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Liquidity is a liveness property of programs managing resources that pinpoints those 
programs not freezing any resource forever. We consider a simple stateful language whose 
resources are assets (digital currencies, non fungible tokens, etc.). Then we define a type 
system that tracks in a symbolic way the input-output behavior of functions with respect 
to assets. These types and their composition, which define types of computations, allow 
us to design two algorithms for liquidity that have different precisions and costs. We also 
demonstrate the correctness of the algorithms.
© 2023 The Author. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The proliferation of programming languages that explicitly feature resources has become more and more significant in 
the last decades. Cloud computing, with the need of providing an elastic amount of resources, such as memories, processors, 
bandwidth and applications, has pushed the definition of a number of formal languages with explicit primitives for acquiring 
and releasing them (see [1] and the references therein). More recently, a number of smart contracts languages have been 
proposed for managing and transferring resources that are assets (usually, in the form of digital currencies, like Bitcoin), 
such as the Bitcoin Scripting [5], Solidity [10], Vyper [12] and Scilla [17]. Even new programming languages are defined 
with (linear) types for resources, such as Rust [13].

In all these contexts, the efficient analysis of properties about the usage of resources is central to avoid flaws and bugs of 
programs that may also have relevant costs at runtime. In this paper, we focus on the liquidity property: a program is liquid 
when no resource remains frozen forever inside it, i.e. it is not redeemable by any party interacting with the program. For 
example, a program is not liquid if the body of a function does not use the resources transferred during the invocation by 
the caller. A program is also not liquid if, when it terminates, there is a resource that has not been emptied (i.e. its value 
is not 0). Liquidity has been studied in the past and different notions exist in the literature. The notion of liquidity that 
we study is the so-called multiparty strategyless liquidity in the taxonomy of [3,2] where it is assumed that all the contract’s 
parties cooperate by actually calling the functions provided by the contract. Section 6 contains a detailed discussion.

We analyze liquidity for a simple programming language, a lightweight version of Stipula, which is a domain-specific 
language that has been designed for programming legal contracts [9,8,14]. In Stipula, programs are contracts that transit from 
state to state and a control logic specifies what functionality can be invoked by which caller; the set of callers is defined 
when the contract is instantiated. Resources are assets (digital currencies, smart keys, non-fungible tokens, etc.) that may 
be moved with ad-hoc operators from one to another.

E-mail address: cosimo.laneve@unibo.it.
https://doi.org/10.1016/j.jlamp.2023.100889
2352-2208/© 2023 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jlamp.2023.100889
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2023.100889&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:cosimo.laneve@unibo.it
https://doi.org/10.1016/j.jlamp.2023.100889
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


C. Laneve Journal of Logical and Algebraic Methods in Programming 135 (2023) 100889
Table 1
Syntax of Stipula (X are assets, fields and parameters names).

Functions F ::= @Q A : f(y)[k] { S } => @Q′
Prefixes P ::= E → x | E → A | c × h� h′ | c × h� A // 0 < c ≤ 1
Statements S ::= -- | P S | if (E) { S }else { S } S
Expressions E ::= v | X | E op E | uop E
Values v ::= n | false | true

Our analyzer is built upon a type system that records the effects of functions on assets by using symbolic names. Then 
a correctness property, whereby the (liquidity) type of the final state of a computation is always an over-approximation of 
the actual state, allows us to safely reduce our analysis arguments to verifying if liquidity types of computations have assets 
that are empty.

We identify two liquidity properties. The first one is k-separate liquidity: if an asset k becomes not-empty in a state then 
there is a continuation where k is empty in its final state. While k-separate liquidity is satisfactory in contracts where assets 
are separated (no asset field is moved to another asset field, for instance when pairwise different assets have different 
categories, e.g. euros, cars, houses), it is inadequate in unrestricted contracts that move assets between asset fields. In these 
cases, the following stronger property is more reasonable: if an asset becomes not-empty in a state then there is a continuation 
where all the assets are empty in its final state.

Finally, we design two analysis algorithms with different computational costs and precision accuracies: one for k-separate 
liquidity and the other for liquidity. It turns out that the computational cost of such algorithm is quadratic with respect to 
the number of functions. The second algorithm is more precise because, for instance, it accepts contracts that empty assets 
by means of several function invocations. However, more precision requires more complexity because one has to analyze 
computations. The crucial issue of the analysis is therefore designing a terminating algorithm given that computations may 
be infinitely many because contracts may have cycles. For this reason we restrict to computations whose length is bound by a 
value (actually we found more reasonable computations where every function can be invoked a bounded number of times). 
The computational cost of k-separate liquidity and liquidity algorithms is higher than the previous case: it is exponential 
with respect to the number of functions.

