
25 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Stable numerical evaluation of multi-degree B-splines / Beccari C.V.; Casciola G.. - In: JOURNAL OF
COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - STAMPA. - 400:(2022), pp. 113743.1-
113743.21. [10.1016/j.cam.2021.113743]

Published Version:

Stable numerical evaluation of multi-degree B-splines

Published:
DOI: http://doi.org/10.1016/j.cam.2021.113743

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/864026 since: 2022-02-22

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.cam.2021.113743
https://hdl.handle.net/11585/864026


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Carolina Vittoria Beccari, Giulio Casciola (2022), Stable numerical evaluation of 
multi-degree B-splines, Journal of Computational and Applied Mathematics, 
Volume 400 

The final published version is available online at 
https://dx.doi.org/10.1016/j.cam.2021.113743 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://dx.doi.org/10.1016/j.cam.2021.113743
https://dx.doi.org/10.1016/j.cam.2021.113743


Stable numerical evaluation of multi-degree B-splines

Carolina Vittoria Beccaria,∗, Giulio Casciolaa

aDepartment of Mathematics, University of Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy

Abstract

Multi-degree splines are piecewise polynomial functions having sections of different degrees. They offer significant
advantages over the classical uniform-degree framework, as they allow for modeling complex geometries with fewer
degrees of freedom and, at the same time, for a more efficient engineering analysis. Moreover they possess a set
of basis functions with similar properties to standard B-splines. In this paper we develop an algorithm for efficient
evaluation of multi-degree B-splines, which, unlike previous approaches, is numerically stable. The proposed method
consists in explicitly constructing a mapping between a known basis and the multi-degree B-spline basis of the space
of interest, exploiting the fact that the two bases are related by a sequence of knot insertion and/or degree elevation
steps and performing only numerically stable operations. In addition to theoretically justifying the stability of the algo-
rithm, we will illustrate its performance through numerical experiments that will serve us to demonstrate its excellent
behavior in comparison with existing methods, which, in some cases, suffer from apparent numerical problems.

Keywords: Multi-degree spline, B-spline basis, matrix representation, stable evaluation, algorithmic computation,
Greville abscissæ
2010 MSC: 65D07, 65D15, 41A15, 68W40

1. Introduction

Spline functions are the foundation of numerous results and methods of approximation theory and, nowadays,
are an integral part of geometric modeling and computational engineering analysis systems. Classically, a univariate
spline is a piecewise function defined on a partition of a real interval [a, b], where each piece belongs to the space of
algebraic polynomials of degree less than or equal to d ⩾ 0 and where two pieces are joined with continuity at most
Cd−1. The success of splines is largely due to the fact that they possess a B-spline basis, namely a normalized, totally
positive basis of compactly supported functions [1, 2]. Besides the elegance of the theoretical framework, this basis has
excellent properties from the computational point of view, both for its good conditioning, and because its evaluation
can be carried out via an efficient and numerically stable algorithm, the well-known Cox-de Boor recurrence scheme
[3, 4]. These classical splines will be hereinafter referred to also as conventional splines.

As the name suggests, multi-degree splines (MD-splines, for short) are a generalization of conventional splines
where each piece can have a different degree. They are a natural and extremely powerful extension of the classical
framework, which allows for modeling complex geometries with fewer control points and, as such, holds great po-
tential for application not only in geometric design, but also, as recently acknowledged, in engineering analysis [5] as
well as image processing [6]. Although the concept of multi-degree splines is long-standing [7, 8], for several years
the interest in these spaces has been mostly theoretical. Only recently, in fact, has it been understood how to build a
set of functions analogue to the B-spline basis, dubbed MDB-spline basis (or simply MDB-splines). This has opened
up the possibility of easily integrating multi-degree splines into current computing systems and has made them a real
full-fledged extension of conventional splines. Multivariate versions of the multi-degree concept have been as well
devised [5, 9, 10].

∗Corresponding author.
Email addresses: carolina.beccari2@unibo.it (Carolina Vittoria Beccari), giulio.casciola@unibo.it (Giulio Casciola)

1



The first approaches for constructing an MDB-spline basis can be traced back to the work by Shen and Wang
[11, 12] and are subject to constraints on the continuity attained at the joins. More importantly, they rely on integral
recurrence relations, which, as firstly observed in [13], are widely recognized to be overly complicated and of little
practical use.

Subsequently, alternative and more computationally practicable methods were proposed. Ideally, one would want
evaluation techniques based on algebraic recurrence relations, in the spirit of the famous Cox-de Boor’s method.
However, such recurrence schemes have been identified and proven to exist only for particular multi-degree spline
spaces and precisely those where pieces of different degree are joined with continuity at most C1 [14, 15].

Methods capable of dealing with multi-degree spaces with arbitrary structure stem from a common basic idea,
which is to map a set of known (or easily computable) functions into the basis of interest. They can be traced back
to two different approaches. The first consists in determining the basis functions by interpolation, exploiting the
fact that, under suitable assumptions, Hermite interpolation problems are unisolvent in MD-spline spaces [16]. This
involves solving a number of (small) linear systems that represent the continuity conditions at the joins. Following
this approach, in [17] normalized MDB-splines are expressed as combinations of transition functions (a notion earlier
introduced in the context of local spline interpolation [18, 19]), which allows to efficiently compute their expansion
with respect to the collection of the Bernstein bases relative to the breakpoint intervals. In [20] the same idea was
used to deal with splines whose pieces are drawn from Extended Chebyshev spaces [2, 21], a powerful and versatile
extension of algebraic polynomials.

The second approach stems from the idea of calculating in an explicit way, namely without having to solve any
linear system, a matrix operator M that specifies the mapping between a known basis (or collection of bases) and
the set of MDB-splines. The resulting matrix representation N = MN0 provides a way to evaluate the MDB-spline
basis functions, which are the elements of vector N, as a combination of easily computable functions, which are the
elements of vector N0. This avenue was firstly pursued in [5], which underpinning idea is to gather the continuity
constraints between spline pieces in a matrix and then calculate its null space by a recursive procedure. The follow-up
paper [22] proves that the output of the algorithm is exactly the entire set of MDB-splines, whereas implementation
details are given in [23] and a Chebyshevian extension of the construction is presented in [24]. In these series of
papers, the vector N0 is composed of a collection of local bases, which can be, in particular, either the Bernstein bases
relative to the breakpoint intervals or conventional B-spline bases, each one relative to a sequence of intervals of equal
degree. In both cases the functions in N0 are discontinuous.

In [25] it is observed that the functions in N and N0 are related through a sequence of successive knot insertions
(the same observation was made in the context of Chebyshevian splines in [24]) and that matrix M can be computed by
inverting these steps, giving rise to a process called reverse knot insertion (RKI). This realization allowed the authors
of [25] not only to generate the matrix representation [5] in a more direct and intuitive way, but more generally
to derive a matrix representation with respect to any set of functions N0 which are related to the basis N through
the aforementioned knot-insertion structure. It is shown, in particular, that to minimize the number of performed
operations, it is convenient to start from a basis N0 composed of conventional B-spline functions connected with
C0 continuity. Such functions are the MDB-spline basis of a piecewise conventional spline space, referred to as a
C0 MDB-spline space, and, as such can be evaluated by known techniques. The same paper also deals with how to
generate the matrix representation when N0 is the conventional B-spline basis having maximum (over all intervals)
degree and same continuities as the basis N. In this case the procedure consists in inverting the sequence of local
degree elevations connecting the target space and the maximum-degree conventional space and is therefore called
reverse degree elevation (RDE). It is also discussed how it is possible to combine successive reverse knot insertion and
reverse degree elevation steps in a unique algorithm. This algorithm hence allows to construct a matrix representation
in the most general case, that is under the sole assumption that the space spanned by N0 contains the space spanned
by N.

However, both methods [5] and [25] have a weakness, which is that they require to calculate higher-order deriva-
tives of B-spline (or Bernstein) basis functions (the order of the derivatives to be calculated corresponds to the maxi-
mum continuity or maximum degree to be handled). The evaluation of these derivatives can be carried out in a stable
way [26]. However, not only is it a price to pay in terms of computational cost, but also, and above all, it can lead
to the numerical instability of the algorithm using them. In fact, B-spline derivatives may easily become very large
numbers for high differentiation order and/or very nonuniform partitions, hence the arithmetic operations carried out
with them are potentially risky. The actual occurrence of instability phenomena was observed in [25], where it is

2



suggested to work with a compensated version of the algorithm in order to improve on accuracy (compensation is a
standard technique, see, e.g., [27]).

The main contribution of this paper is a new, stable algorithm that provides the matrix representation of any MDB-
spline basis. The algorithm exploits a suitable reformulation of the reverse knot insertion and reverse degree elevation
processes, thanks to which only numerically stable operations are performed and, in particular, no derivative needs to
be evaluated. We will show how a natural way to arrive at this reformulation is to pass through the concept of Greville
abscissæ. The Greville abscissæ are defined, similarly as in the case of conventional splines, as the coefficients of
the identity function in the MDB-spline basis. As is well known, they are essential in various applications ranging
from approximation and interpolation to isogeometric analysis. We will show that these abscissæ can be obtained by
integrating the MDB-spline basis of the corresponding derivative space.

All in all, the resulting stable algorithm has the form of a triangular scheme. As such it has quadratic computational
complexity (vs. the linear complexity of previous algorithms), nevertheless the computation time is negligible in
practical situations. An appealing feature of the approach lies in its deep relationship with the usual spline tools
of knot insertion and degree elevation, which use automatically ensures the correctness of the set of MDB-splines
provided as output. This is an important difference with respect to the approach in [5], where it is required to prove a
posteriori that the generated functions are MDB-splines.

For ease of presentation and in the interest of clarity, we will develop in all details the so-called RKI Algorithm,
corresponding to the case where N and N0 are related by iterated reverse knot insertions. The circumstance in which
the two basis vectors are related by degree elevation (giving rise to the RDE Algorithm) can be addressed by similar
general principles and will be discussed more briefly in the last part of the paper. Finally, we will illustrate how it is
possible to mix RDE and RKI steps, like in [25], in such a way as to be able to choose the initial basis vector N0 that
will entail the least number of operations and thereby improve the efficiency of the computation. The latter algorithm
builds on the previous two and due to space constraints we will limit ourselves to providing a quick sketch of the
procedure.

The remainder of the paper is organized a follows. Section 2 collects the necessary notions and results on multi-
degree splines and their matrix representation. Section 3 presents the new algorithm, in particular showing how to
compute the Greville abscissæ, using these abscissæ to reformulate the reverse knot insertion process without resorting
to MDB-spline derivatives and finally introducing the triangular scheme. Section 4 is concerned with the computa-
tional/inplementation aspects of the procedure and presents a practical example of its application. The numerical
stability of the method is discussed theoretically in section 5, while subsection 5.1 proposes a series of numerical ex-
periments which, in addition to confirming the theoretical predictions, highlight the potential inaccuracy of previous
methods. Section 6 illustrates how to derive a matrix representation in terms of the conventional B-spline basis of
maximum degree. Conclusions are drawn in section 7.

2. Background and basic notions

In this section we gather the notions and results on multi-degree splines of interest for this paper.

2.1. Multi-degree (MD) spline spaces and B-spline bases

Throughout the paper we will deal with piecewise functions, with pieces drawn from polynomial spaces whose
dimensions are allowed to change from interval to interval. Spaces of such functions are defined as follows.

Definition 1 (Multi-degree spline space). Let [a, b] be a closed bounded real interval, X B {xi}
q
i=1 be a partition of

[a, b] s.t. a C x0 < x1 < . . . < xq < xq+1 B b and d B (d0, . . . , dq) be a vector of nonnegative integers. Let
also K B (k1, . . . , kq) be a vector of nonnegative integers such that ki ⩽ min{di−1, di}

1. The corresponding space of

1Note that, when di−1 = di = ki, the two pieces of a multi-degree spline on [xi−1, xi+1] trivially become just one polynomial piece of degree di.

