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Abstract

Natechs are technological accidents that are triggered by natural disasters. The

increase in the frequency and severity of climatic natural disasters along with the

growth of industrialization has accelerated the demand for development of dedi-

cated methodologies for risk assessment and management of Natechs. Due to a

lack of accurate and sufficient data, risk assessment of Natechs has largely been

based on subjective assumptions and imprecise probabilities, making the assessed

risks and the subsequent risk management strategies deficient in terms of cost-

effectiveness. In the present study, evidence theory, as an effective technique for

dealing with imprecise probabilities, and Bayesian network, as an effective tool

for reasoning under uncertainty, are combined to develop a methodology for risk

analysis of Natechs based on imprecise probabilities with no attempt to increase

the precision of the input data but the accuracy and cost-effectiveness of the out-

comes. Flotation of oil tanks during floods has been considered to exemplify the

methodology. The methodology is demonstrated to outperform conventional

approaches where average probabilities or generic probability distributions are

used instead of interval probabilities for risk assessment and management.
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1 | INTRODUCTION

Technological accidents that are triggered by natural
disasters are known as natural-technological accidents or
Natechs.[1] Natechs that occur in chemical and process
plants can be catastrophic due to the possibility of damage
to process units and subsequent release of hazardous
chemicals, which may cause fire and explosions [1–8] or
major environmental pollution.[9–12]

Among the various process units, atmospheric storage
tanks have reportedly been the most vulnerable type of

vessel.[11] This is because such vessels have thin shells
and high volume/weight ratios. A thin shell makes the
storage tank very susceptible to lateral forces exerted by
high winds or floods, whereas a high volume/weight ratio
makes the tank susceptible to buoyancy force in the event
of floods or heavy rainfalls.[13] Flotation of atmospheric
storage tanks (Figure 1) due to the buoyancy force has
been identified as the most common failure mode during
floods.[10,13,14]

Compared to conventional technological accidents,
which are caused by random failures or human error,
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risk assessment and management of Natechs are prone to
more uncertainty and are thus more challenging.[12,15]

The foregoing uncertainty consists of aleatory uncertainty
that arises from the randomness of natural disasters or
failures, and epistemic uncertainty that represents our
lack of knowledge due to insufficient or inaccurate objec-
tive data for the Natech of interest.

Probability theory has effectively been used to account
for uncertainty embedded in the occurrence and severity
of natural disasters as well as the extent of damage they
may cause to structures and industrial plants.[16–21] How-
ever, in the absence of sufficiently large and reliable data-
sets or accurate field measurements, subject matter
experts will inevitably come up with subjective, imprecise
probabilities that may influence the accuracy and credi-
bility of the risk analysis if not properly handled.[22–24]

Evidence theory[25,26] is an effective tool for handling
imprecise probabilities.[27–35] In evidence theory, the
propagation of uncertainty is based on belief masses
rather than probability masses. Belief masses are the ana-
lyst’s degrees of belief about a hypothesis and can be
derived from imprecise probabilities. Compared with
probability theory, the application of evidence theory to
the domain of risk assessment and management has not
been so widespread, mainly due to a lack of efficient
inference algorithms. Simon et al.[33] and Simon and
Weber[36] demonstrated that Bayesian network (BN) can
be used to handle belief masses the same way it can be
used for probabilities. Khakzad[37] later demonstrated
that BN can be used for both belief mass propagation (for-
ward analysis) and updating (backward analysis).

The present study aims to demonstrate an application
of evidence theory to risk assessment and management of

Natechs when, due to a lack of knowledge, the analyst
may express their uncertainty in the form of interval
probabilities. The developed methodology is not to
increase the precision or quality of input data (imprecise
probabilities) but to improve the accuracy and cost-
effectiveness of the subsequent risk assessment outcomes.
Section 2 briefly reviews the concept of evidence theory
and how it can be combined with BN. In Section 3, the
methodology is applied to risk assessment and manage-
ment of tank flotation during floods, while in Section 4
the results are discussed in comparison with some
other conventional techniques. Section 5 concludes
the work.

