
30 June 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Prasad, R., Das, S., Martin, K.J.M., Tagliavini, G., Coussy, P., Benini, L., et al. (2020). TRANSPIRE: An
energy-efficient TRANSprecision floating-point Programmable archItectuRE. Institute of Electrical and
Electronics Engineers Inc. (IEEE) [10.23919/DATE48585.2020.9116408].

Published Version:

TRANSPIRE: An energy-efficient TRANSprecision floating-point Programmable archItectuRE

Published:
DOI: http://doi.org/10.23919/DATE48585.2020.9116408

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/763661 since: 2020-07-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.23919/DATE48585.2020.9116408
https://hdl.handle.net/11585/763661

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

R. Prasad et al., "TRANSPIRE: An energy-efficient TRANSprecision floating-point
Programmable archItectuRE," 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Grenoble, France, 2020, pp. 1067-1072

The final published version is available online at
https://dx.doi.org/10.23919/DATE48585.2020.9116408

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.23919/DATE48585.2020.9116408

TRANSPIRE: An energy-efficient TRANSprecision
floating-point Programmable archItectuRE

Rohit Prasad*†, Satyajit Das§, Kevin J. M. Martin*, Giuseppe Tagliavini†, Philippe Coussy*, Luca Benini†‡

and Davide Rossi†
*Univ. Bretagne-Sud, UMR 6285, Lab-STICC, F-56100 Lorient, France, [firstname].[lastname]@univ-ubs.fr,

†Electrical, Electronic, and Information Engineering, University of Bologna, Italy, [firstname].[lastname]@unibo.it
‡Integrated Systems Laboratory, ETH Zurich, Switzerland, [first-initial][last name]@iis.ee.ethz.ch
§Department of Computer Science and Engineering, IIT Palakkad, India, satyajitdas@iitkpd.ac.in

Abstract—In recent years, Coarse Grain Reconfigurable Archi-
tecture (CGRA) accelerators have been increasingly deployed in
Internet-of-Things (IoT) end nodes. A modern CGRA has to sup-
port and efficiently accelerate both integer and floating-point (FP)
operations. In this paper, we propose an ultra-low-power tunable-
precision CGRA architectural template, called TRANSprecision
floating-point Programmable archItectuRE (TRANSPIRE), and
its associated compilation flow supporting both integer and FP
operations. TRANSPIRE employs transprecision computing and
multiple Single Instruction Multiple Data (SIMD) to accelerate
FP operations while boosting energy efficiency as well. Exper-
imental results show that TRANSPIRE achieves a maximum
of 10.06× performance gain and consumes 12.91× less energy
w.r.t. a RISC-V based CPU with an enhanced ISA supporting
SIMD-style vectorization and FP data-types, while executing
applications for near-sensor computing and embedded machine
learning, with an area overhead of 1.25× only.

I. INTRODUCTION

In this emerging era of the Internet of Things (IoT),
there is an ever-increasing demand for ultra-low-power and
energy-efficient computing architectures. In this scenario, most
of the promising approaches to improve performance and
energy efficiency of these platforms exploit parallelism [23],
reconfigurability [6], and heterogeneity [11] to fit with the
workloads for near-sensor IoT end nodes. Studies of more
than a decade have shown that Coarse Grain Reconfigurable
Architectures (CGRAs) can provide silicon efficiency
approaching that of Application-Specific Integrated Circuit
(ASIC) by exploiting spatial computation typical of dedicated
hardware while keeping programmability typical of instruction
processors [5]. CGRAs were studied at first for accelerating
the inner loops computation of the kernels. Over the years,
they have evolved and are now competitive solutions in the
domain of high-performance accelerators [10], [16], [22].
Recently, the research community is pushing CGRAs towards
ultra-low-power low-end applications, such as near-sensor
processing and low power wearable applications [8], [11].
While recent CGRA architectures demonstrated leading
energy efficiency when executing fixed-point workloads,
floating-point (FP) support is becoming a must for emerging
IoT end nodes [1]. Although fixed-point representation has
some clear advantages in terms of energy per operation due
to the simpler architecture of integer arithmetic units over FP
counterparts [18], the latter is much more attractive, especially
in near-sensor processing domains such as bio-potentials,
often leveraging linear algebra algorithms featuring extremely

high dynamic range [20], but also in other fields, such as
audio and robotics [13]. First, porting fixed-point applications
to FP is not always neutral from a numerical stability
viewpoint, and is often a time-consuming task requiring
an in-depth understanding of the applications. Moreover,
even when it is straightforward to transform FP code into
its fixed-point counterpart, this is not necessarily the best
solution energy-wise, since the adjustments and normalization
instructions required to deal with the dynamic range might
incur significant overhead [20].

