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Abstract

While text-conditional 3D object generation and manip-
ulation have seen rapid progress, the evaluation of coher-
ence between generated 3D shapes and input textual de-
scriptions lacks a clear benchmark. The reason is twofold:
a) the low quality of the textual descriptions in the only
publicly available dataset of text-shape pairs; b) the lim-
ited effectiveness of the metrics used to quantitatively as-
sess such coherence. In this paper, we propose a compre-
hensive solution that addresses both weaknesses. Firstly,
we employ large language models to automatically refine
textual descriptions associated with shapes. Secondly, we
propose a quantitative metric to assess text-to-shape coher-
ence, through cross-attention mechanisms. To validate our
approach, we conduct a user study and compare quantita-
tively our metric with existing ones. The refined dataset, the
new metric and a set of text-shape pairs validated by the
user study comprise a novel, fine-grained benchmark that
we publicly release to foster research on text-to-shape co-
herence of text-conditioned 3D generative models.
Benchmark available at https://cvliab-unibo.
github.io/CrossCoherence-Web/.

1. Introduction

The rapid development of text-to-image generative mod-
els has enabled generation and manipulation of photo-
realistic images from natural language prompts, in a matter
of seconds [32, 12, 24, 31, 15,42, 33, 13, 2]. Inspired by
such results, recent works [25, 17, 20, 6, 27, 40, 35, 19, 14]
have started to explore the task of text-conditioned genera-
tion of 3D shapes.

Two main paradigms are emerging for text-to-shape gen-
eration: one is a direct extension of the successful ap-
proach used to learn text-conditioned generative models for
images and relies on supervised learning on high-quality

Text2Shape GPT2Shape

"A wooden table with a
rectangular top, featuring a
depression on the side, in
brown, black, and gray."

"this is a brown color table."

Rectangular wooden desk
with brown finish,

gray veneer top,

three drawers and four legs

CLIP-Similarity CrossCoherence

Figure 1. Benchmarking text-to-shape generative models calls for
bett-er datasets and better metrics. Top: as existing datasets [6]
contain many uninformative descriptions (left), we automatically
create high-quality text prompts (right) by leveraging GPT-3 [4].
Bottom: the existing metric CLIP-Similarity judges the left shape
as more coherent to the given text than the right one, whilst our
novel CrossCoherence prefers the right shape over the left one.

paired text-shape datasets [0, 20, 17]. The extension of
such paradigm to 3D shapes is however severely limited
by the lack of general, high-quality 3D datasets: the only
datasets for text-driven shape generation are Text2Shape [6]
and its extended version Text2Shape++ [ 4], which contain
text descriptions for chairs and tables from ShapeNet [5].
However, as shown in Figure | (top, left), the textual de-
scriptions provided by these datasets are often generic and
fail to capture all the key, fine-grained details of the ob-
jects in terms of both geometry and appearance. The second
paradigm [35, 27, 19] sidesteps the need for paired datasets
by leveraging pre-trained CLIP [29] or text-to-image mod-
els [32, 12, 24, 31, 15,42, 33, 13, 2] to learn to align 3D
content creation to the input text. This paradigm has shown
impressive results, but such methods are usually based on
optimizing NeRF models [22, 23, 16, 27, 40, 19] out of
the generated images, which results in impractical run-time
costs and latency (e.g., Magic3D [19] takes 40 minutes on
8 NVIDIA A100 GPUs to generate one single shape).
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Another important limitation for both paradigms is the
lack of a common benchmark. It is impossible to overstate
the importance of benchmarks in enabling and driving the
rapid developments of deep learning: this is a cornerstone
of the field since ImageNet [10] gave rise to the AlexNet
breakthrough [18]. The definition of a clear benchmark for
text-to-shape generation is hindered not only by the absence
of high-quality paired text-3D datasets but also by metrics.
Most currently adopted quantitative metrics can measure
only the generative ability of a method, i.e. the realism
of the generated shapes in terms of distance between their
distribution and the ground-truth one. These metrics, how-
ever, are not able to quantify how closely a 3D shape fits a
text, arguably the most important aspect to properly evalu-
ate text-to-shape methods. Exceptions are metrics based on
CLIP embeddings [29] which are computed from 2D ren-
derings of the 3D shape and text embeddings. However,
these approaches may turn out sensitive to rendering pa-
rameters and struggle to capture coherence with individual
words or fine-grained geometric details due to the global
nature of the CLIP text and visual embeddings.