2 | REASONING UNDER
UNCERTAINTY

2.1 | Bayesian network

BN is a probabilistic graphical model for reasoning under
uncertainty,[38,39] consisting of a qualitative part and a
quantitative part. The qualitative part, or the structure of
the graph, consists of several nodes to represent random
variables, and arcs to indicate the dependencies among
the connected nodes. The quantitative part of BN consists
of conditional probabilities of nodes X i given their parent
nodes pa X ið Þ in the form of P X ijpa X ið Þð Þ. Such condi-
tional probabilities are the BN parameters and can either
be elicited from experts or learned from historical data.
The joint probability distribution of nodes X1,X2,…,Xnf g
can be presented as the product of the conditional probabil-
ity of each node given its immediate parents as follows:

FIGURE 1 Flotation and

displacement of a storage

tank at Murphy Oil due to

Hurricane Katrina.[11]
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P X1,X2,…,Xnð Þ¼
Yn
i¼1

P X ijpa X ið Þð Þ: ð1Þ

Having the joint probability distribution, the marginal
probability of random variables can be calculated using a
number of inference algorithms. As an example, consider
a parallel system with two binary components X and Y in
Figure 2A with failure probabilities P(X = fail) = 0.2 and
P(Y = fail) = 0.3. The system can be modelled using the
BN in Figure 2B, resulting in the system’s failure proba-
bility of P(System = fail) = 0.06.

During the past two decades, BN has extensively been
employed in fault diagnosis, safety assessment, and risk
management of process units and operations, mainly
based on crisp probabilities (or point probabilities). [40-43]

However, there have been some attempts at using impre-
cise probabilities in BN.[37,44,45]

2.2 | Evidence theory

Using evidence theory,[25,26] all the possible states of a
random variable can be presented in a set, named the
frame of discernment Ω. To each subset of Ω such as Ai,
which is a hypothesis about the state of the variable, a
weight 0.0 ≤ m(Ai) ≤ 1.0 can be assigned to express the
degree of belief, based on objective data or subjective
opinion, in the claim that the variable state belongs to
Ai.

[32] Having m(Ai), which is also known as the belief
mass of Ai, the belief bel(Ai) and plausibility pls(Ai) can
be determined.

For the sake of clarity, consider component X in
Figure 2A with the two states, fail and work, and thus a
frame of discernment as ΩX = {fail, work}. Therefore, the
set of all the subsets of ΩX would be A: {{;}, {fail}, {work},
{fail, work}}, where A1 = {;}, A2 = {fail}, A3 = {work},
and A4 = {fail, work}. Each member of A for which

m(Ai) > 0 is called a focal set. If we are certain that all
the states of the variable are included in the frame of dis-
cernment, then m(;) = 0. It must always hold that:

X
Ai

m Aið Þ¼ 1: ð2Þ

Having the belief masses determined, the belief and
plausibility measures of each focal set can be defined
using the following:

bel Aið Þ¼
X

AjjAj ⊆ Ai

m Aj
� �

, ð3Þ

pls Aið Þ¼
X

AjjAj \Ai ≠ ;
m Aj
� �

: ð4Þ

For instance, an expert may assign the weightsmX({fail},
{work}, {fail, work}) = (0.15, 0.8, 0.05), in which mX({fail,
work}) = 0.05 refers to the expert’s uncertainty about the
state of X. Using Equations (3) and (4), the belief and
plausibility of X = {fail} can be calculated, respectively,
as bel(X = {fail}) = m({fail}) = 0.15 and pls(X = {fail}) = m
({fail}) + m({fail, work}) = 0.15 + 0.05 = 0.2. It should be
noted that in calculating the plausibility of X = {fail} using
Equation (4), the mass of {fail, work} should be considered
because {fail} \ {fail, work}≠ ;; however, it should not
be considered in calculating the belief of X= {fail} via
Equation (3) because {fail, work} ⊈ {fail}.

Further, the amount of uncertainty Unc (Ai) of a focal
set can be expressed as the difference between pls(Ai) and
bel(Ai)

[32]:

Unc Aið Þ¼ pls Aið Þ�bel Aið Þ: ð5Þ

Since mX({fail, work}) represents the uncertainty
about the state of X, Equation (5) can be used to calculate

FIGURE 2 (A) A parallel system

with two binary components.

(B) Modelling the system using a

Bayesian network (BN) where nodes X

and Y are connected to node System

using AND gate.
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this parameter as mX({fail, work}) = pls(X = {fail}) – bel
(X = {fail}) = 0.05. Subsequently, bel(Ai) and pls(Ai),
which are non-additive (their sum is not necessarily
equal to 1.0.), can be taken as lower and upper probabil-
ity bounds of Ai, respectively

[26]:

bel Aið Þ≤P Aið Þ≤ pls Aið Þ, ð6Þ

bel Ac
i

� �¼ 1�pls Aið Þ, ð7Þ

pls Ac
i

� �¼ 1�bel Aið Þ, ð8Þ

where Ac
i is the complement of Ai in the sense

that Ac
i ¼Ω�Ai:

According to Equation (6), 0.15 ≤ P(X = fail) ≤ 0.2.
Moreover, according to Equations (7) and (8), bel(X =

{work}) = 1 – pls(X = {fail}) = 0.8 and pls(X = {work}) = 1
– bel(X = {fail}) = 0.85, and thus 0.8 ≤ P(X = work) ≤ 0.85.
Having the bel and pls functions, the belief mass of a focal
set can be determined using the Möbius transformation as
follows[31,46]:

m Aið Þ¼
X

AjjAj ⊆ Ai

�1ð Þ Ai�Ajj j bel Aj
� �

, ð9Þ

where jAi � Ajj refers to the difference between the
number of elements of Ai and Aj.