An emerging approach to reduce the power consumption
of FP operations while preserving the dynamic required
by applications without manual adjustments is transpre-
cision computing [24]. This paradigm aims at designing
systems which deliver the required precision for intermediate
computations given an accuracy bound specified by the user,
and leverages automated tools to associate reduced-precision
types to program variables [24]. An attempt towards
transprecision computing was made by introducing two
new custom FP data-types (binary16alt and binary8) and
a hardware unit called smallFloat Unit (SFU) [18], which
employs IEEE-754 binary32, binary16, and two new
data-types, namely binary16alt (featuring a higher dynamic
range vs. binary16) and binary8. Exploiting these data types
leads to significant improvement in terms of performance and
energy efficiency [18].

This work combines the principles of transprecision
computing with the flexibility of CGRA in exploiting
multi-datapath for high Instruction Level Parallelism (ILP) and
Data Parallelism (DP), to propose a high energy efficiency
low power FP-CGRA architecture. The proposed CGRA gains
10.06× performance and consumes 12.91× less energy over
a RISC-V CPU extended with SIMD-style vectorization and
executing same kernels using same FP data-types as of the
proposed CGRA. In this context, the contributions are:

• A heterogeneous CGRA architecture supporting both
integer and FP data types, and employing transprecision
computing, multi-cycle operations, and SIMD;

• Its associated compilation flow to efficiently exploit
parallelism between the FP operations at instruction level
leveraging static scheduling;

• A set of experimental results which provide comparisons
with different state-of-the-art architectures for
performance, energy consumption, and efficiency.

The rest of the paper is organized as follows. Section II
discusses the state-of-the-art architectures for FP acceleration
in CGRAs. Section III discusses the proposed architecture and
its compilation flow. Section IV shows experimental results
and comparisons. Finally, section V provides a conclusion.

II. RELATED WORK

Typically CGRAs are systolic arrays containing a large
number of PEs with simple interconnects. Thanks to this
design, they can efficiently exploit both instruction-level
parallelism (ILP) and data parallelism (DP). CGRAs have been
designed as accelerators coupled to a host CPU [6]; however,
the proposed solutions lack support for FP operations.
Research works have discussed the role of CGRAs to employ
approximate computing and SIMD, or even the adoption of
multiple approximation modes to further exploit DP. These
proposals also lack support for FP operations [3], [11].

In the past, very few works have been presented
where CGRAs are supporting FP operations because adding
support for FP operations imposes many restrictions on
the architecture. In FloRA [15] and Wave CGRA [21],
integer-based PEs are combined for computing FP operations.
This design results in low power consumption, but it increases
the width of interconnect and degrades the output quality.
In [4], Butter array reuses the integer-based adder and
multiplier with additional packing and rounding units for
computing FP multiplication and addition. These additional
units result in significant area overhead. Overall, these
architectures lack native support for FP operations. In [12],
a Stream Dual-Track-CGRA (SDT-CGRA) with flexible
interconnects is presented, to support different computation
models and to reduce the hardware complexity. SDT-CGRA
converts all FP input data into fixed-point before computing
the output; this demands extra overhead which comes from
these conversions. A common peculiarity in all of these
architectures is that the power consumption required to support
FP operations is too demanding for their adoption in IoT
end nodes or as ultra-low-power architectures. Recent trend
is to equip IoT platforms e.g., microcontroller units like M4
and M7 [2] with FP unit, this is because with the scaling of
technology below 40nm, the cost of an FP operation is getting
near 1pJ/op [19], [25], so it has become affordable in terms
of absolute power to use FP in IoT.

In view of these works, we exploit for the first time, to
the best of authors’ knowledge, a static mapping approach
to natively support FP operations in CGRA together with
transprecision computing to maintain the energy consumption
in the ultra-low-power domain.