3



multi-degree splines (MD-splines, for short) is the set of functions

S(Pd,X,K) B
{
f
∣∣∣ there exist pi ∈ Pdi , i = 0, . . . , q, such that:

i) f (x) = pi(x) for x ∈ [xi, xi+1], i = 0, . . . , q;

ii) Dℓpi−1(xi) = Dℓpi(xi) for ℓ = 0, . . . , ki, i = 1, . . . , q
}
,

where Pd is the space of algebraic polynomials of degree at most d.

Note that the above definition returns a conventional spline space in the particular case where d is a vector with
constant entries, that is d0 = · · · = dq, and therefore conventional splines can be seen as a subclass of MD-splines.

A space S ≡ S(Pd,X,K) has dimension K B dim(S) = d0 + 1 +
∑q

i=1(di − ki).
Moreover, as shown in [17], it possesses a B-spline-type basis, dubbed MDB-spline basis (or MDB-splines),

sharing many properties with conventional B-splines. For defining this basis we shall introduce two partitions s and t
as follows:

s B {s j}
K
j=1 B {a, . . . , a︸  ︷︷  ︸

d0+1 times

, x1, . . . , x1︸     ︷︷     ︸
d1−k1 times

, . . . , xq, . . . , xq︸     ︷︷     ︸
dq−kq times

}, (1)

and
t B {t j}

K
j=1 B {x1, . . . , x1︸     ︷︷     ︸

d0−k1 times

, . . . , xq, . . . , xq︸     ︷︷     ︸
dq−1−kq times

, b, . . . , b︸  ︷︷  ︸
dq+1 times

}. (2)

We call s and t the left and right extended partition, respectively, associated with the MD-spline space.
Denoted m B maxi{di}, the MDB-spline basis functions N1,m, . . . ,NK,m are defined recursively over s and t. The

recurrence consists in constructing, for n = 0, . . . ,m, a sequence of functions Ni,n, i = m + 1 − n, . . . ,K, where Ni,n is
supported on [si, ti−m+n] and is determined on each nontrivial interval [x j, x j+1) ⊂ [si, ti−m+n] by the following integral
relation [17]:

Ni,n(x) B


1, x j ⩽ x < x j+1 n = m − d j,∫ x
−∞

[
δi,n−1Ni,n−1(u) − δi+1,n−1Ni+1,n−1(u)

]
du, n > m − d j,

0, otherwise,

(3)

where

δi,n B

(∫ +∞

−∞

Ni,n(x)dx
)−1

. (4)

In (3) we assume undefined Ni,n functions to be zero and, in this case, we set∫ x

−∞

δi,nNi,n(u)du B
{

0, x < si,
1, x ⩾ si.

The K functions generated by the above integral formulation possess analogous characterizing properties as con-
ventional B-splines, that is:

i) Compact support: Ni,m(x) = 0 for x < [si, ti];

ii) Positivity: Ni,m(x) > 0 for x ∈ (si, ti);

iii) End point property: Ni,m vanishes exactly dpsi −max{ j ⩾ 0 | si = si+ j} times at si and dpti−1 −max{ j ⩾ 0 | ti− j =

ti} times at ti, where psi and pti are s.t. xpsi = si and xpti = ti;

iv) Partition of unity:
∑

i

Ni,m(x) = 1, ∀x ∈ [a, b].

Moreover, the above properties i), iii) and iv) also warrant the uniqueness of the MDB-spline basis (see [17] for
further details). We refer to previous papers for illustrations of MDB-spline basis functions, see e.g. [5, 17, 23, 25].

4



2.2. C0 Multi-degree splines

In the remainder of the paper we will often rely on MD-spline spaces whose elements are conventional spline
functions connected with C0 continuity, which we refer to as C0 MD-splines.

These spaces are convenient tools to work with, in that well-established methods can easily be adapted to deal with
them. In particular a generalization of Cox de-Boor recurrence formula [3, 4], the main method for evaluating con-
ventional B-splines, is given in [25, Proposition 4] along with a recurrence relation for the computation of derivatives
([25, Proposition 5]).

The integrals of C0 MDB-splines can as well be efficiently evaluated resorting to existing results. To this aim, it
suffices to observe that a C0 MD-spline Ni,m can be of only one of the following two types: either it is a conventional
B-spline, which means that within its support each piece has same degree, or it consists of only two or three non-trivial
pieces of different degrees connected with C0 continuity (see [14, proof of Proposition 3]). In both cases, recalling
that the integral of a conventional degree-d B-spline basis function Ni,d is equal to the ratio between the support width
of Ni,d and d + 1, its integral is easily computed as:∫ xpti

xpsi

Ni,m dx =
pti−1∑
j=psi

x j+1 − x j

d j + 1
, (5)

with psi and pti defined as in iii).

Definition 2 (Associated C0 MD-spline space). The C0 MD-spline space associated with a multi-degree spline space
S(Pd,X,K) as in Definition 1 is the unique MD-spline space S(Pd,X,K0) having same breakpoint sequence and
degree vector as S(Pd,X,K) and vector of continuities K0 B (k0

1, . . . , k
0
q) such that k0

i = 0 if di−1 , di and k0
i = ki

otherwise.

2.3. Matrix representation

If we take an MD-spline space (including, possibly, a conventional spline space) S0 such that S ⊂ S0, we can
write the relationship between the respective MDB-spline bases in the form

N = M N0, (6)

where N B (N1, . . . ,NK) and N0 B
(
N01, . . . ,N0K0

)2 are the vectors containing the basis functions of S and S0,
respectively, and M is a linear operator of size K ×K0. We refer to the above as the matrix representation of N relative
to N0. Knowing M and N0, one can thus use (6) to evaluate N.

One way to compute matrix M is to choose S0 to be the C0 MD-spline space associated with S and rely on iterated
application of the following result, referred to as Reverse Knot Insertion, RKI for short [25, Proposition 6].

Proposition 1 (Reverse knot insertion). Let S ≡ S(Pd,X,K) and Ŝ ≡ S(Pd,X, K̂) be MD-spline spaces with
same breakpoint sequence and degrees. Let also the respective continuity vectors be K B (k1, . . . , k j, . . . , kq) and
K̂ B (k1, . . . , k j − 1, . . . , kq), for j ∈ {1, . . . , q}. Then, S ⊂ Ŝ and the corresponding MDB-spline bases {Ni,m}

K
i=1 and

{N̂i,m}
K+1
i=1 are related through

Ni,m = αiN̂i,m + (1 − αi+1)N̂i+1,m, i = 1, . . . ,K, (7)

where, being ℓ the index of the element of s such that sℓ ⩽ x j < min(sℓ+1, b), the coefficients αi are such that

αi


= 1, i = 1, . . . , ℓ − d j,

∈ [0, 1] , i = ℓ − d j + 1, . . . , ℓ − d j + k j,

= 0, i = ℓ − d j + k j + 1, . . . ,K + 1.

(8)

2From now, due to notation requirements arising in the following sections, we replace the notation N0 used in our previous papers by N0.

5



Moreover, the coefficients αi, i = ℓ − d j + 1, . . . , ℓ − d j + k j, can be computed from the MDB-splines {N̂i,m}
K+1
i=1 by the

relation

αi = 1 + αi−1
Dk j
− N̂i−1,m|x j − Dk j

+ N̂i−1,m|x j

Dk j
− N̂i,m|x j − Dk j

+ N̂i,m|x j

. (9)

Remark 1. On account of Proposition 1, a step of reverse knot insertion between two spaces S and Ŝ can be repre-
sented in matrix form as

N = A N̂,

where the vectors N B (N1, . . . ,NK)T and N̂ B (N̂1, . . . , N̂K+1)T contain the MDB-spline bases functions of the two
spaces, respectively, and A is a bidiagonal matrix of size K × (K + 1) of the form

A =



1 0
. . . 0

1 1 − αn,k
ℓ−d j+1

αn,k
ℓ−d j+1 1 − αn,k

ℓ−d j+2

αn,k
ℓ−d j+2

. . . 1 − αn,k
ℓ−d j+k j

αn,k
ℓ−d j+k j

1

0
. . .

0 1



. (10)

Remark 2. Knot insertion is a well-established tool for conventional splines and was generalized to multi-degree
splines in [17]. Classically, using knot insertion we pass from the representation in a space S to that in a space Ŝ in
which the continuity at a breakpoint is decreased. The word reverse refers to the fact that we go from space Ŝ to S by
increasing the continuity at a breakpoint. Moreover, under the assumptions of Proposition 1, classical knot insertion
would mean to compute the coefficients (8) knowing the MDB-spline bases of both spaces S and Ŝ. Conversely, in
reverse knot insertion the coefficients (9) only depend on the basis {N̂i,m} of Ŝ and can hence be used to compute the
basis {Ni,m} of S.

To derive the matrix representation (6), take a sequence of MD-spline spaces, all defined on [a, b], sharing same
breakpoint sequence X and degree vector d, such that

S ≡ Sg ⊂ · · · ⊂ S1 ⊂ S0. (11)

Furthermore suppose that each space Sr, r = 1, . . . , g, is obtained from Sr−1 increasing by one the continuity at a
breakpoint in such a way that Kr B dim(Sr) = dim(Sr−1) − 1. Relation (7) to pass from Sr−1 to Sr can be written in
the matrix form Nr = Ar Nr−1, with N0 ≡ N0, where Ar is a bidiagonal matrix of size Kr × (Kr + 1) having on each
row the coefficients αr

i and (1 − αr
i+1) relating the bases Nr and Nr−1 as in (10). Iterating the procedure for as many

multiplicities and knots as needed, one obtains the matrix M in (6), which is the product of all matrices Ar, that is
M = Ag · · ·A1.

Being based on repeated reverse knot insertions, the above procedure for the construction of the representation
matrix in (6) is called RKI Algorithm [25]. In order for the RKI Algorithm – that is the matrix representation it
produces – to be an efficient tool for evaluating the target MDB-spline basis N, the vector N0 should be known (or
more precisely computable through established methods). This is the reason why we have chosen it to contain the
basis functions of the C0 MD-spline space associated with S. The described procedure, however, simply requires that
S can be generated from S0 by repeated reverse knot insertions. It is therefore possible, and sometimes desired, to
choose S0 in a different way, see Remark 3 for further details.

It shall be noted that, according to equation (9), the described method requires calculating the derivatives of
MDB-spline basis functions at each breakpoint x j to be processed, up to the target continuity k j. As pointed out in

6



[25], B-spline derivatives, and MDB-spline derivatives likewise, may become very large numbers when the order of
differentitation increases, causing potential numerical issues for very large degrees and/or nonuniform partitions. To
circumvent this criticality, in that paper it is proposed to work with a compensated version of the algorithm [27].
Although this strategy is able to improve the accuracy of the results, the presence of high order derivatives remains an
intrinsic feature of the existing algorithms which would be far preferable to avoid.

Remark 3. Our assumption that S0 be a C0 MD-spline space is merely dictated by simplicity and conciseness of
presentation. However, with a view to choosing S0 in such a way that its basis can be evaluated by known methods,
one can as well consider alternative initial spaces, since the general algorithm proposed in [25] is based on the sole
requirement that S0 be defined on [a, b], have same breakpoint sequence as S and S ⊂ S0. In particular we may want
to take S0 to be a piecewise space and its basis vector N0 to be the collection of the Bernstein bases relative to the
breakpoint intervals, or alternatively a piecewise conventional B-spline basis on a sequence of abutting intervals with
equal degree (in the latter situation, the generated matrix M is the H-operator proposed in [5]). The ideas presented
in this work can easily be adapted to both of these situations.