2.3 | Using imprecise probabilities in BN

Simon and Weber[36] showed that belief masses can be
used in BN the same way as the probabilities, and thus

the algorithms developed for BN could be employed to
propagate belief masses in a system. Since the belief
masses allocated to the focal sets of each random variable
must add up to 1.0, they can be treated as marginal
probabilities for the root nodes in a BN.

Considering the system in Figure 2, assume that due
to a lack of sufficient knowledge, the analyst cannot
assign precise probabilities to the states of X and Y and
decides to express their uncertainty in the form of inter-
val probabilities as 0.15 ≤ P(X = fail) ≤ 0.35 and 0.2 ≤
P(Y = fail) ≤ 0.5.

Having these interval probabilities, the belief masses of
the focal sets of X and Y can be identified. For instance,
consider P(X = fail), where its lower and upper bounds can
be taken as the bel and pls functions, respectively:

• bel(X = {fail}) = 0.15 ! mX({fail}) = 0.15
• bel(X = {work}) = 1 – pls(X = {fail}) = 1–0.35 =

0.65 ! mX({work}) = 0.65
• mX({fail, work}) = 1 – mX({fail}) – mX({work}) = 1–0.15

– 0.65 = 0.2
• As a result: mX({fail}, {work}, {fail, work}) = (0.15,

0.65, 0.2).

Following the same procedure, mY({fail}, {work}, {fail,
work}) = (0.2, 0.5, 0.3). The calculated mass beliefs can
now be used in BN to compute the belief masses of the
system. In the BN shown in Figure 3, the focal sets of X
and Y have been considered as the states of nodes X and
Y while the respective belief masses have been consid-
ered as their probabilities. The same focal sets have also
been considered for node System, which is connected to
nodes X and Y via AND gate. The truth table shown in
Table 1 can be used to populate the conditional belief
table of node system.[36]

FIGURE 3 Bayesian network

(BN) for failure assessment of system

using belief masses of X and Y. Nodes X

and Y are connected to node system by

AND agte.
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The developed BN can accordingly be used to calculate
the belief masses of node System. Having the belief
masses of System as mSystem({fail}, {work}, {fail, work}) =
(0.03, 0.825, 0.145), the bel and pls functions or the
lower and upper bound probabilities of (System = fail)
can be calculated as bel(System = {fail}) = 0.03 and
pls(System = {fail}) = 0.03 + 0.145 = 0.175, resulting in
0.03 ≤ P(System = fail) ≤ 0.175.

3 | RISK ANALYSIS WITH
INTERVAL PROBABILITIES

3.1 | Flotation of storage tanks

Flotation of oil storage tanks has reportedly been the
most frequent failure mode during floods.[14] Flotation of
storage tanks occurs if the upthrust force of the flood
(buoyancy force FB) exceeds the bulk weight of the
storage tank (weight of the tank WT plus the weight of
its containment WL). Considering that such tanks are
usually unanchored and thus no resisting force is exerted
on them from their foundation, FB,WT, andWL are the only
forces considered for the flotation of the tank in Figure 4.
Given the tank’s dimension and the flood’s inundation
depth, the foregoing forces can be modelled as follows:

FB ¼ ρw g
πd2

4
h, ð10Þ

WT ¼ ρs g πdHþ2
πd2

4

� �
t, ð11Þ

WL ¼ ρlg
πd2

4
L: ð12Þ

The parameters and the random variables used in
Equations (10)–(12) as well as their values and their
probability distributions are listed in Table 2.

Given the foregoing forces, the limit-state equation
(LSE) for the flotation of the tank can be developed as
follows[20,47]:

LSE¼FB�WT�WL: ð13Þ

As such, the flotation probability of the tank can be
presented as the probability that LSE >0.