In this work, we propose the first benchmark for text-
to-shape generation and manipulation that addresses both
shortcomings highlighted above. Since collecting a novel
dataset from scratch is a time-consuming and costly ef-
fort, we investigate on the effectiveness of pre-trained large
language models (LLMs) to leverage existing datasets and
improve their quality at a fraction of the cost. In partic-
ular, as shown in Figure | (top, right), we create an im-
proved version of Text2Shape, which we dub GPT2Shape,
whose textual descriptions have been generated by the large
language model GPT-3 [4] starting from the text prompts
of the original dataset. The higher quality of such text
prompts has been validated through a human evaluation
study. GPT2Shape provides multiple fine-grained textual
descriptions for every 3D shape. The detail and accuracy of
textual descriptions can enable training of generative mod-
els which can effectively capture and learn the relation-
ships between the words in the input text and the local-
ized details of the corresponding 3D shape. Such capability
would be very hard to achieve with noisy and imprecise text
prompts. We also propose a novel metric, dubbed Cross-
Coherence, which does not use renderings and exploits the
cross-attention mechanism to quantify the coherence be-
tween a coloured point cloud and a textual description at
the word and geometric detail level. We use the text-shape
pairs validated through the human study to quantitatively
compare with existing text-3D coherence metrics and show
how CrossCoherence outperforms previous proposals (Fig-
ure 1, bottom). Finally, as a by-product of our human eval-
uation study, we create the Human-validated Shape-Text
(HST) dataset by collecting the textual descriptions which
have been coherently associated with a shape by the par-

ticipants. The usefulness of the HST dataset is twofold: it
provides a set of prompts and associated shapes, that can
be used as a test set of our benchmark since they are not
present in the training set but come from the same distribu-
tion on which CrossCoherence has been trained; it may also
serve as a benchmark for the development of new text-to-
shape coherence metrics.
To sum up, the main contributions of this work are:

e GPT2Shape, an automatically improved dataset con-
sisting of shape-text pairs with high-quality, fine-
grained textual descriptions;

* CrossCoherence, a state-of-the-art quantitative metric
for text-to-shape coherence, which can be directly ap-
plied to RGB point clouds;

e HST, a human-validated test set where CrossCoher-
ence can be used to evaluate and compare text-driven
generative models.

2. Related Work

Text-to-shape coherence metrics: Several recent stud-
ies have explored the problem of text-conditioned 3D gen-
eration. To assess fidelity to the input prompt, [20],
[35] and [6] compute several distance measures between
a generated shape and the one associated with the input
prompt in the ground-truth set, such as Intersection-over-
Union (IoU), Earth’s Mover Distance (EMD), Chamfer Dis-
tance (CD) and Mean Squared Error (MSE). The main lim-
itation of such a strategy is that, in generative tasks, a
ground-truth shape is just one possible correct outcome of
the generation process and relatively higher or lower dis-
tances from it do not measure the quality of the output nor,
in the case of text-conditioned generation, its coherence
with the given text. The most convincing metrics for text-to-
shape coherence are based on CLIP embeddings [29]. One
such metric is CLIP R-precision [26], used in several stud-
ies [25, 20, 27, 40, 17]. It is defined as the accuracy with
which CLIP retrieves the correct caption among a set of dis-
tractors given a rendering of the generated shape. Yet, such
quantitative assessment is affected by several limitations:
first of all, it is based on renderings, therefore it is influ-
enced by a number of parameters, like virtual camera place-
ment, virtual illumination, and number of rendered views;
secondly, the selection of the text distractors is arbitrary;
finally, as it relies purely on rendered views, whose qual-
ity is not homogeneous among 3D data representations, a
comparison between 3D shapes from different representa-
tions (e.g. point clouds and meshes) can be unfair. CLIP-
similarity [14], instead, computes the cosine-similarity be-
tween CLIP image features extracted from several shape
renderings and CLIP text features. Due to the reliance on
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renderings, this metric shares the same limitations of CLIP
R-precision.

ShapeCrafter [ 14] has been the first and only work to use
ShapeGlot [1] as a text-shape fidelity metric. In its origi-
nal formulation, given a set of shapes, this metric is able
to discriminate which one is the most coherent with respect
to an input text description, by extracting 3D features, 2D
features from renderings, and text features. Despite its use-
fulness, there are some clear disadvantages associated with
this method. Firstly, similar to CLIP-based metrics, its ef-
fectiveness relies on the parameter settings used to render
the views of the shape. Secondly, the text representation
employs an LSTM architecture, which has been acknowl-
edged to have difficulties in representing long text descrip-
tions [3].

