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Abstract—Solid tumour growth depends on a host of 

factors which affect the cell life cycle and extracellular 
matrix vascularization that leads to a favourable 
environment. The whole solid tumour can either grow or 
wither in response to the action of the immune system and 
therapeutics. A personalised mathematical model of such 
behaviour must consider both the intra- and inter-cellular 
dynamics and the mechanics of the solid tumour and its 
microenvironment. However, such wide range of spatial 
and temporal scales can hardly be modelled in a single 
model, and require the so-called multiscale models, defined 
as orchestrations of single-scale component models, 
connected by relation models that transform the data for 
one scale to another.  While multiscale models are 
becoming common, there is a well-established engineering 
approach to the definition of the scale separation, e.g., how 
the spatiotemporal continuum is split in the various 
component models.  In most studies scale separation is 
defined as natural, linked to anatomical concepts such as 
organ, tissue, or cell; but these do not provide reliable 
definition of scales: for examples skeletal organs can be as 
large as 500 mm (femur), or as small as 3 mm (stapes). Here 
we apply a recently proposed scale-separation approach 
based on the actual experimental and computational 
limitations to a patient-specific model of the growth of 
neuroblastoma. The resulting multiscale model can be 
properly informed with the available experimental data and 
solved in a reasonable timeframe with the available 
computational resources. 

 
keywords — Multiscale Model, neuroblastoma, Tumour 

growth modelling 

INTRODUCTION 
ancer's rising prominence as the second leading cause of 
death partly reflects the declining mortality rates of stroke 

and coronary heart disease, relative to cancer, in many 
countries. There were an estimated 19.3 million new cases and 
10 million cancer deaths worldwide in 2020 [1]. Therefore, 
cancer has a significant impact in all human societies. It is a 
complex and heterogeneous disease due to the variety of 
biological and mechanical factors at different scales: tumour, 
stroma, cellular, and subcellular/molecular. In solid tumours the 
stroma includes connective tissue and blood vessels [2]. The 
occurrence and development of cancer are highly regulated by 
the biomechanical properties and cellular composition of the 
tissue microenvironment [3]. Therefore, it is essential to 
understand the biomechanical cues that favour the development 
of a primary tumour from isolated or clustered cancer cells. 