For the sake of illustration, consider the possibility of
an imminent flood that may hit the storage tank in the
next coming hours (in the United States, the National
Weather Service issues flood warnings when flooding is
possible or expected within 12–48 h). Based on historical
data, the inundation height of the flood is expected to
follow a normal distribution (Table 2). Further, assume

TABLE 1 Truth table used to populate the conditional belief table of node system in Figure 3 in case of AND gate and OR gate.[36]

X Y

System: AND gate System: OR gate

{fail} {work} {fail, work} {fail} {work} {fail, work}

{fail} {fail} 1 0 0 1 0 0

{fail} {work} 0 1 0 1 0 0

{fail} {fail, work} 0 0 1 1 0 0

{work} {fail} 0 1 0 1 0 0

{work} {work} 0 1 0 0 1 0

{work} {fail, work} 0 1 0 0 0 1

{fail, work} {fail} 0 0 1 1 0 0

{fail, work} {work} 0 1 0 0 0 1

{fail, work} {fail, work} 0 0 1 0 0 1

FIGURE 4 Schematic of flotation-related loading and resisting

forces acting on an oil storage tank.
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that although the specific values of the tank dimensions
are known (Table 2), the initial amount of crude oil
inside the tank is unknown as the mechanical and
automatic level indicators each shows a different value:
the mechanical level indicator, which is likely to mal-
function and is thus not reliable, shows the crude level as
L = 1.0 m but the automatic gauge shows the level as
L = 0.5 m. Therefore, the operator decides to take a
glance at the crude level via the top manhole, estimating
the crude level as L = 1.5 m. As such, the operator’s
uncertainty about the level of crude oil can be modelled
as a tertiary random variable L with three states, as
L1 = 0.5 m, L2 = 1 m, and L3 = 1.5 m, with the following
interval probabilities based on their confidence in the
mechanical and automatic gauges and his own estimate:

• 0.2 ≤ P(L1) ≤ 0.5
• 0.3 ≤ P(L2) ≤ 0.5
• 0.2 ≤ P(L3) ≤ 0.3.

3.2 | Flotation risk assessment

According to the parameters in Table 2, the magnitudes
of the three forces can be calculated as WT = 268 (kN),
WL = 655 � L (kN), and FB = 789 � h (kN). The
probability that the storage tank floats due to the
buoyancy force can be calculated as follows:

P flotation¼ yesð Þ¼P FB >WTþWLð Þ
¼P 789h>268þ655Lð Þ
¼P h>

268þ655L
789

� �
: ð14Þ

Considering L as an uncertain variable with three
states as L1, L2, and L3, its frame of discernment is
ΩL = {L1, L2, L3}. Consequently, its focal sets would be

AL: {{L1}, {L2}, {L3}, {L1, L2}, {L1, L3}, {L2, L3}, {L1, L2, L3}}.
The belief mass of each focal set can subsequently be
determined. For example, for the first focal set {L1}
with the lower and upper bound probabilities as 0.2 < P
(L1) < 0.5, the belief and plausibility functions can be deter-
mined as bel({L1}) = 0.2 and pls({L1}) = 0.5. Since {L1} is a
singleton, m({L1}) = bel({L1}) = 0.2. Similarly, m({L2}) = 0.3
andm({L3}) = 0.2.

Further, consider the focal set {L1, L2}. Since {L1}, {L2},
and {L1, L2} are all the subsets of {L1, L2}, we will have
m({L1, L2}) = bel({L1, L2}) – bel({L1}) – bel({L2}). Further-
more, bel({L1, L2}) = 1 – pls({L3}) = 1–0.3 = 0.7. As a
result, m({L1, L2}) = 0.7–0.2 – 0.3 = 0.2. Following the
same procedure, m{{L1}, {L2}, {L3}, {L1, L2}, {L1, L3}, {L2,
L3}, {L1, L2, L3}} = (0.2, 0.3, 0.2, 0.2, 0.1, 0.0, 0.0). Since m
({L1, L3}) = m({L1, L2, L3}) = 0, they would not be
considered as focal sets any more.

As can be seen from Equation (14), the only influential
parameters in estimating the probability of tank flotation
are the flood inundation height (h) and the chemical height
(L). To facilitate the propagation of uncertainty—aleatory
uncertainty in h and epistemic uncertainty in L–the BN in
Figure 5 is developed.

It should be noted that in Figure 5, the focal sets
of L have been considered as the states of node L,
and the respective belief masses have been considered
as their marginal probabilities. Moreover, since h is a
continuous variable, it has been discretized into three
intervals while the marginal probability of each inter-
val has been calculated using the normal distribution
in Table 2. The discretized intervals for h are as
follows:

• h1: 0.0 ≤ h < 0.8
• h2: 0.8 ≤ h < 1.2
• h3: 1.2 ≤ h < 2.0.