To address all the above limitations, we propose Cross-
Coherence, a metric for text-to-shape coherence that does
not depend on rendering parameters, operates directly on
colored point clouds to take both geometry and appear-
ance into account, leverages LL.Ms to extract better text fea-
tures and exploits cross-attention to assess the coherence of
words with shape parts.

Datasets Several text-driven 3D generation models re-
quire supervision in the form of text-shape pairs. Unlike
in the 2D case, where web scraping can be used to ob-
tain large amounts of image-text pairs [7, 38, 37, 36], ob-
taining such labeled data is extremely difficult, due to 3D
shapes not being common on the Internet and the com-
plexity and cost of creating text descriptions for large 3D
datasets like ShapeNet [5]. Text2Shape [6] has been the first
dataset with shape-text pairs to be introduced. It contains
text prompts for two Shapenet classes: chairs and tables.
Overall, Text2Shape provides 75K shape-text pairs, with
multiple text descriptions for each 3D object. However, the
quality of these descriptions is highly variable: the prompts
are either too generic (“A chair with four legs”) or con-
tain irrelevant details (“Table with high-quality wood, you
can eat and enjoy with your family”) or both. Sometimes
the text does not describe correctly the geometry and/or ap-
pearance of the objects (“A table with three legs” but the
table has actually four legs). In addition, many sentences
contain grammatical and syntactical errors. More examples
are provided in the supplemental. These nuances make the
process of learning the complex relationship between 3D
data and text even more difficult and limit the validity of
comparisons carried out on this dataset. Text2Shape++ [14]
is a dataset built upon Text2Shape, including 369K shape-
text pairs. This dataset has been built specifically for the
task of recursive shape generation; indeed, the original text
descriptions from Text2Shape have been split into multi-
ple smaller sentences with incremental amount of informa-
tion (e.g. “a chair”, “a chair with four legs”, “a chair
with four legs and no armrests”). Since Text2Shape++ is

built starting from the same descriptions of Text2Shape, its
text prompts suffer from the same limitations. Objaverse [9]
is a very recent large-scale dataset that provides more than
800K 3D models together with descriptions. However, the
majority of these texts specify only the class of the object
and some attributes, without conveying information about
its actual 3D geometry and appearance.

In response to these challenges, we propose an auto-
matically improved version of Text2Shape, referred to as
GPT2Shape, which contains new text descriptions for every
object of Text2Shape. These novel sentences can describe
more accurately the geometry, appearance and texture of all
the objects in the dataset, as proved by our human evalua-
tion study and exemplified in Figure 2.

3. GPT2Shape

Figure 2 presents an exemplar shape and its prompts
from Text2Shape. As it can be seen from this figure, the
quality of the original descriptions is highly variable and
some of them are quite poor: for instance, the sentence
“grey desk” is too generic and not able to drive any gen-
erative model towards the intended 3D shape. Improving
such dataset through a new human-based annotation on the
Amazon Mechanical Turk crowd-sourcing platform [8], uti-
lized by Text2Shape, would be extremely time-consuming
and expensive.

At the same time, enough details about a shape are usu-
ally present in Text2Shape if information from multiple
prompts are merged, as shown again in Figure 2. On the
basis of this observation, we decided to explore if an auto-
matic improvement of the existing dataset was feasible, by
exploiting LLMs. In particular, the generation of the new
text sentences has been achieved through the OpenAl GPT-
3 model [4] davinci. This model has been used in its text
completion scenario in this manner: for each shape of the
dataset, all its corresponding text prompts from Text2Shape
have been given as input to the language model, along with
the request to generate better text descriptions. The request
itself was the result of a careful prompt engineering pro-
cess, in order to obtain the best possible result. Figure 2 il-
lustrates an example of this process, showing the initial text
descriptions, the request to GPT-3, and the resulting sen-
tences. As it can be noticed, the output textual descriptions
contain all the relevant geometric and appearance informa-
tion regarding the object. This text rephrasing process was
carried out on the whole train-val-test splits of Text2Shape,
so as to keep the same amount of data samples as the origi-
nal dataset: 15032 shapes, with a total of 75358 shape-text
pairs. In the supplementary material, multiple comparisons
between text prompts from Text2Shape and GPT2Shape are
provided.

2870



Input r‘\“@ ~
to GPT-3: ™
Ve
"This is a professional table color is silver”
"Silver rectangular table looks like metal material,”
Text2Shape "This student desk is grey and has four legs. It is thin and has

Descriptions slotted sections for supplies..”