Solid tumours in vivo exist in three main stages: the avascular, 
vascular, and metastatic phases. In the initial phase, namely the 
avascular stage, the primary mass grows quite rapidly due to 
cellular replication and the production of extracellular matrix. 
Beyond a certain size, it starts to compress surrounding tissues 
and organs. This primary tumour mass can achieve a few 
millimetres in diameter and its growth is strongly dependent on 
the mechanical properties of the extracellular 
microenvironment [4][5]. As the tumour grows, the cells at its 
centre undergo cell death due to a lack of nutrients, forming a 
necrotic core. However, beyond a certain stage, the tumour can 
develop its own vasculature by a process of angiogenesis. 
During this vascular phase, new blood vessels supply the 
tumour with nutrients and thus, enable rapid tumour growth. 
During the metastatic phase, some cancer cells migrate from the 
primary tumour, penetrate blood vessels, and ultimately, 
colonise distant sites [6]. 
Cancer cells can give rise to the above phenomena as an 
emergent outcome of a number of cellular phenotypic changes, 
or hallmarks: sustained proliferative signalling and evasion of 
growth suppressors, resistance to cell death, secretion of 
molecules inducing angiogenesis, replicative immortality, and 
their metastatic potential [7]. For example, many cell cycle 
proteins such as D-type and E-type cyclins are overexpressed 
or overactive in cancer cells, leading to uncontrolled 
proliferation [8]. The p53 tumour suppressor that triggers 
apoptosis in transformed cells is frequently mutated and 
subverted in cancer cells [9]. Various telomere maintenance 
mechanisms are associated with aggressive cancer types 
(including high-risk neuroblastoma) [10]. High expression of 
angiogenic factors by the cells in the tumour microenvironment 
is also common [11]. 
If the tumour is left untreated, it grows with a rate dependent on 
the genetic makeup of the tumour cells, the cell-to-tissue 
volume ratio (cellularity), and the extent of vascularisation. 
When treated with chemotherapy or radiotherapy, both the 
replication rates and cell death rates are altered by the treatment, 
to an extent that again, depends on the above factors and the 
actual pharmacokinetics (drug delivery in each part of tumour 
mass) [12].  
Computational models simulating biological processes are 
widely used to better understand the underlying mechanisms of 
biological phenomena, including cancer progression [13]. 
There are diverse approaches to model tumour growth, 
including discrete methods, continuous models, and hybrid 
models. Discrete models, such as agent-based or Cellular Potts-
based approaches, follow the fate of each single cell or each 
cohort of cells over time. Due to the computational costs 
associated with implementing these models, they cannot 
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capture aspects of tissue mechanics effectively and they can 
only model subdomains of the whole tumour [14]. Continuous 
models describe cancerous tissues as domains composed of 
multiple phases interacting with each other. Finally, hybrid 
models incorporate different aspects of discrete and continuous 
models [15]. Tumour models range from macroscopic models 
that describe volumetric tumour growth to others that enable 
simulation of important molecular processes. In this case, a 
cell’s proliferation and death rates are modulated by its 
genotype and phenotype, and by the therapeutics that reach the 
tumour cells. The modulation of cell proliferation and death 
rates by chemotherapeutic agents is best described in term of 
signalling pathways within a single cell, e.g., by intracellular 
models [16].  The effects of paracrine signalling, cell-to-cell 
physical interactions, and the local metabolic conditions (most 
importantly, oxygenation) are best described by multi-cellular 
models that represent the collective behaviour of a large cellular 
population [14]. Finally, the biomechanical interactions of the 
growing tumour with other organs, and the diffusion-reaction 
of metabolites are best represented at the whole-tumour scale. 
While in theory, it is possible to describe this entire process with 
a single mathematical model, in practice, there are limitations 
due to the resolution of the data used to parameterise the model 
and the computational power available to solve it numerically. 
Therefore, such a brute-force approach is impossible, unless the 
single-scale cancer model is extremely idealised [17]. Thus, 
most models of tumour growth comprise multiple component 
models, each describing the phenomenon at a specific space-
time scale [18] [19] [20]. In this work, we shift our attention 
from multiscale models to continuum-based models; a detailed 
review of cancer models can be found here [21] [22]. 
Continuous models have the potential to absorb patient-specific 
data, such as those coming from anatomical magnetic resonance 
imaging, diffusion tensor imaging and perfusion imaging [23]. 
Also, as multiple treatment protocols are made available, it is 
important to develop so-called Digital Twins, patient-specific 
computer models capable of predicting how a patient’s tumour 
will respond to different treatments, thereby enabling the 
possibility of informing personalised treatment plans. 
One major unresolved issue in developing such multiscale 
models concerns scale separation: how we split a multiscale 
model of a complex phenomenon into multiple models, each 
representing the phenomenon at a specific space-time scale. 
This critical decision is frequently neglected, and a scale 
separation is frequently adopted without justification, assuming 
a “natural” scale separation based on vague and qualitative 
anatomical concepts (cell, tissue, tumour). To the best of the 
authors’ knowledge, the first paper to raise the issue of scale 
separation in this context is [24]. More recently, a theoretical 
framework was proposed, but for a much narrower problem 
[25]. One of the authors introduced the problem in [26], and 
proposed a general approach in [27]. This paper uses a similar 
theoretical approach to analyse the scale separation of a tumour 
growth model [28].  
This study aims to explore the scale separation of a new 
multiscale tumour growth model being developed in the 
PRIMAGE project [29] to personalise the treatment of 
neuroblastoma patients, with the objectives of minimising the 

model complexity and respecting the experimental resolution 
and computational constraints that limit scale ranges. 

