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Abstract: The Oberbeck–Boussinesq approximation is the most commonly employed theoretical
scheme for the study of natural or mixed convection flows. However, the misunderstanding of this
approximated framework is a possibility that may cause the emergence of paradoxes or, at least,
incorrect conclusions. In this paper, the basic features of the Oberbeck–Boussinesq approximation
are briefly recalled and three simple examples where this theoretical scheme may be misused are
provided. Such misuses of the approximation lead to erroneous conclusions that, in the examples
presented in this note, entail violations of the principle of mass conservation. A discussion about the
Oberbeck–Boussinesq approximation as an asymptotic theory obtained by letting the product of the
thermal expansion coefficient and the reference temperature difference tend to zero is also presented.
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1. Introduction

The study of natural or mixed convection flows either in fluids or in fluid-saturated
porous media is, with a limited number of exceptions, modelled theoretically by claiming
the validity of the Oberbeck–Boussinesq approximation. There are several thorough and
comprehensive analyses of how this approximation can be established starting from a
general formulation of the local balance equations of mass, momentum and energy for
a fluid. Beyond the many textbooks of fluid dynamics and convection heat transfer, we
mention the analyses of this topic presented in Chapter 8 of the book by Zeytounian [1], as
well as in the papers by Rajagopal, Ruzicka, and Srinivasa [2] and by Zeytounian [3]. Such
discussions on the origin and on the range of applicability of the Oberbeck–Boussinesq
approximation stem from pioneering papers such as those by Spiegel and Veronis [4],
by Gray and Giorgini [5] and by Hills and Roberts [6]. On the other hand, further papers
offer interesting perspectives on possible extended forms of the Oberbeck–Boussinesq
approximation [7–12].

The aim of this short paper is neither a comprehensive analysis of the Oberbeck–Boussinesq
approximation nor a novel deduction of the approximate mathematical model. For the
former purpose, we refer to the extremely large body of literature on the topic, where the
few references cited above are just a definitely limited sample, while the books by Gebhart,
Jaluria, Mahajan, and Sammakia [13] and by Straughan [14] provide comprehensive surveys.
For the latter purpose, we mention the recent paper by Barletta [15]. In fact, the objective
of this paper is to highlight an aspect of the Oberbeck–Boussinesq approximation that
may be the source of pitfalls, i.e., the duality of variable fluid density and constant fluid
density. If it is recognised that the approximation scheme predicates a variable density
which is pressure independent and varying with the temperature, in some instances one
may forget that such variable density serves only to define the buoyancy force within the
local momentum balance equation. Utilising the variable density outside this very specific
context may lead to unphysical predictions and, hence, to incorrect conclusions. Such
conclusions are incorrect as they usually conflict with the principle of mass conservation.
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A final discussion about the interpretation of the Oberbeck–Boussinesq approximation
as a limiting case of the general local balance equations of mass, momentum and energy
is presented.

2. A Minimalistic Survey of the Oberbeck–Boussinesq Model

There are several detailed and thorough descriptions of the Oberbeck–Boussinesq
model for natural and mixed convection flows. Such a model describes flow conditions
with a weakly variable density due to temperature changes in the fluid.

2.1. The Buoyant Flow Governing Equations

The basic system of partial differential equations, expressing the local mass, mo-
mentum and energy balances, is given by

∇ · u = 0, (1)

ρ0

[
∂u
∂t

+ (u · ∇)u
]
= −∇P + ρ g + µ∇2u, (2)

∂T
∂t

+ (u · ∇)T = α∇2T, (3)

where u is the velocity, P is the pressure, T is the temperature, t is time, µ is the dynamic
viscosity, g is the gravitational acceleration, and α is the thermal diffusivity. There are
two densities in Equations (1)–(3). One is the reference density, ρ0, i.e. the fluid density
evaluated at the reference temperature, T0. On the other hand, ρ denotes the fluid density
evaluated at the local temperature T through the linear equation of state,

ρ = ρ0 [1− β (T − T0)], (4)

where β is the thermal expansion coefficient. We mention that the linear equation of state (4)
is to be replaced by a quadratic equation of state in special situations such as pure water
close to 4 ◦C.

It must be stressed that, in Equations (1)–(4), ρ0, µ, α, and β are constant, pressure
independent, fluid properties evaluated at T0. In order to maximise the reliability of the
approximation, a judicious choice of the reference temperature is an average temperature
over the flow spatial domain and over the time interval of the flow process. We also impli-
citly assume, for the local energy balance (3), that the viscous heating effect is negligible
and that no internal heat source is present.