"grey desk”
"Long rectangle shaped school desk”

Designed Describe geometry, shape, color and other key
request features in less than 40 words, in 5 different ways

A )

A

"This sleek silver desk has a rectangular shape with four thin
legs and slotted sections for supplies.”

"This desk is grey with a rectangular shape and four legs. It

Output has a metal-like finish and slots for supplies.”
"This grey desk has a rectangular shape and four legs. It has a
(GPT2Shape silver finish and slots for organizing supplies.”

descriptions): "This rectangular desk is grey with a silver finish and four thin

legs. It has slots for supplies.”
"This metal-like desk is grey with a rectangular shape and
four legs. It has a silver finish and slots for supplies."

J

Figure 2. An example of the text prompts rephrasing process. The
green box contains the text2shape descriptions for a shape together
with the designed request; their combination represents the input
prompt to GPT-3. The blue box is the output obtained from GPT-3
and contains the shape descriptions that have been used to populate
our GPT2Shape dataset.

4. GPT2Shape vs Text2Shape: a user study

Once the rephrased sentences had been obtained via
GPT-3, a user study aimed at comparing the informative-
ness of the old (Text2Shape) and new (GPT2Shape) text
prompts was carried out. The layout of this user study is
shown in Figure 3: each user was shown a pair of views
from two objects together with a text prompt. The prompt
comes from the test set of either Text2Shape or GPT2Shape
and describes one of the two objects (i.e. the reference ob-
ject, unknown to the user) while the other one acts as a dis-
tractor. The left/right position of the reference object was
randomized. The task consisted in clicking on the object
which, according to the user, would be described better by
the given text. In case of uncertainty, due to the prompt
describing equivalently well both objects or not sufficiently
well any of the two, the user could click on a third option,
located under the images. This enabled us to compare the
two datasets based on users’ choices: the higher the number
of clicks on the -unknown- reference object, the higher the
informativeness of the associated text prompt.

To avoid presenting the user with a task far too simple,
as it might have been the case had distractors been chosen
randomly, the reference-distractor-text triplets were built as
follows. For every reference object, we have defined two

Rectangular grey table with black metal legs and a black
bar connecting two of the legs.

| cannot decide between the two objects.

Figure 3. Layout of the user study

hard distractors and one easy distractor. All distractors for
a shape have been selected within its class (e.g., chairs or
tables) and defined on the basis of the Euclidean distance in
the latent space of a PointNet++ [28] autoencoder trained
on the task of RGB point cloud reconstruction on chairs
and tables from ShapeNet. In this way, we obtained three
pairs for each reference object. When running the user
study, a pair of shapes were randomly sampled from this set,
whereas the text describing the reference shape was taken
from Text2Shape or GPT2Shape with 50% probability. In
the supplemental, we provide more details and examples on
easy-hard shape distractors and triplets from the user study.

Overall, 175 users took part in the study, contributing
with 3642 data samples (i.e., clicks). In order to evaluate
Text2Shape and GPT2Shape, we kept track of the answers
provided by the users when presented with text prompts
from both datasets. Table | summarizes the results by re-
porting the percentages of times users selected the reference
object, the distractor, or felt they could not decide when pre-
sented with a text from Text2Shape or GPT2Shape. When
the text came from GPT2Shape, about 75% of the answers
were correct, i.e. the human selected the reference shape as
the most coherent with the provided text description. On
the other hand, Text2Shape allowed the users to answer
correctly only 65% of the time. Moreover, the percentage
of undecidable sentences is higher for Text2Shape (about
25%) compared to GPT2Shape (about 16%).

Such experimental findings validate our claim that large
language models can be used to automatically filter and
combine information from multiple incomplete textual de-
scriptions. They also validate that textual descriptions in
GPT2Shape are more informative than the original prompts
from Text2Shape.

Dataset reference (1) | cannot decide (}) | distractor (|)
Text2Shape 65.65% 24.95% 9.40%
GPT2Shape 75.76% 16.21% 8.02%

Table 1. Summary of user study results
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5. Human-validated Shape-Text dataset

The results of the user study were used also to aggregate
a refined test set of shape-text pairs with descriptive texts
from the test sets of Text2Shape and GPT2Shape, which
we dub Human-validated Shape-Text (HST) dataset. When
building this subset, we only selected the sentences for
which all users made the same choice between the two ob-
jects, i.e., where there was unambiguous consensus among
participants that the description was describing well only
one of the two shapes. HST, which contains 2153 text-shape
pairs, provides a human-validated benchmark to assess the
quality of text-to-shape generative models. It can be used
as a set of descriptive text prompts to evaluate such models
with text-to-shape coherence metrics. To provide a com-
prehensive dataset, for every pair in the HST dataset, we
also included the other object that was shown to the human
evaluators, along with the indication of the correct associ-
ation for the text. This extended version of HST is useful
for quantitatively validating metrics for text-to-shape coher-
ence.