I. MATERIALS AND METHODS 
A. Scale separation 
In the following, a scale is defined in terms of grain and extent. 
The grain is the largest value between the lower limit of 
spatial/temporal resolution allowed by the instrumentation, and 
the smallest/fastest feature of interest to be observed. Similarly, 
the extent is the smallest value between the upper limit of 
spatial/temporal resolution (i.e., the region of interest in a four-
dimensional space) and the size of the largest/slowest feature of 
interest to be observed. The resolution is the smallest interval 
of a measured quantity that can still cause a change in the 
measurement result [26].  
Generally speaking, the mechanistic description of tumour 
growth spans a dimensional extent that goes from the molecular 
scale (10-10 m) to the whole-tumour scale (10-1 m), and 
temporally from fast chemical reactions (10-3 s) to the clinical 
follow-up (5 years, 108 s).  Since no experimental method has 
enough resolution to provide this spatiotemporal grain over 
such a large spatiotemporal extent, and since in any case, no 
computer has enough computational power to solve such a 
model, tumour growth models are almost always (explicitly or 
implicitly) multiscale models or macroscopic continuum 
models. 
In a way, even single-scale models are (implicitly) multiscale. 
Single-scale models typically describe only a portion of the 
extent with a grain larger than the smallest necessary grain.  
Everything beyond the extent considered is lumped into 
boundary conditions, and everything below the grain 
considered is lumped into constitutive equations. However, 
these lumping operations can be grossly inaccurate, and they 
hide some key elements of the process (all those above and 
below the scale of the model) that we might need to predict. The 
alternative is the use of explicitly multiscale models, which are 
orchestrations of single-scale models (component models) 
linked together by data transformation services (relation 
models) that transform the quantities at one scale to those at 
another scale (sometimes referred to as homogenization, when 
they transform from a small scale to a large one, and 
particularization, when they transform in the opposite 
direction). 
When designing a multiscale model, a key decision concerns 
scale separation, e.g., the grain and extent that each component 
model represents. In much of the literature, this operation is 
defined in terms of abstract, qualitative concepts rooted in 
anatomy or histology (tumour scale, tissue scale, etc). However, 
space-time is a continuum, and the decision to partition it into 
separate scales must be made based on the model’s purpose, the 
resolution of the instrumentation used to inform and validate 
the model, and the computational power available. The 
approach we propose to define scale separation, first described 
in [27], requires as the first step, the definition of a 
mathematical model that provides the infinite resolution 
idealisation of the multiscale model being developed. 
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B. Idealisation of tumour growth: macroscopic 
continuum model 

Neuroblastoma tumours comprise a large variety of cells. We 
assume that a cell’s type i in this case, is binary: cells 
originating from the neural crest (i = s) and those from radial 
glial cells (i = n).  Following the theory of cancer stem cells 
[30], we will consider the first group cancer Schwann cells, and 
the second cancer Neuroblast cells.  
The probability that a cell k in an untreated tumour changes its 
internal state 𝛾! to replication or death 𝜋"!, is a function of the 
cell’s type (𝐼!), its differentiation level (𝛼!), and the local 
concentration of the chemical species of interest (Sj): 
𝜋"!(𝑘(𝑋), 𝑡) = 𝜋"!,𝐼! , 𝛼! , 𝜏! , 𝑆#, … , 𝑆$, 𝑡0. (1) 

The probability that the cell proliferates or dies depends on the 
internal state of the cell and the chemical signals encoded by 
the concentration dynamics of specific chemical species Sj in 
the region of the cell.  These chemical species (Sj) are supplied 
to the tumour volume and consumed by the tumour cells: 
�̇�%(𝑋, 𝑡) = ∑  &∈()"

! 𝜒!
%(𝐼! , 𝛼! , 𝛾! , 𝜏! , 𝑡) +

																																			∑  &∈()"
! 𝜎!

%(𝐼! , 𝛼! , 𝛾! , 𝜏! , 𝑡), 

(2) 

where: 
- X is a generic point within the tumour, 
- t is the time, 
- �̇�% is the rate of change of chemical species j at point X of 

the tumour at time t, 
- 𝜒!