2.2. The Buoyant Seepage Flow in a Porous Medium

When the Oberbeck–Boussinesq scheme is to be applied to the seepage flow in a
porous medium, then the local mass balance equation (1) is rewritten as

∇ ·U = 0. (5)

Here, U denotes the seepage, or Darcy’s, velocity in the porous medium. The seepage
velocity results from a representative-elementary-volume average of the pore-scale fluid
velocity, u. Furthermore, the local momentum balance equation may be modelled through
Darcy’s law, namely,

µ

K
U = −∇P + ρ g, (6)

where K is the permeability of the medium. Then, Equation (6) supersedes Equation (2), in
this case. Also Equation (3) is to be reformulated when one studies the seepage flow in a
porous medium. In fact, the local energy balance reads
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σ
∂T
∂t

+ (U · ∇)T = αm∇2T, (7)

where σ is the ratio between the average heat capacity of the saturated porous medium and
the heat capacity of the fluid, while αm is the average thermal diffusivity of the saturated
porous medium.

2.3. Hydrostatic Pressure, Buoyancy Force

The gravitational force term, ρ g in either Equation (2), or in Equation (6), is the one
and only quantity where the use of Equation (4) is allowed. Thus, we can write

−∇P + ρ g = −∇
[

P− (Pe + ρ0 g · x)︸ ︷︷ ︸
Ph

]
+ b,

−∇P + ρ g = −∇(P− Ph) + b, (8)

where

Ph = Pe + ρ0 g · x (9)

is the hydrostatic pressure, with x = (x, y, z) denoting the position vector, and

b = −ρ0 β (T − T0) g (10)

is the buoyancy force. Both P and Ph depend on the spatial position. It is a common practice
to use a specific notation for their local difference,

p = P− Ph. (11)

We call p hydrodynamic pressure, for the sake of brevity, to mark the distinction from
the pressure and the hydrostatic pressure. In Equation (9), Pe is an arbitrary constant value
which, physically, can be assigned in order to fix a possible overall external pressurisation
of the fluid. In most usual cases, Pe is assumed to coincide with the atmospheric pressure.

Out of the present context, where the hydrostatic pressure and the buoyancy force are
defined on the basis of a chosen reference temperature, T0, the fluid density is considered
to be a constant equal to ρ0. If one violates this simple rule, then erroneous conclusions
could be drawn which will typically lead to violations of the mass conservation principle.

3. The Rectangular Cavity with Side Heating

Let us consider the classical problem of two–dimensional natural convection in a
rectangular cavity with rigid and impermeable side boundaries kept at uniform, but
different, temperatures, T1 and T2, while the upper and lower sides are kept adiabatic. It is
not restrictive to assume T1 > T2. A sketch of the system is provided in Figure 1.

It is well–known that, with sufficiently small differences T1–T2, a steady-state natural
convection flow occurs in the cavity. In non-dimensional terms, this restriction is equivalent
to a sufficiently small Rayleigh number. The steady-state flow is cellular in character, with
one or more convective cells. For a given fluid, the number of stationary convective cells
depends on the aspect ratio, H/L, where H and L are the half–height and half–width of the
cavity, and on the Rayleigh number.
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Figure 1. Sketch of the rectangular cavity with side heating discussed in Section 3.

We denote with S the horizontal midplane surface with y = 0 and x ∈ [−L, L]. Since
the flow system is modelled as two-dimensional in the xy plane, S is considered with unit
depth in the z direction. Then, we can immediately conclude that

∫
S

v dS = 0 or
L∫
−L

v dx = 0, (12)

as a straightforward consequence of Equation (1). In fact, one can just integrate Equation (1)
over the upper half-domain {x ∈ [−L, L], y ∈ [0, H]} and then employ Gauss’ theorem
by recalling that S is the only permeable boundary of such a domain. Here, v is the y
component of u. Then, we may wonder how we could evaluate the mass flow rate, ṁ,
across S. There is a correct way and an incorrect way. The correct way is by applying
the principle that the fluid density is to be considered constant and equal to ρ0, so that
Equation (12) yields

ṁ = ρ0

L∫
−L

v dx = 0. (13)

The incorrect way is by employing the variable density given by Equation (4), so that
Equation (12) yields

ṁ =

L∫
−L

ρ v dx = ρ0

L∫
−L

v dx− ρ0 β

L∫
−L

(T − T0) v dx = −ρ0 β

L∫
−L

(T − T0) v dx < 0. (14)