III. TRANSPIRE AND COMPILATION FLOW

A. Architecture

1) CGRA Integrated System: Fig. 1c shows the
configuration of TRANSPIRE. The integrated system
consists of a 4 × 2 heterogeneous processing element (PE)
array, a DMA controller, and a context memory. TRANSPIRE
is loosely coupled with a host CPU, enabling it to execute
a complete kernel independently. Both TRANSPIRE and the
CPU share data through a Tightly Coupled Data Memory

Controller IS

RRF

LSU

CR ALU mSFU

OPR

CRF

FAGU

Op_A

Control bits to all

PEs
To and from memory

interconnect

To neighbouring

PEs

IRF

Op_B

DS

(a) PE with mSFU and DS

Shared common

modules

2x binary16alt modules

4x binary8 modules

(b) mSFU

CPU

Instruction

Cache

DMAC

SoC Bus

TCDM
Context Memory

PE_00 PE_01 PE_02 PE_03

PE_10 PE_11 PE_12 PE_13

(c) TRANSPIRE integrated system
CRF : Constant Register File CR : Condition Register

FAGU : Flexible Address Generation Unit OPR : OutPut Register

LSU : Load Store unit ALU : Arithmetic Logic Unit

RRF : Regular Register File mSFU : mini-smallFLoat Unit

IRF : Instruction Register File DS : Divide-Square-root Unit

IS : Instruction Synchronizer PE : Processing Element

PE

: Tile with ALU, mSFU, and DS PE

: Tile with ALU and mSFU

�

Fig. 1: TRANSPIRE integrated system and PE with mSFU
and DS

(TCDM), which consists of multiple memory banks connected
through a low-latency logarithmic interconnect. Before
execution, instructions and constants (i.e., configuration data)
of each PE are stored in the context memory, and then the
DMA controller sends these data to their respective PEs.

2) Heterogeneous PEs: The PEs are connected through a
mesh torus network for sharing data with adjacent PEs and
a bus network for context broadcast. Each PE includes an
ALU for integer-based operations and a mini-smallFloat unit
(mSFU) for FP operations.

Taking into consideration that divide and square-root
operations have limited occurrence, a Divide-Square-root
(DS) unit is introduced in the first three tiles to restrict
the unnecessary data movements. For example, in equation
out = (a ÷ b) ∗ (x +

√
y), the computations of (a ÷ b) and

(x +
√
y) can execute in parallel. If all PEs had a DS unit,

these parallel operations could be mapped into non-adjacent
PEs (say PE 00 and PE 12) and final multiplication operator
onto PE 00. To execute the final multiplication, data from
PE 12 would be moved into PE 00 requiring 3 MOV E
operations. Conversely, in the proposed PE arrangement choice
and assuming the worst case, those parallel operations are
mapped onto PE 00 and PE 02, and the final multiplication
onto PE 00. To perform the final multiplication data has to
be moved from PE 02 to PE 00, which requires 2 MOV E
operations only.

Operator Latency
(cycles)

Shared/
Private Data-type mSFU/

DS
float-absolute 1 Shared IEEE-754 binary32 mSFU
float-less-than 1 Shared IEEE-754 binary32 mSFU

float-add 2 Private binary16alt, binary8 mSFU
float-sub 2 Private binary16alt, binary8 mSFU
float-mul 2 Private binary16alt, binary8 mSFU

float-divide 5 Private binary16alt DS
float-square-root 5 Private binary16alt DS

TABLE I: FP operators in mSFU and DS.

DS mSFU (µm2) DS SFU (µm2)
Total 1,031 5,395

TABLE II: Total cell area of DS in TRANSPIRE and
RI5CY [18].

Each PE has a Constant Register File (CRF) to store
immediate values. A Regular Register File (RRF) and an
OutPut Register (OPR) store the temporary values. The
Instruction Synchronizer (IS) synchronizes the instructions;
it is flexible and currently supports 1-cycle, 2-cycles, and
5-cycles operations. After the IS has issued a fetch enable
signal, the Controller fetches the instructions from the
Instruction Register File (IRF). Load and Store instructions
carry the CRF addresses of the data required by the
Flexible Address Generation Unit (FAGU) for calculating the
addresses. These addresses are provided to the Load-Store Unit
(LSU), which performs memory accesses. The Jump Register
(JR) stores the target address of the jump instructions. In the
case of cjump (conditional jump) instructions, which include
two addresses, the true path is evaluated in the JR applying a
boolean OR on the bits of the Condition Register (CR).

