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A B S T R A C T 

Large surv e ys of star-forming re gions hav e unv eiled power-la w correlations between the stellar mass and the disc parameters, 
such as the disc mass M d –M � and the accretion rate Ṁ –M � . The observed slopes appear to be increasing with time, but the 
reason behind the establishment of these correlations and their subsequent evolution is still uncertain. We conduct a theoretical 
analysis of the impact of viscous evolution on power-law initial conditions for a population of protoplanetary discs. We find 

that, for evolved populations, viscous evolution enforces the two correlations to have the same slope, λm 

= λacc , and that this 
limit is uniquely determined by the initial slopes λm, 0 and λacc, 0 . We reco v er the increasing trend claimed from the observations 
when the difference in the initial values, δ0 = λm, 0 −λacc, 0 , is larger than 1/2; moreo v er, we find that this increasing trend is a 
consequence of a positive correlation between the viscous time-scale and the stellar mass. We also present the results of disc 
population synthesis numerical simulations, that allow us to introduce a spread and analyse the effect of sampling, which show 

a good agreement with our analytical predictions. Finally, we perform a preliminary comparison of our numerical results with 

observational data, which allows us to constrain the parameter space of the initial conditions to λm, 0 ∈ [1.2, 2.1], λacc, 0 ∈ [0.7, 1.5]. 

Key words: accretion, accretion discs – planets and satellites: formation – protoplanetary discs. 

1  I N T RO D U C T I O N  

Protoplanetary discs are the cradle of planets. Their evolution and 
dispersal strongly impact the outcome of planet formation; they espe- 
cially affect the extent and availability of planetesimals, the building 
blocks of planets (Morbidelli et al. 2012 ; Mordasini et al. 2015 ). 

Discs also serve as a mass reservoir for the central accreting 
protostar. For accretion to take place, material stored in the disc needs 
to lose most of its angular momentum. The trigger to this process is 
conventionally identified as a macroscopic viscosity; the pioneering 
work of Lynden-Bell & Pringle ( 1974 ), based on the α prescription 
of Shakura & Sunyaev ( 1973 ), set the ground for numerous following 
studies treating accretion as a redistribution of angular momentum 

within the disc. Despite being by far the most widely used, viscosity 
is not the only accretion theory; several studies have suggested 
MHD winds as promising candidates to explain protoplanetary disc 
accretion (Lesur, Kunz & Fromang 2014 ; Bai 2017 ; B ́ethune, Lesur & 

Ferreira 2017 ; Lesur 2020 ; Tabone et al. 2022a , b ). In this scenario, 
angular momentum is removed instead of being redistributed, leading 
to significant differences in the evolutionary predictions. 

� E-mail: alice.somigliana@eso.org 

Thanks to the great technological development of the last decades, 
and in particular to the advent of f acilities lik e the Atacama 
Large Millimeter Array (ALMA), observational data allow to test 
evolutionary models. Extended data sets collecting information on 
a large number of young stellar objects provide the ideal ground 
to test theoretical predictions; the observational focus is therefore 
on surv e ys of entire star-forming re gions. A number of such surv e ys 
have been already carried out (for example; Ansdell et al. 2016 , 2017 ; 
Barenfeld et al. 2016 ; Pascucci et al. 2016 ; Testi et al. 2016 , 2022 ; 
Alcal ́a et al. 2017 ; Manara et al. 2017 , 2020 ; Cieza et al. 2019 ; 
Williams et al. 2019 ; Sanchis et al. 2020 ), unveiling interesting 
features and patterns, such as power-law correlations between the 
properties of discs and their host stars. 

Two crucial steps are required to test evolutionary models: first, 
performing numerical simulations of the different prescriptions; 
and secondly, a comparison of these numerical results with data. 
Identifying key predictions for each model allows to distinguish 
between different scenarios. The viscous case shows a characteristic 
behaviour, known as viscous spreading: as part of the disc mass 
loses angular momentum and drifts inwards, accreting the protostar, 
another portion of the disc gains the same amount of angular 
momentum instead, expanding towards larger radii. Therefore, the 
radial extent of the disc increases with time, despite the ongoing 
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accretion. This prediction does not apply to the MHD winds scenario 
(Trapman et al. 2022 ); its removal of angular momentum causes disc 
radii to decrease as evolution proceeds. Whether the available data 
in the Lupus star-forming region agree with the viscous spreading 
predictions has been debated in the literature (Sanchis et al. 2020 ; 
Trapman et al. 2020 ; Toci et al. 2021 ). Unfortunately, detecting 
viscous spreading using dust radius as a tracer is non-trivial: Rosotti 
et al. ( 2019a ) showed that this method requires significantly deep 
observations, targeting a fraction as high as 95 per cent of the total 
flux. 

The disc mass–accretion rate correlation provides another diag- 
nostic criterion. In the purely viscous case, where the self-similar 
solution (Lynden-Bell & Pringle 1974 ) holds, such a correlation 
naturally stems from the analytical prescriptions for M d and Ṁ ; in 
particular, it is expected to have slope of ∼1 (Hartmann et al. 1998 ; 
Lodato et al. 2017 ; Mulders et al. 2017 ; Rosotti et al. 2017 ) and 
a spread decreasing in time (Lodato et al. 2017 ), as the age of the 
population reaches and then outgrows the viscous time-scale. The 
analysis of the first data from Lupus and Chameleon (Manara et al. 
2016b ) showed a possible agreement with this prediction. Ho we ver, 
Tabone et al. (2022b) showed that an MHD disc winds model could 
be tuned to reproduce the M d –Ṁ correlation equally well, both 
in slope and spread – making it more challenging to distinguish 
between these two models solely using this relation. Moreo v er, there 
are some behaviours that cannot be fully explained by any of the 
two scenarios alone: an example is the Upper Scorpius star-forming 
region (Manara et al. 2020 ), where the observational data show a large 
scatter in the M d –Ṁ relation (see also Testi et al. 2022 ). Additional 
mechanisms have been invoked to explain these inconsistencies, 
such as internal and external photoe v aporation (Rosotti et al. 2017 ; 
Somigliana et al. 2020 ; Sellek, Booth & Clarke 2020b ) and dust 
evolution (Sellek, Booth & Clarke 2020a ); however, understanding 
the right combination of processes to retrieve the observed spread is 
non-trivial. 

These similar behaviours, and the difficulties in observing the key 
prediction of viscous spreading, may sound discouraging. Ho we ver, 
surv e ys also pro vide additional information – namely, the correlation 
between stellar and disc parameters. Many independent works 
(Muzerolle et al. 2003 ; Mohanty, Jayawardhana & Basri 2005 ; Natta, 
Testi & Randich 2006 ; Herczeg & Hillenbrand 2008 ; Alcal ́a et al. 
2014 ; Kalari et al. 2015 ; Manara et al. 2017 ) have found a correlation 
between the disc accretion rate Ṁ and the stellar mass M � , with a 
slope of ∼1.8 ± 0.2; on the other hand, the disc mass versus stellar 
mass correlation appears to steepen with time (Ansdell et al. 2017 ). 
Some attempts to explain both the Ṁ –M � correlation (Alexander & 

Armitage 2006 ; Clarke & Pringle 2006 ; Dullemond, Natta & Testi 
2006 ; Ercolano et al. 2014 ) and the M d −M � correlation (Pascucci 
et al. 2016 ; Pinilla, Pascucci & Marino 2020 ) have been made; none 
the less, it is still not clear whether these correlations are determined 
by the initial conditions, or rather established later on in the disc 
lifetime as a consequence of the evolutionary processes. Whether the 
time evolution of these correlations can be understood in the context 
of viscously evolving disc populations has not been investigated so 
far. 

The numerical counterpart of star-forming regions surveys is popu- 
lation syntheses, i.e. generating and evolving synthetic populations of 
discs through numerical methods. Performing population syntheses 
is particularly useful to test evolutionary models, as well as the 
impact of different physical effects on the diagnostic quantities of 
interest (such as disc masses and radii). Population syntheses have 
been carried out already, investigating different aspects of evolution 
and dispersal of protoplanetary discs (Lodato et al. 2017 ; Somigliana 

et al. 2020 ; Sellek et al. 2020a , b ); ho we ver, none of them included 
both a proper Monte Carlo drawing of the involved parameters 
and the correlations between disc and stellar properties. The usual 
assumptions were a fixed stellar mass and a linear span of the 
parameter space, which make a good first approximation but lack the 
spread and statistics that really make population syntheses a powerful 
tool. In this paper, we employ a new and soon to be released PYTHON 

code, Diskpop , which performs a coherent population synthesis 
of protoplanetary discs and sets the basis for future developments, 
taking into account more and more physical effects acting on discs. 