The difference between the correct method expressed by Equation (13) and the incor-
rect method expressed by Equation (14) is that, in the former, we employ the reference dens-
ity, ρ0, while, in the latter, we employ the variable density, ρ. The reason why Equation (14)
yields ṁ < 0 is that, at least with a sufficiently small temperature difference, T1 − T2, both
v and T − T0 are odd functions of x with x ∈ [−L, L], positive for x ∈ (−L, 0) and negative
for x ∈ (0, L) (see, for instance, de Vahl Davis [16]). Thus, their product, (T − T0) v, is
an even and positive function of x throughout the domain of integration x ∈ [−L, L], so
that Equation (14) leads to the conclusion that ṁ < 0. The numerical solution discussed
by de Vahl Davis [16] is complemented by a straightforward analytical solution, which
predicts the same symmetry for v and T− T0 and which holds for a very tall cavity, H � L.
Such an asymptotic solution is briefly outlined in Appendix A with an explicit, though
incorrect, evaluation of the mass flow rate based on the formula given by Equation (14).

We mention that Equation (12) holds also for any other y = constant plane S, as a
consequence of Equation (1). We also note that, here, our arguments are strictly relative to
the example examined in this section. Certainly, there are situations where the mass flow
rate, evaluated coherently with the Oberbeck–Boussinesq approximation, is nonzero. For
instance, this is the case for the flow system to be discussed in Section 4.
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We said that Equation (14) expresses the incorrect way to evaluate ṁ, since the conclu-
sion ṁ 6= 0 is an evident violation of the mass conservation within the upper half–domain
{x ∈ [−L, L], y ∈ [0, H]} or in the lower half–domain, {x ∈ [−L, L], y ∈ [−H, 0]}. In fact,
both for the upper and the lower half–domains, S would be the only permeable boundary
and it would be crossed by a net mass flow rate. Such a situation, in a stationary regime,
yields a violation of the principle of mass conservation.

4. Mixed Convection Duct Flow

Let us consider the internal mixed convection in a duct with an impermeable wall
having an increasing temperature along the streamwise direction. Such a behaviour is
observed, for instance, when the duct wall is subject to an incoming uniform heat flux. We
consider the case of stationary flow.

As sketched in Figure 2, we consider the region V delimited by the cross–sections,
S1 and S2. Since, the fluid is heated in the streamwise direction, we have an average
temperature evaluated at the cross–section S1, denoted by T1, smaller than the average
temperature evaluated at the cross–section S2, denoted by T2. Then, a judicious choice of
the reference temperature, T0, for the Oberbeck–Boussinesq approximation in the domain
V is the volume-averaged temperature,

T0 =
∫
V

T dV. (15)

Such a volume–averaged temperature value, T0, is larger than T1 and smaller than T2.
Let us evaluate the average velocities across S1 and S2,

um1 =
1
S1

∫
S1

u · n̂1 dS, um2 =
1
S2

∫
S2

u · n̂2 dS, (16)

where n̂1 and n̂2 are the unit vectors of the surfaces S1 and S2, oriented in the streamwise
direction as shown in Figure 2. Equation (1), after an integration over V and use of Gauss’
theorem, yields the equality S1 um1 = S2 um2. One can wonder how one can evaluate the
mass flow rates across S1 and S2, i.e., ṁ1 and ṁ2, respectively. The right way is by assuming
that the fluid density is to be considered constant and equal to ρ0 all over V, so that

ṁ1 = ρ0

∫
S1

u · n̂1 dS, ṁ2 = ρ0

∫
S2

u · n̂2 dS. (17)

Since S1 um1 = S2 um2, Equations (16) and (17) allow one to conclude that ṁ1 = ṁ2,
which is in perfect agreement with the principle of mass conservation.

The incorrect way to evaluate ṁ1 and ṁ2 is by employing the variable density, ρ,
defined by Equation (4). In this case, one would write

ṁ1 = ρ0

∫
S1

u · n̂1 dS− ρ0 β
∫
S1

(T − T0)u · n̂1 dS,

ṁ2 = ρ0

∫
S2

u · n̂2 dS− ρ0 β
∫
S2

(T − T0)u · n̂2 dS. (18)

From Equation (18) and from the equality S1 um1 = S2 um2, one has

ṁ1 − ṁ2 = −ρ0 β

 ∫
S1

T u · n̂1 dS−
∫
S2

T u · n̂2 dS

. (19)
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By employing again the equality S1 um1 = S2 um2 and by recalling that the average
temperature over S1 is smaller than the average temperature over S2, one can immediately
conclude that ṁ1 − ṁ2 > 0, i.e., the mass rate flowing through S1 is larger than the mass
rate flowing through S2 which, in a stationary regime, means a violation of the principle of
mass conservation.