3) mSFU: An mSFU includes 2 slices of binary16alt
units and 4 slices of binary8 units. The datapath is
32-bits wide, which enables TRANSPIRE to perform SIMD
operations for custom FP data types. The operators in the
mSFU are non-blocking and non-pipelined. Float-absolute
and float-less-than operators support the IEEE-754 binary32
format and are shared among these slices in mSFU. Table I
lists the employed FP operators and their latency.

4) DS unit: The DS unit brings support for bi-
nary16alt-based divide and square-root operators. DS units
have been stripped down from divide-square-root unit of
SFU [18] to support only binary16alt data-type and only one
rounding mode (truncation). Table I lists the latency of the
operators. After synthesizing both units in the 28nm FD-SOI
process node, it was observed that the DS unit is 5.23×
smaller than the divide and square-root unit in SFU which
supports 4 FP data types (i.e., IEEE-754 binary64, binary32,
binary16, binary16alt, and binary8) and 4 rounding modes.
Inherently, divide and square-root operators reuse the common
sub-modules, that enabled TRANSPIRE to include three DS
units without bringing significant area overhead. Total cell area
comparison is shown in Table II.

B. Compilation Flow
The compilation flow exploits the GCC front-end to get

the intermediate representation of the application code. The
original input C code needs to be modified to:

1) support hardware-based address generation in
FAGU; every variable is updated with global index

C code

GCC

compilation

CDFG

Multicycle

Operation

Serialization

Assembly code

Graph

Transformation

CGRA Model

Stochastic

Pruning

Scheduling &

Placement
Solutions?

Last Node?

Changes?

Last DFG?

No

FAIL

No

No

Yes

Yes

START
END

Fig. 2: Proposed Compilation Flow

representation i.e.,
V ariable[(i+A) ∗ (j +B)][(k + C) ∗ (l +D)]
where i, j, k, l are loop variables and A,B,C,D are
constants or variables;

2) exploit multi-datapath in CGRA and ease the mapping
process of the application for high ILP;

3) differentiate binary16alt and binary8 operations.
It is noteworthy that it only took a few hours to modify all
the kernels [IV-A] taken into account in this paper.

TRANSPIRE is modeled as a bipartite directed graph with
operator and register nodes. An application is modeled as a
Control Data Flow Graph (CDFG), which is itself comprised
of a Control Flow Graph (CFG) within which each Basic
Block (BB) represents a Data Flow Graph (DFG). A DFG is
a bipartite directed acyclic graph composed of operation and
data nodes. Arrows connecting the nodes in DFGs represent
data dependencies. The homomorphism between TRANSPIRE
and DFG makes the mapping of CDFG onto TRANSPIRE a
sub-graph finding problem. Fig. 2 represents the steps involved
in the proposed compilation flow.

After CDFG formation, each operation node in DFGs is
also checked for multi-cycle operations. If a node represents
a multi-cycle operation, then a graph transformation is
performed by adding as many dummy nodes as the number
of cycles required to perform that particular operation; for
instance, if an operation requires 5 cycles, then 4 dummy
nodes are added below that specific operation node. The
transformed graph is then passed to the Scheduling and
Binding step. While mapping multi-cycle operations on
TRANSPIRE, there are two main challenges to address, as
exemplified in the following C code:
i n t i , j , k ; f l o a t a [1 5] , b [1 5] , c [2 5 6] [2 3] , o u t ;
f o r (i = 1 4 ; i >= 0 ; i−−){

f o r (j = 0 ; j < 2 3 ; j ++){
f o r (k = 0 ; k < 256 ; k ++){

o u t = f a d d 1 6 a l t (a [i] , f m u l 1 6 a l t (b [i] , c [k] [j])) ;
}}}

1) All consecutive multi-cycle operations (e.g., fmul and
fadd in Fig. 3) should be mapped onto the same
PE, to eliminate the chances of undesirable MOV E
operations;

2) impose minimum restriction on the algorithm in terms
of resource availability (i.e., minimizing data routing by
mapping nodes which share data onto adjacent PEs).

b i c j k

a i

out

Cycle #1

Cycle #2

Cycle #3

Cycle #4

Cycle #5

Cycle #6
Mapping

Data dependency

load

PE_10

PE_00 PE

PE

store

fmul

dummy

0

fadd

dummy

1

loadload

Fig. 3: Mapping of DFG nodes onto PEs.