6. CrossCoherence

In this section, we describe the details of our proposed
metric for text-to-shape coherence, CrossCoherence. Re-
cent works on text-conditioned generative models, both in
2D [32, 12, 24, 31, 15,42, 33, 13, 2] and 3D [19, 40, 25,

, 17,27, 14] have shown that frozen large language mod-
els, like BERT [! 1], GPT [4] and TS5 [30], trained only on
text data, can be very effective text encoders for genera-
tive tasks. The solution proposed in [34] has also shown
that large language models are more effective than text en-
coders trained on paired image-text data, such as CLIP [29].
Another key reason for the outstanding results achieved by
such works is the text-conditioning scheme, which is based
on the cross-attention mechanism. On the basis of such ob-
servations, we have decided to explore the use of large lan-
guage models and cross-attention layers for the definition of
our metric.

6.1. Architecture

The proposed architecture of CrossCoherence is shown
in Figure 4. Our model takes as input a text description and
a group of colored point clouds, with coordinates (x, y, z)
as well as (R, G, B) values for every point. It provides as
output a set of soft-max normalized scores, which are used
to predict which point cloud is best described by the input
text. In practice, a Point Cloud Encoder extracts meaning-
ful local embeddings from every input point cloud. At the
same time, a Text Encoder extracts text features from the
input sentence. Then, for every point cloud, two bilateral
cross-attention layers reason on the coherence between the
shape and text features computed by the encoders. These

Cross Attention

/" Condition
Encoders Y,
L % injection @

"a red armchair”

T

Cross Attention

Figure 4. Architecture of CrossCoherence

layers are referred to as bilateral since, in a first layer, the
queries of the attention maps are computed on the shape
features, whereas the keys and values are obtained from the
text embeddings, while in a second layer this computation
is reversed. This bilateral layer equips the metric with the
ability to reason on the mutual relation between words and
3D details, which is key to evaluating text-to-shape coher-
ence, as shown by the experiments reported in Section 7. Fi-
nally, the resulting embeddings from both cross-attentions
are concatenated, after undergoing an average pooling layer.
These features are fed into an MLP in order to provide a
score of coherence for each point cloud and text. At train-
ing time, the scores are softmax-normalized and a standard
cross-entropy loss is used to guide the network to produce
higher scores for the correct pair. As Pointcloud Encoder
we used the encoder part of a PointNet++ network [28]
trained for Shape Reconstruction on chairs and tables from
ShapeNet. This network is the same model used to build
the easy and hard distractors for the user study described
in Section 4. When building the distractor pairs, we used
the features coming from the third set abstraction layer,
which computes a global embedding, whereas when train-
ing CrossCoherence we used the embeddings computed by
the second set abstraction layer, which computes local fea-
tures on the downsampled input point cloud. As for the Lan-
guage Encoder, we used the frozen encoder from T5 [30].

6.2. Training

During training, the network was fed with (shapes, text)
pairs and target vectors indicating the ground-truth shape
corresponding to the textual description. Based on the out-
come of the user study, we trained CrossCoherence on the
training set of GPT2Shape. Before training, following the
same strategy applied for the human evaluation survey, de-
scribed in Section 4, for every shape in the training set of
GPT2Shape, we have extracted one easy and two hard dis-
tractors. This easy-hard training strategy was found to be
more effective than constructing the pairs randomly due to
the network learning to deal with cases where the input
point clouds are very similar to each other, which in turn
is conducive to better generalization to unseen examples.
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Method Acc. on chairs (1) | Acc. on full HST (1)
ShapeGlot 70.21% -
CLIP-Similarity 77.79% 77.06%
CrossCoherence 81.04% 80.45%

Table 2. Comparison between ShapeGlot, CrossCoherence and
CLIP-Similarity. The second column reports accuracy for meth-
ods trained and tested only on chairs, while the third column is for
methods trained and tested on full HST.

Test set ShapeGlot | CrossCoherence | CLIP R-precision
HST chairs 5.36% 17.26% 9.87%
full HST - 16.85% 9.38%

Table 3. Comparison between ShapeGlot, CrossCoherence and
CLIP R-precision based on the R-precision protocol. The sec-
ond row reports the results for methods trained and tested only
on chairs, while the third row is for methods trained and tested on
full HST.