Lastly, we may want S0 to be a conventional spline space of degree m B maxi{di}, whose basis N0 will be a
conventional degree-m B-spline basis. This situation cannot be addressed by reverse knot insertions, but by a similar
approach, as well described in [25], based on reverse degree elevation and will briefly be discussed in section 6.

3. The novel RKI algorithm

In the following we present the general ideas our new algorithm is based on. To formalize our method we will
need to use spaces spanned by derivatives of MD-splines, that are defined as follows.

Definition 3 (Spline space of derivatives). We denote by DrS B {Dr
+ f | f ∈ S} the function space whose elements

are rth right derivatives of functions in a multi-degree spline space S. There follows that DrS has dimension K − r,
where K is the dimension of S.

Throughout the paper, for brevity, we simply write DS in place of D1S. We will be concerned with spaces
DrS, with r ranging from 0 up to maxi{di}, the latter corresponding to the number of levels in the recurrence (3).
Therefore DrS may contain functions discontinuous at breakpoints (the right derivative in the definition accounting
for possible discontinuities) and, rather than a “single” MD-spline space, it should be regarded as “piecewise” space,
whose functions are MD-splines defined on abutting intervals and possibly discontinuous at breakpoints. In particular,
we associate with DrS the vectors of degrees (d0 − r, . . . , dq − r) and continuities (k1 − r, . . . , kq − r), which may be
negative integers, in such a way that K(r) B dim(DrS) = K− r = d0− r+1+

∑q
i=1(di− ki), with the convention that the

restriction of DrS to [xi, xi+1] be the zero function in case di − r < 0. We can as well define a piecewise MDB-spline
basis N(r)

1 , . . . ,N
(r)
K−r spanning DrS, which will be relative to the left and right extended partitions s(r) and t(r) obtained

by replacing di and ki with di − r and ki − r in (1), (2). These correspond to the functions generated by the the integral
recurrence relation (3) for n = m − r and defined on the partitions s and t relative to S in such a way that:

N(r)
1 (x) = Nr+1,m−r(x), . . . ,N(r)

K−r(x) = NK,m−r(x), ∀x ∈ [a, b]. (12)

Note that the functions in (12) may not be linearly independent, since some of them may be zero. Furthermore, we
can generalize to MD-spline spaces the classical notion of Greville abscissæ, that are the coefficients of the expansion
of the function f (x) = x in the B-spline basis of a conventional spline space containing linear functions. For a
multi-degree spline space DrS the Greville abscissæ relative to the basis {N(r)

i,m} are defined to be the coefficients ξ(r)
i ,

i = 1, . . . ,K(r), such that
∑K(r)

i=1 ξ
(r)
i N(r)

i,m(x) = x, ∀x ∈ [x j, x j+1], j = 0, . . . , q, such that d j ⩾ 1.
The following proposition relates the Greville abscissæ to the MDB-spline basis of the derivative space DS. A

similar result was proved in [28, Theorem 15] for Chebyshevian splines with all section spaces of the same dimension.

Proposition 2 (Computation of Greville abscissae). Let S be a K-dimensional MD-spline space. Then the Greville
abscissaæ ξ1, . . . , ξK with respect to the MDB-spline basis N1 . . . ,NK of S are given by:

ξi = a +
i−1∑
j=1

∫ b

a
N(1)

j (x)dx, i = 1, . . . ,K, (13)

7



where N(1)
j , j = 1, . . . ,K − 1, is the MDB-spline basis of the derivative space DS.

Proof. The properties of the MDB-spline basis {N j} entail that ξ1 = a and ξK = b. Moreover, from the partition of
unity property and Abel’s lemma we obtain:

K∑
i=1

ξiNi,m(x) = ξ1
K∑

i=1

Ni,m(x) +
K−1∑
i=1

(ξi+1 − ξi)
K∑
ℓ=i+1

Nℓ,m(x)

= a +
K−1∑
i=1

(ξi+1 − ξi)
K∑
ℓ=i+1

Nℓ,m(x).

Using relations (4) with n = m − 1, (12) with r = 1 and (13):

δ−1
i+1,m−1 =

∫ +∞

−∞

Ni+1,m−1(u)du =
∫ b

a
N(1)

i (u)du = ξi+1 − ξi,

By the recurrence definition (3):

K∑
ℓ=i+1

Nℓ,m(x) =
∫ x

−∞

δi+1,m−1Ni+1,m−1(u)du = δi+1,m−1

∫ x

a
N(1)

i (u)du.

From the partition of unity property of the functions N(1)
i (x), i = 1, . . . ,K − 1 , we thus obtain

K∑
i=1

ξiNi,m(x) = a +
K−1∑
i=1

∫ x

a
N(1)

i (u)du = a +
∫ x

a
du = x,

which implies that ξ1, . . . , ξK are the Greville abscissæ with respect to the basis N1 . . . ,NK and concludes the proof.
Note that (13) guarantees that the Greville abscissæ form an increasing sequence.

The following result provides an alternative way to calculate the coefficients of reverse knot insertion, which,
unlike previous methods [25, Proposition 6], does not involve differentiating the MDB-spline basis.

Proposition 3 (Reverse knot insertion by Greville abscissæ). Under the same setting and assumptions of Proposition
1, denoted by ξi and ξ̂i the Greville abscissae of S and Ŝ, respectively, the coefficients αi in (8) can be computed as
follows:

αi =
ξ̂i − ξi−1

ξi − ξi−1
, i = ℓ − d j + 1, . . . , ℓ − d j + k j. (14)

Proof. Let f be a function in S ⊂ Ŝ with expansions in the MDB-spline bases of S and Ŝ:

f (x) =
K∑

i=1

ciNi,m(x) =
K+1∑
i=1

ĉiN̂i,m(x).

According to (8) the above coefficients ci and ĉi satisfy the relationship:

ĉi =


ci, i ⩽ ℓ − d j,

αi ci + (1 − αi) ci−1, ℓ − d j + 1 ⩽ i ⩽ ℓ − d j + k j,

ci−1, i ⩾ ℓ − d j + k j + 1,
(15)

with sℓ ⩽ x j < min(sℓ+1, b). By taking f (x) = x, equation (14) is hence obtained from the middle line of (15).

By virtue of the above results, the reverse knot insertion step leading from Ŝ to S can be outlined by a triangular
scheme of the form

8



(16)DS

Ŝ S

G

RKI

The “G” arrow and the “RKI” arrow are both needed to evaluate S. More precisely, to evaluate S we need information
about two spaces. One is the space Ŝ, obtained from S by inserting a knot, the other is the space DS, spanned by
the derivatives of functions in S. Concerning DS we need the MDB-spline basis in order to compute the Greville
abscissæ of S (Proposition 2), whereas about Ŝwe need the Greville abscissæ in order to compute the RKI coefficients
(Proposition 3). Hence we need to put ourselves in a position where the necessary quantities relative to Ŝ and DS
are known. To this end, the main idea is to concatenate several blocks of type (16) giving rise to a triangular scheme
such as the one in (18), as will be detailed in the following. This triangular scheme will be constructed in such a
way that the information at the starting level (the first column of the scheme) is known (or easy to calculate). The
remaining elements in the triangle can be derived by recursive application of the basis block (16), moving from left to
right and progressively generating the information relative to each column, up to reaching the vertex of the triangle,
which finally contains the information relative to the target space.

Remark 4. As already noted, the reverse knot-insertion formula (9) entails computing higher order derivatives of the
B-spline basis functions. On the contrary, the above triangular scheme does not involve the calculation of derivatives
of any order. In fact, one might be misled by the fact that the B-spline basis of DS appears in the formula for the
Greville abscissa, however, this basis can be evaluated directly (i.e. without involving any differentiation), as we shall
see shortly.

Definition 4 (Cr join of two multi-degree spline spaces). Let SL and SR be MD-spline spaces on adjacent intervals,
[a, b] and [b, c] (a < b < c) respectively. We define the Cr join of SL and SR to be the MD-spline space on [a, c]
whose restriction to [a, b] and [b, c] coincides with SL and SR, respectively, and whose elements are Cr continuous at
b.

It shall be noted that, according to the definition above, the C0 join of two conventional spline spaces is a C0

MD-spline space, whereas the C0 join of two MD-spline spaces is not, in general, a C0 MD-spline space.
One can join with Cr continuity two multi-degree spline spaces SL and SR defined on abutting intervals [a, b]

and [b, c] by performing iterated reverse knot insertions at point b, each of which increases the continuity at the
join. More precisely, denoted by S and S0, respectively, the Cr and C0 join of the two spaces SL and SR, we shall
start from S0 and, by RKI, generate the C1 join of SL and SR, which we denote by S1. We shall then iterate the
procedure generating a sequence of nested spaces Sk as in (11), where Sk is the Ck join of SL and SR, Sk+1 ⊂ Sk and
dim(Sk+1) = dim(Sk)− 1, k = 1, . . . , r− 1. In this way, the last space Sr will be the target space S. These joins will be
performed by concatenating several basic blocks of type (16). To this end, we will need to use the MDB-spline bases
N0L and N0R of the C0 MD-spline spaces associated with SL and SR and the representation matrices ML and MR such
that

NL = MLN0L and NR = MRN0R,

where NL and NR are the MDB-spline bases of SL and SR, respectively. Moreover, on account of the previous
discussion, we will as well need such information for all the derivative spaces Dr−nSL and Dr−nSR, for n = 0, . . . , r,
as detailed in the following.

Being KL the dimension ofSL, GL B (ξL,1, . . . , ξL,KL ) the vector of its Greville abscissæ and NL B (NL,1, . . . ,NL,KL )
the vector of the MDB-spline basis functions, with a similar notation for SR, the C0 join of SL and SR, which we in-
dicate by [SL,SR], is an MD-spline space of dimension KL + KR − 1 having MDB-spline basis

N = [NL,NR] B
(
NL,1, . . . ,NL,KL−1,NL,KL + NR,1,NR,2, . . . ,NR,KR

)
,

and Greville abscissæ
G = [GL,GR] B

(
ξL,1, . . . , ξL,KL ≡ ξR,1, ξR,2, . . . , ξR,KR

)
.

9



Furthermore, the matrix representation of N relative to the basis N0 = [N0L,N0R] of the associated C0 MDB-spline
space is:

N = [ML,MR]N0, with [ML,MR] B
ML

∗

MR




(17)

where the above entry ∗ has the same value in M, ML and MR. Note that, if SL is a conventional spline space, then
ML is trivially known, being the identity matrix of size KL, and similarly for MR.

We can regard the operation [ , ] as the C0 join of the representation matrices, of the vectors of MDB-spline basis
functions or of those of Greville abscissæ. Note that this join operation acts differently depending on the entity to
which it is applied.

To describe the process of concatenating several blocks of type (16) we will need to indicate the aforementioned
spaces Sk, by a double index, that is Sk C S

r,k, k = 1, . . . , r. Suppose for example that SL and SR are to be joined
with C3 continuity at b to generate space S. Iterated application of (16) will lead to the following triangular scheme
of “size” 4:

(18)

[D3SL,D3SR] = S0,0 B DS1,1

[D2SL,D2SR] = S1,0 B DS2,1 S1,1 B DS2,2

[DSL,DSR] = S2,0 B DS3,1 S2,1 B DS3,2 S2,2 B DS3,3

S0 = [SL,SR] =S3,0 S3,1 S3,2 S3,3 = S

G

G

RKI

G

G

RKI

G

RKI

G

RKI RKI RKI

More generally, the Cr join of SL and SR will involve a similar triangular scheme having size r + 1, where the
element in row n and column k is Sn,k, for n = 0, . . . , r, k = 0, . . . , n. To implement the scheme all we need to know are
the Greville abscissae and MDB-spline bases of all spaces S n,0, n = 0, . . . , r (that is all spaces in the leftmost column),
since the information on all other columns and rows of the triangle can be derived by progressive application of the
basic block (16). Recalling that Sn,0 is the C0 join of Dr−nSL and Dr−nSR, these Greville abscissæ and MDB-spline
bases are easily obtained from the described C0 join operation [ , ].