These challenges are addressed by: (1) carefully removing
unwanted nodes between two consecutive multi-cycle
operations which might cause MOV E operations; (2)
updating the algorithm for resource availability after a PE
has been locked for performing multi-cycle operation; (3)
immediately unlock that PE for mapping of the next operation,
without consuming any extra cycles.

Both scheduling and binding processes are done
concurrently; to avoid scaling up of available solutions,
stochastic pruning of the solution is performed before
proceeding to the next BB in CDFG [7], [9]. If a multi-cycle
operation is detected, then only the first encountered node
from the multi-cycle nodes chain is mapped using Levi’s
algorithm [17]; this mapping solution is then copied (static
mapping) onto other remaining nodes in the chain. Once all
BBs have been mapped, the compiler generates assembly
code for a single mapping of the CDFG.

Finally, the assembler combines the assembly code
produced by the compiler and the Instruction Set Architecture
(ISA) format to generate the machine code used for PEs
configuration. This machine code consists of instructions and
constants, which are sent to the IRF and CRF of the PEs.
Instructions also include the addresses of the indexes sent to
the CRF, used by FAGU for address calculation.

IV. EXPERIMENTS AND RESULTS

A. Evaluation Methodology

A set of applications has been chosen for performing the
experiments. These applications implement the fundamental
algorithms used in two domains relevant for ultra-low-power
systems, near-sensor computing and embedded machine
learning.

• PCA performs Principal Component Analysis. This
algorithm is used for seizure detection, which covers up
a wide range of Electroencephalography (EEG) signal
processing applications. PCA consists of 5 sequentially
executed kernels i.e., Mean Covariance, Householder,
Accumulate, Diagonalize, and Principal Component (PC).

• CONV implements a 5 × 5 convolution kernel. This
algorithm is used for image and audio processing
applications.

Kernel Operations
executed

Highest
loop iteration

Input Data
size (bits)

mean covariance 397,348 47,104 94,208
Householder 35,632 1,360 9,216
Accumulate 106,298 1,240 8,704
Diagonalize 74,987 2,368 9,216

PC 168,738 11,776 102,400
CONV 766,728 4,096 131,072
DWT 39,456 448 16,384
SVM 15,630 896 72,000

TABLE III: Complexity of kernels.

• DWT computes the Discrete Wavelet Transform. This
algorithm is used for Electrocardiography (ECG) analysis
applications.

• SVM is the prediction stage of a Support Vector Machine.
This algorithm is used as a classifier for predicting traffic
data, ECG, etc.

The complexity of these kernels is reported in Table III. PCA
is further split into five algorithmic kernels.

TRANSPIRE is evaluated against three architectures:
1) RI5CY FPU [14] is a 4-stage RISC-V CPU with support

for IEEE-754 binary32 FP data-type, for state-of-the-art
architecture comparison.

2) RI5CY SFU is a 4-stage RISC-V CPU with an
enhanced ISA supporting SIMD-style vectorization and
includes SFU [18], for comparison with state-of-the-art
architecture having similar features.

3) TRANSPIRE FPU is the version of TRANSPIRE
which supports IEEE-754 binary32 FP data-type, for
comparison of the same architecture which is IEEE
compliant and thus yield no quality degradation in
results. Organization of FP operators is the same as it is
in TRANSPIRE.

RI5CY [14] is an in-order 4-stage RISCV CPU which supports
SIMD extensions, custom instructions, and misaligned load
support; these features extensively reduce the bandwidth
requirements for data memory and increase the computational
efficiency. The core is highly optimized for DSP benchmarks,
so it is a good candidate for a fair comparison with
TRANSPIRE.

B. Quality of Results
Table IV shows the accuracy performance of binary16alt

and binary8 compared with IEEE-754 binary32 and binary16,
respectively, as they have the same dynamic range. Here, we
observe that accuracy loss is 9.03% for Accumulate kernel
due to extensive computations on sub-normal FP numbers
and 0.33% for Householder kernel due to fewer computations
involving sub-normal FP numbers.