Figure 2. Sketch of the mixed convection duct flow discussed in Section 4.

5. A Vertical Porous Slab Separating Two Fluid Reservoirs

Let us consider an infinitely wide wall separating two fluid reservoirs kept at different
temperatures, T1 and T2. As shown in Figure 3, the wall has a porous insertion bounded
by two planes S1 and S2. The fluid in the left-hand reservoir is the same as that in the
right-hand reservoir and they are both in a rest state. The same fluid saturates the porous
slab. The Oberbeck–Boussinesq approximation can be applied by assuming the reference
temperature, T0 = (T1 + T2)/2.

Figure 3. Sketch of the porous slab separating two fluid reservoirs discussed in Section 5.
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One can evaluate the pressure distribution on the boundaries S1 and S2 as the hydro-
static pressure. By employing Equation (9), the pressure distribution on the plane S1 is
given by

P1 = Pe1 − ρ0 g y, (20)

while, on S2, we have

P2 = Pe2 − ρ0 g y. (21)

Equations (20) and (21) have been used to formulate the pressure conditions at the
porous slab boundaries in Refs. [17–20]. The pressurisation constants, Pe1 and Pe2, can be
equal or not depending on the conditions externally imposed on the two reservoirs. For
instance, one may have a situation where the reservoir at temperature T1 is compressed on
its top, while the reservoir at temperature T2 is open to the atmospheric pressure. In such a
situation, one has Pe1 > Pe2. Equations (20) and (21) reveal that the pressure distribution on
S1 and S2 is y–dependent, but the pressure difference across the porous slab is a constant,

∆P = P1 − P2 = Pe1 − Pe2. (22)

If none of the two reservoirs is pressurised, then ∆P = 0. If ∆P 6= 0, one may have a
seepage throughflow across the porous slab [18].

As sketched in Figure 3, the porous insertion is bounded above and below by an
impermeable material, so that application of Equation (1) yields∫

S1

U dS =
∫
S2

U dS, (23)

where U is the x component of the seepage velocity, U, across the porous material. By
recalling that the fluid density is to be intended as uniform with the value ρ0, Equation (23)
implies that the mass flow rates across S1 and S2 are equal as required by mass conservation,

ṁ = ρ0

∫
S1

U dS = ρ0

∫
S2

U dS. (24)

This is the correct and consistent application of the Oberbeck–Boussinesq scheme to
this sample case.

There is always the possibility of introducing errors, as in the previous examples. One
may enforce the validity of Equation (4) in the evaluation of the hydrostatic pressures in
the two reservoirs so that Equations (20) and (21) are replaced by

P1 = Pe1 − ρ0 g y
(

1− δ

2

)
, (25)

and

P2 = Pe2 − ρ0 g y
(

1 +
δ

2

)
, (26)

where

δ = β (T1 − T2). (27)

Equations (25) and (26) yield an y–dependent pressure difference across the por-
ous layer,

∆P = P1 − P2 = Pe1 − Pe2 + ρ0 δ g y. (28)
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Even in the absence of pressurisation in one of the two reservoirs (Pe1 = Pe2),
Equation (28) entails a pressure difference across the porous layer which, in turn, leads to
the prediction of a horizontal throughflow across the porous layer [21]. Such a stationary
throughflow is unphysical as it would lead to a violation of mass conservation. In fact,
consistently with the assumption of a variable density, as given by Equation (4), the mass
flow rate across S1 is expressed as

ṁ1 = ρ0

(
1− δ

2

) ∫
S1

U dS, (29)

while the mass flow rate across S2 is given by

ṁ2 = ρ0

(
1 +

δ

2

) ∫
S2

U dS. (30)

The violation of mass conservation is quantified by a relative error,

ṁ2 − ṁ1

(ṁ2 + ṁ1)/2
= δ, (31)

where Equations (23), (29) and (30) have been employed. Interestingly enough, should δ be con-
sidered as negligible, δ� 1, then the pressure distributions given by Equations (25) and (26),
and employed in the study carried out by Vynnycky and Mitchell [21], would turn out
to match perfectly the correct pressure distributions expressed by Equations (20) and (21).
More precisely, the corrective terms introduced in Equations (25) and (26), i.e.,∓ δ/2, can be
taken into account consistently only if the solenoidal constraint for the velocity,∇ ·U = 0,
is replaced by the variable-density local mass balance equation,∇ · (ρ U) = 0. An inter-
mediate approximation, such as that used in Ref. [21], where Equations (25) and (26) are
employed in combination with∇ ·U = 0, would be flawed as it leads to a violation of the
principle of mass conservation.