%  is the rate of consumption of the chemical species j by 
cell k, 

- 𝜎!
% is the rate of supply of the chemical species j by cell k, 

- 𝐼! is the type of cell k, 
- 𝛼! is the level of differentiation of cell k, from fully 

undifferentiated stem cells (𝛼  = 0), to fully differentiated 
cells (𝛼 = 1), 

- 𝛾! is the internal state of cell k, 
- 𝜏!  is the telomerase state of cell k, and 
- N is the number of cells inside the infinitesimal 

neighbourhood of point X (see definition below). 
The difference between the proliferation rate of cells of type i 
and differentiation state 𝛼, 𝑓*+,-, and the rate of cell death, 𝑓(

+,-, 
represents the rate of change of the number of cells of type i in 
the volume dVX: 

	r.
/0#(X, t) = f1.,2(X, t)-f/

.,2(X, t) = /3$
%&'(5,6)

/6
 . 

(3) 

The proliferation rate of cells of type i located within the 
infinitesimal volume dVX associated with point X at time t is: 

𝑟+
()"(8,9) = (:(

)*+;8,<,,…,<-,9>

(9
. 

(4) 

Ci represents the concentration of cells of type i, regardless of 
their differentiation level. Thus, the conservation of mass for 
the cells of type i can be written as: 
?:(

)*"(8,9)

?9
+ ∇ ⋅ B𝐶+

()"(𝑋, 𝑡) ?@(8,9)
?9

D = 𝑟+
()", (5) 

where dVX is its infinitesimal neighbourhood, u is the 
displacement of the extracellular matrix caused by the growth 
of the tumour and by its deformation against the surrounding 
tissues and organs at that point and at that time.   
The total volume of the tumour V at any point in time is due to 
the sum of the cellular volume and Extra-Cellular Matrix 

(ECM) volume. However, for a given level of cellularity, the 
ECM volume will change proportionally to the cellular volume. 
Since every cell has a similar volume, the cellular volume is 
proportional to the number of cells in the volume V, CV.  Thus, 
we can write: 

∂𝑉
∂𝑡 = 𝑘+- G

∂𝐶)

∂𝑡 H = 𝑘+- G
∂𝐶<)

∂𝑡 +
∂𝐶A)

∂𝑡 H 
(6) 

in which i represents the cell type and 	α  the differentiation 
state. 
If W is a topological space that represents the tumour volume, 
and X is a point in W, we will define dVX as an infinitesimal 
neighbourhood of X, which is any subset of W that includes an 
open set containing X and whose volume tends to zero. Thus, 
while continuous variables such as the concentration of a 
chemical species are associated with a generic point X, discrete 
variables like the number of cells are associated with the 
infinitesimal neighbourhood of X, dVX.  
Until now, we were considering tumour growth in the absence 
of treatment. Once a tumour is diagnosed, the oncologist can 
usually choose from a small number of alternative options for 
treatment. In theory, each of those treatments should slow 
down, or even reverse the tumour’s growth. In practice, this 
largely depends on the genetic makeup of the tumour. 
Considering this, the probability for cell k to change its internal 
state can be written as: 

𝜋"!
∗ (𝑘(𝑋), 𝑇C , 𝑡) = 𝜋"!,𝐼! , 𝛼! , 𝜏! , 𝑆#, … , 𝑆$, 𝑡0

⋅ 𝜋"!
9DEF9(𝑇C), 

(7) 

where 
𝜋"!
∗   is the cumulative probability of internal state change for 

cell k and Tl l = 1, L is the treatment type, in a scenario where 
multiple treatment options are available. 
Assembling all these equations, the mathematical model that 
describes the growth of the tumour defined above can be written 
as the equations below. 
 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝜋!!

∗ (𝑘(𝑋), 𝑇# , 𝑡) = 𝜋!!.𝐼$, 𝛼$, 𝜏$, 𝑆%, … , 𝑆&, 𝑡4 ⋅ 𝜋!!
'()*'(𝑇#)

𝑟+
,-"(𝑋, 𝑡) =

𝑑𝐶+
,-#.𝑋, 𝑆%, … , 𝑆&, 𝑡4

𝑑𝑡

�̇�.(𝑋, 𝑡) = :  
/∈,-"

$

𝜒$
.(𝐼$, 𝛼$, 𝛾$, 𝜏$, 𝑡) + :  

/∈,-"

$

𝜎$
.(𝐼$, 𝛼$, 𝛾$, 𝜏$, 𝑡)