Using Equation (14), the conditional belief table of
node ‘Flotation’ can be developed as shown in Table 3.

As an example, consider h = h2 (i.e., 0.8 ≤ h < 1.2)
and L = {L1, L2}:

• If L = L1 = 0.5, then P flotation¼ yesð Þ¼P h> 268þ655 L
789

� Þ¼
P h>0:75ð Þ¼ 1:0. Note that since 0.8≤h<1.2, the prob-
ability of h>0.75 is equal to 1.0.

• If L = L2 = 1.0, then P flotation¼ yesð Þ¼P h> 268þ655 L
789

� �¼
P h>1:17ð Þ. Since 0.8≤h<1.2, the probability of h>1.17
should be modified to P(1.17<h<1.2), which is equal
to 0.04.

• As such, for L = {L1, L2}, the lowest and highest proba-
bilities of flotation would be 0.04 and 1.0, respectively,
which in turn can be taken as bel(flotation = {yes})
= 0.04 and pls(flotation = {yes}) = 1.0. As a result:

TABLE 2 Parameters used to develop the limit state equation

for flotation of the storage tank.

Parameters Symbols Values

Tank height H (m) 6

Tank diameter d (m) 10

Tank shell thickness t (m) 0.01

Chemical inventory height L (m) (0.5, 1.0, 1.5)

Tank material density (steel) ρs (kg/m
3) 7900

Flood water density ρw (kg/m3) 1024

Chemical inventory
density (gasoline)

ρl (kg/m
3) 850

Flood inundation height h (m) N (μ = 1, σ = 0.2)

3338 DEHGHANISANIJ ET AL.
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mFlotation ({yes}) = bel(flotation = {yes}) = 0.04; mFlotation

({no}) = bel(flotation = {no}) = 1 – pls(flotation = {yes})
= 1–1 = 0; and mFlotation ({yes, no}) = 1 – mFlotation

({yes}) –mFlotation ({no}) = 1–0.04 = 0.96.

Quantifying the BN, the belief masses of the focal sets
of ‘Flotation’ can be calculated as mFlotation ({yes}) = 0.26,
mFlotation ({no}) = 0.52, and mFlotation ({yes, no}) = 0.22.

Consequently, the belief and plausibility functions or the
lower and upper bound probabilities of (flotation = yes)
can be calculated as: 0.26 ≤ P(flotation = yes) ≤ 0.48.
Likewise, 0.52 ≤ P(flotation = no) ≤ 0.74.

3.3 | Flotation risk management

Flotation of the storage tank can result in instantaneous
release of oil in the case of tank collapse or a major
release of oil in the case of disconnection of flanges and
pipelines.[11,14] In chemical plants and tank terminals, it
is a common risk management strategy to add water to
empty tanks or tanks of low inventory to increase their
resistance to flotation. This would also increase the resis-
tance against sliding and shell buckling. Assume that the
analyst determines the probability of flotation 0.26 ≤ P
(flotation = yes) ≤ 0.48 is too high and decides to add
water to the tank to decrease the probability. Figure 6
presents the storage tank with added water, under the
simplifying assumption that the mixing of oil with water
is negligible, and all the oil stands above the added water.
The added weight of the water can be calculated as
follows:

Ww ¼ ρw g
π d2

4
Lw ð15Þ

where Lw is the depth of the added water, and ρw is its
density, which is taken the same as the density of flood
water for the sake of simplicity.

By adding water to the storage tank, the LSE in
Equation (13) would be modified as follows:

FIGURE 5 Bayesian network

(BN) to estimate the probability of tank

flotation.

TABLE 3 Conditional belief mass distribution for the node

‘Flotation’ in Figure 5.

h L

Flotation

{yes} {no} {yes, no}

h1 {L1} 0.05 0.95 0

h1 {L2} 0 1 0

h1 {L3} 0 1 0

h1 {L1, L2} 0 0.95 0.05

h1 {L1, L3} 0 0.95 0.05

h2 {L1} 1 0 0

h2 {L2} 0.04 0.96 0

h2 {L3} 0 1 0

h2 {L1, L2} 0.04 0 0.96

h2 {L1, L3} 0 0 1

h3 {L1} 1 0 0

h3 {L2} 1 0 0

h3 {L3} 0.002 0.998 0

h3 {L1, L2} 1 0 0

h3 {L1, L3} 0.002 0 0.998
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LSE¼FB�WT�WL�Ww: ð16Þ

The revised probability of flotation can thus be
calculated as follows:

P flotation¼ yesð Þ¼ P FB >WTþWLþWwð Þ
¼ P 789h>268þ655Lþ789Lwð Þ
¼ P h>

268þ655Lþ789Lw
789

� �
ð17Þ

To decide how much water to add to the tank, more
information would be required regarding the cost of tank
failure (i.e., tank flotation) and the cost of water removal
from the tank after the flood passes and risk of flotation
diminishes. In this regard, assume that flotation of the
tank would result in a major release of oil with a total
cost $1M for the tank repair and environmental remedia-
tion. On the other hand, if water is added to the tank to
prevent its flotation, the removal of water from the tank
would cost $10k for each 0.25 m of added water (given
the tank dimensions 0.25 m of water equals about 20 m3

of water). However, if the tank floats in spite of adding
water to it, the total cost would still be $1M. It is because
a floating tank is assumed to be damaged beyond
redemption and having its content released due to

rupture or disconnection of connected pipeline. As such,
removing the water from the damaged tank would be
pointless, leaving the total cost unchanged as $1M. Hav-
ing this information, the analyst can determine the cost-
effective amount of added water.

To do so, four decision alternatives are considered
for adding water as LW1 = 0 m (i.e., add no water);
LW2 = 0.25 m, LW3 = 0.50 m, and LW4 = 0.75 m. Following
the same procedure described in Section 3.2, the interval
probabilities for the tank flotation under each decision alter-
native can be calculated, as listed in Table 4. Having the
cost of the tank flotation ($1M) and the cost of adding water
to the tank ($10k for each 0.25 m of water), the expected
cost for each decision alternative can be calculated as the
multiplication of the interval probabilities and the costs. For
instance, given LW2 = 0.25 m, the probability of flotation
and no flotation are calculated as 0.08 < P(flotation = yes)
< 0.20 and 0.80 < P(flotation = no) < 0.92. Subsequently,
the lower and upper expected costs can be calculated as
follows:

• Lower expected cost (LW2) = 0.08 � $1M + 0.92 �
$10K = $89.2K

• Upper expected cost (LW2) = 0.2 � $1M + 0.8 �
$10K = $208K

Therefore, the expected cost for LW2 would be
[$89.2K, $208K].

As can be seen from the expected costs in Table 4,
LW3 = 0.5 m can be selected as the best decision alterna-
tive as, compared with the other alternatives, it has both
the lowest minimum expected cost ($22.9 K) and the low-
est maximum expected cost ($27.8 K). Considering flota-
tion, sliding, and shell buckling as the feasible failure
modes for atmospheric tanks during floods, flotation is
the likeliest failure mode. [14,47] As such, if adding 0.5 m
of water could lower the probability of flotation to [0.003,
0.008], it would also reduce the likelihood of sliding (due
to an increase in the weight of the tank and the friction
force exerted on its bottom from the ground) and shell
buckling (due to an increase in the internal pressure of
the tank which can withstand the buckling).[17,47]

FIGURE 6 Schematic of flotation-related loading and resisting

forces acting on a chemical storage tank after adding water.

TABLE 4 Interval probabilities of

flotation given different amounts of

added water.

How much
water to add? P(flotation = yes) P(flotation = no) Expected cost (� $1000)

LW1 = 0 m [0.26, 0.48] [0.52, 0.74] [260, 480]

LW2 = 0.25 m [0.08, 0.20] [0.80, 0.92] [89.2, 208]

LW3 = 0.50 m [0.003, 0.008] [0.992, 0.997] [22.9, 27.8]

LW4 = 0.75 m [0.0002, 0.0005] [0.9995, 0.9998] [30.2, 30.5]

Note: The bold values show the least expected cost, indicating Lw3 as the most cost-effective decision

alternative.
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4 | DISCUSSION

To evaluate the effectiveness of the developed methodology,
two common approaches to dealing with interval probabili-
ties are considered in this section for risk assessment and
management of the tank. In the first approach, each proba-
bility interval is replaced with an average probability,
whereas in the second approach, the probability intervals
are replaced with a normal distribution to consider the
uncertainty in L (depth of crude oil in the tank).