6. The Froude Number and the Rayleigh Number

Let us reconsider Equations (8)–(10). The pressure gradient and gravitational force
contributions to the local momentum balance are given by the force per unit volume,

F = −∇P− ρ0 g êy + ρ0 β g (T − T0) êy, (32)

where we are assuming that the y–axis is vertical and orientated upward. The unit vector
along the y–axis is denoted by êy. We can rescale F in order to obtain a dimensionless
formulation of the local momentum balance equation. The dimensionless F denoted with
an asterisk is given by

F∗ =
F

∆Pr/L
, (33)

where the constant ∆Pr is a reference pressure difference and the constant L is a reference
length. One can also define the dimensionless coordinates pressure and temperature as

(x∗, y∗, z∗) =
(x, y, z)

L
, P∗ =

P
ρ0 g L

, T∗ =
T − T0

∆Tr
, (34)

where ∆Tr is a reference temperature difference. On account of Equations (33) and (34),
Equation (32) yields

F∗ = − 1
Fr
(
∇∗P∗ + êy

)
+

δ

Fr
T∗êy, (35)
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where the Froude number is defined as

Fr =
∆Pr

ρ0 g L
, (36)

and δ is given by

δ = β ∆Tr. (37)

It is noteworthy that the usual definition is Fr = U2
0 /(g L) (see, for instance, the paper

by Mayeli and Sheard [10]), where U0 is a reference velocity. In fact, Equation (36) matches
perfectly the usual definition provided that one chooses U0 =

√
∆Pr/ρ0. One may also

mention that, according to other authors (e.g., Zeytounian [1]), Fr should be defined as a
velocity ratio, so that it is given by the square root of the quantity identified by Mayeli and
Sheard [10] as the Froude number. In our discussion, we will rely on the definition given
by Equation (36).

It is quite evident that one can, legitimately, set the reference pressure difference
∆Pr = ρ0 g L. This choice, from Equation (36), would yield Fr = 1. In this case, assuming
δ→ 0 would justify an assumption of constant density in the mass balance equation, but
it would also unavoidably imply a negligible buoyancy contribution to F∗ as given by
Equation (35). Indeed, in this case, the limit δ→ 0 yields

F∗ = −∇∗P∗ − êy. (38)

In Equation (38), there is no buoyancy force, so that the dynamics predicted is that
of a perfectly incompressible fluid. Thus, in order to preserve the contribution of the
buoyancy force, one cannot set neither Fr = 1 nor Fr ∼ O(1). Indeed, a possibility is that
the Oberbeck–Boussinesq approximate governing Equations (1)–(3) are a limiting case of
the local balance equations for a fully compressible (variable density) flow when

δ→ 0, Fr→ 0 with
δ

Fr
∼ O(1). (39)

The double limit defined by Equation (39) is stated, although in slightly different
terms, by Hills and Roberts [6] and reported also by other authors [3,22]. It is also implicitly
employed in the analysis carried out by Rajagopal, Ruzicka, and Srinivasa [2].

In the case of natural convection, where buoyancy alone causes the flow, a typical
choice of ∆Pr is

∆Pr =
µ α

L2 . (40)

Thus, the ratio δ/Fr coincides with the Rayleigh number,

Ra =
δ

Fr
=

ρ0 g β ∆Tr L3

µ α
. (41)

The approach based on the limit defined by Equation (39) leads to a singular behaviour
of F∗, as one can immediately infer from Equation (35), since

− 1
Fr
(
∇∗P∗ + êy

)
tends to infinity in the limit. Stated in these terms, the singular nature of the Oberbeck–
Boussinesq limit of F∗ seems unavoidable, if one aims to keep a finite contribution of the
buoyancy force. Actually, there is just one way to avoid a singular behaviour for F∗ in the
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limit defined by Equation (39). One should constrain∇P to be equal to −ρ0 g êy whenever
the Oberbeck–Boussinesq approximation is used. More precisely, one must have

