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We tackle the problem of goal-directed graph
construction: given a starting graph, finding a set of
edges whose addition maximally improves a global
objective function. This problem emerges in many
transportation and infrastructure networks that are
of critical importance to society. We identify two
significant shortcomings of present reinforcement
learning methods: their exclusive focus on topology
to the detriment of spatial characteristics (which are
known to influence the growth and density of links),
as well as the rapid growth in the action spaces
and costs of model training. Our formulation as a
deterministic Markov decision process allows us to
adopt the Monte Carlo tree search framework, an
artificial intelligence decision-time planning method.
We propose improvements over the standard upper
confidence bounds for trees (UCT) algorithm for this
family of problems that addresses their single-agent
nature, the trade-off between the cost of edges and
their contribution to the objective, and an action space
linear in the number of nodes. Our approach yields
substantial improvements over UCT for increasing the
efficiency and attack resilience of synthetic networks
and real-world Internet backbone and metro systems,
while using a wall clock time budget similar to other
search-based algorithms. We also demonstrate that
our approach scales to significantly larger networks
than previous reinforcement learning methods, since
it does not require training a model.
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1. Introduction

Graphs are a pervasive representation that arise naturally in a variety of disciplines; however,
their non-Euclidean structure has traditionally proven challenging for machine learning and
decision-making approaches.

The emergence of the graph neural network learning paradigm [1] and geometric deep
learning more broadly [2] has brought about encouraging breakthroughs in diverse application
areas for graph-structured data: relevant examples include combinatorial optimization [3-5],
recommendation systems [6,7] and computational chemistry [8-11].

There is an increasing interest in the problem of goal-directed graph construction, in which the
aim is to build or to modify the topology of a graph (i.e. add a set of edges) so as to maximize
the value of a global objective function, subject to a budget constraint. As an example scenario,
consider the following: given a road network and a budget of 200 km of highways that can be
invested, a national transportation department must decide where to place them with the goal of
minimizing average trip time for drivers. Another practical instance of this problem is to place
500 km of tracks between stations in a train network such that, in the event of infrastructure
failures or disruptions, customers have many alternative journeys that they can make. Similar
network planning and design scenarios arise in a variety of other infrastructure systems including
communication, power, and water distribution networks. The family of related problems unified
by this framework is illustrated at a high level in the first panel of figure 1 and is mathematically
defined in equation (3.1).

As this task involves an element of exploration (optimal solutions are not known a priori), its
formulation as a decision-making process is a suitable paradigm. The authors of [12] formulated
the optimization of a global structural graph property as a Markov decision process (MDP) and
approached it using a variant of the RL-52V [13] reinforcement learning algorithm, showing that
generalizable strategies for improving a global network objective can be learned, and can obtain
performance superior to prior conventional approaches [14-17] for certain classes of problems.

However, several real-world networks are embedded in space and this fact adds constraints
and trade-offs in terms of the topologies that can be created [18,19]. In fact, since there is a cost
associated with edge length, connections tend to be local and long-range connections must be
justified by some gain (e.g. providing connectivity to a hub). Moreover, existing methods based
on reinforcement learning are challenging to scale, due to the sample complexity of current
training algorithms, the linear increase of possible actions with the number of nodes, and the
complexity of evaluating the global objectives (typically polynomial in the number of nodes).
Furthermore, objective functions defined over nodes’ positions, such as efficiency, are key for
understanding their organization [20], but existing methods only consider topological aspects
of the problem. Additionally, training data (i.e. instances of real-world graphs) are scarce and
we are typically interested in a specific starting graph (e.g. an infrastructure network to be
improved).

In this paper, for the first time, we consider the problem of the construction of spatial graphs as
a decision-making process that explicitly captures the influence of space on graph-level objectives,
the realisability of links, and connection budgets. Furthermore, to address the scalability issue,
we select an optimal set of edges to add to the graph through planning, which sidesteps the
problem of sample complexity since we do not need to learn a generalizable strategy. We adopt
the Monte Carlo tree search (MCTS) framework—specifically, the upper confidence bounds for
trees (UCT) algorithm [21]—and show it can successfully be applied to the derivation of graph
construction strategies. We illustrate our approach in figures 1 and 2. Finally, we propose several
improvements over the basic UCT method in the context of spatial networks. These relate to
important characteristics of this family of problems: namely, their single-agent, deterministic
nature; the inherent trade-off between the cost of edges and their contribution to the global
objective; and an action space that is linear in the number of nodes in the network. Our proposed
approach, spatial graph UCT (SG-UCT), is designed with these characteristics in mind and relies
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Figure 1. Schematic of our approach. (a) Given a spatial graph Gy, an objective function , and a budget defined in terms of
edge lengths, the goal is to add a set of edges such that the resulting graph G, maximally increases . (b) We formulate this
problem as a deterministic MDP, in which states are graphs, actions represent the selection of a node, transitions add an edge
every two steps, and the reward is based on 7. We use Monte Carlo tree search to plan the optimal set of edges to be added
using knowledge of this MDP, and propose a method (SG-UCT) that improves on standard UCT.
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Figure 2. lllustration of Monte Carlo tree search applied to the construction of spatial networks. (i) Starting from the root node,
which contains the original graph Sy, the tree is traversed until an expandable node is reached. (ii) The algorithm expands the
tree by adding a child to this node. The strategy for traversing the tree and deciding which node to expand is called tree policy,
and typically relies on statistics (such as average reward) stored by each node. (jii) From the newly added node, a trajectory
is sampled using a simulation policy until a terminal state is reached and the algorithm cannot add more edges to the graph.
A reward is received depending on the objective function  defined on the graph. (iv) The path is traversed back to the root
node, updating the statistics of nodes along the way. After several iterations of steps (i)—(iv), the algorithm will select action
Ag corresponding to the child of the root with the highest average reward. The search then continues with the next state $; at
the root.

on a limited set of assumptions. For this reason, it can be applied to a large class of spatial
networked systems.