𝑟+
,-"(𝑋, 𝑡) = 𝑓1+,*(𝑋, 𝑡) − 𝑓,

+,*(𝑋, 𝑡) =
𝑑𝐶+,-3(𝑋, 𝑡)

𝑑𝑡
∂𝐶+

,-"(𝑋, 𝑡)
∂𝑡

+ ∇ ⋅ D𝐶+
,-"(𝑋, 𝑡)

∂𝑢(𝑋, 𝑡)
∂𝑡

F = 𝑟+
,-"

∂𝑉
∂𝑡

= 𝑘+* H
∂𝐶-

∂𝑡
I = 𝑘+* H

∂𝐶4-

∂𝑡
+
∂𝑐5-

∂𝑡
I

 

(8) 
 

C. A multiscale framework for modelling growth of solid 
tumours 

In our multiscale framework, we divide the spatial domain of 
the tumour into three levels using a hybrid numerical approach 
(see Fig. 1). On the one hand, using patient-specific images of 
the geometry and the corresponding DTI-MRI biomarkers, we 
propose to develop a patient-specific Finite Element Model 
(FEM) of the whole tumour. From the extent of vascularisation, 
the spatiotemporal distribution of nutrients and oxygen in the 
tumour are computed. Through particularisation this 
information is used at the tissue scale to evaluate how cells 
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behave according to different levels of oxygen and nutrients, 
regulating cell proliferation, differentiation, hypoxia, and 
matrix formation. For this purpose, we propose to use an agent-
based model (ABM) to describe these behaviours, taking into 
consideration cell-cell and cell-matrix interactions. Each cell 
agent is evaluated individually to update cell state reflecting 
behaviours such as proliferation and apoptosis/necrosis 
according to the current cell state (including genetic/molecular 
factors) and the current condition of the local 
microenvironment (e.g., concentration of oxygen, 
chemotherapeutics drugs, cell crowding). Cell 
proliferation/death and matrix formation both influence 
emergent tumour growth. The growth of the reference volume 
explicitly simulated using this agent-based approach is 
incompatible with the other reference volumes in the model, 
inducing the mechanical residual strains/stresses characteristic 
of solid tumours [31]. By means of an iterative process, we 
guarantee the compatibility between different regions of the 
tumour. Consequently, the new spatial configuration of the 
matrix and the cell population will be computed by means of 
homogenization, which links the ABM to the macroscopic 
scale. 
 

D. Example of application: neuroblastoma 
Neuroblastoma (NB) is the most common extra-cranial 
paediatric solid tumour, accounting for 7% of childhood 
malignancies. Contrary to most other paediatric malignancies, 
high-risk NB is fatal in almost half of the patients diagnosed. 
NB arises from the primordial neural crest cells that form the 
sympathetic nervous system and is usually found around the 
adrenal glands [32]. Approximately, 60-70% of the cases are 
metastatic at presentation. NB is a strongly heterogeneous 
cancer, with strikingly different clinical outcomes. These 
characteristics are shared with many other cancer types, and 
hence NB can be considered a paradigm of the general cancer 
disease and an excellent context in which to validate novel 
developments aiming to be applicable in a large variety of 
cancers. The International Neuroblastoma Pathology 
Classification (INPC) classifies NB patients into those with 
favourable or unfavourable post-surgical histology. Depending 
on the Schwannian stroma development, tumours can be 
classified as Schwannian stroma–rich or poor. Three finer 
diagnostic categories of the former category are mature 
ganglioneuroma, intermixed ganglioneuroblastoma, and 
nodular ganglioneuroblastoma. Three categories of 
Schwannian stroma–poor neuroblastoma are: differentiated, 
poorly differentiated, and undifferentiated. As tumour 
aggressiveness is linked to the INPC histological features, in 
clinical practice, treatments for cases with different 
neuroblastic grades are quite different. 
 