We shall now use the above triangular scheme to compute the matrix representation (6) where N is the MDB-spline
basis of S and N0 the MDB-spline basis of the associated C0 MD-spline space. To this aim, observe that all spaces
Sn,0, . . . ,Sn,n on a row of the triangle are associated with the same C0 MD-spline space according to Definition 2,
which basis will be indicated by N0n. We may then rewrite the triangular scheme replacing Sn,k with its MDB-spline
basis Nn,k and Greville abscissæ Gn,k and defining Mn,k to be the matrix such that Nn,k = Mn,kN0n. In particular,
matrices Mn,0 are obtained by joining the representation matrices of Dr−nSL and Dr−nSR as in (17), whereas, for each
k > 0, matrix Mn,k is obtained from the preceding one by the relation Mn,k = An,kMn,k−1, where An,k is the bidiagonal
matrix whose nontrivial entries are the RKI coefficients to pass from Sn,k−1 to Sn,k (see (10)).

Exploiting the matrix representation it is also easy to compute the vectors INn,k containing integrals of functions
in Nn,k that are needed for calculating the Greville abscissæ. In particular, let Nn

L and Nn
R be the vectors containing the

MDB-spline basis functions in Dr−nSL and Dr−nSR, respectively, and INn
L and INn

R be the vectors of their integrals.
Then the vectors INn,0, corresponding to spaces Sn,0 in the first column of the triangular scheme, contain the integrals
of functions in [Nn

L,N
n
R], n = 0, . . . , r, and we will indicate this by INn,0 = [INn

L, INn
R]. For all spaces appearing in

the subsequent columns, instead, the integrals of basis functions are derived from the relation Nn,k = Mn,kN0n, which
yields INn,k = Mn,kIN0n.

The described procedure for computing the Cr join of spaces SL and SR is outlined in Algorithm 1. The algorithm
takes as input the Greville absissæ, the integrals and the representation matrices of the MDB-spline bases of the two

10



spaces to be joined and of their derivative spaces up to suitable order. On account of their ease of computation, the
integrals of the C0 MDB-spline bases N0n (Algorithm 1, line 2) are evaluated at runtime using (5), but they could as
well be provided as input. The algorithm returns as output the representation matrix Mr,r, relative to the C0 MD-spline
space associated with the join space S. Moreover, in anticipation of having to further join the generated MD-spline
space, it computes and returns all the matrices Mn,n, n = 0, . . . , r − 1, related to the derivative spaces Sn,n = Dr−nS.
Note that the overall procedure does never use the MDB-spline bases of the initial spaces Sn,0, for n = 0, . . . , r − 1,
but just the integrals INn

L, INn
R and IN0n.

Algorithm 1: Matrix representation of the Cr join of two MD-spline spaces SL and SR

Data: Gn
L, IN0n

L, Mn
L, Gn

R, IN0n
R, Mn

R, n = 0, . . . , r.
Result: Mn,n, n = 0, . . . , r.

1 for n← 0 to r do
2 IN0n

← [IN0n
L, IN0n

R] ;
3 Mn,0 ← [Mn

L,M
n
R] ;

4 Gn,0 ← [Gn
L,G

n
R] ;

5 end
6 for n← 1 to r do
7 for k ← 1 to n do
8 INn−1,k−1 ← Mn−1,k−1 · IN0n−1;
9 Compute Gn,k by INn−1,k−1 using (13) ;

10 Using (14) compute the RKI coefficients αn,k
i from Gn,k and Gn,k−1 and define An,k (see (10));

11 Mn,k ← An,kMn,k−1;
12 end
13 end

At this point, by repeatedly joining MD-spline spaces on abutting intervals, we can generate the matrix represen-
tation of an MDB-spline basis vector N, spanning an arbitrary space S ≡ S(Pd,X,K), with respect to the basis vector
N0 of the associated C0 MD-spline space S0 ≡ S(Pd,X,K0). Essentially what we need to do is “break” the target
space into a sequence of conventional spline spaces and join these spaces in pairs with the required continuities.

In particular, with reference to Definition 2, let J be the vector containing the indices, in ascending order, of the
breakpoints separating intervals with different degrees, including the first and last breakpoint, that is

J = ( j0, j1, . . . , jp+1), with 0 = j0 < j1 < · · · < jp+1 = q.

Since all breakpoint intervals contained in each [x jh , x jh+1 ] have same degree, that is d jh = · · · = d jh+1−1, we can
break the target space S into a sequence of conventional spline spaces, each one defined on [x jh , x jh+1 ], and then
join these spaces two by two. For example, joining the two sections of S relative to [x jh−1 , x jh ] and [x jh , x jh+1 ] with
continuity k jh at x jh will produce a space on the whole interval [x jh−1 , x jh+1 ], which is the restriction of the target space
S to that interval. This join will generate the representation matrix of the MDB-spline basis of S relative to the
MDB-spline basis of S0 restricted to [x jh−1 , x jh+1 ]. The resulting space can in turn be connected with the neighboring
sections of S at x jh−1 and/or x jh+1 with continuities k jh−1 and k jh+1 , respectively. Not that these joins must be performed
in a specific order, namely from higher continuity to lower continuity, in such a way to guarantee that, before each
repetition of Algorithm 1, all the necessary information (representation matrices and integrals of the MDB-splines)
relative to the derivative spaces (up to the required order of differentiation) to the right and left of the join have been
generated as the output of the previous joins.

In this paper, Algorithm 1 mostly serves as a step-up for the derivation of the actual algorithm (see Algorithm
2) which will be presented in the next section. Algorithm 2, in fact, is conceptually similar to Algorithm 1 and will
be designed starting from it. In particular, it represents a reformulation which, although less intuitive, allows for
improving the method from a computational point of view.

11



4. Stable implementation of the RKI Algorithm

In this section we will introduce some observations that will lead us to reformulate Algorithm 1 in an alternative
way, which, although less intuitive, is numerically stable and more efficient from the point of view of the calculations
to be performed.

To this end, we start by observing that (14) may raise some concern about the possibile occurrence of cancel-
lation errors, due to the differences at the numerators and denominators. The following result shows that the RKI
coefficients can indeed be determined without resorting to the differences of Greville abscissæ, thus it overcomes the
aforementioned stability issues. In addition it also improves on the computational cost of the procedure (intended as
the number of operations to be performed) with respect to using (13) and (14).

Proposition 4. The setting and assumptions being the same as in Proposition 3, the RKI coefficients in (14) can be
calculated as follows:

αi = α
(1)
i−1

∫ b
a N̂(1)

i−1(x)dx∫ b
a N(1)

i−1(x)dx
, i = ℓ − d j + 1, . . . , ℓ − d j + k j, (19)

where α(1)
i are the coefficients of reverse knot insertion from DŜ to DS.

Proof. Under the above assumptions, the MDB-spline basis functions of DŜ and DS are such that N̂(1)
j = N(1)

j , for

j = 1, . . . , ℓ(1) − d(1)
j − 1 = 1, . . . , ℓ − d j − 1 (being d(1)

j the degrees in DS and ℓ(1) the index of the largest knot in
s(1) smaller or equal to x j). This observation and relation (7) between the MDB-spline bases of the derivative spaces
yield:

ξ̂i − ξi−1 = a +
i−1∑
j=1

∫ b

a
N̂(1)

j (x)dx − a −
i−2∑
j=1

∫ b

a
N(1)

j (x)dx

=

i−1∑
j=ℓ−d j

∫ b

a
N̂(1)

j (x)dx −
i−2∑

j=ℓ−d j

∫ b

a
N(1)

j (x)dx

=

i−1∑
j=ℓ−d j

∫ b

a
N̂(1)

j (x)dx −
i−2∑

j=ℓ−d j

(
α(1)

j

∫ b

a
N̂(1)

j (x)dx + (1 − α(1)
j+1)

∫ b

a
N̂(1)

j+1(x)dx
)
.

(20)

Hence the numerator of (19) comes from the above identity and the fact that α(1)
ℓ−d j
= 1, whereas the denominator

straightforwardly follows from (13).

Remark 5. Using again relation (7) between the MDB-spline bases of the derivative spaces and (19), we can obtain
the following formula:

1 − αi = (1 − α(1)
i )

∫ b
a N̂(1)

i (x)dx∫ b
a N(1)

i−1(x)dx
. (21)

This result avoids us to actually perform any differences of type 1 − αi or 1 − α(1)
i . In particular, when raising the

continuity from C0 to C1, that is passing from spaces S n
0 in the first column to spaces S n

1 in the second column of the
triangular scheme, the coefficients α(1)

i will all be trivial (that is either zero or one) and thus so will be the differences
1 − α(1)

i . Hence, at each subsequent iteration, the evaluation of the right-hand side of (21) will just involve the
calculation of the ratio of two integrals and the product by the value 1 − α(1)

i inherited from the previous step and
therefore no subtraction will need to be performed.

Remark 6. Relation (19), which elegantly emerges passing through Greville abscissæ, could alternatively be proved
by induction resorting to the integral definition (3). The latter approach was pursued in a less general context in [12]
to determine the coefficients of knot insertion between two MDB-spline bases.

The procedure for the Cr join of two MDB-spline spaces can be revisited on account of the above discussion,
leading to Algorithm 2, where, as in the previous section, we indicate by αn,k

i the RKI coefficients to pass from

12



Algorithm 2: Stable matrix representation of the Cr join of two MD-spline spaces SL and SR.
Data: Mn

L and Mn
R, n = 0, . . . , r; IN0n

L and IN0n
R, n = 0, . . . , r − 1.

Result: Mn
n, n = 0, . . . , r.

1 for n← 0 to r − 1 do
2 INn

L ← Mn
L · IN0n

L;
3 INn

R ← Mn
R · IN0n

R;
4 INn,0 ← [INn

L, INn
R] ;

5 IN0n
← [IN0n

L, IN0n
R] ;

6 Mn,0 ← [Mn
L,M

n
R] ;

7 end
8 Mr,0 ← [Mr

L,M
r
R] ;

9 ibstart ← ℓ1,1 − d1,1
j + 1;

10 for n← 1 to r do
11 ib← ibstart ;
12 INn−1,−1

ib−1 ← last element of INn−1
L ;

13 INn−1,−1
ib ← first element of INn−1

R ;
14 for k ← 1 to n do
15 αn−1,k−1

ib−1 ← 1 ;
16 βn−1,k−1

ib+k−1 ← 1 ;
17 for i← ib to ib + k − 1 do
18 αn,k

i ← α
n−1,k−1
i−1 INn−1,k−2

i−1 /INn−1,k−1
i−1 ;

19 βn,k
i ← β

n−1,k−1
i INn−1,k−2

i /INn−1,k−1
i−1 ; //βn,k

i store 1 − αn,k
i

20 end
21 Mn,k ← An,k ·Mn,k−1, with An,k as in (10) ;
22 if n < r then
23 Compute INn,k ← Mn,k · IN0n;
24 end
25 ib← ib − 1 ;
26 end
27 ibstart ← ibstart + 1 ;
28 end

13



Sn,k−1 to Sn,k and by βn,k
i the differences 1 − αn,k

i . Furthermore, for each row n of the triangular scheme, we need to
identify the index ibstart of the first nontrivial RKI coefficient to be determined. Its initial value (line 9) is derived
from Proposition 1 applied to spaces S1,0 and S1,1, being d1,1

j the degree in the interval to the left of breakpoint x j

(that is, in the algorithm j is the index of the breakpoint where SL and SR are joined and r stands for k j) and being
ℓ1,1 computed with respect to the left extended partition of S1,1. Subsequently, the indices of the first non-zero RKI
coefficients are determined incrementing ibstart while n increases and decrementing it while k increases.