As objective functions, we consider the global properties of network efficiency and robustness
to targeted attacks. While these represent a variety of practical scenarios, our approach is broadly
applicable to any other structural property. We perform an evaluation on synthetic graphs
generated by a spatial growth model and several real-world internet backbone networks and
metro transportation systems. Our results show that SG-UCT performs best out of all methods
that have been proposed in the past in all the settings we tested; moreover, the performance gain
over UCT is substantial (24% on average and up to 54% over UCT on the largest networks tested
in terms of a robustness metric). In addition, we conduct an ablation study that explores the
impact of the single algorithmic mechanisms, highlighting that the most significant part of the
objective function gains is due to the simulation policy that prioritizes lower cost edges. We also
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benchmark the execution time of the various approaches, showing that SG-UCT requires similar
amounts of computation to other search-based methods.

2. Preliminaries and background

(a) Markov decision processes

MDPs are widely adopted formalizations of decision-making tasks. The decision maker, usually
called an agent, interacts with an environment. When in a state s € S, the agent must take an action
a out of the set A(s) of valid actions, receiving a reward r governed by the reward function R(s, a).
Finally, the agent finds itself in a new state s’, depending on a transition model P that governs
the joint probability distribution P(s’, 4, s) of transitioning to state s’ after taking action a in state s.
This sequence of interactions gives rise to a trajectory Sp, Ao, R1,51,A1,R2, ..., ST, which continues
until a terminal state St is reached. In deterministic MDPs, there exists a unique state s’ s.t.
P(St11=5'1St =s,Ay =a) =1. The tuple (S, A, P, R, y) defines this MDP, where y € [0, 1] weighs
immediate and long-term rewards. The discounted sum of rewards Zl{:o vk Riyk41 received from
state t onwards is called return. We also define a policy 7 (a|s), a distribution of actions over states.
Given a policy r, the value function V(s) is defined as the expected return when starting from s
and following policy .

There exists a spectrum of algorithms for constructing a policy, ranging from model-based
algorithms (which assume knowledge of the MDP) to model-free algorithms (which require only
samples of agent-environment interactions). If either the full MDP specification or a model is
available, a planning method such as forward search [22] can be used. Dynamic programming,
which is also a model-based method, has the same theoretical underpinning; its goal is to find
the optimal value functions that satisfy the Bellman optimality equations. However, since it
involves exploring the entire state space, it is very computationally intensive and not applicable
to large MDPs. Reinforcement learning methods can be viewed as solving the same equations
approximately by sampling, requiring less computation. Beyond this, decision-time planning
methods aim to reduce computation even further by considering trajectories that only start at
the current state in a problem of interest, rather than attempting to approximate the optimality
equations for a larger part of the state space [23].

(b) Monte Carlo tree search

MCTS is a model-based planning technique that addresses the inability to explore all paths in
large MDPs by constructing a policy from the current state. It builds a search tree rooted at the
current state, in which each child node represents the next state obtained by applying an action to
the state at the parent node. It relies on two core principles: firstly, that the value of a state can be
estimated by sampling trajectories and, secondly, that the returns obtained by this sampling are
informative for deciding the next action at the root of the search tree. We review its basic concepts
below and refer the interested reader to [24] for more information. To aid understanding, in
figure 2, we illustrate its main steps and their relationship to the goal-directed graph construction
of spatial networks.

In MCTS, each node in the search tree stores several statistics such as the sum of returns and
the node visit count in addition to the state. For deciding each action, the search task is given a
computational budget expressed in terms of node expansions or wall clock time. The algorithm
keeps executing the following sequence of steps until the search budget is exhausted:

(i) Selection: The tree is traversed iteratively from the root until an expandable node (i.e. a
node containing a non-terminal state with yet-unexplored actions) is reached.

(ii) Expansion: From the expandable node, one or more new nodes are constructed and
added to the search tree, with the expandable node as the parent and each child
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corresponding to a valid action from its associated state. The mechanism for selection
and expansion is called tree policy, and it is typically based on the node statistics.

(iii) Simulation: Trajectories in the MDP are sampled from the new node until a terminal
state is reached and the return is recorded. The default or simulation policy dictates the
probability of each action, with the standard version using uniform random sampling.
The intermediate states encountered when sampling are not added to the search tree.

(iv) Backpropagation: The return is backpropagated to the root of the search tree, and the
statistics of each node that was selected by the tree policy are updated.

Once the computational budget is exhausted and the search is stopped, the statistics of the root
node’s children are used to decide the next action A;. The algorithm then constructs a new
search tree from the next state Syy1, following the above steps. This proceeds iteratively until
the algorithm encounters a terminal state St.