7. Experimental Results

We performed several experiments to assess the effec-
tiveness of CrossCoherence.

7.1. Comparison with existing metrics

In this section, we evaluate the accuracy in assessing
text-to-shape coherence for our proposed CrossCoherence
metric, as well as for Shapeglot [1], CLIP-Similarity [14,
29] and CLIP R-precision [26, 29]. The accuracy computa-
tion relies on the triplets of HST (Section 5) and consists in
two different evaluation protocols. When comparing with
CLIP-Similarity, we report how often each metric yields a
higher score to the ground truth shape than to the other one
in the triplet for the given text description. In contrast, when
dealing with CLIP R-precision, we adopt the protocol in-
troduced in [16] and used by [25, 20, 27, 40]: given a text
prompt and the corresponding ground-truth 3D shape from
HST, we construct a set of 153 text descriptions. This set
comprises the ground-truth prompt and 152 other texts ran-
domly sampled from a designated test set, in our case HST.
Every metric will predict which text prompt within the set
exhibits the highest coherence to the given 3D shape. By
comparing the predicted prompt to the ground-truth prompt,
we can assess the performance of the evaluation metric.
To evaluate both CLIP-Similarity and CLIP R-precision,
we conducted experiments using various CLIP base mod-
els and different numbers of renderings. When dealing with
more than one rendered view, we used the maximum sim-
ilarity across the views, as in [14]. The configuration that
achieved the best performance, which we consider here, re-
lies on the ViT-L/14 encoder and 20 renderings. Yet, we
deem it worth highlighting that the accuracy of CLIP-based
metrics varies significantly depending on the chosen con-
figuration (CLIP base model, 3D data representation, ren-
dering parameters), as shown in additional experiments re-
ported in the supplementary material. As for ShapeGlot [1],
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This stylish table features a long
rectangular top with a brown
and grey striped cloth cover, and
four Y-shaped grey metal legs.

x v

Dining chair with concave back.

Dark coloured, with a lighter
cushion on the seat.

x v

Round glass top table with four

silver-gray L-shaped legs.
x v
CLIP-Similarity CrossCoherence

Figure 5. Qualitative results of CLIP-Similarity and CrossCoher-
ence on HST dataset. The green check indicates the shape associ-
ated with the prompt, while the red cross identifies the distractor.
For all these triplets, CLIP-Similarity prefers the left shape while
CrossCoherence the right one.

Rectangular wooden table An ornate, glass topped,
with steel H-shaped legs, octagonal wooden table with
greenish marble top, interlocking circles cut into
and two metal feet. each side.
v
A modern, armless rockin . .
S . g A vibrant red reclining
chair with a red geometric L
3 chair with a curved seat
patterned fabric and a gray and thin leas
metal semicircle base. 8s v

A low, square wooden

table with a dark brown

finish, four stubby legs,
and a smooth top. v/

Rectangular brown wooden
table with two legs. X

CLIP R-precision CrossCoherence

Figure 6. Qualitative results of CLIP R-precision and CrossCoher-
ence on HST dataset. The green check indicates the ground-truth
text. For all these triplets, CLIP R-precision retrieves the left text
while CrossCoherence the right one.

we trained the network on the same dataset as CrossCoher-
ence, i.e. easy and hard samples from GPT2Shape, as de-
scribed in Section 6. However, while training CrossCoher-
ence relies only on point clouds and text prompts, Shape-
Glot consumes also rendered views of objects’ meshes and
requires a pre-trained VGG encoder to extract features from
these renderings. Unfortunately, the authors did not release
the weights of the VGG model and made available only
pre-computed features for the chair class of Text2Shape.
Hence, we can assess the accuracy of ShapeGlot only on
the chair subset of HST.

The outcome of our evaluation is shown in Tables 2
and 3. These results indicate that CrossCoherence is the



most effective metric. We can observe how ShapeGlot
performance is the least satisfactory. Moreover, the gap
in accuracy between this metric and CrossCoherence sug-
gests that modern text-analysis tools like LLMs and cross-
attention layers are key to creating a more effective metric.
Indeed, the main differences between CrossCoherence and
ShapeGlot include the use of LLMs instead of LSTMs as
well as the incorporation of the cross-attention mechanism.
Finally, in both settings, CLIP-based metrics turn out to be
the strongest competitors, yet, CrossCoherence outperforms
CLIP-Similarity by more than 3% and is almost 100% more
accurate than CLIP in the challenging R-precision setting
which is nowadays the most widely used protocol to evalu-
ate text-to-shape coherence.