−∇∗P∗ − êy ∼ O(Fr), (42)

or, equivalently, by employing Equation (39),

−∇∗P∗ − êy ∼ O(δ). (43)

This result can be reformulated by defining a dimensionless scalar field, P∗, such that,
when the limit (39) is to be taken, one may write

−∇∗P∗ − êy ≈ −Fr∇∗P∗. (44)

Thus, Equation (35) yields

F∗ ≈ −∇∗P∗ + δ

Fr
T∗êy, (45)

so that the limit (39) leads to a finite result. It must be pointed out that, from a physical
viewpoint, the meaning of the term∇∗P∗ has no connection with the difference between
the pressure gradient and the hydrostatic pressure gradient, as this difference tends to zero
in the limit (39).

Interestingly enough, the derivation of the Oberbeck–Boussinesq approximation
presented by Rajagopal, Ruzicka, and Srinivasa [2], recently reformulated within a simpli-
fied framework by Barletta [15], leads to the same conclusion drawn above, namely that
the pressure gradient must always coincide with the hydrostatic pressure gradient. We
mention that the treatment presented by Rajagopal, Ruzicka, and Srinivasa [2] is based
on a dimensionless scaling of the governing balance equations where the reference length
is O

(
ε−1) and the reference velocity is O(ε), where ε is the perturbation parameter. The

Oberbeck–Boussinesq approximation is defined as the asymptotic case where ε→ 0. Thus,
the dimensionless scaling is singular in this limit. Incidentally, ε is proportional to δ1/3,
with δ given by Equation (37). The study reported by Rajagopal, Ruzicka, and Srinivasa [2]
discusses in detail the serious drawbacks of the previous theoretical studies that define the
Oberbeck–Boussinesq approximation as a limiting case obtained by letting one or more
perturbation parameters to zero. Examples are the papers by Spiegel and Veronis [4],
by Gray and Giorgini [5] and by Hills and Roberts [6]. As a consequence, one can say
that an asymptotic theory, based on a suitable perturbation scheme, which is aimed at a
completely rigorous and physically convincing deduction of the Oberbeck–Boussinesq set
of governing Equations (1)–(3) is based on the ideas conveyed in the paper by Rajagopal,
Ruzicka, and Srinivasa [2] under the restatement provided by Barletta [15].

7. Conclusions

The Oberbeck–Boussinesq approximation for the local balance equations of mass,
momentum and energy of buoyancy–induced fluid flows has been briefly outlined. It has
been stressed that the linear temperature–dependent density expression is to be used, within
the local momentum balance equation, only to transform the combined pressure gradient
force and gravity force into a combination of terms involving the dynamic pressure gradient
and the buoyancy force. Out of this very specific use, the variable density expression cannot
be employed consistently with the approximated Oberbeck–Boussinesq scheme. Three
examples have been discussed, relative to either natural or mixed convection flows, where
it has been shown that an improper use of the variable density unavoidably leads to
violations of the principle of mass conservation. A final Section has been devoted to the
idea of the Oberbeck–Boussinesq approximation as a limiting case of the fully compressible
local balance equations where the dimensionless parameter δ = β ∆Tr tends to zero, with β
the thermal expansion coefficient and ∆Tr the reference temperature difference. It has been
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pointed out that such an idea leads either to a singular behaviour for the gradient of the
dynamic pressure, or to the constraint that such a gradient be identically zero. We conclude
that the Oberbeck–Boussinesq approximation is to be founded on the scenario where the
dynamic pressure gradient is considered as vanishingly small, albeit of the same order of
magnitude of the buoyancy force as pointed out by Barletta [15].
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Appendix A. Batchelor’s Profile

If one considers the rectangular cavity displayed in Figure 1 and assumes H � L,
namely an infinitely tall cavity, then the velocity distribution at the midplane y = 0 can be
expressed as the cubic Batchelor’s profile [23],

v = −ρ0 β g (T1 − T2)

12 µ L
x
(

L2 − x2
)

, (A1)

with the linear temperature profile,

T − T0 = −T1 − T2

2 L
x. (A2)

Equation (A2) defines the pure conduction regime happening in the cavity. On the
basis of Equation (14), Equations (A1) and (A2) yield the mass flow rate per unit depth (in
the z-direction),

ṁ = −ρ0 β

L∫
−L

(T − T0) v dx = −
ρ2

0 β2 g (T1 − T2)
2 L3

90 µ
. (A3)
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