The tree policy used by the algorithm needs to trade-off exploration and exploitation in order
to balance actions that are already known to lead to high returns against yet-unexplored paths
in the MDP for which the returns are still to be estimated. The exploration—exploitation trade-off
has been widely studied in the multi-armed bandit setting, which may be thought of as a single-
state MDP. A representative algorithm is the upper confidence bound (UCB) algorithm [25], which
computes confidence intervals for each action and chooses, at each step, the action with the largest
upper bound on the reward, embodying the principle of optimism in the face of uncertainty. UCT
is a variant of MCTS that applies the principles behind UCB to the tree search setting. Namely,
the selection decision at each node is framed as an independent multi-armed bandit problem. At
decision time, the tree policy of the algorithm selects the child node corresponding to action a that
maximizes UCT(s,a) = R(s,a)/N(s, a) + 2¢,/2In N(s)/N(s,a), where R(s,a) is the sum of returns
obtained when taking action a in state 5, N(s) is the number of parent node visits, N(s,a) the
number of child node visits and c, is a constant that controls the level of exploration [21].

MCTS has found wide applicability in a variety of decision-making and optimization
scenarios. Our own source of inspiration has been the successful applications of the technique
to ‘connectionist’ games such as Morpion Solitaire [26] and Hex [27,28], which share some
similarities since they involve deciding which edges to create between nodes placed on a regular
grid. Domain knowledge [29] can be integrated with MCTS such that its performance is enhanced,
an aspect that we leverage in constructing the reduction and simulation policies of the proposed
algorithm. Alternatively, one may use learned knowledge based on linear function approximation
[30] as well as deep neural networks [31-33]. The latter category of methods has enjoyed
substantial interest recently for solving combinatorial optimization problems [34,35].

(c) Spatial networks and objectives

We define a spatial network as the tuple G=(V,E,f,w). V is the set of vertices, and E is the
set of edges. f: V — M is a function that maps nodes in the graph to a set of positions M. We
require that M admits a metric d, i.e. there exists a function d: M x M — RT defining a pairwise
distance between elements in M. The tuple (M, d) defines a space, common examples of which
include Euclidean space and spherical geometry. w: E — R* associates a weight with each edge, a
positive real-valued number. For example, the weight can be interpreted as the capacity of a link
in networks that carry traffic.

We consider two global objectives F for spatial networks that are representative of a wide
class of properties relevant in real-world situations. Depending on the domain, there are many
other global objectives for spatial networks that can be considered, to which the approach that we
present is directly applicable.

(i) Efficiency

Efficiency is a metric quantifying how well a network exchanges information. It measures
how fast information can travel between any pair of nodes in the network on average, and
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is hypothesized to be an underlying principle for the organization of networks [20]. Efficiency
does not solely depend on topology but also on the spatial distances between the nodes
in the network. We adopt the definition of global efficiency as formalized in [20], and let
Fe(G)=(1/N(N — 1)) Z,-#EV (1/sp(i,j)), where sp(i,j) is the cumulative length (i.e. the summed
distances) of the shortest path between vertices i and j. To normalize, we divide by the ideal
efficiency F7(G) = (1/N(N — 1)) Zi#ev (1/d(i, )), and possible values are thus in [0, 1].! Efficiency
is computable in o(VP) by using the ‘weighted” version of the Floyd—Warshall shortest path
algorithm,? in which the spatial distances over the edges are given as weights (note, however,
that this differs from the weight function w defined above, which is akin to capacity). The path
lengths are provided raw and are not normalized by the straight line distances.

(ii) Robustness

We consider the property of robustness, i.e. the resilience of the network in the face of removals
of nodes. We adopt a robustness measure widely used in the literature [37,38] and of practical
interest and applicability based on the largest connected component (LCC), i.e. the component
with most nodes. In particular, we use the definition in [15], which considers the size of the
LCC as nodes are removed from the network. We consider only the targeted attack case as
previous work has found it is more challenging [12,37]. We define the robustness measure as
Fr(G) =E¢[(1/N) Zﬁ\il s(G, &,i)], where s(G, &,i) denotes the fraction of nodes in the LCC of G
after the removal of the first i nodes in the permutation & (in which nodes appear in descending
order of their degrees). Possible values are in [(1/N),0.5). This quantity can be estimated using
Monte Carlo simulations and scales as O(|V|? x (|V| + |E|)).

It is worth noting that the value of the objective functions typically increases the more edges
exist in the network (the complete graph has both the highest possible efficiency and robustness).
However, it may be necessary to balance the contribution of an edge to the objective with its
cost. The proposed method explicitly accounts for this trade-off, which is widely observed in
infrastructure and brain networks [39,40].

(d) Existing methods for goal-directed graph construction

Given an objective function such as the ones defined above and a budget of structural
modifications, a worthwhile question to consider is how to modify a graph so as to optimize
the function. This has been addressed by various prior works from several communities. We refer
to this problem as goal-directed graph construction, noting that this term includes the extension of
an existing graph.

In the network science literature, authors have been particularly interested in improving
resilience. The authors of [14] approach this problem by edge addition or rewiring, based
on random or preferential degree-based modifications. In [15], the authors propose a greedy
modification scheme based on random edge selection and swapping if the resilience metric
improves, with the threshold of the swapping criterion being annealed over time. For the problem
of de novo graph generation, in [41] an algorithm that produces graphs with similarly high values
of robustness at a much lower computational cost is proposed. The authors of [17] consider both
preferential (degree-based) and greedy (effective graph resistance), finding that greedy strategies
are generally more effective but also more expensive to compute.

In the machine learning community, model-free RL techniques have been applied for deriving
adversarial examples for graph-based classifiers by changing the network structure [13] and the
goal-directed generation of molecular graphs [10]. [12] formulated the goal-directed construction
of a graph as an MDP and proposed a method based on RL and graph neural networks, showing
t is worth noting that efficiency is a more suitable metric for measuring the exchange of information than the inverse average
path length between pairs of nodes. In the extreme case, where the network is disconnected (and thus some paths lengths

are infinite), this metric does not go to infinity. More generally, this metric is better suited for systems in which information is
exchanged in a parallel, rather than sequential, way [20].