In this work, we aim to study the dependency of disc properties on 
the stellar mass M � , discussing its implications from the evolutionary 
point of view. These observed correlations are most likely linked to 
both evolution and initial conditions, and our goal is to disentangle 
between the two. We investigate the case where the correlations are 
already present as initial conditions. With this first paper we, focus 
on setting up the framework for population syntheses: we limit our 
case study to purely viscous discs, but the natural progression is to 
include more evolutionary predictions to compare (and hopefully 
distinguish) between each other. The structure of the paper is as 
follows: In Section 2 , we report and discuss state of the art of the 
observ ational e vidence on disc masses, accretion rates, and radii; in 
Section 3 , we present our analytical considerations on the effects 
of viscous evolution on power-law initial correlations between the 
disc parameters and the stellar mass; in Section 4 , we discuss our 
population synthesis model, including both the implementation in 
Diskpop and the numerical results; we compare our results with 
observational data and discuss their implications in Section 5 , and 
finally, we draw the conclusions of this work in Section 6 . 

2  SUMMARY  O F  OBSERVATI ONA L  E V I D E N C E  

2.1 Disc mass 

Numerous surv e ys of star-forming regions, where disc masses were 
determined by observing the sub-mm continuum emission of the 
dust component (Ansdell et al. 2016 , 2017 ; Barenfeld et al. 2016 ; 
Pascucci et al. 2016 ; Testi et al. 2016 , 2022 ; Sanchis et al. 2020 ), have 
highlighted a power-law correlation between the disc mass M dust (of 
the dusty component) and the stellar mass M � . This relationship can 
be parametrized as linear in the logarithmic plane, 

log 10 

(
M dust 

M ⊕

)
= λm , obs log 10 

(
M ∗
M �

)
+ q obs + ε obs , (1) 

with slope λm, obs and intercept q obs . 1 ε obs is a Gaussian random 

variable with mean 0, representing the scatter of the correlation. 
The values of the parameters λm, obs and q obs can be determined 

from observations by fitting the correlation between M dust and M � . 
Ansdell et al. ( 2017 ) and Testi et al. ( 2022 ) (hereafter A17 and T22 , 
respectively) performed this fit for different star-forming regions; the 
results are shown in Table 1 (same as table 4 in A17 and table H.1 
in T22 ), where � obs represents the intrinsic dispersion (namely, the 
standard deviation of the distribution of ε obs ). 

Table 1 shows that the mean value of q obs tends to get lower and 
lower with time. This behaviour, which is more visible in the top 

1 Our notation slightly differs from the ones previously used by Pascucci et al. 
( 2016 ) and Ansdell et al. ( 2017 ): In the first paper, the slope (here λm, obs ) is 
α and the intercept (here q obs ) is β, while the second one uses the opposite 
conv ention. Moreo v er, we named the intrinsic dispersion � obs instead of δ to 
a v oid confusion with another parameter that we define later in our paper. 
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Table 1. Fitted values of λm,obs , q obs and � obs (see Section 2.1 for details) 
for different star-forming regions as performed by A17 (top table) and T22 
(bottom table). 

Region Age [Myr] λm, obs q obs � obs 

Taurus 1–2 1.7 ± 0.2 1.2 ± 0.1 0.7 ± 0.1 
Lupus 1–3 1.8 ± 0.4 1.2 ± 0.2 0.9 ± 0.1 
Cha I 2–3 1.8 ± 0.3 1.0 ± 0.1 0.8 ± 0.1 
σ Orionis 3–5 2.0 ± 0.4 1.0 ± 0.2 0.6 ± 0.1 
Upper Sco 5–11 2.4 ± 0.4 0.8 ± 0.2 0.7 ± 0.1 

Region Age [Myr] λm, obs q obs � obs 

Corona 0.6 1.3 ± 0.5 0.4 ± 0.4 1.1 ± 0.7 
Taurus 0.9 1.5 ± 0.2 1.1 ± 0.1 0.8 ± 0.3 
L1668 1 1.5 ± 0.2 1.0 ± 0.1 0.8 ± 0.3 
Lupus 2 1.7 ± 0.3 1.4 ± 0.2 0.7 ± 0.3 
Cha I 2.8 1.6 ± 0.3 1.1 ± 0.2 0.7 ± 0.4 
Upper Sco 4.3 2.2 ± 0.3 0.8 ± 0.2 0.7 ± 0.3 

panel, is an intrinsic characteristic of the standard viscous scenario: 
as discs get older, part of their mass is lost due to the ongoing 
accretion of the central protostar, which eventually depletes the disc. 
Ho we ver, it is worth pointing out that some star-forming regions 
appear not to follow this trend (Cazzoletti et al. 2019 ; Williams et al. 
2019 ), and the reason behind that is still unclear. 

On the other hand, the mean value of λm, obs appears to be 
increasing with time, implying a steepening of the correlation 
between the (dust) disc mass and the stellar mass. Investigating the 
mathematical origin, physical meaning, and expected evolution of 
such a trend is one of the main goals of this paper, and will be 
addressed in Section 3 . 

2.2 Disc accretion rate 

The main signatures of young stars accreting material from their 
surrounding disc can be found in their spectra. Gas falling on to the 
stellar surface along the magnetic field lines (Calvet & Gullbring 
1998 ) causes an excess emission, particularly visible in the UV 

area of the spectrum (and especially in the Balmer continuum, see 
Gullbring et al. 1998 ). Characteristic emission line profiles are also 
typical indicators of accretion. Modelling the Balmer continuum 

excess in the spectra of young stars, and fitting emission line profiles, 
provide ef fecti ve ways of measuring accretion rates. 

Numerous surv e ys focusing on different star-forming re gions hav e 
targeted accretion rates (Muzerolle et al. 2003 ; Natta et al. 2004 ; 
Mohanty et al. 2005 ; Dullemond et al. 2006 ; Herczeg & Hillenbrand 
2008 ; Rigliaco et al. 2011 ; Manara et al. 2012 , 2016a , 2017 , 2020 ; 
Alcal ́a et al. 2014 , 2017 ; Kalari et al. 2015 ; Testi et al. 2022 ). Many 
of them have found a power-law correlation between the accretion 
rate and the stellar mass, Ṁ ∝ M � 

λacc , obs . The best-fitting value of 
λacc, obs ≈ 1.8 ± 0.2 seems to be roughly constant throughout different 
regions, suggesting that it could be independent on age (unlike the 
M d −M � correlation, see Section 2.1 ). On the contrary, Manara et al. 
( 2012 ) (hereafter M12 ) do see an increasing trend of λacc, obs with 
the age of the population, a trend similar to the one claimed by A17 
with respect to λm, obs . There is, ho we ver, a significant difference 
between this latter work and the others mentioned: M12 analysed a 
sample of ∼700 stars in the single star-forming region of the Orion 
Nebula Cluster, determining the isochronal age of each object in the 
region independently. On the other hand, A17 and T22 considered 
different star-forming regions and assumed all of the objects in each 
of them to be coe v al – determining therefore the mean age of each 

Table 2. Fitted values of the Ṁ − M � slope, λacc, obs (see Section 2.2 for 
details), by M12 (top table) and T22 (bottom table). 

Age [Myr] λacc, obs 

0.8 1.15 ± 2.00 
1 1.26 ± 2.02 
2 1.61 ± 2.06 
5 2.08 ± 2.13 
8 2.32 ± 2.16 
10 2.43 ± 2.18 

Region Age [Myr] λacc, obs 

L1668 1.0 1.8 ± 0.5 
Lupus 2.0 1.6 ± 0.3 
Cha I 2.8 2.3 ± 0.3 
Upper Sco 4.3 1.5 ± 0.8 

sample. The ages of young stellar objects are usually determined 
by comparing their position on the Hertzsprung–Russell (H–R) 
diagram with theoretical isochrones (see Soderblom et al. 2014 
for a re vie w): ho we ver, this method comes with a series of caveats 
(Preibisch 2012 ). In particular, translating a spread in luminosity into 
a spread in ages is not straightforward due to a number of factors 
that can impact the shape of the H–R diagram, such as measurement 
uncertainties and variations of the accretion processes. Determining 
a mean age for a whole star-forming region absorbs part of this 
uncertainty, which is the reason why the approach of M12 is less 
used. Nonetheless, their results intriguingly show a behaviour of 
λacc, obs similar to that of λm, obs , and therefore represent a case study 
worth considering. In this work, when compared to observational 
data (see Section 5.1 ), we will consider the fits for λacc, obs obtained 
from M12 as well as T22 . Table 2 summarizes the fitted values from 

both works. 
As discussed for λm, obs , there is in principle no theoretical reason 

for the correlation of the accretion rate with the stellar mass to steepen 
or flatten in time. Ho we ver, if we assume the viscous framework to 
hold, we do expect the accretion rate to be a decreasing function of 
time; in particular, Hartmann et al. ( 1998 ) showed that the viscous 
evolution implies Ṁ ∝ t −η, where η ∼ 1.5. 