The structure of the paper is as follows. The lightweight Stipula language is introduced in Section 2 and the semantics is 
defined in Section 3. Section 4 reports the theory underlying our liquidity analyzer and Section 5 illustrates the algorithms 
for verifying k-separate liquidity and liquidity. We end our contribution by discussing the related work in Section 6 and 
delivering our final remarks in Section 7. To ease the reading, the technical material has been reported in the Appendix.

This paper is an extended and revised version of [7] that also includes the analysis of k-separate liquidity and the design 
of the algorithms for k-separate liquidity and liquidity. The paper also contains the proofs of the statements.

2. The Stipula language

We use disjoint sets of names: contract names, ranged over by C, C′ , · · · ; names referring to digital identities, called par-
ties, ranged over by A, A′ , · · · ; function names ranged over by f, g, · · · ; asset names, ranged over by h, k, · · · , to be used both 
as contract’s assets and function’s asset parameters; non asset names, ranged over by x, y, · · · , to be used both as contract’s 
fields and function’s non asset parameters. Assets and generic contract’s fields are syntactically set apart since they have 
different semantics; similarly for functions’ parameters. Names of assets, fields and parameters are generically ranged over 
by X . Names Q, Q′ , · · · will range over contract states. To simplify the syntax, we often use the vector notation x to denote 
possibly empty sequences of elements. With an abuse of notation, in the following sections, x will also represent the set
containing the elements in the sequence.

The code of a Stipula contract is1

stipula C { parties A fields x assets h init Q F }

where C identifies the contract name; A are the parties that can invoke contract’s functions, x and h are the fields and the 
assets, respectively, and Q is the initial state. The contract body also includes the sequence F of functions, whose syntax 
is defined in Table 1. It is assumed that the names of parties, fields, assets and functions do not contain duplicates and 
functions’ parameters do not clash with the names of contract’s fields and assets.

The declaration of a function highlights the state Q when the invocation is admitted, who is the caller party A, and the 
list of parameters. Function’s parameters are split in two lists: the formal parameters y in brackets and the asset parameters k
in square brackets. The body { S } => @Q′ specifies the statement part S and the state Q′ of the contract when the function 
execution terminates. We write @QA:f(y)[k]{ S }=>@Q′ ∈ C when F contains @QA:f(y)[k]{ S }=>@Q′ and we will 
often shorten the above predicate by writing Q A.f Q′ ∈ C. Stipula does not admit internal nondeterminism: for every Q, A and
f, there is at most a Q′ such that Q A.f Q′ ∈ C.

1 Actually this is a lightweight version of the language in [9].
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Statements S include the empty statement -- and different prefixes followed by a continuation. Prefixes P use the two 
symbols → (update) and � (move) to differentiate operations on fields and assets, respectively. The prefix E → x updates 
the field or the parameter x with the value of E – the old value of x is lost – it is destroyed; E → A sends the value of 
E to the party A. The move operations c × h � h′ and c × h � A define actions that never destroy resources. In particular, 
c ×h � h′ subtracts the value of c ×h to the asset h and adds this value to h′ , where c is a constant with 0 < c ≤ 1. Notice 
that, because of this constraint, h − c × h is always non-negative. It is also worth to notice that, according to the syntax, 
the right-hand side of → in E → x is always a field or a non-asset function parameter, while the right-hand side of � in 
c × h � h′ is always an asset (the left-hand side is an expression that indicates part of an asset). The operation c × h � A
subtracts the value of c × h to the asset h and transfers it to A.

Statements also include conditionals if (E) { S } else { S ′ } with the standard semantics. In the rest of the paper we will 
always abbreviate 1 × h � h′ and 1 × h � A (which are very usual, indeed) into h � h′ and h � A, respectively.

Expressions E include constant values v , names X of either assets, fields or parameters, and both binary and unary 
operations. Constant values are

• real numbers n, that are written as nonempty sequences of digits, possibly followed by “.” and by a sequence of digits 
(e.g. 13 stands for 13.0). The number may be prefixed by the sign + or -. Reals come with the standard set of binary 
arithmetic operations (+, -, ×) and the unary division operation E/c where c �= 0, in order to avoid 0-division errors.