2In practice, this may be made faster by considering dynamic shortest path algorithms, e.g. [36].
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some advantages over prior methods in the network science literature in terms of its ability to
optimize the objective and the fast runtime of the policy once it has been trained.

Related problems have also attracted the attention of the operations research community. In
[42], the authors consider a problem with node upgrade actions with the goal of reducing pairwise
shortest path distances, which resembles our case study on efficiency improvement. Work on
the Pre-disaster Transportation Network Preparation problem [43,44] considers strengthening a
highway network to cope with possible natural disasters such as floods. Another important class
of approaches for network design is based on the concept of spanner of a graph, i.e. a subgraph
of the given graph of in which the length of any path does not exceed a given threshold. Such
methods have found particularly successful applications in designing communication networks
[45,46]. However, none of the methods are applicable in our setting given their focus on specific
problem definitions.

3. Proposed method

In this section, we first formulate the construction of spatial networks in terms of a global objective
function as an MDP. Subsequently, we propose a variant of the UCT algorithm (SG-UCT) for
planning, which exploits the characteristics of spatial networks, for this MDP.

(a) Spatial graph construction as Markov decision processes

(i) Spatial constraints in network construction

Spatial networks that can be observed in the real world typically incur a cost to edge creation.
To aid intuition, consider the example of a power grid: the cost of a link depends, among other
aspects, on its geographical distance as well as on its capacity. We let c(i, j) denote the cost of edge
(G,j))and C(I') = Z(i,j)er c(i,j) be the cost of a set of edges I'". We consider c(i, j) = w(i, j) * d(f (i), £ (j))
to capture the notion that longer, higher capacity connections are more expensive. We are aware
that this is just one of the possible definitions and different notions of cost may be desirable
depending on the domain. However, it can be considered representative of several real-world
scenarios, in which cost can be modelled in a similar manner. To ensure fair comparisons, we
normalize costs c(i, j) to be in [0, 1].

(i) Problem statement

Let GO be the set of labelled, undirected, weighted, spatial networks with N nodes. We let
F:GMN - 10,1] be an objective function, and by € Rt be a modification budget. Given an initial
graph Go = (V,Eo,f,w) € G, the aim is to add a set of edges I' to Gy such that the graph
Gy =(V,E4, f, w) satisfies

Gy = arg max F(G), where G'={GeGN |E=Eyu T .C(I') <bp}. (3.1)
'eG’

(iii) Markov decision processes formulation

We next define the MDP elements:

State: The state S; is a three-tuple (G, o, by) containing the spatial graph G; = (V, E, f,w), an
edge stub oy € V, and the remaining budget b;. oy can be either the empty set @ or the singleton
{v}, where v e V. If the edge stub is non-empty, it means that the agent has ‘committed” in the
previous step to creating an edge originating at the edge stub.

Action: For scalability to large graphs, an action A; corresponds to the selection of a single node
in V (thus having at most |V| choices). We enforce spatial constraints as follows: given a node i,
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we define the set K(i) of connectable nodes j that represent realizable connections. We let

K@) ={jeVicij)=<p e c(i, k)},
which formalizes the idea that a node can only connect as far as a proportion p of its longest
existing connection, with /C(i) fixed based on the initial graph Gp. This allows long-range
connections if they already exist in the network. Given an unspent connection budget b;, we let
the set B(i, by) ={j € (i) | c(i,j) < b:} consist of those connectable nodes whose cost is not more
than the unspent budget. Letting the degree of node v be d,, available actions? are defined as

A=V, E f,w), @,br)) ={veV|dy <|VI =1 A |B(v,by)| > 0}

and
A(S=((V, Et, f,w), {01}, br)) ={ve V | (or,v) ¢ Et A veB(ot, b))

Transitions: The deterministic transition model adds an edge every two steps. Concretely, we
define it as P(Sy =5'|S;—1 =5, Aj—1 =a) = 85,s, where s’ =

((V/ Et—l U (Ut_l,a),f, ZU), 9, bt—l - C(Ut—lr ﬂ)), if2 | t
((V,Et1,f,w),{a},b;_1), otherwise.

Reward: The final reward Rr is defined as F(Gr) — F(Gp) and intermediary rewards are 0. We
do not provide intermediate rewards due to the large computational cost (at least cubic in the
number of nodes) needed for calculating the objective functions. However, intermediate rewards
may be provided for less computationally demanding objectives.

Episodes in this MDP proceed for an arbitrary number of steps until the budget is exhausted or
no valid actions remain (concretely, |A(S;)| = 0). Since we are in the finite horizon case, we let y =
1. Given the MDP definition above, the problem specified in equation (3.1) can be reinterpreted as
finding the trajectory t, that starts at So = (Go, @, bg) such that the final reward Rt is maximal—
actions along this trajectory will define the set of edges I'".

(b) Algorithm

The formulation above can, in principle, be used with any planning algorithm for MDPs in
order to identify an optimal set of edges to add to the network. The UCT algorithm, discussed
in §2, is one such algorithm that has proven very effective in a variety of settings. We refer
the reader to [24] for an in-depth description of the algorithm and its various applications.
However, the generic UCT algorithm assumes very little about the particulars of the problem
under consideration, which, in the context of spatial network construction, may lead to sub-
optimal solutions. In this section, we identify and address concerns specific to this family of
problems, and formulate the SG-UCT variant of UCT in algorithm 1. The evaluation presented
in §4 compares SG-UCT to UCT and other baselines, and contains an ablation study of SG-UCT’s
components.