E. Initial dimensional analysis 
Neuroblastomas can be as large as 800 cc (around 100 mm in 
diameter, assuming a spherical shape), or so small as to be 
barely segmented in an abdominal MRI (1.0 cc, 10 mm in 
diameter). The effect of chemotherapy on neuroblastoma cells 
can be modelled at the single-cell scale, so the extent here is 
around 10 mm. The grain should be that of the therapeutic 

molecule (assuming a molecular weight of 500 Da, the 
molecule size is around 5-10 nm). Therefore, the infinite 
resolution model would need to model a spatial extent up to 10-
1 m with a grain of 10-8 m. 
The definition of the temporal extent is more complex. 
Neuroblastoma patients typically receive up to three 
chemotherapy cycles, every eight weeks, so if the model is used 
to simulate the whole duration of the therapy, the temporal 
extent will be 24 weeks (107 s). The temporal grain is defined 
by the time required by specific biochemical reactions; while it 
is very difficult to be specific, these are usually of the order of 
10-2 s.  
So, the hypothetical infinite resolution model would span nine 
orders of magnitude both in time and space. This is clearly 
intractable, so a multiscale model is necessary. 
 

F. Limits to scale separation 
The upper and lower limits in space and time are dictated by the 
problem itself, as defined in the infinite resolution model. Thus, 
the spatial extent of the tumour model is set by the size of the 
solid tumour. The spatial grain of the tumour model is limited 
by the resolution of the medical imaging instrumentation that is 
used to define the 3D geometry of the tumour; assuming the 
modality is an MRI, the typical image resolution is 1–2 mm. 
The grain is also limited by the number of degrees of freedom 
(NDOF) that the finite element method can reasonably solve. 
Assuming the NDOF’s upper limit is 106, the average element 
size is around 1.5 mm. 
The temporal extent of the tumour model is the duration of the 
chemotherapy: up to 24 weeks. The experimental limitation on 
the grain is the minimum distance between two successive 
imaging controls; if we assume a CT scan is performed before 
each new chemotherapy cycle, a scan will be performed once 
every 1-3 months. The evolution of the tumour growth, as 
predicted by the model, show be provided, to be clinically 
relevant, with a granularity of at least two weeks. 
The extent of the tissue model is conveniently set at the same 
size as the grain of the tumour model (TABLE I). Note that here 
we refer to a model of behaviour and interactions between the 
microenvironment of the stroma and cells, or intercellular 
interactions, including cells that are native (e.g., Schwann cells) 
and non-native (i.e., potentially cancerous). This way we can 
avoid the need for a relation model here. However, a relation 
model remains necessary to interpolate between initial 
conditions. A tumour model with 300,000 elements requires the 
tissue model to run 300,000 times at each time step of the 
tumour model.   
Within the context of the PRIMAGE project, the tissue model 
is an ABM which needs to be implemented on a GPU node, and 
the available HPC system allows the simultaneous use of 100 
nodes with such configurations. Thus, we consider, for 
simplification, that we can afford to run 100 tissue models for 
each tumour time step. 
The relation model should partition the range of initial 
conditions into an appropriate number of bins. Similarly, we 
need a relation model that, when given the 100 predictions from 
the tissue model, can interpolate them to the 300,000 values 
required by the tumour model. 
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TABLE I 
Space-time grain and extent for the presented multiscale model. 