The following example not only illustrates the application of Algorithm 2 on a practical case, but also demonstrates
how to generate the matrix representation of an arbitrary MD-spline space following the genaral outline discussed at
the end of section 3, that is by “breaking” the target space into a sequence of conventional spline spaces and joining
these spaces two by two with the required continuities.

Example 1 (Matrix representation via RKI). Let us consider the target space S(Pd,X,K) defined on [0, 4], with
breakpoints X = {1, 2, 3}, degrees d = (2, 2, 4, 3) and continuities K = (1, 2, 3). The associated C0 MD-spline space
will be likewise defined on [0, 4], have same breakpoints X and degrees d and will have continuities K0 = (1, 0, 0).

Space S can be seen as the join of three spaces, and more precisely of a degree-2 conventional spline space SA on
[0, 2], a degree-4 polynomial space SB on [2, 3] and a degree-3 polynomial space SC on [3, 4]. We shall hence apply
Algorithm 2 twice, to generate a C2 join at point 2 and a C3 join at point 3. As we will see, these joins should be
processed starting from the one of higher continuity, since this guarantees that all the information necessary to perform
a join is either trivially known or has been computed during the previous ones. Therefore we will first calculate the
C3 join of spaces SB and SC at 3, and then calculate the C2 join of the resulting space with SA at 2.

With reference to Algorithm 2, in which SL and SR will be the spaces SB and SC of this example, the first join is
described by the triangular scheme (18), which we rewrite below indicating the degrees and continuities in each space
S n,k in the form (degree continuitydegree), along with the nontrivial RKI coefficients necessary to pass from one space
to another:

S0,0 : (1 00)

S1,0 : (2 01) S1,1 : (2 11)

S2,0 : (3 02) S2,1 : (3 12) S2,2 : (3 22)

S3,0 : (4 03) S3,1 : (4 13) S3,2 : (4 23) S3,3 : (4 33)

α1,1
3

α2,1
4 α2,2

i , i=3,4

α3,1
5 α3,2

i , i=4,5 α3,3
i , i=3,4,5

Being the C0 join of two polynomial spaces, each Sn,0, n = 0, . . . , 3, is a C0 MD-spline space having dimension
2(n + 1). Hence Mn

L and Mn
R are identity matrices and INn

L = IN0n
L, INn

R = IN0n
R. For n = 0, . . . , 2, the integral vectors

IN0n
L, resp. IN0n

R, can be calculated by observing that the basis functions in Dr−nSL, resp. Dr−nSR, are conventional
B-splines of degree n + 1, resp. n. Hence, according to (5), IN0n

L has n + 2 entries equal to 1/(n + 2) and IN0n
R has

n + 1 entries equal to 1/(n + 1).
The vectors INn,0, IN0n and matrices Mn,0 are obtained by the previously discussed C0 join operation [ , ]; in

particular in this example

INn,0 = IN0n =

(
1

n + 2
, . . . ,

1
n + 2

+
1

n + 1
, . . . ,

1
n + 1

)
.

Triggering Algorithm 2 with this information, we obtain for n = 1, k = 1:

α1,1
3 = α

0,0
2

IN0,−1
2

IN0,0
2

=
1
3
, and β1,1

3 = β
0,0
3

IN0,−1
3

IN0,0
2

=
2
3
,

14



from which

A1,1 =


1 0 0 0
0 1 2

3 0
0 0 1

3 1

 , M1,1 = A1,1, IN1,1 = M1,1IN01 =

(
1
3
,

8
9
,

7
9

)
.

For n = 2, k = 1, we obtain:

α2,1
4 = α

1,0
3

IN1,−1
3

IN1,0
3

=
2
5
, and β2,1

4 = β
1,0
4

IN1,−1
4

IN1,0
3

=
3
5
,

from which

A2,1 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 3

5 0 0
0 0 0 2

5 1 0
0 0 0 0 0 1


, M2,1 = A2,1,

and

IN2,1 = M2,1IN02 =

(
1
4
,

1
4
,

3
5
,

17
30
,

1
3

)
.

We shall then proceed to n = 2, k = 2, obtaining:

α2,2
3 = α

1,1
2

IN1,0
2

IN1,1
2

=
3
8
, β2,2

3 = β
1,1
3

IN1,0
3

IN1,1
2

=
5
8
,

α2,2
4 = α

1,1
3

IN1,0
3

IN1,1
3

=
5

14
, β2,2

4 = β
1,1
4

IN1,0
4

IN1,1
3

=
9
14
,

which yields

A2,2 =


1 0 0 0 0
0 1 5

8 0 0
0 0 3

8
9

14 0
0 0 0 5

14 1

 , M2,2 = A2,2M2,1 =


1 0 0 0 0 0
0 1 5

8
3
8 0 0

0 0 3
8

27
56

9
14 0

0 0 0 1
7

5
14 1


and

IN2,2 = (1/4, 5/8, 33/56, 15/28).

This completes the second row of the triangular scheme. Proceeding in this way for n = 3 and k = 1, 2, 3, eventually
yields the matrix

M3,3 = A3,3M3,2 =



1 0 0 0 0 0 0 0
0 1 3

5
7
20

1
5 0 0 0

0 0 2
5

27
55

24
55

4
11 0 0

0 0 0 7
44

49
165

238
495

28
45 0

0 0 0 0 1
15

7
45

17
45 1


.

Recall that Algorithm 2 returns as output the representation matrices for all derivative spaces up to differentiation
order three of the C3 join of SB and SC . We shall use this information to apply the algorithm again, this time for
joining with C2 continuity the conventional spline space SA on [0, 2] and the MD-spline space on [2, 4] obtained as
output of the previous join. As for this second round, the triangular scheme will be:

15



S0,0 : (0 −10 02 11)

S1,0 : (1 01 03 22) S1,1 : (1 01 13 22)

S2,0 : (2 12 04 33) S2,1 : (2 12 14 33) S2,2 : (2 12 24 33)

α1,1
3

α2,1
4 α2,2

i , i=3,4

Denoted as usual by SL and SR the two spaces to be joined, the corresponding representation matrix Mn
L will be the

identity of size n + 2, whereas Mn
R = Mn+1,n+1, being Mn+1,n+1, n = 0, 1, 2, the output of the previous C3 join. The

integrals of the C0 MDB-spline functions required by Algorithm 2 can be evaluated by (5) for the left-hand side spaces
Sn

L, n = 0, 1, which gives:

IN00
L = (1, 1) and IN01

L =

(
1
2
, 1,

1
2

)
.

For spaces Sn
R, n = 0, 1, instead, the integrals may be stored as output of the first join or efficiently calculated at

runtime by (5), obtaining:

IN00
R =

(
1
3
,

1
3
,

5
6
,

1
2

)
and IN01

R =

(
1
4
,

1
4
,

1
4
,

7
12
,

1
3
,

1
3

)
,

hence, from lines 2 and 3 of the algorithm, we will obtain INn
L = IN0n

L, n = 0, 1, and

IN0
R =

(
1
3
,

8
9
,

7
9

)
and IN1

R =

(
1
4
,

5
8
,

33
56
,

15
28

)
.

Finally, vectors INn,0 and IN0n, n = 0, 1, (lines 4 and 5) and matrices Mn,0, n = 0, 1, 2, (line 6) are the C0 join of the
above quantities. The output of this second and last join is a matrix M2,2 such that

N = M2,2N02.

The above relation is the matrix representation of the MDB-spline basis of the target space S relative to the basis
N0 ≡ N02 of the associated C0 MD-spline space S0 having degrees and continuities (2 12 04 03).

As previously mentioned, note that processing the joins from higher to lower continuity makes so that, each time,
all the information to address the next join is available or has been computed during the previous steps.

With the previous example in mind, we can further discuss some details of our implementation. In order to
save on memory allocation, only one matrix Mn,k should be stored for each row of the triangular scheme, that is
each n = 0, . . . , r, since such matrices can be overwritten when moving from one column to the other. In addition,
it is unnecessary to create matrices An,k, which we merely introduced for ease of presentation, as the coefficients
αn,k

i and βn,k
i can be stored in temporary one-dimensional arrays, to be destroyed after been used for the coefficient

computations at lines 15 and 16 and the RKI steps at lines 18 and 19. The integrals INn,k can as well be stored in
temporary one-dimensional arrays. Moreover, only one array can be used to store all vectors IN0n, n = 0, . . . , r − 1,
since each of these can be overwritten at the end of the corresponding row of the triangular scheme.

5. Stability analysis

Unlike how it usually happens, namely that we propose an algorithm and then we analyze its stability, we designed
an algorithm that would possess all the characteristics to be numerically stable. This feature becomes clear if we
break Algorithm 2 into a sequence of basic steps, each involving numerically stable operations only. The results of
this analysis will be confirmed and highlighted by the numerical experimentation presented in subsection 5.1.

Our discussion may benefit from some preliminary considerations. First, it is easy to count how many RKI
coefficients will be calculated over the course of the algorithm. In particular, the “for” loops at lines 14 and 17 show

16



that we will have to calculate one coefficient αn,1
i for n = 1, . . . r, two coefficients αn,2

i for n = 2, . . . , r and so on up
to r coefficients αn,r

i for n = r. Also note that, for k = 1, at lines 18 and 19 reference is made to elements of vectors
INn−1,−1, never formally initialized, but whose values are trivially known from INn

L and INn
R (lines 12 and 13). Again,

for each n and k, the first αn−1,k−1
i and the last βn−1,k−1

i considered are trivially equal to one (lines 15 and 16). Finally, as
recalled earlier, storing the quantities βn−1,k−1

i allows us to avoid the evaluation of the quantities 1 − αn,k
i and therefore

the whole algorithm does not contain any floating point subtraction.
Bearing in mind these observations, we can break the algorithm in the following basic steps.

A) Calculation of the input vectors IN0n
R and IN0n

L. Since functions in N0n
R and N0n

L are C0 MDB-splines, the
evaluation of their integrals involves computing and adding the integrals of conventional B-splines according to
(5), all of which are positive quantities. Likewise, the C0 join of the integral vectors at lines 4 and 5 involves
summations between positive quantities.

B) Products between matrices Mn,k (as well as Mn
L and Mn

R), all of which entries belong to [0, 1], and positive vectors
IN0n (as well as IN0n

L and IN0n
R) (lines 2,3 and 23). Due to the fact that only some elements of the vectors at

the right-hand side of these assignments are used, these products are reduced to dot products between single rows
of matrices Mn,k and vectors IN0n. Note that each iteration involves as many such dot products as the integrals
at lines 18 and 19, that is 3 dot products at most (since some of those integrals are used twice, so they could be
stored and reused).

C) Evaluation of the right-hand sides of the assignments at lines 18 and 19. This amounts to calculating first the
product, which produces a value in [0, 1], and then the ratio, obtaining a result in [0, 1] as can be seen from the
fact that Nn−1,k−1

i−1 = αn−1,k−1
i−1 Nn−1,k−2

i−1 + (1 − αn−1,k−1
i )Nn−1,k−2

i .

D) Product at the right-hand side of the assignment at line 21. Rather than a matrix product, it is convenient to
perform this calculation as a repeated combination of two rows of Mn,k−1 (all of which entries are in [0, 1]), of the
form αn,k

j mn,k−1
j−1 + β

n,k
j+1mn,k−1

j , where αn,k
j and βn,k

j+1 = (1 − αn,k
j+1) are entries on the bidiagonal of An,k and mn,k−1

j is
the jth row of Mn,k−1.