(i) Best trajectory memoization

The standard UCT algorithm is applicable in a variety of settings, including multi-agent,
stochastic environments. For example, in two-player games, an agent needs to re-plan from the
new state that is arrived at after the opponent executes its move. However, the single-agent
(puzzle), deterministic nature of the problem considered means that there is no need to re-plan
trajectories after a stochastic event: the agent can plan all its actions from the very beginning in

3Depending on the type of network being considered, in practice there may be different types of constraints on the connections
that can be realized. For example, in transportation networks, there can be obstacles that make link creation impossible, such
as prohibitive landforms or populated areas. In circuits and utility lines, planarity is a desirable characteristic as it makes
circuit design cheaper. Such constraints can be captured by the definition of K(i) and enforced by the environment when
providing the agent with available actions .A(s). Conversely, defining C(i) = V' \ {i} recovers the simplified case where no
constraints are imposed.
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Algorithm 1. Spatial Graph UCT (SG-UCT).

1: Input: spatial graph Go=(V, Eo,f, w),
objective function F, budget by, reduction policy ¢

2: Output: actions Ao, ... Ar_1
3: foriin V: compute k(i)
4: compute @=¢(Go) % { apply reduction policy ¢}
5: t=0, bop=txC(Eq), So=(Go, 9, by)
6: Apgx= — 00, bestActs=array(), pastActs=array()
7: loop
8:  if [ Ay(St)|=0 then return bestActs
9:  create root node v; from S
10:  for i=0 to ngjys
11: vy, treeActs= TREEPOLICY(vt, @)
12: A, outActs= MINCOSTPOLICY(v;, @) % { cost-sensitive default policy}
13: BACKUP(v;, A)
14: if A > Amax then
15: bestActs=[pastActs, treeActs, outActs]
16: Apax=A % { memorize best trajectory}
17:  child= MAXCHILD(vt)
18:  pastActs.append(child.action)
19:  t+=1, Sy=child state

a single step. We thus propose the following modification over UCT: memorizing the trajectory
with the highest reward found during the rollouts, and returning it at the end of the search. We
name this best trajectory memoization, BTM. This is similar in spirit (albeit much simpler) to
ideas used in Reflexive and Nested MCTS for deterministic puzzles, where the best move found
at lower levels of a nested search are used to inform the upper level [47,48].

(ii) Cost-sensitive default policy

The standard default policy used to perform out-of-tree actions in the UCT framework is based on
random rollouts. Even though this is free from bias, rollouts can lead to high-variance estimates,
which can hurt the performance of the search. Previous work has considered hand-crafted
heuristics and learned policies as alternatives, although, perhaps counterintuitively, learned
policies may lead to worse results [29]. As initially discussed in §2, the value of the objective
functions we consider grows with the number of edges of the graph. We thus propose the
following default policy for spatial networks: sampling each edge with probability inversely
proportional to its cost. Formally, we let the probability of edge (i,j) being selected during
rollouts be proportional to (max; ; c(i, j) — c(i, j))ﬂ, where B denotes the level of bias. 8 — 0 reduces
to random choices, while g — oo selects the minimum cost edge. This is very inexpensive
computationally, as the edge costs only need to be calculated once, at the start of the search.

(iii) Action space reduction

In certain domains, the number of actions available to an agent is large, which can greatly affect
scalability. Previous work in RL has considered decomposing actions into independent sub-
actions [49], generalizing across similar actions by embedding them in a continuous space [50], or
learning which actions to eliminate via supervision provided by the environment [51]. Existing
approaches in planning consider progressively widening the search based on a heuristic [52] or
learning a partial policy for eliminating actions in the search tree [53].

Concretely, in this MDP, the action space grows linearly in the number of nodes. This is partly
addressed by the imposed connectivity constraints: once an edge stub is selected (equivalently,
at odd values of t), the branching factor of the search is small since only connectable nodes need
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2|t 2t+1

Figure 3. lllustration of the asymmetry in the number of actions at even (state has no edge stub) versus odd t (state has an
edge stub). Spatial constraints are imposed in the latter case, reducing the number of actions.

to be considered. However, the number of actions when selecting the origin node of the edge
(even values of t) remains large, which might become detrimental to performance as the size of
the network grows (as illustrated in figure 3). Can this be mitigated?

We consider limiting the nodes that can initiate connections to a subset—which prunes away
all branches in the search tree that are not part of this set. Concretely, let a reduction policy ¢ be
a function that, given the initial graph Gg, outputs a strict subset of its nodes.* Then, we modify
our definition of allowed actions as follows: under a reduction policy ¢, we define

Ap(St) = A(St) N p(Go), if2|t
= A(S;), otherwise.

We investigate the following class of reduction policies: a node i is included in ¢(Go) if and
only if it is among the top nodes ranked by a local node statistic A(i). Specifically, we consider
the A(i) listed below, where gain(i,j) = F(V,EU (i,)),f,w) — F(V,E,f,w). Since the performance of
reduction strategies may depend on F, we treat them as a tunable hyperparameter.