4.1 | Average probabilities instead of
interval probabilities

Regarding the probability intervals for L, each probability
interval may be replaced with an average probability.
One formula for calculating the average probability has
been proposed by Yager and Kreinovich.[48] If a probability
interval is presented with a lower probability p�j and an
upper probability pþj as pj ¼ p�j ,p

þ
j

h i
, the average proba-

bility that may be used as a surrogate for the interval can
be calculated as follows[48]:

p�j ¼ Σþ�1
Σþ�Σ� :p

�
j þ 1�Σ�

Σþ�Σ� :p
þ
j , ð18Þ

where:

Σþ ¼
Xn
i¼1

pþi , ð19Þ

Σ� ¼
Xn
i¼1

p�i : ð20Þ

Therefore, given the probability intervals for L
as 0.2 ≤ P(L1) ≤ 0.5, 0.3 ≤ P(L2) ≤ 0.5, and 0.2 ≤
P(L3) ≤ 0.3, the values of Σþ and Σ� can be calculated as
follows:

Σþ ¼
X3
i¼1

pþi ¼ pþ1 þpþ2 þpþ3 ¼ 0:5þ0:5þ0:3¼ 1:3,

Σ� ¼
X3
i¼1

p�i ¼ p�1 þp�2 þp�3 ¼ 0:2þ0:3þ0:2¼ 0:7:

Subsequently, the average probabilities for L1, L2, and
L3 can be calculated as p�1 ¼ 0:35, p�2 ¼ 0:4, and
p�3 ¼ 0:25, which are actually the arithmetic mean values
of the intervals. Now, L can be considered as a discrete
variable with a discrete distribution as P(L1, L2, L3)=
(0.35, 0.4, 0.25). Having h as a normal variable (Table 2)

with a normal distribution as h�N(1, 0.2), Monte Carlo
simulation can be employed to estimate the probability of
flotation via Equation (14). Conducting the simulation
for 10,000 iterations, part of which is presented in
Table 5, the probability of flotation can be estimated as
P(flotation= yes)= 0.384, and subsequently P(flotation=
no)= 1–0.384= 0.616. Using the same approach, the prob-
ability of flotation after adding certain amounts of water
to the tank (i.e., Lw= 0.25, 0.5, and 0.75m) can be esti-
mated by applying the Monte Carlo simulation to
Equation (16). The results have been summarized in
Table 6 under columns 3 and 4.

As can be seen from Table 6, for both LW1 = 0 m and
LW2 = 0.25 m, the flotation probabilities calculated using
the discrete distribution for L are consistent with those
calculated using the interval probabilities as they lie
within the range:

• For LW1 = 0 m ! P(flotation = yes) = 0.384 �
[0.26, 0.48]

• For LW2 = 0.25 m ! P(flotation = yes) = 0.184 �
[0.08, 0.20]

However, for LW3 = 0.50 m and LW4 = 0.75 m, the
point probabilities calculated under the discrete distribution
are one order of magnitude larger than those calculated
using the interval probabilities:

• For LW3 = 0.50 m ! P(flotation = yes) = 0.042 =2
[0.003, 0.008]

• For LW4 = 0.75 m ! P(flotation = yes) = 0.003 =2
[0.0002, 0.0005]

Given the point probabilities of the flotation, only one
expected cost (instead of expected cost interval) can be calcu-
lated for each decision alternative. For instance, for LW2 =

0.25 m, the expected cost can be calculated as follows:

• Expected cost (LW2) = 0.184 � $1M + 0.816 � $10K =

$192.2 K

Calculating the expected costs for the other decision
variables, LW4 = 0.75 m with the lowest expected cost of
$32.9 K should be selected as the best decision, which
is different from the best decision selected under the
probability intervals—that is, LW3 = 0.50 m with the
lowest expected cost [$22.9 K, $27.8 K].

4.2 | Normal distribution instead of
interval probabilities

Given three values for L as L1 = 0.5 m, L2 = 1.0 m, and
L3 = 1.5 m, the analyst may decide to model L as a
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normal variable with a mean value 1.0 and standard devi-
ation 0.5 as L � N(1, 0.5). Compared with the assumption
of a discrete distribution for L in the previous section,
the assumption of a normal distribution for L in this
section seems to be more arbitrary and thus less credible.
However, it is considered in the present study as an ad
hoc approach commonly practiced when insufficient data
is available to support other probability distributions. [10]

Knowing that h is also a normal variable as h � N
(1, 0.2), Monte Carlo simulation can be used to estimate
the probability of flotation. Conducting the simulation
for 10,000 iterations, the probability of flotation can be
estimated as P(flotation = yes) = 0.329, and subsequently
P(flotation = no) = 1–0.329 = 0.671. Using the same
approach, the probability of flotation after adding certain
amounts of water to the tank can be estimated by apply-
ing Monte Carlo simulation, as listed in Table 6 under
columns 5 and 6. The results obtained via the normal

distribution for L are consistent with those obtained via
the interval probabilities for LW1 = 0 m and
LW2 = 0.25 m:

• For LW1 = 0 m ! P(flotation = yes) = 0.329 �
[0.26, 0.48]

• For LW2 = 0.25 m ! P(flotation = yes) = 0.155 �
[0.08, 0.20]

However, the flotation probabilities for LW3 = 0.50 m
and LW4 = 0.75 m are larger by one and two orders of
magnitude, respectively, than those obtained via the
probability intervals:

• For LW3 = 0.50 m ! P(flotation = yes) = 0.052 =2
[0.003, 0.008]

• For LW4 = 0.75 m ! P(flotation = yes) = 0.013 =2
[0.0002, 0.0005]

TABLE 5 Monte Carlo simulation to estimate P(flotation = yes) given a discrete distribution for L.

