uniform RIS sequences.

10
-3

10
-2

10
-1

10
0

10
1

10
2

Localization error [cm]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir

ic
al

 C
D

F

28 GHz, T=4
28 GHz, T=4, PEB
28 GHz, T=16
28 GHz,, T=16, PEB
28 GHz, T=128
28 GHz, T=128, PEB
3.5 GHz, T=4
3.5 Ghz, T=4, PEB
3.5 GHz, T=16
3.5 GHz, T=16, PEB
3.5 GHz, T=128
3.5 GHz, T=128, PEB

Fig. 3. Empirical CDF of the localization error with the direct positioning
algorithm. N = 1, random uniform RIS sequences.

B. Direct Positioning

We first examine the localization performance of the direct
positioning algorithm. Fig. 2 shows the localization error
averaged over 1000 Monte Carlo iterations as a function of
the number T of pilot OFDM symbols, assuming random
uniform RIS sequences. Curves for a different number of
subcarriers and carrier frequencies, i.e., fc = 28 GHz and
fc = 3.5 GHz, are reported. Interestingly, relatively high-
accuracy localization can be achieved even using few or only
one subcarrier (narrowband localization) as long as a sufficient
number of pilot symbols are transmitted (higher latency).
On the other hand, when using a relatively large number
of subcarriers (wideband localization), very high localization
accuracy with errors even below 1 cm can be achieved using
a reduced number of pilot symbols, and thus resulting in
lower latency. These results put in evidence the possibility to
localize the UE with only one anchor node (the BS) in NLOS
condition by exploiting only the reflections from the RIS.
The PEB is also reported for each configuration. As expected,
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Fig. 4. Average localization error with the direct positioning algorithm for
different RIS sequences. fc = 28 GHz, N = 1. PEB curves are overlapped.
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Fig. 5. Extracted components for fc = 28 GHz, N = 2048, and DFT RIS
sequences (47). The UE is located at p = (4, 5, 1)m.

when increasing N and T , the PEB decreases. Moreover, we
assist to a decrease of the PEB also when lowering the carrier
frequency, which can be ascribed to the more favorable path
loss. Vice-versa, the performance of the direct positioning
algorithm exhibits a floor when increasing N , T and decreasing
the carrier frequency, which is quite far from the theoretical
bound. Such a floor is due to the resolution limit ∆ = 0.1 cm
imposed by the search algorithm, and hence on the number of
searches M that has to be kept to a reasonable level to avoid
an explosion of complexity. Obviously, the performance can
be traded with complexity through M .

In Fig. 3, the empirical cumulative distribution function
(CDF) of the localization error for N = 1 is shown for different
values of T and for carrier frequencies fc = 3.5 GHz and
fc = 28 GHz. This plot highlights an “on-off” behavior of the
algorithm when N and T are small, evidenced by the presence
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of horizontal asymptotes and symptomatic of the presence of
some locations where positioning is not possible due to scarce
SNR and the presence of outliers, i.e., strong ambiguities in
the likelihood function. This phenomenon is slightly alleviated
by lowering the center frequency which corresponds to a less
severe path loss. In general, the coverage can be ameliorated
by increasing T and/or N , as it can be also deduced from Fig.
2.

The impact of different RIS sequences, respectively, random
uniform, random binary, and DFT, is investigated in Fig. 4
obtained for N = 1. Results show that, with the direct
positioning algorithm, the choice of RIS sequences is not
critical as long as they satisfy (15), at least approximatively.

C. Two-step Positioning

The two-step positioning algorithm leverages on the correct
separation of signal components. In Figs. 5(a) and 5(b),
examples of extracted direct and RIS-reflected components are
shown, respectively, using DFT-based sequences with T = 128
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Fig. 8. Localization error heat maps (in cm). T = 128.

and considering the UE located in a fixed LOS condition
with respect to the BS. The direct component contains the
direct path and the multipath, as evidenced in Fig. 5(a),
where the components reflected by the RIS are completely
eliminated thanks to property (15). The orthogonality of the
DFT sequences for all tiles ensures that the signal component
reflected by each individual tile can be isolated together with
the corresponding multipath, as shown in Fig. 5(b) for some
tiles. This is no longer true if T < K , as it can be noticed
in Fig. 5(c) obtained by setting T = 32 and using the DFT
phase sequences in (47), where the extracted components are
dominated by the components caused by tiles whose sequence
has a high cross-correlation with the useful one and are
subjected to a more favorable path loss. This phenomenon
can lead to a completely wrong TOA estimation in the two-
step positioning algorithm. For this reason, the following
numerical results have been obtained by adopting the modified
DFT in (48), which keeps the tiles with highly correlated
sequences close to each other, thus minimizing the error in
TOA estimation in case of wrong peak detection.