2.3 Disc radius 

Evolutionary models predict that disc sizes to vary with time. In 
particular, radial drift is expected to influence the size of the dust discs 
(Weidenschilling 1977 ): large dust grains drift inwards, eventually 
disappearing, while small grains are left behind and follow the motion 
of the gaseous component. In the viscous framework, gas is subject to 
the so-called viscous spreading: as a consequence of the conservation 
of angular momentum, the accretion on to the central star leads to 
a radial expansion of the disc. Once the large grains are remo v ed, 
discs are expected to be wide and faint (Rosotti et al. 2019b ) and may 
be challenging to observe. These caveats must be taken into account 
when discussing disc radii, and, in practice, may severely limit the 
ability to observe viscous spreading, even when it does take place 
(Toci et al. 2021 ). 

The radial size of the dust component in discs is measured by 
analysing the extent of the millimetric thermal continuum emission. 
In the Ophiucus (Cox et al. 2017 ; Cieza et al. 2019 ), Lupus (Ansdell 
et al. 2016 ; Tazzari et al. 2017 ; Andrews et al. 2018 ; Hendler et al. 
2020 ) and Taurus (Long et al. 2019 ; K urto vic et al. 2021 ) star-forming 
regions, this method has been widely employed. Andrews et al. 
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( 2018 ) found evidence of a correlation between the dust disc radius 
and the stellar mass, namely R d ∝ M � 

0.6 ; recent works (Andrews et al. 
2018 ; Sanchis et al. 2021 ) have also found a correlation between the 
disc radius and the disc dust mass, which could be used to derive 
additional correlations with the stellar mass. Ho we ver, as measuring 
radii requires to spatially resolve the discs, the sample of objects with 
measured R d is smaller than that with measured M d ; moreo v er, both 
those measurements carry significant uncertainties due to optically 
thick emission. This makes it not convenient to prefer this relation 
to R d − M � . 

Using gas tracers, such as the rotational line emission of the 12 CO 

molecule, one can also measure the gas disc size (R CO ). As these 
observations are very time consuming, less data are available for 
the gaseous component (Barenfeld et al. 2016 ; Ansdell et al. 2018 ; 
Sanchis et al. 2021 ). In their work, Ansdell et al. ( 2018 ) did not 
see any correlation between the gas disc size and the stellar masses 
in Lupus, but their sample is biased towards the highest mass discs 
around the highest mass stars. At the present time, there is no strong 
evidence of a correlation between the disc gas size and the stellar 
mass; ho we ver, if a correlation exists, it is probably positive (see 
Appendix A ). 

3  A NA LY T I C A L  C O N S I D E R AT I O N S  

In the previous section, we have analysed the observational evidence 
for correlations between the stellar mass and the three major disc 
properties – mass, accretion rate, and radius. We have presented 
the possibility, discussed in previous works, to describe these 
correlations (with the possible exception of R d − M � ) with power- 
laws. In this section, we conduct a theoretical analysis of these 
correlations and their evolution in the purely viscous framework. 
We aim at determining the initial conditions needed to reco v er the 
observational findings. 

We start with two assumptions: 

(i) Self-similar discs: we assume that all discs in the population 
only evolve under the effect of the viscosity ν. ν can be modelled as 

a power-law of the disc radius, ν = νc 

(
R 
R c 

)γ

, where νc = ν( R = R c ) 

and R c is the exponential cutoff radius. The value of ν is prescribed 
following Shakura & Sunyaev ( 1973 ) as ν = αc s H (where α is a 
dimensionless parameter, c s is the sound speed, and H is the height 
of the disc). This implies that the self-similar solution by Lynden- 
Bell & Pringle ( 1974 ) describes the evolution of the gas component 
in protoplanetary discs, 


( R, t) = 

M d (0) 

2 πR c 
2 (2 − γ ) 

(
R 

R c 

)−γ

T −η

× exp 

(
− ( R/R c ) 2 −γ

T 

)
, (2) 

where η = (5/2 − γ )/(2 − γ ), T = 1 + t / t ν and t ν is the viscous 
time-scale, defined as t ν = R c 

2 /(3 νc ), on which viscous processes 
leading to evolution of discs take place. 

(ii) Power-law initial conditions: we assume power-law correla- 
tions with the stellar mass as initial conditions for M d , Ṁ , and R c . 
The value of the slopes can vary as evolution takes place, and we will 
refer to the evolved values as λm 

, λacc , and ζ . The initial correlations 
are set as follows: ⎧ ⎨ 

⎩ 

M d (0) ∝ M � 
λm , 0 

Ṁ (0) ∝ M � 
λacc , 0 

R c (0) ∝ M � 
ζ0 . 

(3) 

The self-similar solution provides analytical expressions for both 
the disc mass and accretion rate 

M d ( t) = M d , 0 

(
1 + 

t 

t ν

)1 −η

, (4) 

Ṁ ( t) = ( η − 1) 
M d , 0 

t ν

(
1 + 

t 

t ν

)−η

. (5) 

Note that as the ratio M d / Ṁ has the dimension of a time, by choosing 
the initial M d and Ṁ , we completely specify their time evolution. 
Depending on the age of the disc with respect to its viscous time- 
scale, set by the radius of the disc itself, discs can be considered 
young ( t 	 t ν) or evolved ( t 
 t ν). In these two limits, it is 
possible to simplify equations ( 4 ) and ( 5 ). We divide the following 
discussion based on these two evolutionary scenarios, as they 
lead to different results and theoretical expectations (Sections 3.1 
and 3.2 ). 

Equations ( 4 ) and ( 5 ) make clear that the time evolution of the 
slopes depends on how t ν scales with stellar mass. Because at t = 0 the 
initial accretion rate can be written as Ṁ 0 ∝ M d , 0 /t ν , a scaling of t ν is 
already implicitly assumed given a choice of λm, 0 and λacc, 0 . We can 
see from the definition of the viscous time-scale that the dependence 
on stellar mass is contained in any of the three parameters α, c s , 
or H . In this paper, we assume α to be a constant across all stellar 
masses; moreo v er, we also consider it as constant in radius and time, 
and fix its value to 10 −3 . However, note that the assumption that α
does not depend on stellar mass does not affect our general results 
on the evolution of the slopes (see the end of Section 3.2 ), since this 
depends only on the scaling of viscous time-scale with stellar mass. 
On the other hand, this assumption does affect how aspect ratio H / R 

and disc radius scale with stellar mass. Regarding the aspect ratio, 
this quantity can be defined as 

H 

R 

= 

c s 

v k 
, 

where v k is the keplerian velocity. Assuming a radial temperature 
profile T ∝ R 

−1/2 , then c s ∝ R 

−1/4 so that H / R will scale as R 

1/4 . 
Note that this implies γ = 1, which will be the case from now on. 
We can parametrize the dependency on M � as a power-law with 
exponent β

H 

R 

= 

H 

R 

∣∣
R= R 0 

(
R 

R 0 

)1 / 4 (
M � 

M �

)β

. (6) 

In this work, we have considered three possible values for β, which 
correspond to different physical situations: 

(i) H / R does not depend on the stellar mass, which implies β = 0; 
(ii) c s does not depend on the stellar mass, implying β = −1/2; 
(iii) T ∝ M � 

0.15 (derived by radiative transfer models, see Sinclair 
et al. 2020 ), which implies β = −0.425. Physically, this means that, 
while radiative transfer predicts that discs around lower mass stars 
should be colder due to their lower luminosity, this is a sub-dominant 
effect in setting the scale-height: the weaker gravity of these stars 
drives most of the change in scale-height. 