• boolean values false and true. The operations on booleans are conjunction &&, disjunction ||, and negation !.
• asset values that represent fungible resources (e.g. digital currencies). Fungible asset constants are assumed to be iden-

tical to nonnegative real numbers (assets are always greater or equal to 0).

Relational operations (<, >, <=, >=, ==) are available between any expression.
The standard definition of free names of expressions, statements and functions is assumed and will be denoted fn(E), 

fn(S) and fn(F ), respectively. A contract stipula C { parties A fields x assets h init Q F } is closed if, 
for every F ∈ F , fn(F ) ⊆ A∪ x∪ h.

We illustrate relevant features of Stipula by means of few examples; the examples will be also used to present liquidity 
and separate-liquidity. Consider the Fill_Move contract

stipula Fill_Move { parties Alice,Bob assets hA, hB init Q0

@Q0 Alice: fill()[k]{ k � hA } => @Q1

@Q1 Bob: move()[]{ hA � hB } => @Q0

@Q0 Bob: end()[]{ hB � Bob } => @Q2
}

that regulates interactions between Alice and Bob. It has two assets and three states Q0, Q1 and Q2, with initial state Q0. 
In Q0, Alice may move part of her asset by invoking fill; the asset is stored in the formal parameter k. That is, the party
Alice is assumed to own some asset and the invocation, e.g. Alice.fill()[5.0], is removing 5 units from Alice’s 
wallet and storing them in k. Said otherwise, the total assets of the system are invariant during the invocation; similarly 
during the operations h � h′ . The execution of fill moves the assets in k to hA) and makes the contract transit to the 
state Q1. In this state, the unique admitted function is move by which Bob accumulates in hB the assets sent by Alice. 
The contract’s state becomes Q0 again and the behavior may cycle. Fill_Move terminates when, in Q0, Bob decides to 
grab the whole content of hB . Notice the nondeterministic behavior when Fill_Move is in Q0: according to a fill or an
end function is invoked, the contract may transit in Q1 or Q2 (this is called external nondeterminism in the literature [15]). 
Notice also that Stipula overlooks the details of the interactions with the parties (usually an asset transfer between the 
parties and the contract is mediated by a bank). [Stipula also features internal nondeterminism [15], which happens when 
both @QA:f(y)[k]{ S }=>@Q′ ∈ C and @QA:f(y)[k]{ S ′ }=>@Q′′ ∈ C. In this case, the contract may transit in Q′ or Q′′
and the choice is casual, cf. rule [Function] in Table 2.]

Fill_Move has the property that the assets hA and hB are eventually emptied (whatever it is the state of the contract 
– in the terminology of the next section, the contract is liquid). This property is not always retained by Stipula contracts. For 
example, consider a Fill_Move contract with a programming error – call it Fill_Move_Wrong – where, in the move
function, the two assets are swapped:

@Q1 Bob: move()[]{ hB � hA } => @Q0

In this case, the asset hA accumulates Alice’s wallet but move does not shift this value to hB anymore. Therefore Bob
will grab nothing upon invoking end. That is, the amount in hA remains frozen and the contract is not liquid. In particular, 
since hA is never emptied, it is not hA-separate liquid, as well.

Separate-liquidity guarantees that a single asset will be eventually emptied; this property is sometimes inadequate. 
Consider the following Ping_Pong contract
3
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Table 2
The transition relation of Stipula.

[Function]
@QA:f(y)[k]{ S }=>@Q′ ∈ C

�(A) = A �′ = �[y 	→ u,k 	→ v]
C(Q , � , --)

A:f(u)[v]−→ C(Q , �′ , S =>@Q′)

[State-Change]
C(Q , � , --=>@Q

′) −→ C(Q′ , � , --)

[Value-Send]
�E�� = v �(A) = A

C(Q , � , E → A �)
v→A−→ C(Q , � , �)

[Asset-Send]
�c × h�� = v �(A) = A �h− v�� = v ′

C(Q , � , c × h� A �)
v�A−→ C(Q , �[h 	→ v ′] , �)

[Field-Update]
�E�� = v

C(Q , � , E → x �) −→ C(Q , �[x 	→ v] , �)

[Asset-Update]
�c × h�� = v �h− v�� = v ′ �h′ + v�� = v ′′

�′ = �[h 	→ v ′,h′ 	→ v ′′]
C(Q , � , c × h� h′ �) −→ C(Q , �′ , �)

[Cond-true]
�E�� �= 0

C(Q , � , if (E) { S }else { S ′ } �)

−→ C(Q , � , S �)

[Cond-false]
�E�� = 0

C(Q , � , if (E) { S }else { S ′ } �)