Qualitative examples of the choices made by CLIP-
Similarity and CrossCoherence are provided in Figure 5.
The errors made by CLIP-Similarity seem to be caused by
the use of global embeddings to compare shapes and text,
which prevents the metric from evaluating fine details when
judging the shape-text agreement. For instance, CLIP-
Similarity does not take into account the shape of the table
legs in the first row, the presence of the chair cushion in the
second row and the geometry of the glass table in the last
example. As shown in Figure 6, CLIP R-precision suffers
from the same weakness as CLIP-Similarity in understand-
ing fine-grained details of visual input and text. For exam-
ple, CLIP R-precision provides high scores for text prompts
that contain multiple wrong references to the geometry and
appearance of the input shape, i.e. “Rectangular wooden ta-
ble” in the first row, “Armless rocking chair” in the second
example, “two legs” in the last row. This weakness has been
highlighted in [39] and [43], which discuss how CLIP mod-
els, probably due to their contrastive pretraining strategy,
have difficulty in processing fine-grained descriptions of vi-
sual content. Indeed, the performance of such models on
the Attribution, Relation, and Order (ARO) benchmark [43]
show that CLIP exhibits poor relational understanding and
tends to behave like bag-of-words models. The use of cross-
attention between local embeddings in CrossCoherence, on
the other hand, enables to capture and link together impor-
tant shape and text details, leading to the selection of the
reference shape or text, as shown in Figures 5 and 6, respec-
tively. Ablation experiments concerning the design choices
behind our architecture are reported in the supplementary
material, together with additional qualitative comparisons
between the metrics.

7.2. Text-to-shape coherence of generative methods

A text-to-shape coherence metric can be used to evalu-
ate text-conditioned 3D shape generative models. Here we
address this setting and compare CrossCoherence, CLIP-
Similarity [14] and CLIP R-precision [26] in their ability to
judge upon the coherence to the input text of the shapes gen-
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Method CrossCoherence| CLIP-Similarity | CLIP-Similarity

Point-E [25] 24.36% 27.04%
Shap-E [17] 38.02% 65.47% (STF) 57.18% (NeRF)
Liu et al. [20] 34.65%

Table 4. Quantitative comparison between generative models, us-
ing CrossCoherence and CLIP-Similarity. Each entry in a column
reports how often a metric considers a prompt more coherent with
the shape generated by one method versus the others.

Method CrossCoherence CLIP R-precision
Point-E [25] 5.95%

Shap-E [17] 7.09% 20.41% (STF) | 15.78% (NeRF)
Liu et al. [20] 5.09%

Table 5. Quantitative comparison between generative models, us-
ing CrossCoherence and CLIP R-precision according to the R-
precision protocol.

Point-E

Shap-E Liu et al.

A tan tear drop shaped
wooden table with a
grey cubicle base.

A brown color
rectangular wooden table
with four black legs.

A tall, black-upholstered
high chair with four
brown wooden legs.

This armchair has a square
back, tan leather upholstery,
and light brown wooden
arms and legs.

CLIP-Similarity CrossCoherence
Figure 7. Examples of shapes generated by Point-E (left), Shap-E
(center) and Liu et al. (right) for the given text prompt. As high-
lighted, for all these triplets, CLIP-Similarity prefers the shape in
the middle while CrossCoherence the one on the right.

erated by Point-E [25], Shap-E [17] and the model proposed
by Liu et al. [20]. These models employ distinct data rep-
resentations, with Point-E being the current state-of-the-art
method in text-driven point cloud generation, Shap-E using
both NeRF (neural radiance field) and STF (signed textured
field), Liu et al. [20] employing occupancy fields.

We used the pretrained weights provided by the authors
for Point-E and Shap-E, while we trained from scratch
Liu et al. [20] on GPT2Shape. We then used CLIP R-
Precision, CLIP-Similarity and CrossCoherence to assess
which method generates the 3D data most faithful to the in-
put prompt. We adopted the same experimental protocols
as in Section 7.1, the only difference being that here the 3D
shapes compared to the text prompts are not the ground-
truths from HST but have been generated by either Shap-E
or Point-E or Liu et al.