Of these three possibilities, the third one is the more realistic; 
none the less, the resulting value of β is very close to −1/2, 
meaning that we can approximate it to the second case, which makes 
mathematical calculations more straightforward. On the other hand, 
despite not being realistic, the first scenario is usually assumed for 
the sake of simplicity, and for this reason, we decided to include it 
in this work. In conclusion, we considered β to be either equal to 
0 or 1/2. 
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3.1 Young populations: t � t ν

If the age of the population is much smaller than its viscous time- 
scale, no evolution has taken place yet. This means that we are still 
observing the initial condition, and that the parameters λm 

, λacc , and 
ζ coincide with λm,0 , λacc,0 , and ζ 0 . Ho we ver, in the viscous scenario 
these parameters are al w ays link ed to one another; for young discs, 
Equation ( 5 ) can be written as Ṁ (0) ≈ M d (0) /t ν . In our notation, M d 

represents the total disc mass, which is given by 99 per cent gas mass 
and 1 per cent dust mass; since the observ ed power-la w correlation 
(equation 1 ) refers to the dust mass, we need to translate M dust to M d 

dividing by the dust-to-gas ratio, ε, which is assumed to be constant 
in time and M � . The initial, theoretical disc mass can therefore be 
written as 

M d (0) = K 1 

(
M � 

M �

)λm , 0 

, (7) 

where the normalization constant K 1 is given by 10 q M ⊕/ ε. Taking 
into account the dependence of the aspect ratio of the disc H / R on 
the stellar mass through equation ( 6 ), and using a generic value 
for β, we can write the initial accretion rate in the self-similar 
scenario as 

Ṁ (0) = K 2 

(
M � 

M �

)λm , 0 + 2 β+ 1 / 2 −ζ0 

, (8) 

defining the normalization constant K 2 as 

K 2 = 

10 q M ⊕
ε 

√ 

G M �
R c, �

3 

2 
α

(
H 

R 

∣∣
R= R c, �

)2 

, (9) 

where R c, � is the value of the cut-off radius R c for a solar-type star. 
The only free parameter in equation ( 8 ) is the stellar mass M � : all 
of the other parameters ( λm, 0 , ζ 0 , R c, �, β) can be determined by 
comparing this expression to the observational data. In particular, 
since Ṁ ∝ M � 

λacc , 0 , assuming that we can determine the values of 
λm, 0 and λacc, 0 from observations and that α is known, we could 
constrain the value of ζ 0 , 

ζ0 ≡ λm , 0 + 2 β + 

1 

2 
− λacc , 0 . (10) 

On the other hand, R c, � can be set imposing the normalization 
constant K 2 to equal the typical value for the accretion rate of a 
solar-type star. Based on the observation of Manara et al. ( 2017 ), 
log 10 ( Ṁ / M �yr −1 ) = −8 . 44, which leads to R c, � = 1.6 × 10 14 cm 

≈ 10 au (assuming α = 10 −3 , as stated abo v e). This is a reasonable 
initial disc radius; various recent papers have also assumed radii of 
the same order of magnitude (Trapman et al. 2019 ; Rosotti et al. 
2019a , b ; Toci et al. 2021 ). 

3.2 Ev olv ed populations: t � t ν

If the age of the population is larger than its viscous time-scale, 
discs can be considered evolved. In principle, at this stage, the 
initial conditions are not observed anymore – meaning that we 
expect to see an evolution of both the slopes and spreads of the 
correlations. In particular, if t 
 t ν , the self-similar accretion rate 
reduces to 

Ṁ ( t ) = 

1 

2 

M d ( t ) 

t 
; (11) 

as t does not depend on the stellar mass, we can see that equation ( 11 ) 
implies that the dependency on M � in evolved discs is the same for 
Ṁ and M d . Moreo v er, the distributions of the two quantities, M d and 
Ṁ , are expected to resemble each other more and more as evolution 

takes place and the condition given in equation ( 11 ) is reached: this 
means that, ev entually, we e xpect both the slope and the spread of 
the two correlations to reach the same value. 

3.2.1 Slopes 

As we did in the young populations scenario, expressing M d ( t ) 
through the first assumption in equation ( 3 ) and using the definition 
of t ν leads to 

M d ( t) = K 3 

(
M � 

M �

)λm , 0 + ζ0 / 2 −β−1 / 4 

t −1 / 2 , (12) 

where K 3 is a normalization constant that does not depend on the 
stellar mass or the age, defined by 

K 3 = M d , �

(
R c, �3 

G M �

)1 / 4 
1 √ 

3 α

(
H 

R 

∣∣
R= R c, �

)−1 

; 

M d, � represents the initial disc mass for a solar-type star. Denoting 
the evolved slopes, at t 
 t ν , as λm 

and λacc , this implies that 

λm 

≡ λacc = λm , 0 + 

ζ0 

2 
− β − 1 

4 
. (13) 

There are two ways in which equation ( 13 ) can be satisfied: 

(i) λm, 0 = λacc, 0 : if the two slopes start from the same value, they 
do not evolve with time. 

(ii) λm, 0 
= λacc, 0 : if the initial values of the two slopes are 
dif ferent, an e volution of their v alues must take place due to accretion 
processes. 

In the first scenario, as we do not expect any evolution with time 
of the two slopes, we can use the initial condition (see equation 10 ) 
to determine the value of ζ 0 , finding ζ 0 = 2 β + 1/2. As expected, 
substituting this value of ζ 0 in equation ( 13 ) leads to λm 

= λacc = 

λm, 0 . This implies that observing the same slope for the two 
correlations M d −M � and Ṁ –M � is not enough to claim anything on 
the age of the population. It could either be evolved, in which case we 
are observing a direct consequence of viscous evolution, or it could 
be young, in which case we would be observing the initial condition. 
This endorses what we suggested earlier, that observed correlations 
can be due either to the initial conditions or the evolution or, most 
likely, a combination of the two. It would be possible to disentangle 
between the two possibilities if additional information was provided, 
for example 

(i) observations at earlier ages (to try and see a change in the 
slopes with time); 

(ii) measurements of disc radii R i , which is in principle observable 
(although with some caveats, see Toci et al. 2021 ) to determine 
the viscous time-scale and give an estimate of the evolutionary 
stage of the population. Note that there is a de generac y in the 
determination of the viscous time-scale, as it depends on α, R c , and 
H /R 

∣∣
R= R c 

; 

(iii) the Ṁ –M d correlation: a large spread implies that the popu- 
lation cannot be considered evolved yet (Lodato et al. 2017 ). 

The other possibility is that the two initial values of the slopes are 
different. If that is the case, we can define the difference between 
the initial values as δ0 = λm, 0 − λacc, 0 . This means that the initial 
condition for ζ 0 (equation 10 ) is given by ζ 0 = 1/2 + 2 β + δ0 , which 
can be used in equation ( 13 ) to give 

λm 

= λacc = 

3 λm , 0 − λacc , 0 

2 
. (14) 
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Figure 1. Illustrative sketch to show how steepening slopes are a consequence of a positive correlation between viscous time-scales and stellar masses. The 
dots represent artificial data sets with their linear fits displayed as solid lines. The left-hand panel shows an early evolutionary stage, where t ν ∝ M � 

δ0 with δ0 

> 0: as discs around more massive stars have a longer viscous time-scale, in the time interval � t = t 2 − t 1 their mass is less depleted than that of discs around 
less massive stars, which in turn have a short viscous time-scale. This implies that, after � t , the correlation between M d and M � is steeper. On the other hand, 
the right-hand panel represents a later evolutionary stage, where δ has reached the limit value of 0. In that case, the viscous time-scale does not depend on the 
stellar mass anymore, and this implies a homologous depletion of discs around stars of all masses. The same argument applies for Ṁ . 

Note that equation ( 14 ) is not symmetric in λm, 0 and λacc, 0 , meaning 
that the impact of the initial condition for the M d −M � correlation is 
more long-lived than that for Ṁ –M � . Whether λm, 0 and λacc, 0 grow 

steeper or shallower with time, towards the limit value determined 
by equation ( 14 ), depends on the sign of δ0 : 

(i) A steepening of the correlation, λm 

> λm, 0 , is achieved if λm, 0 

> λacc, 0 ( δ0 > 0); this condition also implies λacc > λacc, 0 . 
(ii) On the other hand, a flattening of the correlation, λm 

< λm, 0 , 
is obtained if λm, 0 < λacc, 0 ( δ0 < 0); as in the previous case, this also 
implies λacc < λacc, 0 . 

In conclusion, there are two possible scenarios: either both slopes 
increase towards the common value for evolved populations, if λm, 0 

> λacc, 0 , or they both decrease towards it, it λm, 0 < λacc, 0 . In both 
cases, the difference between the two slopes δ = λm 

− λacc will 
tend towards zero. This argument stems from purely mathematical 
considerations, but can be easily understood from the physical point 
of view. As the initial accretion time-scale of the disc can be written 
as the ratio M d / Ṁ , it will itself show a power-law correlation with 
the stellar mass. In particular, its slope will be the difference of those 
of M d −M � and Ṁ –M � ; in our notation, its initial value is δ0 . A 

positive correlation (i.e. a positive δ0 ) means that discs around more 
massive stars will evolve slower than discs around less massive stars, 
causing a steepening of the correlations between disc and stellar 
parameters. The contrary argument applies for a ne gativ e δ0 , which 
leads to flattening correlations. As the evolution proceeds, δ = λm 

− λacc → 0, eventually reaching a homologous depletion of discs 
around more and less massive stars. Fig. 1 illustrates this concept in 
form of sketch. 

These conclusions on the evolutionary behaviour of λm 

and λacc 

only depend on the scaling of the viscous time-scale with the stellar 
mass. This is the reason why our assumption that α does not depend 
on M � does not influence this result. It should be noted, ho we ver, 
that if α did depend on the stellar mass, we would find a different 
relation between λm, 0 , λacc, 0 , and ζ 0 , as the viscous time-scale is set 
by α and R c . 