C. Implementation Results
For the sake of comparison, we have taken into account

three parameters: performance, energy consumption, and area.
All experiments have been performed on a post-synthesis
netlist. The same parameters have been used for the synthesis
of the four architectures, namely a 28nm UTBB FD-SOI
process node, 50 MHz frequency, 0.6V operating voltage,
worst-case analysis corner (i.e., slow NMOS, slow PMOS,
125°C temperature, and low power low V t transistors).

Kernel Average deviation (%) Data-type
mean covariance 4.80 binary16alt

Householder 0.33 binary16alt
Accumulate 9.03 binary16alt
Diagonalize 5.49 binary16alt

PC 1.54 binary16alt
CONV 2.32 binary8
DWT 6.98 binary8
SVM 7.11 binary8

TABLE IV: Accuracy performance of TRANSPIRE

TRANSPIRE RI5CY
SFU

TRANSPIRE
FPU

RI5CY
FPU

DMA Controller 593 4 KiB 593 4 KiB
Interconnect 6,273 Instruction 6,273 Instruction

Context memory 9,345 Cache 9,345 Cache
TCDM 65,164 65,164

PE Array 186,407 174,230
Total 267,784 213,371 255,605 185,812

TABLE V: Total cell area (µm2) breakdown and comparison.

The Context Memory of TRANSPIRE is sized at 4 KiB
to fit the configuration data (i.e., instructions and constants).
The TCDM is sized at 32 KiB with 4 memory banks.
TRANSPIRE features 4×2 tiles, and each PE has a 21×64-bits
instruction memory, a 20 × 32-bits constant register file, and
a 32 × 8-bits regular register file. TRANSPIRE FPU is the
version of TRANSPIRE where the mSFU is replaced by a
Floating Point Unit (FPU) supporting IEEE-754 binary32, and
the DS unit is replaced by an IEEE-754 binary32 compliant
divide-square-root unit. Both configurations are big enough
to accommodate the binaries of the applications used for
benchmarking. The RI5CY SFU and RI5CY FPU has 4 KiB
of instruction cache and 32 KiB of data memory.

Table V shows a breakdown analysis of the total cell
area and performs a comparison of all four architectures.
TRANSPIRE is 1.25× bigger than RI5CY SFU, 1.05× bigger
than TRANSPIRE FPU, and 1.44× bigger than RI5CY FPU.
A complete area breakdown of PE with mSFU and DS is
shown in Fig. 4b. It can be observed that mSFU and DS take
9% and 4% of the total cell area of a PE respectively. It can
also be observed in Fig. 4a that FPU is only 1.09× bigger than
mSFU and IEEE-754 binary32 compliant divide-square-root
unit is 2.18× bigger than DS unit. When combined, FPU+DS
is 1.42× bigger than mSFU+DS.

D. Performance Results

Fig. 5 shows the performances of
TRANSPIRE (binary16alt), RI5CY SFU (binary16alt),

(a)
(b)

Fig. 4: (a) Total cell area comparison of FPU, mSFU, and DS
(b) Area breakdown of PE with mSFU and DS

Fig. 5: Performance of PCA kernels (IEEE-754 binary32 and
binary16alt data-types).

Kernel TRANSPIRE
binary8 (cycles)

RI5CY SFU
binary8 (cycles) Gain

CONV 268,179 1 455,097 5.43×
DWT 11,140 16,912 1.52×
SVM 11,408 114,747 10.06×

TABLE VI: Performance of TRANSPIRE and RI5CY SFU.

TRANSPIRE FPU (IEEE-754 binary32), and
RI5CY FPU (IEEE-754 binary32) architectures on running
PCA kernels. In Table VI, TRANSPIRE (binary8) and
RI5CY SFU (binary8) are compared by running CONV,
DWT, and SVM kernels. It is evident that TRANSPIRE
outperforms the other architectures: (1) TRANSPIRE FPU
does not support multiple SIMD because datapath is 32-bits
wide, thus less FP operations are executed per clock cycles;
(2) RI5CY SFU employs a 4-stage pipeline architecture yet
fails to surpass the average PE utilization of TRANSPIRE
i.e., 72% (PCA), 63% (CONV), 87.5% (DWT), and 47%
(SVM). RI5CY SFU can execute a maximum of 4 parallel
FP operations while TRANSPIRE can have a maximum of
32 parallel FP operations with an area overhead of 1.25×
only; (3) RI5CY FPU neither supports SIMD nor surpasses
the average PE utilization of TRANSPIRE with its 4-stage
pipeline architecture. TRANSPIRE achieves a maximum of
10.06× better performance w.r.t. RI5CY SFU.