−→ C(Q , � , S ′ �)

stipula Ping_Pong { parties Amy,Mary assets hA, hM init Q0

@Q0 Mary: ping()[u]{ hM � Mary u � hA } => @Q1

@Q1 Amy: pong()[v]{ hA � Amy v � hM } => @Q0
}

It has a cyclic behavior where Mary and Amy exchange asset values. By invoking ping, Mary moves part of her wallet into
u (and then into the asset field hA) and grabs the value stored in hM; conversely, by invoking pong, Amy moves part of 
her wallet into v (and then into the asset field hM) and grabs the value stored in hA . (Since asset fields are initially empty, 
the first invocation of ping does not deliver anything to Mary.) Apart the initial state, Ping_Pong never reaches a state 
where hA and hM are both empty at the same time (if Mary and Amy invocations carry nonempty assets) – the contract 
is not liquid. States have either hA empty – Q0 – or hM empty – Q1. However the assets will be always grabbed by either
Mary or Amy: the contract is both hA-separate liquid and hM-separate liquid.

3. Semantics

Let a configuration, ranged over by C, C′ , · · · , be a tuple C(Q , � , �) where

• C is the contract name and Q is one of its states;
• �, called memory, is a mapping from names (parties, fields, assets and function’s parameters) to values. The values of 

parties are noted A, A′, · · · . These values cannot be passed as function’s parameters and cannot be hard-coded into the 
source contracts, since they do not belong to expressions. We write �[h 	→ u] to specify the memory that binds h to u
and is equal to � otherwise;

• � is the (possibly empty) residual of a function body, i.e. � is either -- or a term S =>@Q.

Configurations such as C(Q , � , --), i.e. there is no statement to execute, are called idle.
We will use the auxiliary evaluation function �E�� that returns the value of E in the memory � such that:

• �v�� = v for real numbers and asset values (asset values are always nonnegative), �true�� = 1 and �false�� = 0
(booleans are converted to reals); �X�� = �(X) for names of assets, fields and parameters.

• let uop and op be the semantic operations corresponding to uop and op, then �uop E�� = uop v , �E op E ′�� = v op v ′
with �E�� = v, �E ′�� = v ′ . In case of boolean operations, every non-null real corresponds to true and 0.0 corresponds 
to false; the operations return the reals for true and false. Because of the restrictions on the language, uop and
op are always defined.

The semantics of Stipula is defined by a transition relation, noted C 
μ−→ C′ , that is given in Table 2, where μ is either 

empty or A : f(u)[v] or v → A or v � A. Rule [Function] defines invocations: the label specifies the party A performing 
the invocation and the function name f with the actual parameters. The transition may occur provided (i) the contract is 
in the state Q that admits invocations of f from A such that �(A) = A and (ii) the configuration is idle. Rule [State-Change]

says that a contract changes state when the execution of the statement in the function’s body terminates. To keep Stipula’s 
operational semantics simple, we do not remove garbage names in the memories (the formal parameters of functions once 
4
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the functions have terminated). Therefore memories retain such names and the formal parameters keep the value they have 
at the end of the function execution. These values are lost when the function is called again (cf. rule [Function]: in �′ , the 
assets k are updated with v). A function that does not empty asset formal parameters is clearly incorrect and the following 
analysis will catch such errors.

Regarding statements, we only discuss [Asset-Send] and [Asset-Update] because the other rules are standard. Rule [Asset-

Send] delivers part of an asset h to A. This part, named v , is removed from the asset, cf. the memory of the right-hand side 
state in the conclusion. In a similar way, [Asset-Update] moves a part v of an asset h to an asset h′ . For this reason, the final 
memory becomes �[h 	→ v ′, h′ 	→ v ′′], where v ′ = �(h) − v and v ′′ = �(h′) + v .

A contract stipula C { parties A fields x assets h init Q F } is invoked by C(A, u) that corre-
sponds to the initial configuration

C(Q , [A 	→ A,x 	→ u,h 	→ 0] , --) .

We remark that no field and asset is left uninitialized, which means that no undefined-value error can occur during the 
execution by accessing to field and assets. Notice that the initial value of assets is 0. In order to keep the notation light we 
always assume that parties A are always instantiated by the corresponding names A written with italic fonts.