3.2.2 Spread 

As we have mentioned before, not only the mean slopes but also 
the spreads of the M d −M � and Ṁ –M � correlations are expected to 
reach the same limit value in the viscous scenario. Lodato et al. 
( 2017 ) have shown that the Ṁ –M d correlation is expected to tighten 
in time, leading to a decreasing spread; on the other hand, as the 
stellar masses hardly change, we expect the M d −M � correlation to 
follow the same behaviour as that of the distribution of disc masses, 
which we discuss below. 

If we assume the initial disc masses and radii to be dis- 
tributed log-normally, we can show that viscous evolution preserves 
the lognormal shape of the distributions. Moreo v er, the spread 
of the M d distribution at t 
 t ν writes (see Appendix B for 
deri v ation) 

σ 2 
M 

( t) = σ 2 
M 

(0) + (1 − η) 2 σ 2 
t ν

(0); (15) 

σt ν is the spread of the distribution of viscous time-scales, which in 
our case, given the direct proportionality between the viscous time- 
scale and radius, is very close to that of radii σ R . Equation ( 15 ) shows 
that the dispersion in the distribution of disc masses increases with 
disc evolution. 

Conv ersely, we e xpect the dispersion of the distribution of accre- 
tion rates to decrease with time. As the initial accretion rate can 
be written as Ṁ ∝ M d , 0 /t ν , the initial dispersion σṀ 

(0) is given by 
σ 2 

Ṁ 

(0) = σ 2 
M 

(0) + σ 2 
t ν

(0). At evolved times, instead, we have already 
noticed that the two distributions will coincide: this means that also 
σṀ 

( t) will be given by equation ( 15 ). For γ = 1, (1 − η) 2 = 1/4, 
meaning that σṀ 

( t) > σṀ 

(0). 

3.3 Summary: implications of the different scenarios 

If we assume a power-law dependence of the disc mass M d and accre- 
tion rate Ṁ on the stellar mass M � as initial condition for a population 
of discs, viscous theory predicts four dif ferent e volutionary scenarios 
for the observed correlations at later times: 
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M d −M � and Ṁ –M � correlations in discs 5933 

MNRAS 514, 5927–5940 (2022) 

Table 3. Summary of the different possible theoretical scenarios 
divided by the relative values of λm, 0 and λacc, 0 (see text for details, 
especially equation 10 and Section 3.3 ). The definition of each 
parameter appearing in the table is reminded in the top grey box. 
Each line represents a set of parameters. As discussed in the text, we 
dismiss the cases where β = 0 (which would imply an aspect ratio 
independent on M � ) and ζ 0 < 0 (implying disc radii decreasing with 
M � ): for visual purposes, cells corresponding to these two conditions 
hav e a gre y background. The only line which does not include any 
grey cells is the one that is not influenced by any of these restraints, 
i.e. the most physically reasonable scenario, and is framed in green. 

(i) young populations ( t 	 t ν): evolution has not taken place yet, 
therefore the observed slopes λm 

and λacc are the same as the initial 
values λm, 0 and λacc, 0 ; 

(ii) old populations ( t 
 t ν): evolution has taken place and both 
slopes have had the time to reach the evolved value, λm 

= λacc = 

(3 λm, 0 − λacc, 0 )/2. This can take place either via 

(a) both slopes already starting at the final value λ, if λm, 0 = 

λacc, 0 (implying δ0 = λm, 0 − λacc, 0 = 0); 
(b) a steepening of both slopes towards λm 

= λacc , if λm, 0 > 

λacc, 0 (implying δ0 > 0); 
(c) a flattening of both slopes towards λm 

= λacc , if λm, 0 < 

λacc, 0 (implying δ0 < 0). 

Table 3 summarizes all of the possible theoretical scenarios, with 
each line representing a set of parameters. The steps to determine a 
set of values are as follows: 

(i) First, the initial values of the slopes of the correlations M d −M � 

and Ṁ –M � , λm, 0 , and λacc, 0 , are chosen. This determines δ0 , defined 
as the difference between the two. 

(ii) β, the slope of the correlation H / R − M � (equation 6 ), is 
chosen. 

(iii) Using equation ( 10 ), ζ 0 – the slope of the correlation R d −
M � – is dletermined. 

Ho we ver, as we discussed above, not all parameters can assume 
any possible theoretical value while still maintaining physical rele- 
vance. In particular, β (the slope of the correlation of H / R with M � ) is 
unlikely to be zero, and ζ 0 (the initial slope of the correlation between 
R c and M � ) is unlikely to be ne gativ e. These conditions are visualized 
in Table 3 as cells with a grey background. Note that the assumption of 
a constant α does influence this argument: the increasing, decreasing 
and constant behaviour of λm 

and λacc based on the initial conditions 
is not affected, but the physical likelihood of the different scenarios 
is. Some lines in Table 3 show the same value of β but different 
intervals for δ0 ; this is because, based on the value of δ0 , different 
possibilities for ζ 0 may arise, in particular, it is meaningful to split 
the different possibilities if they include a change in the sign of ζ 0 . 
Given that each line in the table represents a set of parameters, lines 
that contain one or more grey cells turn out to be discarded. 

The only line that is not influenced by these restrictions, framed in 
green, represents the physically meaningful scenario. It is interesting 
to note that the requirement for both β and ζ 0 to assume reasonable 
values determines the difference between the initial slopes λm, 0 

and λacc, 0 . Specifically, it prescribes δ0 to be greater than 1/2: this 
implies λm, 0 > λacc, 0 , making the steepening slopes scenario the 
most reasonable one. Moreo v er, as we discussed in the previous 
section, δ0 > 0 also implies a positive initial correlation between the 
accretion time-scale and the stellar mass. The observational claim 

by A17 is intriguingly matching our theoretical consideration; a 
preliminary comparison with data and a discussion of its implications 
is performed in Section 5.1 . 

4  POPULATI ON  SYNTHESIS  

In this section, we discuss the numerical counterpart of the theoretical 
analysis presented in Section 3 . In particular, we describe the 
population synthesis model that we have implemented in Diskpop : 
we briefly present the physical framework, and we show the numer- 
ical results as well as discuss their agreement with the theoretical 
predictions. 

4.1 Numerical methods – Diskpop 

Developing a population synthesis model requires to implementing 
a numerical code to generate and evolve a synthetic population of 
protoplanetary discs. In this paper, we have used the PYTHON code 
Diskpop that we developed and that we will release soon. In this 
section, we briefly describe its basic functioning; for a more detailed 
presentation of it, we refer to the upcoming paper. 
Diskpop generates an ensemble (which we term population ) of 

N discs using the following scheme: 

(i) Determines N stellar masses: this is achieved performing a 
random draw from an input probability distribution. In Diskpop , 
we use the initial mass function proposed by Kroupa ( 2001 ); 

(ii) Determines the N mean values of initial disc masses and radii: 
this is where we account for correlations between stellar and disc 
parameters. Following the initial correlations listed in equation ( 3 ), 
we choose the values of λm, 0 and λacc, 0 and e v aluate ζ 0 using equa- 
tion ( 10 ); the initial mean disc mass and radius are then computed, 
for each of the N stellar masses from step (i), using the prescriptions 
( 7 ) and ( 8 ). Note that, by doing so, the correlations are intrinsically 
set to hold only for the mean value of the relevant parameters; 

(iii) Draws the N disc masses and radii: for this, the user needs 
to set two distributions (usually normal or lognormal) and their 
initial spread in dex (usually between 0.5 and 1.5 dex). After these 
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parameters are determined, the draw is performed using the mean 
values computed in step (ii). 

The other rele v ant parameters besides M � , M d , and R are fixed in 
our model. In particular, the aspect ratio of the disc at 1 au and the α
parameter for the Shakura & Sunyaev ( 1973 ) prescription are set to 
be H 

R 

∣∣
R= 1 au 

= 0 . 03 for a 1 M � star and α = 10 −3 . As for the value of 
α, it is still very much debated how high, or low, it should be or even 
if it should be constant in time or across the discs in a population at 
all (Rafikov 2017 ); some works have also suggested a dependence 
of α on the radial position in the disc, namely a lo wer v alue in the 
inner disc with respect to the outer disc (Liu et al. 2018 ). None the 
less, assuming a constant value of around 10 −3 leads to reproducing 
the observed evolution. A proper study of the α value is out of the 
scope of this paper. 

Once the population is initialized, we want to evolve it using the 
chosen prescription. In the purely viscous case, which is the focus of 
this first paper, we can either use the analytical self-similar solution 
( 2 ) or solve the viscous evolution equation 

∂
 

∂ t 
= 

3 

R 

∂ 

∂ R 

(
R 

1 / 2 ∂ 

∂ R 

( ν
R 

1 / 2 ) 

)
. (16) 

To do so, Diskpop employs the PYTHON code presented in Booth 
et al. ( 2017 ). In this work, we have used the numerical approach, but 
as long as an analytical solution is available, there is no difference in 
the two methods. 