Results are reported in Tables 4 and 5. Since Shap-E



represents the generated shape as an STF and a NeRF, for
CLIP-Similarity and CLIP R-precision we report the results
computed on renderings from both representations. The
differences in performance for Shap-E suggest again that
CLIP-based metrics are significantly affected by the render-
ing process. In these experiments, we notice that all metrics
agree on Shap-E being the method that generates the 3D
shapes closest to the input text. However, the ranking of the
other two methods in relation to Shap-E is very different.
In fact, CrossCoherence ranks the method of Liu et al. [20]
second, with a modest gap of 4% in the first protocol and
2% in the second. In contrast, CLIP-similarity and CLIP
R-precision rank Point-E in second place with a very large
gap in performance with respect to Shap-E (around 30%
in the first protocol, and from 10% to 15% in the second
one). By inspecting some triplets on which CrossCoher-
ence and CLIP-Similarity disagree, shown in Figure 7, we
can notice how CLIP-similarity seems unable to recognize
certain geometric and color details, present in the shapes
generated by Liu et al. [20], which are critical for determin-
ing the shape most coherent to the given text prompt. In
the first row of Figure 7 CLIP-Similarity prefers the table in
the middle although it lacks the “grey cubicle base” and the
“tear drop shape” described in the text. In the second row,
CLIP-Similarity is not able to localize the parts containing
the colors specified in the text. As discussed in Section 7.1,
such weakness may be caused by the difficulty of CLIP in
processing fine-grained text descriptions and understanding
the spatial relations among the objects’ parts.

In Figure 8 we report some qualitative examples to mo-
tivate the large gap between CrossCoherence and CLIP R-
Precision. Here, it is possible to observe that even if in some
cases CLIP R-precision retrieves the ground-truth text as the
most coherent with the shape from Shap-E, these descrip-
tions contain details that are not really present in the gener-
ated shape (e.g., “two legs” in the first row, “with armrests”
in the second row, “four legs” in the third row and “with a
door that opens on the end” in the last row). This behavior
arises because Shap-E fails to generate all the specified de-
tails in the ground-truth text and CLIP R-precision cannot
accurately recognize the absence of these elements in the
generated shape. On the contrary, CrossCoherence is able
to retrieve more comprehensive and accurate text prompts
which are more coherent with the generated shapes. In the
supplementary, we provide additional qualitative examples
comparing CrossCoherence with CLIP-based metrics.

8. Conclusions, Limitations and Future Work

In this work, we presented the first benchmark for text-
to-shape coherence, which includes an automatically im-
proved paired dataset of shapes and texts, GPT2Shape,
a shape-text coherence quantitative metric, CrossCoher-
ence, and a human-validated test set, HST. Through exten-
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Rectangular wooden table
with two legs, light brown
in color with 10 drawers, 5
on each side.

Rectangular steel chair with
armrests and four legs,
white wooden finish.

A brown color wooden
table with oval shaped
top and four legs.

Rectangular brown
wooden table with four
straight legs.

Grey colored elegant
chair with dark grey legs
and without armrests.

A dark brown circular
wooden table with a
circular base for
support and stability.

This is a tall, brown,
rectangular table with a door
that opens on the end.

It is made of wood

Rectangular wooden table
with sharp edges, and a black
stripe around the edge, in a
brown hue.

CLIP R-precision CrossCoherence
Figure 8. Examples of shapes generated by Shap-E with the cor-
responding text retrieved by CLIP R-precision, on the right, and

CrossCoherence, on the left.

sive comparisons with existing works and a user study, we
have quantitatively demonstrated the superior quality of our
dataset and evaluation metric. Our benchmark may enable
the rapidly growing field of text-driven shape generation to
perform accurate comparisons along the important dimen-
sion of text-to-shape coherence.

Our results suggest that caution should be taken when
using metrics that rely on rendered views to rank generative
models, such as CLIP-based metrics, as they exhibit failures
due to their inability to capture intricate nuances present in
both textual descriptions and 3D shapes as well as a strong
dependency on the rendering parameters.

While we have demonstrated the potential of leverag-
ing a LLM to improve the quality of the descriptions, it
is important to note that our approach did not incorporate
the shape as an additional input to the LLM itself. To fur-
ther enhance descriptions and expand the benchmark be-
yond the ShapeNet categories covered in Text2Shape, one
promising avenue is to explore the use of a Visual-Question-
Answering models on 3D shape renderings. This extension
may enable even more meaningful descriptions and address
a limitation in our current work.

Finally, in light of this limitation, the proposed strategy
of text refinement as well as the evaluation metric may be
readily extended to a wider set of 3D objects. Interestingly,
two contemporary publications [2 1, 41], released during the
writing of this manuscript, proposed methods to build large-
scale paired text-shape datasets, which we plan to leverage
to further develop our work.
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