For example, a sequence of transitions of the Fill_Move contract is the following one. Let � = [Alice 	→ Alice, Bob 	→
Bob, hA 	→ 0, hB 	→ 0]. Then

Fill_Move(Q0 , � , --)
Alice:fill[123]−→ Fill_Move(Q0 , �[k 	→ 123] , k� hA =>@Q1) [Function]

−→ Fill_Move(Q0 , �[k 	→ 0,hA 	→ 123] , --=>@Q1) [Asset-Update]

−→ Fill_Move(Q1 , �[k 	→ 0,hA 	→ 123] , --) [State-Change]

Bob:move−→ Fill_Move(Q1 , �[k 	→ 0,hA 	→ 123] , hA � hB =>@Q0) [Function]

−→ Fill_Move(Q1 , �[k 	→ 0,hA 	→ 0,hB 	→ 123] , --=>@Q0) [Asset-Update]

−→ Fill_Move(Q0 , �[k 	→ 0,hA 	→ 0,hB 	→ 123] , --) [State-Change]

Notice that, as discussed above, formal parameters of functions are not garbage collected when the function terminates.
Below we use the following notation and terminology:

• We write C A.f(u)[v]=⇒ C′ if C 
A.f(u)[v]−→ μ1−→ · · · μn−→ C′ and μi are either empty or v � A or v → A and C′ is idle.

• We write C =⇒ C′ if C A1.f1(u1)[v1]=⇒ · · · An .fn(un)[vn]=⇒ C′ , for some A1.f1(u1)[v1], · · · , An.fn(un)[vn]. C =⇒ C′ will be called 
computation.

Two important properties of Stipula contracts follow. The first one guarantees that, in closed contracts, the invocation of 
a function never fails. This property immediately follows by the fact that, in such contracts, the evaluation of expressions 
and statements can never rise an error (operations are total, names are always bound to values and type errors cannot occur 
because values are always converted to reals).

Theorem 1 (Progress). Let C be a closed Stipula contract with fields x, assets h, parties A and @Q A:f(y)[k]{ S }=>@Q′ ∈ C. For 

every � such that x, h, A⊆ dom(�), there is �′ such that C(Q, �, --) A.f(u)[v]=⇒ C(Q′, �′, --).

The second property guarantees the soundness of assets, i.e. assets always retain nonnegative values if the functions’ 
asset parameters are nonnegative. We also remind that assets are initially zero. We say that a memory � is sound if, for 
every asset h′ ∈ dom(�), �(h′) ≥ 0.

Theorem 2 (Soundness of assets). Let C be a Stipula contract and @Q A:f(y)[k]{ S }=>@Q′ ∈ C. If � is sound and v ≥ 0 and 

C(Q, �, --) A.f(u)[v]=⇒ C(Q′, �′, --) then �′ is sound.

We conclude with the definitions of separate liquidity and liquidity. We use the following notation:

• we write �(h) > 0 if and only if there is k ∈ h such that �(k) > 0; similarly �(h) = 0 if and only if, for every k ∈ h, 
�(k) = 0.

Definition 1 (Liquidity). A Stipula contract C with assets h and initial configuration C is k-separate liquid (k ∈ h) if, for every 
C =⇒ C(Q, �, --), then

1. �(h′) = 0 with h′ = dom(�) \ h;
2. if �(k) > 0 then there is C(Q, �, --) =⇒ C(Q′, �′, --) such that �(k) = 0.
5
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Table 3
The Liquidity type system of Stipula.

[l-send]
A, fn(E) ⊆ X∪ dom(�)

� �X E → A : �

[l-update]
x, fn(E) ⊆ X∪ dom(�)

� �X E → x : �
[l-asend]
h ∈ dom(�) A ∈ X

� �X h� A : �[h 	→ 0]

[l-expasend]
h ∈ dom(�) c �= 1 A ∈ X

� �X c × h� A : �
[l-aupdate]
h,h′ ∈ dom(�) e = �(h)  �(h′)
� �X h� h′ : �[h 	→ 0,h′ 	→ e]

[l-expaupd]
h,h′ ∈ dom(�) c �= 1 e = �(h)  �(h′)

� �X c × h� h′ : �[h′ 	→ e]

[l-zero]
� �X -- : �

[l-seq]
� �X P : �′ �′ �X S : �′′

� �X P S : �′′

[l-cond]
fn(E) ⊆ X∪ dom(�)

� �X S : �′ � �X S ′ : �′′
�′  �′′ �X S ′′ : �′′′

� �X if (E) { S }else { S ′ } S ′′ : �′′′
[l-function]

A, fn(S) ⊆ X∪ y ξ ′ fresh �[k 	→ ξ ′] �X∪y S : �′

� �X @Q A : f(y )[k ]{ S } ⇒ @Q′ : Q A.f Q′ : �[k 	→ 1] → �′{1/
ξ ′ }

[l-contract]

ξ fresh
(
[h 	→ ξ ] �A∪x F : LF

)F∈F

� stipula C {parties A fields x assets h init Q F } : ⋃F∈F LF

The contract is liquid if, for every computation C =⇒ C(Q, �, --), then

1. �(h′) = 0 with h′ = dom(�) \ h;
2. if �(h) > 0 then there is C(Q, �, --) =⇒ C(Q′, �′, --) such that �′(h) = 0.