E. Energy Consumption

Fig. 6 compares the energy consumption of
TRANSPIRE (binary16alt) with RI5CY SFU (bi-
nary16alt), TRANSPIRE FPU (IEEE-754 binary32),
and RI5CY FPU (IEEE-754 binary32) using PCA
kernels. Table VII shows a comparison between
TRANSPIRE (binary8) and RI5CY SFU (binary8) using
CONV, DWT, and SVM kernels, here TRANSPIRE consumes
12.91× less energy w.r.t. RI5CY SFU. It can be observed
that TRANSPIRE consumes the minimum energy among
these architectures:

• TRANSPIRE FPU performs non-vectored FP operations
on 32-bits wide operands, thus executes more instructions
and results in high energy consumption;

• RI5CY SFU have complex core w.r.t. TRANSPIRE
cores, thus greater energy consumption.

• RI5CY FPU perform non-vectored FP operations on
32-bits wide operands and have complex core w.r.t.
TRANSPIRE cores, thus consumes more energy.

Fig. 6: Energy consumption of PCA kernels (IEEE-754 bi-
nary32 and binary16alt data-types).

Kernel TRANSPIRE
binary8 (µJ)

RI5CY SFU
binary8 (µJ) Gain

CONV 3.036 21.506 7.08×
DWT 0.124 0.256 2.07×
SVM 0.123 1.588 12.91×

TABLE VII: Energy consumption of TRANSPIRE and
RI5CY SFU for CONV, DWT, and SVM.

Fig. 7 shows a comparison of energy efficiency i.e., Million
Operations Per Second Per milliWatt (MOPS/mW) between
TRANSPIRE and TRANSPIRE FPU. Since IEEE-754 bi-
nary32 is comparable with binary16alt, we considered PCA
kernels only. In the case of Householder and Diagonalize
kernels, the energy-efficiency is less compared to the
rest because these are high control intensive kernels due
to complex control flow constructs. TRANSPIRE reaches
a maximum of 224 MOPS/mW and TRANSPIRE FPU
reaches a maximum of 156 MOPS/mw, while RI5CY SFU
and RI5CY FPU have an overall energy-efficiency of 60
MOPS/mW and 24 MOPS/mW respectively.

V. CONCLUSION

This paper presents an ultra-low-power CGRA and its
associated compilation flow to perform acceleration of FP
applications. TRANSPIRE is heterogeneous and employs
transprecision computing, multi-cycle operations, and SIMD
for natively supporting FP operations. To efficiently accelerate
and execute FP operations, TRANSPIRE optimally exploits
ILP as well as DP. The compiler uses a static mapping
approach to map the FP operations onto PEs. As a result,
TRANSPIRE achieves 10.06× better performance gain and
12.91× less energy consumption w.r.t. RISC-V CPU with an
area overhead of 1.25× only.

REFERENCES

[1] STM32L4 MCU series: Excellence in ultra-low-power with perfor-
mance. STM32 Ultra Low Power MCUs, 2018.

[2] STM32H7 Dual Core World Most Powerful MCU. STM32H7 Series,
June, 2019.

[3] O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, and M. Shafique.
PX-CGRA: Polymorphic approximate coarse-grained reconfigurable ar-
chitecture. In DATE 2018, 2018.

[4] C. Brunelli, F. Garzia, D. Rossi, and J. Nurmi. A Coarse-grain
Reconfigurable Architecture for Multimedia Applications Supporting
Subword and Floating-point Calculations. J. Syst. Archit., 56(1), 2010.

[5] A. Carroll, S. Friedman, B. V. Essen, A. Wood, B. Ylvisaker, C. Ebeling,
and S. Hauck. Designing a Coarse-grained Reconfigurable Architecture
for Power Efficiency . 2007.

[6] S. Das, K. J. M. Martin, P. Coussy, and D. Rossi. A Heterogeneous
Cluster with Reconfigurable Accelerator for Energy Efficient Near-
Sensor Data Analytics. In ISCAS, pages 1–5, May 2018.