The above analysis emphasizes that the proposed algorithm consists of summations, ratios and products between
positive quantities (most of which belonging to [0, 1]) and dot products between vectors with positive entries, all of
which are numerically stable arithmetic operations (see e.g. [27]). It also allows us to compute how many operations
will be performed for the Cr join of two MD-spline spaces, that is:

• r operations of type A);

• (r−1)r
2 operations of type B), or 3(2(r − 1) + 3(r − 2) + . . . (r − 1)2 + r) dot products;

• r + 2(r − 1) + 3(r − 2) + . . . (r − 1) 2 + r operations of type C);

• r(r+1)
2 operations of type D) or 2r + 3(r − 1) + 4(r − 2) + . . . + 2r + r + 1 combinations of two rows of Mn,k−1, that

is as many as the overall number of nontrivial RKI coefficients αn,k
i plus one;

and thus to estimate the computational complexity of the algorithm, which amounts to O(r2) operations.

5.1. Experimental results

Besides supporting the conclusions of the above stability analysis, the following numerical experiments provide
a comparison between the new proposal and previous ones. For the sake of brevity, we will refer to the present
method and to those in [25] and [23] as RKI/Greville, RKI/Derivative and H-Operator, respectively. Recall that
both the RKI/Derivative and H-Operator algorithms make use of derivatives (of order up to the target continuity) of
MDB-splines and thus suffer in a similar way from the fact that those quantities may be very large numbers.

Our analysis is based on calculating and comparing the algorithmic errors on the evaluation of MDB-spline basis
functions and/or on the representation matrix. To this end, the “exact” values are obtained by symbolic computation,
using MATLAB’s Symbolic Math Toolbox, whereas the numerical results rely on MATLAB’s standard precision

17



(rounding unit U ≈ 10−16). In all the examples, the symbolic implementation of the RKI/Greville algorithm was
able to produce an output within reasonable time, due to the fact that the method performs operations between small
quantities all of which can be stored in rational form. As would be expected, the response times of the symbolic
procedure become impractical for more complex tests.

This section contains three experiments. The first (Example 2) is aimed at evaluating how our analysis approach,
based the algorithmic error, relates to the a posteriori error bound in Cox’s seminal paper on the evaluation of B-
splines [3]. Like the referenced paper, this example is concerned with conventional B-splines and as a consequence
the representation matrix is the identity matrix. In the successive two experiments (Examples 3 and 4) we compare the
RKI/Greville Algorithm with previous proposals on a variety of test spaces featured by both uniform and nonuniform
distributions of breakpoints as well as largely inhomogeneous degrees. The parameters of the different test spaces that
will be considered are summarized in Table 1.

[a, b] X d K

Test 1 [−10000, 10000] {−9999, 0, 9999} (5, 3, 3, 5) (3, 2, 3)
Test 2 [−10000, 10000] {−9999, 0, 9999} (3, 5, 5, 3) (3, 4, 3)
Test 3 [1, 1024] {2 j}, j = 1, . . . , 9 (9, 9, 10, 10, 9, 9, 10, 10, 9, 9) (8, 9, 9, 9, 8, 9, 9, 9, 8)
Test 4 [−1024, 1] {−210− j}, j = 1, . . . , 9 (9, 9, 10, 10, 9, 9, 10, 10, 9, 9) (8, 9, 9, 9, 8, 9, 9, 9, 8)
Test 5 [0, 22] { j}, j = 1, . . . , 21 di = 19, i = 10, . . . , 11; ki = 18, i = 11, . . . , 12;

di = 20, i = 5, . . . , 9, 12, . . . , 16; ki = 19 i = 6, . . . , 10, 13, . . . , 17;
di = 21, i = 0, . . . , 4, 17, . . . , 21 ki = 20, i = 1, . . . , 5, 18, . . . , 21;

Test 6 [−10000, 10000] {−9999, 0, 9999} (21, 19, 19, 21) (15, 10, 15)

Table 1: Test spaces for Examples 3 and 4.

Example 2 (A comparison with conventional B-splines). This experiment replicates [3, Example 2], which is the
most challenging test in the referenced paper. The setting is a conventional spline space of degree 21, defined in the
interval [0, 22], with equispaced breakpoints x j placed at the integers and C20 continuity at each breakpoint. Note
that choosing both the breakpoints and the evaluation points to be exactly represented in the floating point standard
allows for avoiding roundoff errors in the initial data. Table 2 shows the algorithmic error on the evaluation of the
“central” B-spline N22,21 at the breakpoints x j. For the same experiment, [3, Table 2] reports the values of N22,21 along
with the a posteriori error bounds established in that paper. In particular, the values of N22,21 found by Cox refer
to non-normalized basis functions and are the same as in the second column of Table 2, whereas the values in the
third column of Table 2 are obtained with the recurrence relation for normalized C0 MDB-splines in [25], which is a
simple generalization of the more established scheme in [4]. The values in the two columns, however, only differ by
a normalization constant equal to the width of the support.

A running error analysis was also integrated in our implementation and returned a posteriori error bounds in
accordance with those reported by Cox (considering that we work in double precision with 16 digits, while Cox with
11 digits). It shall be noted, in particular, how the results in the column of absolute algorithmic errors are consistent
with the corresponding error bounds and the corresponding relative errors that will be used to assess the numerical
stability of our proposal.

In the conclusions of [3], on the basis of the a posteriori error bound, it is expected that the maximum relative
error attained with a t-digits mantissa cannot exceed (70)2−t for degree 10 or less, whereas it cannot exceed (700)2−t

for degree 100 or less. It is also observed that the bound on the relative error grows linearly with the degree of a
spline. Our experimentation shows that the actual error is even lower. In fact, for degree 100 or less the relative
algorithmic error for most experiments is about 10−16, with only a few values of the order of 10−15, whereas the bound
estimated by Cox would be of the order of 10−14. We believe that this may be attributable to cancellation of rounding
error, which may cause the final computed answer to be much more accurate than the intermediate quantities. This
phenomenon has been described, e.g., in [27, p.19].

We conclude by mentioning that a similar study of algorithmic errors was carried out on the evaluation of deriva-
tives. Also in this case for splines of degree less than or equal to 50 and order of differentiation up to ten we never
encountered algorithmic errors exceeding ≈ 10−14.

18



x j N22,21(x j) Non-Normalized N22,21(x j) Normalized Error Bound Absolute Alg. Error Relative Alg. Error
1 8.896791392450574e-22 1.957294106339126e-20 3.2378e-34 1.3644e-36 6.9706e-17
2 1.865772813284987e-15 4.104700189226971e-14 6.7901e-28 4.0230e-30 9.8009e-17
3 9.265310806863227e-12 2.038368377509910e-10 3.3719e-24 3.3787e-26 1.6575e-16
4 3.708541354285271e-09 8.158790979427597e-08 1.3497e-21 7.0656e-24 8.6601e-17
5 3.402962627063746e-07 7.486517779540241e-06 1.2384e-19 9.0997e-23 1.2155e-17
6 1.107329203006056e-05 2.436124246613324e-04 4.0299e-18 2.4981e-20 1.0254e-16
7 1.595958078468785e-04 3.511107772631326e-03 5.8082e-17 9.0643e-19 2.5816e-16
8 1.156908330166488e-03 2.545198326366273e-02 4.2103e-16 3.6835e-18 1.4472e-16
9 4.554285942496692e-03 1.001942907349272e-01 1.6574e-15 7.1213e-18 7.1075e-17

10 1.019454972176512e-02 2.242800938788327e-01 3.7101e-15 2.1568e-17 9.6165e-17
11 1.330103123779249e-02 2.926226872314347e-01 4.8407e-15 8.2012e-17 2.8026e-16
12 1.019454972176512e-02 2.242800938788327e-01 3.7101e-15 2.1568e-17 9.6165e-17
13 4.554285942496692e-03 1.001942907349272e-01 1.6574e-15 7.1213e-18 7.1075e-17
14 1.156908330166488e-03 2.545198326366273e-02 4.2103e-16 3.6835e-18 1.4472e-16
15 1.595958078468785e-04 3.511107772631326e-03 5.8082e-17 9.0643e-19 2.5816e-16
16 1.107329203006056e-05 2.436124246613324e-04 4.0299e-18 2.4981e-20 1.0254e-16
17 3.402962627063746e-07 7.486517779540241e-06 1.2384e-19 9.0997e-23 1.2155e-17
18 3.708541354285271e-09 8.158790979427597e-08 1.3497e-21 7.0656e-24 8.6601e-17
19 9.265310806863227e-12 2.038368377509910e-10 3.3719e-24 3.3787e-26 1.6575e-16
20 1.865772813284987e-15 4.104700189226971e-14 6.7901e-28 4.0230e-30 9.8009e-17
21 8.896791392450574e-22 1.957294106339126e-20 3.2378e-34 1.3644e-36 6.9706e-17

Table 2: Numerical experiments reported in Example 2

Example 3 (Algorithmic error on the evaluation of MDB-splines). This experiment illustrates how erroneous the
results of the RKI/Derivative method can be for degrees as low as three and five if the knot spacing is highly nonuni-
form. Such a case is important in practice since it is often of interest to investigate the case of near-coincident knots.
From Table 3 one can observe that at x1 = −9999 and x3 = 9999 the values calculated by RKI/Greville agree for sym-
metry, while this is not the case for the corresponding results obtained by RKI/Derivative. Moreover, the values of the
algorithmic errors show that the accuracy of the RKI/Derivative method is limited to the first 6/7 digits of precision,
as appearing from the value of the central MDB-spline for x2 = 0. Similar results are reported in Table 4, from which
one can again see that the RKI/Derivative method returns strongly asymmetric results despite the expected symmetry
of the evaluated MDB-spline. In both experiments the results obtained by RKI/Greville agree for symmetry and are
extremely accurate, which is consistent with the conclusions of the theoretical analysis.

The experiment reported in Table 5 concerns a space with a less challenging uneven distribution of breakpoints,
but higher degrees. In this case, the RKI/Derivative method appears adequate up to 9 figures only. Analogous results
were also obtained for the spaces “Test 4” , “5” and “6”. Overall, the large errors for the RKI/Derivative algorithm
show that the method is potentially unstable. Conversely the small algorithmic errors of the RKI/Greville method
confirm its stability. The same conclusions are supported by the results illustrated in Example 4, concerned with the
algorithmic errors with respect to the entries of the representation matrices.

Example 4 (Algorithmic error on the representation matrix). In this second type of test, we consider the algorithmic
error on the representation matrix, calculated as

∥M16 digits −Mexact∥1,

where M16 digits is the numerically calculated matrix, whereas Mexact is the one obtained by symbolic computation.
This is both an absolute and a relative error on account of the fact that ∥Mexact∥1 = 1.

The algorithmic error obtained with RKI/Greville is compared with those relative to both RKI/Derivative and
H-operator (the code for the latter is taken from [23].3).

3The H-operator algorithm, as implemented in [23], returns a representation matrix with respect to a sequence conventional B-spline bases

19



RKI/Greville RKI/Derivative
x N5(x) Normalized Relative Alg. Error N5(x) Normalized Relative Alg. Error

-9.999000e+03 4.500275008083014e-09 1.8381e-16 4.500275772672185e-09 1.6990e-07
0.000000e+00 5.000083333610773e-01 0.0000e+00 5.000084045999867e-01 1.4248e-07
9.999000e+03 4.500275008083015e-09 0.0000e+00 4.500275649258610e-09 1.4247e-07

Table 3: Numerical results discussed in Example 3 for space “Test 1” in Table 1.