The raw numerical solution is an array of values for the gas surface 
densities 
 at the chosen ages, from which we compute the other 
quantities of interest: the disc mass is defined as the integral of the 
surface density from the inner ( R in ) to the outer ( R out ) radius, 

M d = 

∫ R out 

R in 

2 πr 
 d r , (17) 

and R as the radius enclosing 68 per cent of the total disc mass. 

4.2 Numerical simulations and comparison with theoretical 
expectations 

In this section, we show the results obtained from simulating pop- 
ulations of N = 100 protoplanetary discs using Diskpop , evolved 
via numerical solution of equation ( 16 ). Following the scheme of 
Section 3 , we divide the following discussion on the basis of the 
evolutionary regime considered. Our aim is to compare population 
synthesis results with the analytical prescription that we derived in 
the previous section. 

4.2.1 Young populations: t 	 t ν

The discussion in Section 3.1 shows that, if the considered population 
is much younger than its viscous time-scale, we do not expect any 
significant evolution of the initial conditions. It is worth making a 
couple of considerations on the order of magnitude of the viscous 
time-scale. For γ = 1, t ν scales with the disc radius (as well as 
α−1 , which is fixed in this work though), and given that our initial 
disc sizes are of the order of 10 au, the typical viscous time-scale 
will be shorter than 1 Myr; this is the case for more than 98 per cent 
of the discs in the synthetic population. This constraint stems from 

the need to reproduce the mean observed mass and accretion rate, 
as discussed in Section 3.1 . Such a short viscous time-scale means 
that young populations would be very challenging to observe. The 
earliest data available for populations of discs usually correspond to 
ages around 1 Myr (e.g. Lupus and ρ Ophiucus); if the distribution 

of t ν reproduced the viscous time-scales of these regions, already 
the youngest populations would be too old for t 	 t ν to hold. For 
this reason, in the following, we only show numerical results for 
the evolved populations scenario. As mentioned earlier, all of this 
discussion holds for the particular viscous time-scales that derive 
from the chosen parameters in our simulations: there is in principle 
the possibility of obtaining longer viscous time-scales (lower α, 
larger R c ), which would reverse this argument. Ho we ver, from the 
observational point of view, this would require larger disc masses or 
lower accretion rates. 

4.2.2 Evolved populations: t 
 t ν

In the case of evolved populations, which are observed at ages longer 
than their viscous time-scales, we present the numerical results for 
all of the three scenarios discussed in Section 3.3 . Fig. 2 shows the 
mean fitted slopes of the M d −M � and Ṁ –M � correlations ( λm 

and 
λacc , respectiv ely) v ersus the age of the population. As summarized 
in Section 3.3 , from the theoretical point of view, we expect both λm 

and λacc to reach the same e volved v alue, either through a steepening, 
a flattening, or a constant evolution. Each of these three possibilities 
corresponds to a choice of the initial parameters, and is determined 
by the sign of their difference: δ0 = λm, 0 − λacc, 0 . In Fig. 2 , we 
present our results, where the cyan and pink lines refer to λm 

and 
λacc , respectively, obtained in each of these scenarios: 

(i) the left-hand panel corresponds to λm, 0 = 1.3, λacc, 0 = 1.9 ⇒ δ0 

< 0, which is expected to produce a flattening of the slopes towards 
the evolved value; 

(ii) the middle panel shows the evolution if λm, 0 = λacc, 0 = 

1.7 ⇒ δ0 = 0, which corresponds to the theoretical expectation of 
constant slopes; 

(iii) finally, in the right-hand panel we set λm, 0 = 2.1, λacc, 0 = 

1.5 ⇒ δ0 > 0, which should lead to an increasing trend of the slopes. 

All simulations have the same values of α = 10 −3 , H / R | R = 1au = 

0.03 for M � = 1M �, β = −1/2. The black dashed line shows the 
theoretical e volved v alue, computed based on the initial v alues of the 
slopes as per equation ( 14 ). We can see that all of the three simulations 
do match our analytical evolutionary predictions: the limit value for 
evolved populations is recovered, and the flattening, constant, and 
increasing trends are reco v ered. The middle panel shows a small 
evolution at very early ages, but it is most likely due to numerical 
effects and can be neglected. Note that the synthetic populations 
shown in the plots are evolved up to 20 Myr; while we do not expect 
to observe disc-bearing protostars at those very late ages (due to the 
disc removal processes at play that this work does not include – see 
Mamajek 2009 ), we evolved our synthetic populations up to such a 
long age to make sure no transient affected our results. Moreo v er, 
the e volved v alue is reached at very late ages ( ∼10 Myr), when we 
expect processes other than viscous evolution to have taken place. 

4.3 Numerical simulations introducing a spread 

The real power of disc population syntheses is the possibility of 
introducing a spread in the initial conditions of the population: 
in this section, we explore the influence of such a spread on our 
results. Fig. 3 shows the output of Diskpop : the left and right-hand 
panels display the correlation M d −M � and Ṁ –M � , respectively, at 
four subsequent timesteps as per the legend. Each dot represents 
a disc in the population; the fit was performed using the PYTHON 

package linmix . 
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Figure 2. Time evolution of the mean values of the slopes of the M d −M � and Ṁ –M � correlations, λm 

and λacc (cyan and pink, respectively), as obtained 
running Diskpop and fitting the results using linmix . The black dashed line represents the limit value of both slopes for t → +∞ (see equation 14 ). Each 
panel corresponds to a different choice in the initial values λm, 0 and λacc, 0 . Left-hand panel: λm, 0 = 1.3, λacc, 0 = 1.9, δ0 = λm, 0 − λacc, 0 < 0; middle panel: 
λm, 0 = λacc, 0 = 1.7, δ0 = 0; right-hand panel: λm, 0 = 2.1, λacc, 0 = 1.5, δ0 > 0. The numerical behaviour follows the theoretical prediction derived in Section 3 : 
λm, 0 < λacc, 0 (left-hand panel) leads to a flattening trend, λm, 0 = λacc, 0 (middle panel) to a constant slope, and λm, 0 > λacc, 0 to a steepening trend. Moreo v er, 
the theoretical limit value is reco v ered for ev ery choice of parameters. In every simulation, H / R | R = 1au = 0.33 for M � = 1M �, α = 10 −3 , β = −0.5, and both 
initial conditions M d (0) and R c (0) follow a lognormal distribution. 

Figure 3. M d −M � (left-hand panel) and Ṁ –M � (right-hand panel) corre- 
lations obtained with Diskpop at four consequent time steps from top to 
bottom, as shown in the legend. The dots represent discs in the population, 
and the numerical fit is o v erplotted. These simulations were performed with 
the same parameters as the right-hand panel of Fig. 2 ( δ0 > 0), with the 
addition of a spread in the initial conditions of σM , 0 = 0.65 dex, and σR , 0 = 

0.52 dex. 

We also analysed the time evolution in the spreads of both 
correlations. The spread is determined as the standard deviation of the 
vertical distances of every point from the fitted relation. Fig. 4 shows 
the results with input values σ M 

(0) = 0.65 dex, σ R (0) = 0.52 dex 
(chosen to be consistent with the observed values in the data sets from 

A17 and T22 , referring to lognormal distributions). The light blue 
and pink lines show the evolution of the dispersion of the M d −M � 

and Ṁ –M � correlations respectively. As we pointed out in Section 
3.2.2 , we expect the spread of the two correlations to reach the same 
e volved v alue, represented in the figure by the black dashed line. The 
numerical limit of 0.71 dex is very close to the theoretical one of 0.7; 
the slight difference is most likely due to the fact that the numerical 

Figure 4. Time evolution of the spread of the M d −M � (light blue) and 
Ṁ –M � (pink) correlations. The black dashed line shows the analytical spread 
of the M d distribution for t 
 t ν as per equation ( 15 ). Both spreads reach 
the same value after some million years of evolution, in agreement with M d 

and Ṁ reaching a unity correlation in the logarithmic plane; this final spread 
slightly differs from the analytical estimation for evolved populations due to 
the addition of a spread in the stellar masses. 

dispersion in t ν also accounts for the dispersion in stellar masses, 
which is not considered in the analytical calculation. 

5  DI SCUSSI ON  

In Section 3 , we have performed a theoretical analysis of the viscous 
e volution of po wer-law initial conditions. Through it, we have deter- 
mined three possible physical scenarios which differ by the relative 
values of the initial slopes λm, 0 and λacc, 0 . We then analysed the 
output of our population synthesis code Diskpop and compared the 
ev olutionary beha viour with our theoretical expectations (Section 4 ). 
In this section, we perform a preliminary comparison with some 
of the available observational data (Section 5.1 ) and discuss the 
implications of our findings (Section 5.2 ). 