Fig. 7: Energy Efficiency comparison using PCA kernels.

[7] S. Das, K. J. M. Martin, P. Coussy, D. Rossi, and L. Benini. Efficient
mapping of cdfg onto coarse-grained reconfigurable array architectures.
In ASP-DAC 2017, 2017.

[8] S. Das, K. J. M. Martin, D. Rossi, P. Coussy, and L. Benini. An Energy-
Efficient Integrated Programmable Array Accelerator and Compilation
Flow for Near-Sensor Ultralow Power Processing. TCAD, 38(6), 2019.

[9] S. Das, T. Peyret, K. Martin, G. Corre, M. Thevenin, and P. Coussy. A
Scalable Design Approach to Efficiently Map Applications on CGRAs.
In ISVLSI, pages 655–660, July 2016.

[10] B. De Sutter, P. Raghavan, and A. Lambrechts. Coarse-Grained Re-
configurable Array Architectures. In Handbook of Signal Processing
Systems. Springer US, 2010.

[11] L. Duch, S. Basu, R. Braojos, G. Ansaloni, L. Pozzi, and D. Atienza.
Heal-wear: An ultra-low power heterogeneous system for bio-signal
analysis. IEEE CAS I: Regular Papers, 64(9):2448–2461, Sep. 2017.

[12] X. Fan, D. Wu, W. Cao, W. Luk, and L. Wang. Stream Processing
Dual-Track CGRA for Object Inference. IEEE Transactions on VLSI
Systems, 26(6), 2018.

[13] G. Frantz and R. Simar. Comparing Fixed and Floating Point DSPs.
SPRY061, Texas Instruments, 2004.

[14] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Grkaynak, and L. Benini. Near-threshold risc-v core
with dsp extensions for scalable iot endpoint devices. IEEE Transactions
on VLSI Systems, 25:27002713, Oct 2017.

[15] M. Jo, D. Lee, K. Han, and K. Choi. Design of a coarse-grained
reconfigurable architecture with floating-point support and comparative
study. Integration, the VLSI Journal, 47, Jan. 2013.

[16] S. Kim, Y. Park, J. Kim, M. Kim, W. Lee, and S. Lee. Flexible video
processing platform for 8k UHD TV. In 2015 IEEE Hot Chips 27
Symposium (HCS), pages 1–1, Aug. 2015.

[17] G. Levi. A note on the derivation of maximal common subgraphs of
two directed or undirected graphs. Calcolo, 9(4):341, Dec. 1973.

[18] S. Mach, D. Rossi, G. Tagliavini, A. Marongiu, and L. Benini. A
Transprecision Floating-Point Architecture for Energy-Efficient Embed-
ded Computing. In ISCAS, pages 1–5, May 2018.

[19] S. Mach, F. Schuiki, F. Zaruba, and L. Benini. A 0.80 pj/flop, 1.24
Tflop/sW 8-to-64 bit Transprecision Floating-Point Unit for a 64 bit
RISC-V Processor in 22 nm FD-SOI. In VLSI-SOC, 2019.

[20] F. Montagna, S. Benatti, and D. Rossi. Flexible, Scalable and Energy Ef-
ficient Bio-Signals Processing on the PULP Platform: A Case Study on
Seizure Detection. Journal of Low Power Electronics and Applications,
7(2):16, June 2017.

[21] C. Nicol. A Coarse Grain Reconfigurable Array (CGRA) for statically
scheduled data flow computing. WAVE Computing, 2016.

[22] C. Nicol. A Dataflow Processing Chip for Training Deep Neural
Networks. WAVE Computing, 2017.

[23] D. Rossi, I. Loi, F. Conti, G. Tagliavini, A. Pullini, and A. Marongiu.
Energy efficient parallel computing on the pulp platform with support
for openmp. In IEEEI 2014, 2014.

[24] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini. A
transprecision floating-point platform for ultra-low power computing.
In DATE 2018, 2018.

[25] B. Zimmer, R. Venkatesan, Y. S. Shao, J. Clemons, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. S. Emer, C. T. Gray, S. W. Keckler, and B. Khailany. A
0.11 pj/op, 0.32-128 tops, scalable multi-chip-module-based deep neural
network accelerator with ground-reference signaling in 16nm. In 2019
Symposium on VLSI Circuits, 2019.