Iteration
No.

Generate random
numbers for
h: h � N (μ = 1, σ = 0.2)

Generate random
numbers for
L: L � D (0.35, 0.4, 0.25) Calculate: 268þ655L

789

1 if h>
268þ655L

789

0 if h<
268þ655L

789

8><
>:

1 0.883888904 1 1.169835234 0

2 1.016611466 1 1.169835234 0

3 0.894045686 1.5 1.584917617 0

4 0.785400632 0.5 0.754752852 1

5 1.041193289 0.5 0.754752852 1

..

. ..
. ..

. ..
. ..

.

10,000 0.726801434 0.5 0.754752852 0

P(flotation = yes) = SUM
10,000

TABLE 6 Flotation probabilities and expected costs under different probability distributions.

Interval
probabilities for L L � D (0.35, 0.4, 0.25) L � N (1, 0.5) Expected cost (�$1000)

1 2 3 4 5 6 7 8 9

How much
water to
add (m)?

Float = Yes Float = No Float = Yes Float = No Float = Yes Float = No Interval
probabilities

L �
Discrete
dist.

L �
Normal
dist.

LW1 = 0 [0.26, 0.48] [0.52, 0.74] 0.384 0.616 0.329 0.671 [260, 480] 384 329

LW2 = 0.25 [0.08, 0.20] [0.80, 0.92] 0.184 0.816 0.155 0.845 [89.2, 208] 192.2 163.5

LW3 = 0.5 [0.003, 0.008] [0.992, 0.997] 0.042 0.958 0.052 0.948 [22.9, 27.8] 61.2 71

LW4 = 0.75 [0.0002, 0.0005] [0.9995, 0.9998] 0.003 0.997 0.013 0.987 [30.2, 30.5] 32.9 42.6

Note: The bold values show the least expected costs and respective decision alternatives under different probabilistic approaches. Using the method of interval
probabilities, Lw3 can be selected as the most cost-effective decision alternative.
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Calculating the expected costs for the decision vari-
ables, LW4 = 0.75 m with the lowest expected cost of
$42.6K should be selected as the best decision, which is
the same as the best decision under the discrete distribu-
tion but different from the one under the probability
intervals, that is, LW3 = 0.50 m with the lowest expected
cost [$22.9K, $27.8K].

5 | CONCLUSION

In the present study, we presented an innovative applica-
tion of evidence networks to risk assessment and manage-
ment of oil storage tanks during floods. The methodology
developed in the present study can be summarized in four
steps: (i) employing evidence theory for identifying beliefs
from subjective data, (ii) propagating beliefs through BN,
(iii) converting the propagated beliefs back into interval
probabilities, and (iv) using interval probabilities for
decision making.

It was demonstrated that risk assessment and decision
making with interval probabilities may result in different
outcomes than would replacing them with average proba-
bilities or presumptive probability distributions. It was
shown that replacing interval probabilities with the respec-
tive average probabilities may increase the precision of the
probability estimates but not necessarily the accuracy of
risk assessment outcomes or the cost-effectiveness of
risk management strategies. However, in the absence of
required resources (time, expertise, etc.) for dealing with
interval probabilities, the analyst may decide to replace
them with average probabilities as the results in that case
seem to be more consistent with the results obtained from
the interval probabilities. However, more applications and
comparisons are required to determine if the average
probabilities could efficiently substitute the interval
probabilities for risk assessment and decision making
under uncertainty.

Although we applied the methodology to the domain of
Natechs, it is applicable to other domains where, due to a
lack of accurate and sufficient data, subject matter experts
are unable to determine precise probabilities and may
rather express their uncertainty in the form of imprecise or
interval probabilities. It is also worthwhile to note that the
methodology developed in the present study aims to enable
the analysts to consider and handle imprecise probabilities
rather than improve the precision of such probabilities.
That said, application of the developed methodology along-
side techniques for increasing data precision and accuracy
(e.g., by increasing the precision and reliability of measur-
ing techniques and devices) could further improve the cred-
itability of risk analysis outcomes.
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