— Degree (DEG): d;; Inverse Degree (ID): max; d; — d;; Number of Connections (NC): |K(i)|
— Best Edge (BE): maxjc (i) gain(i, j); BE Cost Sensitive (BECS): maxjexc(;) (gain(i, j)/c(i, j))
— Average Edge (AE): ) ;e iy §ain(i, )/ 1IK(@)|; AECS: ) e iy (ain(i, j)/c(i, 1))/ 1K@)I.

4. Experiments

(a) Experimental protocol

(i) Definitions of space and distance

For all experiments in this paper, we consider the unit two-dimensional square as our space, i.e.
we let M=[0, 1] x [0, 1] and the distance d be Euclidean distance. In case the graph is defined on
a spherical coordinate system (as is the case with physical networks positioned on Earth), we use
the WGS84 variant of the Mercator projection to project nodes to the plane; then normalize to the
unit plane. We opt to project the coordinates on a plane, rather than on a unit sphere, since the
networks that we consider are at the geographical scale of a city or at most a country, for which
a plane is a reasonable local approximation. Instead, projecting on a unit sphere would introduce
more significant distortions. For simplicity, we consider uniform weights, i.e. w(i,j) =1V (i,j) € E.
The approach can be extended to networks with heterogenous weights by defining the action
space at even timesteps as a product between the set of valid nodes and the set of possible weight
values, as well as adopting an objective function that incorporates them as a drop-in replacement
(e.g. the formalization of efficiency in [54]).

“Learning a reduction policy in a data-driven way is also possible; however, obtaining the supervision signal (i.e. node
rankings over multiple MCTS runs) is very expensive. Furthermore, since we prioritize performance on specific graph
instances over generalizable policies, simple statistics may be sufficient. Still, a learned reduction policy that predicts an
entire set at once may be able to identify better subsets than individual statistics alone. Furthermore, a possible limitation
of using a reduction policy is that the optimal trajectory in the full MDP may be excluded. We consider these worthwhile
directions for future investigations.
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Table 1. Real-world graphs considered in the evaluation.

dataset
Internet

(i) Synthetic and real-world graphs

As a means of generating synthetic graph data, we use the popular model proposed by Kaiser
and Hilgetag in [55], which simulates a process of growth for spatial networks. Related to
the Waxman model [56], in this model the probability that a connection is created is inversely
proportional to its distance from existing nodes. The distinguishing feature of this model is
that, unlike, e.g. the random geometric graph [57], this model produces connected networks: a
crucial characteristic for the types of objectives we consider. We henceforth refer to this model as
Kaiser-Hilgetag (KH). We use aky = 10 and fxy = 1073, which yields sparse graphs with scale-
free degree distributions—a structure similar to road infrastructure networks. We also evaluate
performance on networks belonging to the following real-world datasets, detailed in table 1:
Internet (a dataset of internet backbone infrastructure from a variety of ISPs [58], which display
spatial characteristics due to their country-level scales) and Metro (a dataset of metro networks in
major cities around the world [59]). Due to computational budget constraints, we limit the sizes
of networks considered to |V| = 150.

(iii) Set-up

For all experiments, we allow agents a modification budget equal to a proportion t of the total
cost of the edges of the original graph, i.e. by = v * C(Ep). We use t =0.1. We let p =1 for synthetic
graphs and p = 2 for real-world graphs, respectively. This is because the real-world networks tend
to have comparatively less long-range connections than the synthetic ones. Moreover, a value of
p that is too low could prohibit longer connections entirely in case they do not already exist in the
seed network, severely restricting the feasible solution space. Confidence intervals are computed
using results of 10 runs, each initialized using a different random seed. Rollouts are not truncated.
We allow a number of node expansions per move #gms equal to 20 * [V| (a larger number of
expansions can improve performance, but leads to diminishing returns), and select as the move
at each step the node with the maximum average value (commonly referred to as MAXCHILD).
Full details of the hyperparameter selection methodology and the values used are provided in the
electronic supplementary material.

(iv) Evaluation metrics

We report the rewards obtained by the approaches taken into consideration, i.e. the difference
in F between the final and initial graphs. This has the advantage that the values are directly
interpretable and correspond to the gain in the objective function that can be obtained with a
certain budget. We note that the relatively small scale of the values reported in the tables and
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figures are due to the fact that they represent differences in objective function values that range
between [0, 1] for efficiency and [1/N, 0.5] for robustness, as reported in §2(c).

(v) Baselines

The baselines we compare against are detailed below and represent several prior methods
discussed in §2(d). All of the techniques, including our proposed algorithm, solve the problem
approximately, since no methods currently exist to solve the problem exactly beyond the smallest
of graphs. We do not consider previous RL-based methods such as [12] directly, since they are
unsuitable for training at the scale of the largest graphs considered in this work.

— Random (Fg, Fr): Randomly selects an available action.

— Greedy (Fg, Fr): A local search that selects the edge that gives the biggest improvement
in F: formally, it adds the edge (i, j) that satisfies argmax; ; gain(i, j) to the graph structure.
This approach builds a shallow search tree of depth two, evaluating the objective function
for all leaf nodes. We also evaluate the cost-sensitive variant GreedyCS, for which the gain
is offset by the cost: argmax; ; (gain(i, j)/c(i, ).

— MinCost (Fg, FRr): Selects edge (i, j) that satisfies argmin; ; c(i, j).

— LBHB (Fg): Adds an edge between the node with Lowest Betweenness and the node
with Highest Betweenness; formally, letting the betweenness centrality of node i be g;,
this strategy adds an edge between nodes argmin; g; and argmax; g;.