 Space Time 
Nickname Extent Grain Extent Grain 

Tumour 
Upper  
limit  
10^-1 m 

CT resolution  
10^-3 m  

Upper  
limit  
10^7 s 

imaging 
controls 10^5 s 

Solvable NDOF  
10^-3 m 

Time steps  
10^5 s  

Tissue 
From  
Tumour 
10^-3m 

cell size  
10^-5 m  From  

Tumour 
10^5 s 

Cultures  
controls  
10^3 s 

Solvable  
agents  
5*10^-5 m 

Time steps  
10^4 s 

Cell 
From  
Tissue 
10^-5 m 

Lower limit  
10^-8 m 

From  
Tissue 
10^5 s 

Lower limit  
10^-2 s  

      
The spatial extent of the tissue model is equal to the spatial grain 
of the tumour model. The grain of the tissue model is limited 
experimentally by the average cell size, and computationally by 
the number of autonomous agents the model can handle 
simultaneously. In a cube measuring 2 mm in each dimension, 
there are 8 million cells with a diameter of 10 microns, but 
assuming that cells occupy only 80% of the tissue volume in 
neuroblastoma, we need 6.400,000 agents. 
The temporal extent of the tissue model is equal to the temporal 
grain of the tumour model. The temporal grain of the tissue 
model is limited computationally by the maximum time step 
that ensures an acceptable discretisation error for the tissue 
model.  
The spatial and temporal extents of the tissue model are 
respectively equal to the spatial and temporal grain of the 
tumour model. The probabilistic and phenomenological nature 
of the cell model does not require mechanistic modelling of 
molecules; thus, this model has no grain, strictly speaking. The 
cell model is not coupled to the tissue model. It is run once, 
separately, taking as its inputs the genetic markers of the tumour 
and the list of chemotherapeutic options, and returning the 
probability with which each drug will amplify or suppress each 
cellular pathway. In particular, in the tissue model, the rates of 
cellular events such as replication or cell death will be altered 
according to the probabilities that the cell model predicts for the 
relevant pathways.  
Based on this analysis, the presented neuroblastoma multiscale 
model can be summarised with a scale separation map (Fig. 1). 
The main variables that are exchanged between the scales are 
illustrated by Fig. 1. The concentrations of chemical species, 
�̇�%(𝑋, 𝑡), are sampled and interpolated between the tissue and 
tumour scales. The volume (V) is sampled from Tumour to 
tissue and the variation of volume over time (?)

?9
) is interpolated 

back from tissue to Tumour. The Cell scale provides the tissue 
scale with the probability of an agent changing its internal state 
depending on the therapeutic option chosen (𝜋"!

∗ ).  
 

 
Fig. 1. Scale separation map for multiscale tumour growth model.  

DISCUSSION 

The aim of this study was to find the scale separation of a new 
multiscale tumour growth model that minimises the modelling 
complexity, while respecting the experimental resolution and 
computational constraints that limit the scale ranges. To this 
end, we used an approach first proposed in [27], which tackles 
the problem by considering a multiscale model as an 
engineering construct, optimised on the basis of the 
experimental and computational limitations imposed by the 
available methods, rather than on the basis of abstract 
mathematical considerations. 
To evaluate the difference in expected accuracy between the 
approach presented herein for the scale separation and the 
idealised model we would have to solve the latter at least once, 
which is currently impractical. It is possible, however, to 
calculate the error introduced by the particularisation step, by 
solving at least once the whole multiscale model without using 
any binning strategy for particularisation, assuming that one 
instance of the ABM will be run for each Finite Element in the 
Tumour scale model and then comparing the outcome to a 
simulation that includes fewer ABM instances using a binning 
strategy for interpolation of the results back to the Tumour scale 
model. The details of the quantification of the error resulting 
from the particularisation step fall outside of the scope of this 
paper and are described in [34]. It is reasonable to expect that 
this step is the most critical in terms of predictive accuracy. For 
a large volume, the reduction of hundreds of thousands of finite 
elements into only a hundred ABMs is surely a major 
simplification; while more sophisticated sampling and 
interpolation techniques can reduce the impact on accuracy, the 
particularisation step becomes, for large tumours, so brutal that 
large predictive errors are unavoidable. In this sense, the race 
for exascale computing is helpful: the pre-exascale Summit 
supercomputer at Oak Ridge National Laboratory (USA) has 
27,648 NVIDIA Tesla GPUs; by contrast, in Europe, the pre-
exascale Leonardo supercomputer, to be installed at CINECA 
(Italy) before the end of 2021, will offer 13,824 NVIDIA A100 
GPUs; these new GPUs are expected to be at least two to three 
times faster than the Tesla GPUs. 
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The main limitation of the multiscale cancer model we 
described is that, at the moment, it lacks a single-cell 
component model that can use the genomic data obtained from 
a tumour biopsy to predict the replication and apoptotic rates 
for the various cell types, as well as the effects of different 
chemotherapeutic drugs on these rates. Another limitation is 
that we are not considering metastasis which is the spread of 
cancer cells to other tissues and organs [33]. However, the scale 
separation approach, which is the main focus of this paper, is 
effective for designing multiscale models of solid tumour 
growth. 
Every paper that describes a multiscale model should provide a 
justification for its scale separation based on the resolution of 
the experimental methods available to inform the model, and 
the computational power available for its solution. 
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