5.1 Preliminary comparison to obser v ational data 

After we tested Diskpop , reco v ering the analytical prediction for 
the viscous evolution of λm 

and λacc , we performed a preliminary 
comparison using three sets of observational data ( M12 ; A17 ; T22 ) 
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Figure 5. Comparison of the numerical results for λm 

obtained from 

Diskpop with the observational data from A17 (top panel) and T22 (bottom 

panel). The solid and dashed lines in each panel represent the results of 
simulations performed with two different sets of parameters, as shown in the 
legend. The diamonds correspond to the observational mean values, while 
the vertical and horizontal lines represent the 1 σ error bars. The two sets of 
parameters displayed are able to match (from a qualitative point of view) the 
youngest and oldest populations, respectiv ely; the y represent the limits of the 
parameter space. Both are chosen to fall in the most physically meaningful 
scenario, with δ > 1/2. The darker shaded regions around the solid and dashed 
lines represent the 25th and 75th percentile for the fitted slopes, obtained from 

100 different statistical realizations of the same simulation. 

There are some rele v ant caveats to these comparisons. First of all, 
we did not include any observational effects, biases, or sensitivity 
limitations in our simulations. Ho we ver, the goal of this comparison 
is not to fit any data set, nor to perfectly reproduce the observations: 
our aim is just to have a qualitative idea of the parameter space, and 
to see whether the general trend shown by observations can (at least 
in principle) be reproduced from the theoretical point of view. 

Figs 5 –7 show the data comparison for the M d −M � (Fig. 5 ) and the 
Ṁ –M � (Figs 6 and 7 ) correlation. The top panel of Fig. 5 refers to data 
from A17 , the bottom panel of Figs 5 and 6 from T22 , and Fig. 7 from 

M12 . Each panel in these figures contains two sets of simulations, 
represented by the solid and dashed lines respectively, corresponding 
to two different sets of parameters ( λm, 0 and λacc, 0 , see legend), with 

Figure 6. Same as Fig. 5 , but referring to λacc , showing both the numerical 
results from Diskpop and the observational data from T22 . See the caption 
of Fig. 5 for detail on annotations. 

Figure 7. Same as Fig. 6 , but compared to the observational data from M12 . 
See the caption of Fig. 5 for detail on annotations. Note that the horizontal 
bars in this figure do not represent the errors on the ages, but rather the extent 
of the age interval that was considered in performing the fit (see text for 
details). 

a spread of σ M 

(0) = 0.65 dex and σ R (0) = 0.52 dex. The darker 
shaded areas around the solid and dashed lines represent the 25th 
and 75th percentiles for the fitted slopes, obtained from 100 different 
statistical realisations of the same simulations. The initial conditions 
on λm 

and λacc were chosen to qualitatively match the observed 
slopes at later and younger ages respectively; the other parameters in 
the simulations are fixed; in particular, H / R | R = 1au = 0.33 for M � = 

1 M �, α = 10 −3 , and β = −0.5. The mean observ ational v alues are 
represented by diamonds, and the vertical and horizontal lines show 

their uncertainties. As we already discussed in Section 2 , there is a key 
difference between the data by M12 and all of the other observations: 
M12 focused on a single star-forming region, dividing the protostars 
based on their isochronal age group, while data from both A17 and 
T22 instead refer to different star-forming regions, each with its own 
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mean age. For this reason, the horizontal bars in Fig. 7 do not refer 
to the errors in age, but rather to the extent of the age intervals 
considered when performing the fits. Because of these considerable 
differences from the observational point of view, we divided Figs 6 
and 7 . 

It is worth recalling that, out of the two diagnostics M d and Ṁ , 
the second is more readily translated in the observational space. On 
the other hand, disc mass measurements al w ays refer to dust content; 
given that our simulations only include the gaseous component, all of 
the observed masses shown here have been multiplied by the dust-to- 
gas ratio (set to the usual value of 100, see Bohlin, Savage & Drake 
1978 ). If Diskpop included dust evolution, the numerical disc mass 
M d would be affected and so would the M d − M � correlation and its 
time evolution; on the other hand, we do not expect a significant 
influence of the presence of dust on the accretion rate. At this stage, 
we also assumed spread-less initial conditions for the disc masses and 
radii. For these reasons, as well as not including any observational 
effects or biases, the comparison shown in Figs 5 –7 is qualitative. 

Nonetheless, our comparison does suggest some interesting ideas. 
A17 claimed to have found an increasing trend of λm 

with the age of 
the sample, which can also apply to T22 – even if it is not as evident. 
Furthermore, in T22 the mean value for λacc seems to be increasing 
as well: the visible exception of the last point (Upper Scorpius) must 
be treated carefully, as it represents a highly incomplete sample –
hence the large error bars (see the original paper for more detail). 
Due to the method adopted to determine the age of the subgroups in 
the Orion Nebula Cluster, M12 found significant errors on the fitted 
slopes; despite not being statistically significant, the mean measured 
values are increasing, and these data show a general agreement with 
the steepening trend. The interesting message of Figs 5–7 is that the 
observed increasing trend can be reproduced from the theoretical 
point of view, as the simulations show. Despite including a spread 
of around 0.5 dex in both the disc mass and radius, the analytical 
expectations are well recovered: given the choices of parameters (in 
particular, δ0 > 1/2), our simulations show the steepening evolution 
of both λm 

and λacc . The main result is that, if this is the case, such 
observed correlations would be naturally explained in the purely 
viscous framework by 

(i) assuming power-law correlations as initial conditions; 
(ii) imposing a positive correlation between the viscous time-scale 

and the stellar mass. 

Figs 5–7 also show the effect of a spread in the initial conditions 
on the evolution of the slopes. At t = 0, the median slopes (solid 
and dashed lines for the two initial conditions) and the input values 
λm, 0 and λacc, 0 coincide with a precision of ∼10 −3 and ∼10 −2 , 
respectiv ely; moreo v er, the evolutionary path of both λm 

and λacc is 
not changed. Therefore, including a spread in the initial condition 
only influences the starting point of the evolution and does not affect 
the fundamental results that we have discussed. 

As we mentioned abo v e, we chose the parameters in the two 
different runs of Diskpop to qualitatively match the youngest and 
most evolved values for both λm, obs and λacc, obs : this identifies a 
region of the parameter space for λm, 0 and λacc, 0 , which lead to 
an evolution that roughly matches the observations (within their 1 σ
error bars). These two sets of parameters are given by λm, 0 = 2.1, 
λacc, 0 = 1.5 and λm, 0 = 1.2, λacc, 0 = 0.7; the interval in the parameter 
space is 

λm , 0 ∈ [1 . 2 , 2 . 1] λacc , 0 ∈ [0 . 7 , 1 . 5] . (18) 

Figs 5 –7 unveil another feature worth pointing out. Different values 
of λm, 0 and λacc, 0 can change the starting point of the curves 

obtained, but cannot change their shape, i.e. the rate of steepening 
or flattening of the slopes is not influenced by the initial parameters 
in the purely viscous case. We will discuss this further in the next 
section. 

5.2 Evolution of the slopes 

As we discussed abo v e, the ke y promising aspect worth pointing 
out is that there is indeed a theoretical scenario which is able to 
reproduce the observed steepening of the correlations. Furthermore, 
this case also corresponds to the most likely physical regime, which 
leads to a positive correlation between the disc radius and the stellar 
mass. If these analytical requirements are matched, our analysis finds 
that power-law initial conditions for the correlations λm 

and λacc 

can only be steepened by viscous evolution. This implies that the 
observed correlations could be easily explained in terms of initial 
conditions and viscous evolution, without invoking any additional 
physical process. 

On the other hand, we also found that changing the initial values 
λm, 0 and λacc, 0 raises or lo wers the e volution curve, adding only 
a small modification to the rate at which the exponents of the 
correlation steepen. Indeed, even if the difference δ0 = λm, 0 − λacc, 0 

does impact the viscous time-scales, with these choices of parameters 
they still remain of the order of 1 Myr; as the bulk of the evolution in 
our models happens on comparable time-scales, the effect of these 
changes is minimal. 

Initial conditions within the parameters space specified in equa- 
tion ( 18 ), and with δ0 > 1/2, are able to qualitatively match the 
observed slopes within 1 σ (although note that, as the error bars are 
large, this is not strongly constraining on any of the three models). 
Ho we ver, the youngest and oldest populations seem to be better 
described by different simulations. This can be explained in two 
different ways: 

(i) Initial conditions are not the same for every star-forming 
region. This would mean that different curves must be considered 
for different regions to match their evolution; 

(ii) Viscous evolution alone is not enough to explain the whole 
extent of star-forming regions. 