— LDP (FR): Adds an edge between the vertices with the lowest degree product, i.e. vertices
i,] that satisfy argmin;; d; - d;.

— FV (Fr): Adds an edge between the vertices 7, j that satisfy argmax;; |y; — y;|, where y is
the Fiedler Vector [16,60].

— ERes (FR): Adds an edge between vertices with the highest pairwise effective resistance,
i.e. nodes i,j that satisfy argmax; ; £2; ;. £2; is defined as (LY + (ﬁ_l)jj — Z(E_l)ij, where
£~V is the pseudoinverse of the graph Laplacian £ [17].

(b) Evaluation results

(i) Synthetic graph results

In this experiment, we consider 50 KH graphs each of sizes {25,50,75}. The obtained results are
shown in the top half of table 2. We summarize our findings as follows: SG-UCT outperforms
UCT and all other methods in all the settings tested, obtaining 13% and 32% better performance
than UCT on the largest synthetic graphs for the efficiency and robustness measures respectively.
For Fr, UCT outperforms all baselines, while for Fr the performance of the Greedy baselines is
superior to UCT. Interestingly, MinCost yields solutions that are superior to all other heuristics
and comparable to search-based methods while being very cheap to evaluate. Furthermore, UCT
performance decays in comparison to the baselines as the size of the graph increases.

(ii) Real-world graph results

The results obtained for real-world graphs are shown in table 3. As with synthetic graphs, we
find that SG-UCT performs better than UCT and all other methods in all settings considered in
the evaluation. The aggregated differences in performance between SG-UCT and UCT are 10%
and 39% for Fr and Fg, respectively.

(iii) Ablation study

Since SG-UCT comprises three components that are active at the same time as defined in §3(b),
we conduct an ablation study on synthetic graphs in order to assess their impact. To achieve
this, we consider standard UCT and enable each of the three components in turn, measuring the
performance of the algorithm. The obtained results are shown in table 4, where the results for each
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Table 2. Gains in the values of the objective function F between the optimized and the original graphs obtained by baselines,
UCT and SG-UCT on synthetic graphs.

objective Fr Fr
V| 25 50 75 25 50 75
Random 0.128 4= 0.008  0.089 & 0.005 0.077 & 0.004 0.031 £ 0.002  0.033 £ 0.002  0.035 + 0.002

component are separated by the horizontal lines. SG-UCTpT\ denotes UCT with best trajectory
memoization, SG-UCTyincost denotes UCT with the cost-based default policy, SG-UCTy 4 for g
in {40, 60,80} denotes UCT with a particular reduction policy ¢, and g represents the percentage
of original nodes that are selected by ¢.

We find that BTM indeed brings a net improvement in performance: on average, 5% for Fg
and 11% for Fgr. The benefit of the cost-based default policy is substantial (especially for Fg),
ranging from 4% on small graphs to 27% on the largest graphs considered, and increases the
higher the level of bias. This is further evidenced in figure 4, which shows the average reward
obtained as a function of 8. This illustrates that the cost-based simulation policy yields the largest
gains in the value of the objective function out of all the three algorithmic components. In terms
of reduction policies, even for a random selection of nodes, we find that the performance penalty
paid is comparatively small: a 60% reduction in actions translates to at most 15% reduction in
performance, and as little as 5%; the impact of random action reduction becomes smaller as the
size of the network grows. The best-performing reduction policies are those based on a node’s
gains, with BECS and AECS outperforming UCT with no action reduction. For the Fy objective, a
poor choice of bias can be harmful: prioritizing nodes with high degrees leads to a 32% reduction
in performance compared to UCT, while a bias towards lower-degree nodes is beneficial.

(c) Execution time and scalability

An important aspect to consider is the computational time needed to decide which edges to be
added. The wall clock time for a complete run of the algorithms on the real-world graphs is shown
in table 5 and is measured on a single core of an Intel Xeon E5-2630 v3 (2014) processor.

A distinction between heuristic and search-based methods is immediately apparent. The
former methods, which do not evaluate the objective directly but instead rely on local or spectral
properties, result in timings that do not exceed a few seconds. The latter category, comprising the
greedy and tree search variants, require larger timescales. Within this category, the cost-sensitive
methods (GreedyCS and SG-UCT) typically require more time compared to their cost-agnostic
counterpart. This is due to longer action sequences resulting in more edges being added and
hence more simulations being performed, as well as the overheads introduced for computing
pairwise distances and using them to weight edge choices.

In order to further probe the scaling behaviour of the search-based approaches, we carry out
an experiment using synthetic KH graphs of sizes between N =25 and N =200. Each column
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Table 4. Ablation study that examines the impact of the three components of SG-UCT by enabling each of them separately
in standard UCT. The components are best trajectory memoization, the MINCOST simulation policy, and the various choices of
a reduction policy. The results are separated by horizontal lines. Each value represents the gain in the value of the objective
function F between the optimized and the original graphs.

objective Fr Fr
V| % ) 75 % ) 75
0288 4+ 0.003 0307 = 0.003 0311 £0.003 0.092 4 0.001 0.112 4 0.002  0.120 4= 0.001

0.304 £ 0.001  0.324 +0.002  0.324 £ 0.002

‘7:E FR
0.30 0.16
N
T 025 0.14 — 5
N —
o /"
S 020 0.12 2
|
0.15 0.10 /
0 10 20 0 10 20
B B

Figure 4. Average reward for SG-UCTyncost @s a function of B, which suggests a bias towards low-cost edges is beneficial.