RKI/Greville RKI/Derivative
x N4(x) Normalized Relative Alg. Error N4(x) Normalized Relative Alg. Error

-9.999000e+03 2.499250262410031e-12 0.0000e+00 2.499214206146373e-12 1.4427e-05
0.000000e+00 3.750749868799358e-01 0.0000e+00 3.750749863390447e-01 1.4421e-09
9.999000e+03 2.499250262410030e-12 1.6161e-16 2.499250262410031e-12 1.6161e-16

Table 4: Numerical results discussed in Example 3 for space “Test 2” in Table 1.
RKI/Greville RKI/Derivative

x N9(x) Normalized Relative Alg. Error N9(x) Normalized Relative Alg. Error
2.000000e+00 2.912087112938504e-13 3.4674e-16 2.912087106308203e-13 2.2768e-09
4.000000e+00 1.275774160308294e-09 1.6209e-16 1.275774157784237e-09 1.9785e-09
8.000000e+00 4.806036147184862e-07 2.2030e-16 4.806036141267946e-07 1.2311e-09
1.600000e+01 5.258129295850228e-05 3.8662e-16 5.258129293072319e-05 5.2831e-10
3.200000e+01 2.147713272383253e-03 8.0771e-16 2.147713271996800e-03 1.7994e-10
6.400000e+01 3.541058939374863e-02 5.8787e-16 3.541058939374988e-02 3.4684e-14
1.280000e+02 2.206016671195212e-01 3.7745e-16 2.206016671340502e-01 6.5860e-11
2.560000e+02 3.592347216925473e-01 0.0000e+00 3.592347217235125e-01 8.6198e-11
5.120000e+02 4.466585515804859e-02 1.5535e-16 4.466585516215183e-02 9.1866e-11

Table 5: Numerical results discussed in Example 3 for space “Test 3” in Table 1.

Table 6 contains the algorithmic errors obtained for all the test spaces in Table 1. In particular, space “Test 5”
is the multi-degree counterpart of the aforementioned experiment [3, Example 2]. “Test 6”, instead, is aimed at
comparing the considered algorithms in case of a very nonuniform partition and high degrees. Finally, Table 7 shows
the algorithmic errors obtained in a test case presented in our previous paper [25]. All the results confirm the adequacy
of the new proposal, by contrast with previous methods, which, in some cases, suffer from serious loss of accuracy.

6. Matrix representation in terms of the conventional B-spline basis of maximum degree

For a given target space S(Pd,X,K), another way to compute a matrix representation (6) is to choose as initial
space a conventional spline space S0 ≡ S(Pd0 ,X,K0), with d0

j = m for all j, being m B max j{d j}. In this setting, it
still holds that S ⊂ S0, but this time matrix M needs to be computed performing successive steps of reverse degree
elevation (RDE). As the name suggests, reverse degree elevation is the reverse operation of degree elevation and we
can understand it by referring to Remark 2, where instead of decreasing/increasing the continuity at a breakpoint, one
increases/decreases the degree on a breakpoint interval. Therefore, each round of reverse degree elevation diminishes
by one the degree in an interval, until each interval [x j, x j+1] reaches the target degree d j. Overall, the number of steps
g required to pass from S0 to S amounts to the total number of RDE steps to be performed, that is g B

∑q
j=0(m − d j).

The process must be accomplished in such a way to generate a sequence of MD-spline spaces Sn ≡ S(Pdn ,X,Kn),
n = 0, . . . , g, such that

S ≡ Sg ⊂ Sg−1 ⊂ · · · ⊂ S1 ⊂ S0, (22)

where each space Sn is defined on [a, b], has same breakpoints X and continuities K as the target space S and has
dimension Kn B K + (g − n), being K the dimension of S. In general, there may be more than one sequence (22)

connected with C−1 continuity, therefore, with respect to ours, it has replicated columns that have been removed for a fair comparison.

20



Examples Algorithmic Errors Examples Algorithmic Errors
RKI/Greville RKI/Derivative H-Operator RKI/Greville RKI/Derivative H-Operator

Test 1 1.0×10−16 2.8×10−7 2.8×10−7 Test 4 6.0×10−16 7.6×10−13 1.1×10−12

Test 2 6.7×10−16 4.3×10−9 4.3×10−9 Test 5 1.0×10−15 5.4×10−2 1.2×10−1

Test 3 3.7×10−16 1.1×10−8 1.1×10−8 Test 6 1.7×10−14 6.5×10+7 6.5×10+7

Table 6: Algorithmic errors on the representation matrix for the test spaces in Table 1.

k1 K
Algorithmic Errors

k1 K
Algorithmic Errors

RKI/Greville RKI/Derivative H-Operator RKI/Greville RKI/Derivative H-Operator
5 17 2.5×10−16 2.5×10−16 2.5×10−16 13 25 2.7×10−16 1.4×10−12 1.4×10−12

7 19 2.2×10−16 1.4×10−14 1.4×10−14 15 27 4.4×10−16 2.4×10−11 2.4×10−11

9 21 3.9×10−16 4.7×10−14 4.7×10−14 17 29 3.1×10−16 2.2×10−10 2.2×10−10

11 23 2.5×10−16 1.7×10−13 1.7×10−13 19 31 4.5×10−16 1.3×10−9 1.3×10−9

Table 7: Target space S(Pd,X,K) with [a, b] = [0, 2], X = (1) and d = (19, 20); the dimension of S0 is K0 = 40.

leading from S0 to Sg and therefore, while S0 and Sg are fixed, the intermediate spaces S1, . . . ,Sg−1 will depend on
the specific ordering of RDE steps performed.

[25, Proposition 7] provides a result akin to Proposition 3, where space Ŝ is obtained fromS through (local) degree
elevation. In this case, the respective MDB-spline bases satisfy a relationship analogous to (8), with coefficients
αi given by (9), the only difference being that the nontrivial coefficients αi ∈ [0, 1] correspond to i = ℓ − d j +

1, . . . , ℓ. These coefficients can still be determined through (14), where ξ̂ j and ξ j are the Greville abscissæ of Ŝ and
S, respectively. Moreover, a step of reverse degree elevation from Ŝ to S can be written in the matrix form

N = A N̂, (23)

where A is a bidiagonal matrix of size K×(K+1) containing the coefficients αi and N̂, N are the vectors of MDB-spline
basis functions of the two spaces (see [25, Equation (10)] ).

On account of Proposition 2, the computation of the Greville abscissæ of Ŝ and S entails integrating the MDB-
spline bases of the respective derivative spaces. Hence, an RDE step can be described by the following triangular
block, akin to (16):

DS

Ŝ S

G

RDE

Repeated applications of the above basic block, give rise to the following rhomboid scheme, which is the RDE
counterpart of (18), and in which Sk,n, for k = 0, . . . , r, n = 0, . . . , g, indicate the derivative spaces Dr−kSn with
r B max{1,max{ki ∈ K}}:

S0,0 S0,1 · · · S0,g−1 S0,g

· · · · · · · · · · · · · · ·

Sr−1,0 Sr−1,1 · · · Sr−1,g−1 Sr−1,g

Sr,0 Sr,1 · · · Sr,g−1 Sr,g

G

RDE

G

RDE

G

RDE

G

RDE

G G

RDE RDE

G G

G

RDE

G

RDE

G

RDE

G

RDE RDE RDE

21



Note that spaces S0,n are C0 MD-spline spaces and may feature breakpoints with negative continuities, as well as
intervals with negative degrees. These correspond to the degenerate spaces involved in the generation of the MDB-
spline basis of Sr,n by the integral recurrence relation (3). Spaces Sk,0 are instead conventional spline spaces of
degree m − (r − k). For all spaces S0,n and Sk,0 the MDB-spline basis functions, as well as their integrals, can be
straightforwardly computed by standard approaches, as discussed in section 2.2.

Using the rhomboid scheme and the corresponding matrix representations leads to Algorithm 3, where

K(k, n) B K − (r − k) + (g − n), (24)

indicates the dimension of space Sk,n, being K the dimension of the target space S ≡ Sr,g. The algorithm requires as
input the vectors INk,0, k = 0, . . . , r, containing the integrals of the conventional B-spline bases of spaces Sk,0 and the
vectors IN0,n, n = 0, . . . , g, of the integrals of the C0 MDB-splines of the spaces S0,n. It returns as output the matrices
Mk,g such that Nk,g = Mk,gNk,0, k = 0, . . . , r, where Nk,0 is a conventional B-spline basis of degree m − r + k. In
particular Mr,g is the matrix representation of the MDB-spline basis Nr,g of the target space Sg ≡ S

r,g with respect to
the B-spline basis Nr,0 of the conventional spline space S0 ≡ S

r,0 of degree m B maxi{di}. We remark that, while the
RKI Algorithm joins two spaces at a time, the RDE works globally, i.e. by carrying out a sequence of reverse degree
elevations on all the intervals involved.

Algorithm 3: Matrix representation relative to the conventional B-spline basis of degree m B maxi{di}, with
r B max{1,max{ki ∈ K}} and g B

∑q
j=0(m − d j).

Data: INk,0, k = 0, . . . , r; IN0,n, n = 0, . . . , g.
Result: Mk,g, k = 1, . . . , r.

1 for k ← 1 to r do
2 Mk,0 ← IK(k,0), with K(k, 0) derived from (24) ;
3 n← 0 ;
4 for j← 0 to q do
5 for h← m − 1 to d j do
6 n← n + 1 ;
7 ie← dk,n

0 + 1 +
∑ j

h=1 dk,n
h − kk,n

h ;
8 ib← ie − dk,n

j + 1 ;
9 αk−1,n

ib−1 ← 1 ;
10 βk−1,n

ie ← 1 ;
11 for i← ib to ie do
12 if k == 1 then
13 α1,n

i ←
(∑i−1

h=ib−1 IN0,n−1
h −

∑i−2
h=ib−1 IN0,n

h

)
/IN0,n

i−1 ;

14 β1,n
i ←

(∑i−1
h=ib−1 IN0,n

h −
∑i−1

h=ib−1 IN0,n−1
h

)
/IN0,n

i−1 ;
15 else
16 αk,n

i ← α
k−1,n
i−1 INk−1,n−1

i−1 /INk−1,n
i−1 ;

17 βk,n
i ← β

k−1,n
i INk−1,n−1

i /INk−1,n
i−1 ; //βk,n

i store 1 − αk,n
i

18 end
19 end
20 Mk,n ← Ak,nMk,n−1, where Ak,n is the RDE matrix in (23) and related discussion;
21 if k < r then
22 INk,n ← Mk,n · INk,0 ;
23 end
24 end
25 end
26 end

Example 5 (Matrix representation via reverse degree elevation). In the interval [0, 3], let us consider the MD-spline
space S(Pd,X,K) with X = {1, 2}, d = (4, 2, 3) and K = (2, 1). Let us also consider the spaces S2, S1 and

22



S0 defined on the same interval and having same breakpoint sequence and continuities as S ≡ S3 and such that
S3 ⊂ S2 ⊂ S1 ⊂ S0. In particular we take S0 to be the MD-spline space having d0 = (4, 4, 4), S1 having d1 = (4, 3, 4),
S2 having d2 = (4, 2, 4) and S3 having d3 = (4, 2, 3). Note that S0 is a conventional spline space and hence its B-spline
basis and corresponding integrals can efficiently be computed by known methods. In this way one can pass from the
MDB-spline basis of S0 to that of S1, from that of S1 to that of S2 and finally from the MDB-spline basis of S2 to
that of S3 performing three successive rounds of RDE.

The rhomboid scheme of spaces in this example is as follows, where Sn ≡ S
2,n, n = 0, . . . , 3:

S0,0 : (2 02−12) S0,1 : (2 01−12) S0,2 : (2 00−12) S0,3 : (2 00−11)

S1,0 : (3 13 0, 3) S1,1 : (3 12 03) S1,2 : (3 11 03) S1,3 : (3 11 02)

S2,0 : (4 24 14) S2,1 : (4 23 14) S2,2 : (4 22 14) S2,3 : (4 22 13)

α0,1
4 α0,3

3

α1,1
i i=4,5 α1,2

4 α1,3
i i=5,6

α2,1
i , i=4,5,6 α2,2

i , i=2,1 α2,3
i , i=5,6,7

The nontrivial coefficients αk,n
i necessary for each RDE step can be computed by integrating the MDB-spline

functions of derivative spaces as in (19). We remark that a similar result was proven in [29] for a less general subclass
of MD-splines. For instance, knowing the MDB-splines of space DS1 ≡ DS2,1 = S1,1, which is defined on the same
interval and breakpoint sequence as S, but has degrees d = (3, 2, 3) and continuities K = (1, 0), we can determine
the coefficients α2,1

i , i = 4, 5, 6, to pass from S0 ≡ S
2,0 to S1 ≡ S

2,1. With reference to the first line of the rhomboid
scheme, observe how going from S0,0 to S0,1 it is necessary to calculate only one coefficient, as one passes from
degree 2 to 1. For the same reason it is necessary to calculate only one coefficient α0,3

3 for the RDE step from S0,2 to
S0,3. The RDE step from S0,1 to S0,2, instead, does not involve non-trivial RDE coefficients, as they are all equal to 0
or 1.