The second possibility is very much reasonable; a number of 
physical effects are now thought to affect disc evolution, sooner 
or later in their lifetime. We can mention in particular MHD winds, 
which are expected to play a role alongside viscosity (Tabone et al. 
2022a ), internal and external photoe v aporation (Clarke, Gendrin & 

Sotomayor 2001 ; Alexander, Clarke & Pringle 2004 ; Owen, Clarke & 

Ercolano 2012 ), or dust evolution (Sellek et al. 2020a ); these effects 
are complicated to include in the mathematical analysis, but may be 
implemented in numerical codes to test whether they do lead to any 
modifications to the steepening rates of λm 

and λacc . Dust evolution 
in particular would likely affect the computed disc mass, although 
it should not have a considerable influence on the accretion rate. 
This expected behaviour is encouraging, as Fig. 5 shows that the 
shape of the time evolution of λacc (right-hand panel) qualitatively 
matches the observed data way better than that of λm 

(left and central 
panels). An ideal candidate to show the signature of more complex 
evolutionary patterns would be Upper Scorpius, which is notorious 
for being difficult to explain through classic viscous models (Manara 
et al. 2020 ; Trapman et al. 2020 ) unless adding additional physics, 
such as dust evolution (Sellek et al. 2020a ). 
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6  C O N C L U S I O N S  

In this paper, we investigated the correlation between the stellar 
mass and disc properties, M d −M � and Ṁ –M � . Assuming power-law 

correlations as initial conditions ( M d (0) ∝ M � 
λm , 0 , Ṁ (0) ∝ M � 

λacc , 0 ), 
as well as viscous evolution, we obtained analytical equations to 
describe how the exponents of these correlations should evolve with 
time. Our main findings are the following: 

(i) In the viscous picture, the two correlations follow the same 
trend: they both either grow steeper or shallower with time. Given 
enough time, they tend to the same value, which is determined by 
the initial slopes or, in other terms, by the scaling of the viscous 
time-scale with the stellar mass. If we further make the plausible 
assumption that H / R ∝ M � 

β , with β = −1/2 (as supported by radiative 
transfer models), α does not depend on M � and δ0 = λm, 0 − λacc, 0 

> 1/2, both correlations steepen with time, as tentatively suggested 
by observations. This is a consequence of viscous time increasing 
with stellar mass. Moreo v er, the spread of the two correlations is also 
bound to evolve to reach the same value, determined by the initial 
spreads in disc masses and viscous time-scales. 

(ii) Moti v ated by this early success, we attempted a comparison 
of our predictions with the available data. To this end, we built a 
numerical tool, Diskpop , to evolve synthetic disc populations and 
include effects that cannot be tackled in the analytical approach 
(such as a spread in the initial conditions and the effect of random 

sampling). 
(iii) With the two sets of initial conditions λm, 0 = 1.2, λacc, 0 = 

0.7 and λm, 0 = 2.1, λacc, 0 = 1.5, we obtain two limit curves which 
match either the youngest or the oldest region in the samples (within 
their error bars). This means that the range λm, 0 ∈ [1.2, 2.1], λacc, 0 

∈ [0.7, 1.5] as exponents in the initial conditions allows to span the 
observed parameter space. 

(iv) Changing the initial condition can either raise or lower the 
curve, without significantly modifying its shape: This implies that 
our model cannot exactly match both the youngest and the oldest 
populations. This behaviour can imply two consequences: either the 
initial condition is not the same for every star-forming region, or 
viscosity alone is not enough to explain the observed long-term 

evolution [as already discussed in previous works, e.g. Mulders et al. 
( 2017 ), Manara et al. ( 2020 ), Testi et al. ( 2022 )]. Of course, these 
two possibilities can also be valid at the same time. In particular, we 
expect dust evolution and planet formation, followed by disc-planet 
interaction, to play a crucial role: affecting the disc mass M d , it will 
likely change the time evolution of λm 

. However, it would probably 
not affect λacc , which intriguingly already resembles the observations 
better. 

In our future work, we aim at further developing Diskpop , 
increasing its complexity adding rele v ant physical effects such as 
MHD winds, photoe v aporation and dust evolution; this will allow 

us to test the influence of these phenomena on the evolution of 
populations, and to obtain numerical results more suitable for a 
comparison with observational data. 
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APPEN D IX  A :  R d − M � C O R R E L AT I O N  

Fig. A1 shows a plot of the gas (CO) disc radius as a function of 
the stellar mass using data by Sanchis et al. ( 2021 ), fitted using 
linmix . The best-fitting parameters 2 are α = 2.14 ± 0.08, β = 

2 Using the standard convention for linear relations, y = α + βx . 

Figure A1. Radius obtained from CO observations [data by Sanchis et al. 
( 2021 )] as a function of the stellar mass in the Lupus star-forming region. 

0.32 ± 0.13, with a spread σ = 0.32 ± 0.16 dex. As discussed in 
Section 2.3 , the correlation is positive but the fit is not particularly 
strong; the correlation coefficient is ρXY = 0.32, which implies weak 
correlation. 

APPENDI X  B:  E VO L U T I O N  O F  T H E  DISC  MASS  

DI STRI BU TI ON  IN  T H E  SELF-SIMILAR  

SCENARI O  

Here, we demonstrate that an initially lognormal distribution of disc 
masses keeps being lognormal at long times under the assumption of 
self-similar viscous evolution and estimate the rele v ant distribution 
parameters. 

We start by defining some useful quantities: let m 0 = log M d,0 and 
τ ν = log t ν be the log of the initial disc mass and viscous time of 
a specific disc in a population. Now, the initial distributions of disc 
masses and viscous times are assumed to be lognormal, so that: 

∂N 

∂m 0 
= N 1 exp [ −( m 0 − m̄ 0 ) 

2 / 2 σ 2 
M 

] , (B1) 

∂N 

∂τν

= N 2 exp [ −( τν − τ̄ν) 2 / 2 σ 2 
t ν

] , (B2) 

where m̄ 0 and τ̄ν are the average values of the initial disc mass and 
viscous time (in logarithmic sense), σ M 

and σt ν are their dispersions, 
and N 1 and N 2 are normalization constants. Note that the two 
lognormal probability distributions are independent, in the m 0 −
τ ν space, and their means and variances may depend on the stellar 
mass. For a self-similar disc in the limit t 
 t ν , the disc mass at 
time t is M d ( t ) = M d, 0 ( t / t ν) a , where a = 1 − η (see equation 4 ). In 
logarithmic form, this is: 

m = m 0 + aτ − aτν, (B3) 

where m = log M d ( t ) and τ = log t . We can invert equation ( B3 ), 
obtaining 

τν,m 

= 

m 0 

a 
− m 

a 
+ τ, (B4) 

so that τ ν , m is the viscous time for which a disc with initial mass m 0 

evolves into m after a time τ . 
The distribution of disc masses at time t can then be obtained by 

inte grating o v er the distribution of initial disc masses and viscous 
times, under the condition that equation ( B4 ) is satisfied 

∂ N 

∂ m 

= 

∫ ∫ 
∂N 

∂m 0 

∂N 

∂τν

δ( τν − τν,m 

) d τνd m 0 , (B5) 
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where δ is the Dirac function. The integral over viscous times can be 
readily be done, and, after inserting the initial distributions of disc 
masses and viscous times and using equation ( B4 ), we obtain 

∂ N 

∂ m 

= N 1 N 2 

∫ 
exp 

{
− ( m 0 − m̄ 0 ) 2 

2 σ 2 
M 

−
[

( m 0 − m ) 

a 
+ ( τ − τ̄ν) 

]2 1 

2 σ 2 
t ν

}
d m 0 . (B6) 

Let us define m̄ = m̄ 0 + aτ − a ̄τν , which we will see is the average 
disc mass at time τ . We also define ˜ m = m − m̄ and ˜ m 0 = m 0 − m̄ 0 . 
The exponent in equation ( B6 ) can be then rewritten as (neglecting 
the factor −1/2) 

M = 

˜ m 

2 
0 

σ 2 
M 

+ 

[
˜ m 0 

a 
− ˜ m 

a 

]2 1 

σ 2 
t ν

. (B7) 

We can now easily rewrite the exponent M in such a way to 
isolate the dependence on m 0 (that we integrate upon). After some 
straightforward algebra, we get 

M = 

(
A ̃  m 0 − B 

2 

A 

˜ m 

)2 

+ 

A 

2 − B 

2 

A 

2 /B 

2 
˜ m 

2 , (B8) 

where 

B 

2 = 

1 

a 2 σ 2 
t ν

(B9) 

and 

A 

2 = B 

2 + 

1 

σ 2 
M 

. (B10) 

Now, integrating equation ( B6 ) over ˜ m 0 , the whole first term on 
the RHS in equation ( B8 ) translates into a normalization constant, 
leaving us with just a Gaussian distribution for ˜ m . This means that 
the disc masses at time t are distributed log-normally, with mean 
m̄ = m̄ 0 + aτ − a ̄τν and with dispersion 

σM 

( t) = 

A 

2 /B 

2 

A 

2 − B 

2 
= σ 2 

M 

+ a 2 σ 2 
t ν
. (B11) 
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