in figure 5 analyses a different metric for the Greedy and UCT variants; namely, the total and
mean wall clock time per search step, as well as the total and mean number of objective function
evaluations. As shown in the third panel, it is indeed the case that the cost-sensitive searches
typically perform more objective function evaluations, an aspect that is reflected in their total
wall clock timings (first panel). Furthermore, the UCT variants are noticeably slower on the
smaller graphs, which is explained by the increased number of simulations compared to the
greedy searches. Nevertheless, an advantage of UCT is that the user is able to use a simulation
budget that suits their requirements, different from the 20N simulations used throughout our
experiments. However, on the largest graphs, the greedy approaches begin performing more
objective evaluations per step (fourth panel), and hence the wall clock timings per search step
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total seconds mean seconds per step total F evaluations mean F evaluations per step
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Figure 5. Wall clock time (leftmost two columns) and number of objective function evaluations (rightmost two) used by the
different algorithms on synthetic graphs.

are also smaller (second panel), becoming nearly identical on the largest of graphs. This is due to
the fact that the Greedy approaches need to consider O(|V|)? actions at each step compared to the
O(]V]) required by UCT and SG-UCT, and this difference begins to manifest at larger scales.

Let us now revisit the claim in §1 regarding superior scalability with respect to prior
reinforcement learning methods, which require training a model before it can be used to improve
a particular network. Namely, Darvariu ef al. [12] reports a wall clock time that is equivalent to
56 h of a single core of a comparable CPU to train a model on graphs of size N =20 and, due
to the complexity of the problem, does not train models directly beyond graphs with N =50. By
contrast, on similar computational infrastructure, our proposed SG-UCT requires 11 h on average
to optimize a much larger graph with N =200 nodes. Hence, in cases where we are interested
in improving a particular network, our proposed method yields an important improvement in
scalability by sidestepping the cost of model training altogether.

Given the timings above, we expect our method to be applicable out-of-the-box to graphs
with several hundreds of nodes. Apart from code-level optimizations, it is possible to speed
up the computation of the objective functions by exploiting their incremental structure (see
footnote 2), using cheaper proxy quantities (i.e. the various spectral indicators of resilience, which
can circumvent needing to run simulations), or learning an approximate model of such global
processes. Root and leaf parallelization in MCTS [24] can also be employed to speed up individual
runs. Beyond this scale, it may be necessary to consider different levels of abstraction (for
example, by treating the problem hierarchically). Due to the inherent difficulty of combinatorial
optimization problems, current solutions are generally limited to this scale.

We also remark that there naturally exists a trade-off between the computational cost of the
methods and their ability to improve the values of the given objective function. Namely, heuristics
can be evaluated very quickly but yield smaller improvements compared to the search-based
methods, which require more computational time. However, the type of infrastructure networks
(such as road, rail or wired communication networks) motivating our work are very expensive to
build in practice. We argue that finding a solution as close as possible to optimality is worthwhile,
since the additional simulation cost would be negligible compared to actions in the real world,
such as laying down roads or tracks characterized by sub-optimal layouts.
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5. Discussion

Given our formulation of goal-directed graph construction in spatial networks as a combinatorial
optimization problem, we note that other generic optimization algorithms can in principle be
used. The Greedy approaches used for comparison are local searches over a horizon of two
actions, in effect constructing a shallow search tree in which the objective function is evaluated
for all the leaf nodes. Approaches such as branch-and-bound share some similarities since
they also construct a tree of the solution space. However, to the best of our knowledge, no
meaningful bounding criteria exist for the considered objectives. In such cases, branch-and-bound
degenerates to an exhaustive search, which cannot be performed beyond the smallest of graphs.

Our work is also related to a large body of prior work in network design and optimization [61].
Such works formulate the problem under consideration as a mathematical program on a case-
by-case basis, for which known combinatorial solvers can be applied. By contrast, our method
is generic and makes no assumptions about the objective at hand. In principle, any objective
function defined on a spatial graph is admissible, allowing our method to optimize for complex,
nonlinear objectives that may arise in the real world (the resilience of the network to targeted
attacks is one example of such a nonlinear objective). Furthermore, our method can be applied to
objectives for which no solutions are currently known without the expertise required to cast the
problem as a mathematical program. Necessarily, the generic nature of our method means that it
may perform worse on certain specific problems with linear constraints and objectives. The trade-
offs arising from the use of generic machine learning and decision-making algorithms is a topic
of ongoing debate in the combinatorial optimization community [62], and we view these classes
of methods as complementary.

6. Conclusion

In this work, we have addressed the problem of spatial graph construction: namely, given an
initial spatial graph, a budget defined in terms of edge lengths and a global objective, finding a
set of edges to be added to the graph such that the value of the objective is maximized. For the first
time among related works, we have formulated this task as a deterministic MDP that accounts for
how the spatial geometry influences the connections and organizational principles of real-world
networks. Building on the UCT framework, we have considered several aspects that characterize
this problem space and proposed the SG-UCT algorithm to address them.

Our evaluation results show performance substantially better than UCT (24% on average and
up to 54% in terms of a robustness measure) and all the existing baselines taken into consideration,
while requiring a computational budget similar to other search-based methods. More broadly,
our approach brings an important improvement in scalability with respect to recent work in
deep reinforcement learning for goal-directed graph construction, both in terms of network size
that the method can operate on as well as reduced computational cost. We hope that our work
will be used by infrastructure designers and urban planners as a basis for the design of more
cost-effective infrastructure systems such as communication, power, transportation and water
distribution networks.
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