Remark 7. The procedure can be modified in such a way to avoid any subtraction operation and therefore improve
its numerical stability. In fact, the coefficients in the first row of the rhomboid scheme (in the example α0,1

4 and α0,3
3 )

are determined by (14), whose numerator can be computed by the middle line of (20) (Algorithm 3, lines 13 and 14).
However, we can as well further differentiate these spaces, in such a way that the first two rows of the scheme become:

(1 −11−21) (1 −10−21) (1 −1 − 1−21) (1 −1 − 1−20)

S0,0 : (2 02−12) S0,1 : (2 01−12) S0,2 : (2 00−12) S0,3 : (2 00−11)
α0,1

4 α0,3
3

In this extended version of the scheme also the coefficients α0,1
4 and α0,3

3 can be determined through (19), avoiding
the aforementioned differences. This variant of Algorithm 3 can be obtained by defining r as

r B max{di} − 1

and summarizing lines from 12 to 18 of the algorithm by lines 16 and 17 only.

The RDE-based algorithm is numerically stable for the same considerations made in the RKI case and all the
numerical tests carried out have verified its excellent accuracy in the calculation of both the MDB-spline functions
and the representation matrix.

Remark 8 (Mixed RDE-RKI Algorithm). It is also possible to design an algorithm that simultaneously performs
RDE and RKI steps, like the one proposed in [25]. In this case we shall choose the initial space S0, containing S, in
such a way that S can be reached through a sequence of successive steps of RDE and RKI type. We shall hence break
the target space S into sections, each of which will be generated from the corresponding section of S0 via RDE using
Algorithm 3 or through RKI joins of the corresponding sections in S0 via Algorithm 2. At this point it is necessary to
proceed by first addressing all the sections requiring RDE, obtaining the representation matrices of the corresponding
MDB-spline bases, and then joining by RKI the resulting MD-spline spaces, starting from the one with the highest
continuity up to the one with the least continuity.

23



7. Conclusions

We have presented an algorithm for the efficient evaluation of multi-degree B-splines, which, unlike previous
approaches, is numerically stable. This has been emphasized via theoretical analysis of the involved operations, as well
as by numerical experiments and comparisons with previous methods. From the point of view of numerical stability,
the proposed method is at present the most effective tool for evaluating multi-degree splines. Furthermore, similar
ideas could be employed in the more general context of piecewise Chebyshevian splines of variable dimensions, which
have been the subject of recent studies [20, 24].

Acknowledgements

The authors gratefully acknowledge support from INdAM-GNCS Gruppo Nazionale per il Calcolo Scientifico.

References

[1] de Boor, C.. A Practical Guide to Splines. New York: Springer-Verlag; 1978. doi:10.2307/2006241.
[2] Schumaker, L.L.. Spline Functions: Basic Theory. Cambridge, UK: Cambridge University Press; third ed.; 2007. doi:10.1017/

CBO9780511618994.
[3] Cox, M.. The numerical evaluation of B-splines. J Inst Maths Applics 1972;10:134–149. doi:10.1093/imamat/10.2.134.
[4] de Boor, C.. On calculating with B-splines. J Approx Theory 1972;6(1):50–62. doi:10.1016/0021-9045(72)90080-9.
[5] Toshniwal, D., Speleers, H., Hiemstra, R.R., Hughes, T.J.. Multi-degree smooth polar splines: A framework for geometric modeling and

isogeometric analysis. Comput Methods Appl Mech Engrg 2017;316:1005–1061. doi:10.1016/j.cma.2016.11.009.
[6] Conti, C., Romani, L., Schenone, D.. Semi-automatic spline fitting of planar curvilinear profiles in digital images using the Hough

transform. Pattern Recognition 2018;74:64–76. doi:https://doi.org/10.1016/j.patcog.2017.09.017.
[7] Nürnberger, G., Schumaker, L.L., Sommer, M., Strauss, H.. Generalized Chebyshevian splines. SIAM J Math Anal 1984;15(4):790–804.

doi:10.1137/0515061.
[8] Sederberg, T.W., Zheng, J., Song, X.. Knot intervals and multi-degree splines. Comput Aided Geom Design 2003;20(7):455–468. doi:

10.1016/S0167-8396(03)00096-7.
[9] Liu, L., Casquero, H., Gomez, H., Zhang, Y.J.. Hybrid-degree weighted t-splines and their application in isogeometric analysis. Computers

& Fluids 2016;141:42 – 53. doi:https://doi.org/10.1016/j.compfluid.2016.03.020. Advances in Fluid-Structure Interaction.
[10] Thomas, D.C., Engvall, L., Schmidt, S.K., Tewa, K., Scott, M.A.. U-splines: Splines over unstructured meshes; 2018. Coreform report.
[11] Shen, W., Wang, G.. A basis of multi-degree splines. Comput Aided Geom Design 2010;27(1):23–35. doi:10.1016/j.cagd.2009.08.005.
[12] Shen, W., Wang, G.. Changeable degree spline basis functions. J Comput Appl Math 2010;234(8):2516–2529. doi:10.1016/j.cam.2010.03.

015.
[13] Shen, W., Wang, G., Yin, P.. Explicit representations of changeable degree spline basis functions. J Comput Appl Math 2013;238(1):39–50.

doi:10.1016/j.cam.2012.08.017.
[14] Beccari, C.V., Casciola, G.. A Cox-de Boor-type recurrence relation for C1 multi-degree splines. Comput Aided Geom Design

2019;75:101784–101784. doi:https://doi.org/10.1016/j.cagd.2019.101784.
[15] Li, X., Huang, Z.J., Liu, Z.. A geometric approach for multi-degree spline. Journal of Computer Science and Technology 2012;27(4):841–

850. doi:10.1007/s11390-012-1268-2.
[16] Buchwald, B., Mühlbach, G.. Construction of B-splines for generalized spline spaces generated from local ECT-systems. J Comput Appl

Math 2003;159(2):249–267. doi:10.1016/S0377-0427(03)00533-8.
[17] Beccari, C., Casciola, G., Morigi, S.. On multi-degree splines. Comput Aided Geom Design 2017;58:8–23. doi:10.1016/j.cagd.2017.10.003.
[18] Antonelli, M., Beccari, C.V., Casciola, G.. A general framework for the construction of piecewise-polynomial local interpolants of minimum

degree. Adv Comput Math 2014;40(4):945–976. doi:10.1007/s10444-013-9335-y.
[19] Beccari, C.V., Casciola, G., Romani, L.. Construction and characterization of non-uniform local interpolating polynomial splines. J Comput

Appl Math 2013;240:5–19. doi:10.1016/j.cam.2012.06.025.
[20] Beccari, C.V., Casciola, G., Romani, L.. Computation and modeling in piecewise Chebyshevian spline spaces; 2017. ArXiv:1611.02068.
[21] Mazure, M.L.. How to build all Chebyshevian spline spaces good for geometric design? Numer Math 2011;119(3):517–556. doi:10.1007/

s00211-011-0390-3.
[22] Toshniwal, D., Speleers, H., Hiemstra, R.R., Manni, C., Hughes, T.J.. Multi-degree B-splines: Algorithmic computation and properties.

Comput Aided Geom Design 2020;76:101792–101792. doi:https://doi.org/10.1016/j.cagd.2019.101792.
[23] Speleers, H.. Algorithm 999: Computation of multi-degree B-splines. ACM Transactions on Mathematical Software 2019;45(4):1–15.

doi:10.1145/3321514.
[24] Hiemstra, R.R., Hughes, T.J., Manni, C., Speleers, H., Toshniwal, D.. A Tchebycheffian extension of multi-degree B-splines: Algorithmic

computation and properties. SIAM Journal on Numerical Analysis 2020;2(58):1138–1163. doi:https://doi.org/10.1137/19M1263583.
[25] Beccari, C.V., Casciola, G.. Matrix representations for multi-degree B-splines. Journal of Computational and Applied Mathematics

2021;381:113007. doi:https://doi.org/10.1016/j.cam.2020.113007.
[26] Butterfield, K.R.. The computation of all derivatives of a B-spline basis. J Inst Maths Applics 1976;17:15–25. doi:10.1093/imamat/17.1.15.
[27] Higham, N.J.. Accuracy and Stability of Numerical Algorithms. Philadelphia, USA: SIAM Society for Industrial and Applied Mathematics;

second ed.; 2002. doi:10.1137/1.9780898718027.

24

http://dx.doi.org/10.2307/2006241
http://dx.doi.org/10.1017/CBO9780511618994
http://dx.doi.org/10.1017/CBO9780511618994
http://dx.doi.org/10.1093/imamat/10.2.134
http://dx.doi.org/10.1016/0021-9045(72)90080-9
http://dx.doi.org/10.1016/j.cma.2016.11.009
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2017.09.017
http://dx.doi.org/10.1137/0515061
http://dx.doi.org/10.1016/S0167-8396(03)00096-7
http://dx.doi.org/10.1016/S0167-8396(03)00096-7
http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2016.03.020
http://dx.doi.org/10.1016/j.cagd.2009.08.005
http://dx.doi.org/10.1016/j.cam.2010.03.015
http://dx.doi.org/10.1016/j.cam.2010.03.015
http://dx.doi.org/10.1016/j.cam.2012.08.017
http://dx.doi.org/https://doi.org/10.1016/j.cagd.2019.101784
http://dx.doi.org/10.1007/s11390-012-1268-2
http://dx.doi.org/10.1016/S0377-0427(03)00533-8
http://dx.doi.org/10.1016/j.cagd.2017.10.003
http://dx.doi.org/10.1007/s10444-013-9335-y
http://dx.doi.org/10.1016/j.cam.2012.06.025
http://dx.doi.org/10.1007/s00211-011-0390-3
http://dx.doi.org/10.1007/s00211-011-0390-3
http://dx.doi.org/https://doi.org/10.1016/j.cagd.2019.101792
http://dx.doi.org/10.1145/3321514
http://dx.doi.org/https://doi.org/10.1137/19M1263583
http://dx.doi.org/https://doi.org/10.1016/j.cam.2020.113007
http://dx.doi.org/10.1093/imamat/17.1.15
http://dx.doi.org/10.1137/1.9780898718027


[28] Carnicer, J.M., Mainar, E., Peña, J.M.. Greville abscissae for totally positive bases. Comput Aided Geom Design 2016;48:60–74. doi:
10.1016/j.cagd.2016.09.001.

[29] Shen, W., Yin, P., Tan, C.. Degree elevation of changeable degree spline. Journal of Computational and Applied Mathematics 2016;300:56
– 67. doi:http://dx.doi.org/10.1016/j.cam.2015.11.030.

25

http://dx.doi.org/10.1016/j.cagd.2016.09.001
http://dx.doi.org/10.1016/j.cagd.2016.09.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.cam.2015.11.030

	Copertina_postprint_IRIS_UNIBO (2)
	MD_splines_GrevilleR2.pdf
	Introduction
	Background and basic notions
	Multi-degree (MD) spline spaces and B-spline bases
	C0 Multi-degree splines
	Matrix representation

	The novel RKI algorithm
	Stable implementation of the RKI Algorithm
	Stability analysis
	Experimental results

	Matrix representation in terms of the conventional B-spline basis of maximum degree
	Conclusions