The performance of the two-step positioning algorithm can
be appreciated in Fig. 6, where the average localization error
as a function of T and for different number of subcarriers and
carrier frequencies is reported. The modified DFT sequences in
(48) are used and the NLOS condition is considered (ξ0 = 0).
The TOA measurements with SNR > 10 dB among the
I = 3/4K best TOA measurements are selected and used
to form I − 1 TDOA couples. Compared to the performance
obtained with the direct positioning approach in Fig. 2, it can
be noticed that the performance is worse because with the two-
step approach the SNR gain from a coherent combination of
all the reflected signals is not exploited. Moreover, as soon as
N decreases, the performance drops significantly because the
TOA estimation accuracy is limited by the inverse of the signal
bandwidth, as indicated by the theoretical analysis in Sec.
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Fig. 9. Localization error evolution for different NLOS duty cycle. N = 2048,
T = 128.

VI, and the reduced time resolution does not allow sufficient
discrimination of the first path from the multipath [40]. This
confirms that this approach is suitable for wideband signals
only and that the performance is theoretically dominated by
signal bandwidth (see PEB curves) even though also the two-
step algorithm presents a performance floor dictated by the
DFT resolution, i.e., the oversampling factor F0. Nevertheless,
a localization accuracy better than 10 cm is obtained in more
than 90% of cases with T = 128, as it can be observed from
the empirical CDF in Fig. 7.

Figs. 8(a)-(c) show the localization heat maps for the direct
positioning and the two-step positioning in order to get an idea
of how the localization error is distributed within the area of
interest. The “on-off” behavior of the first algorithm is evident
in Fig. 8(a) obtained with N = 1, whereas it can be completely
removed using large N , as it can be noticed in Fig. 8(b), but at
the expense of much higher complexity. On the other hand, the
two-step positioning algorithm, depicted in Fig. 8(c), provides
a good trade-off between performance and complexity.

D. Soft-coverage Analysis

Finally, in Figs. 9(a) and 9(b), the effect of partial RIS ob-
struction is investigated for the direct and two-step positioning
algorithms, respectively. Here the UE was supposed to move in
a straight line in 100 test locations from coordinate (−4, 1, 1)m
to the coordinate (4, 10, 1)m, always in NLOS with respect to
the BS, and the tiles of the RIS were periodically in NLOS
condition, i.e., ηk = 0, with respect to the UE, with spatial pe-
riod of 2 m and duty cycle p. The plots, derived for increasing
values of p, show that the direct positioning algorithm appears
relatively sensitive to partial RIS obstructions, especially when
p > 50%, due to a significant increase of outliers caused by
model mismatch (the estimator in (25) and (29) is unaware
that several contributions are missing). This effect could be
mitigated by resorting to tracking methods based, for instance,
on Bayesian filtering tools [43]. By contrast, the two-step
algorithm in Fig. 9(b) exhibits the soft-coverage property. In
particular, it can be noticed that when 70% of the tiles of
the RIS are obstructed, the performance degradation is still
negligible. Even with 90% of obstructed tiles, it is possible
to localize with an accuracy of about 25 cm or less in most
locations without abrupt performance degradation.



VIII. CONCLUSION

In this paper, we have proposed two localization algorithms
aided by the presence of a large RIS to allow mobile asyn-
chronous UEs localize themselves through the processing, over
a certain number of pilot symbols, of the downlink OFDM
signal emitted by one reference BS (anchor node). By a
proper design of the time-varying reflection coefficients of
the RIS, it has been shown that, thanks to the large size
of the RIS, it is possible to localize the UE with only one
BS under NLOS conditions exploiting the reflections from the
RIS, making the proposed algorithms particularly interesting in
applications characterized by harsh propagation conditions and
coverage issues. It is worth pointing out that the time-varying
configuration of the RIS does not depend on the number of
UEs so that our scheme can work with a potentially unlimited
number of UEs without additional overhead and signaling.

In the numerical results, the two localization algorithms
have been compared in terms of performance and trade-off
between bandwidth, overhead, operating frequency, latency,
and complexity. Specifically, the direct positioning algorithm
provides the highest accuracy, in the order of the wavelength,
and allows both narrowband and wideband localization. Nar-
rowband localization entails a higher latency than wideband
localization, which in turn is more sensitive to the presence
of outliers. On the other hand, the two-step algorithm only
works with wideband signals and offers localization accuracy
inversely proportional to the signal bandwidth as well as better
robustness to outliers than the direct positioning algorithm.
The soft-coverage capability of the two-step algorithm, when
considering a large linear RIS and, hence, exploiting near-field
propagation conditions, has been demonstrated by verifying
the possibility of maintaining high localization accuracy in
the presence of increasing levels of obstruction of the RIS.
Future works will be addressed to the design and study of
tracking schemes that can further improve the performance by
reducing the occurrence of outliers as well as the exploitation
of multiple antennas at BS and UE sides.
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