Clearly k-separate liquidity is weaker than liquidity: a k-separate liquid contract may be not liquid. For instance, the
Ping_Pong contract in Section 2 is both hA-separate liquid and hM-separate liquid but it is not liquid. (Separate liquidity 
and liquidity coincide on contracts with only one asset.) It turns out that k-separate liquidity is sufficient when assets are 
separated, i.e. contracts that do not move asset fields to other assets. In fact, in this case, no asset remains frozen (assets 
are separated) and the reachability of a configuration where all the assets are 0 at the same time is not relevant.

We notice that Progress is critical for reducing (separate) liquidity to some form of reachability analysis (otherwise we 
should also deal with function invocations that terminate into a stuck state because of an error). In the following sections, 
using a symbolic technique, we define two algorithms for assessing separate liquidity and liquidity and demonstrate their 
correctness.

4. The theory of liquidity

We begin with the definition of the liquidity type system that returns an abstraction of the input-output behavior of 
functions with respect to assets. These abstractions record whether an asset is zero – notation 0 – or not – notation 1. The 
values 0 and 1 are called liquidity values and we use the following notation:

• liquidity expressions e are defined as follows, where ξ , ξ ′ , · · · range over (symbolic) liquidity names:

e ::= 0 | 1 | ξ | e  e | e � e .

They are ordered as 0 ≤ e and e ≤ 1; the operations  and � respectively return the maximum and the minimum value 
of the two arguments; they are monotonic with respect to ≤ (that is e1 ≤ e′

1 and e2 ≤ e′
2 imply e1  e2 ≤ e′

1  e′
2 and 

e1 � e2 ≤ e′
1 � e′

2). A liquidity expression that does not contain liquidity names is called ground. Two tuples are ordered 
≤ if they are element-wise ordered by ≤.

• environments � map contract’s assets and asset parameters to liquidity expressions. Environments that map names to 
ground liquidity expressions are called ground environments.

• liquidity function types QA.fQ′ : � → �′ where � → �′ records the liquidity effects of fully executing the body of 
QA.fQ′ .

• judgments � �X S : �′ for statements and � �X @Q A :f(x )[h′ ] { S } ⇒ @Q′ : L for function definitions, where L is a 
liquidity function type. The set X contains party and field names.

The liquidity type system is defined in Table 3; below we discuss the most relevant rules. Asset movements have four 
rules – [l-asend], [l-expasend] [l-aupdate] and [l-expaupd] – according to whether the constant factor is 0 or not and whether 
6
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the asset is moved to an asset or a party. According to [l-aupdate], the final asset environment of h � h′ (which is an 
abbreviation for 1 × h � h′) has h that is emptied and h′ that gathers the value of h, henceforth the liquidity expression 
�(h)  �(h′). Notice that, when both h and h′ are 0, the overall result is 0. In the rule [l-expaupd], the asset h is decreased 
by an amount that is moved to h′ . Since c �= 1, the static analysis (which is independent of the runtime value of h) can only 
safely assume that the asset h is not emptied by this operation (if it was not empty before). Therefore, after the withdraw, 
the liquidity value of h has not changed. On the other hand, the asset h′ is increased of some amount if both c and h have 
a non zero liquidity value, henceforth the expression �(h)  �(h′). In particular, as before, when both �(h) and �(h′) are 
0, the overall result is 0.

The rule for conditionals is [l-cond], where the operation  on environments is defined pointwise by (�′  �′′)(h) =
�′(h) �′′(h). That is, the liquidity analyzer over-approximates the final environments of if (E) { S } else { S ′ } by taking the 
maximum values between the results of parsing S (that corresponds to a true value of E) and those of S ′ (that corresponds 
to a false value of E). Regarding E , the analyzer only verifies that its names are bound in the contract.

The rule for Stipula contracts is [l-contract]; it collects the liquidity function types Li that describe the liquidity effects 
of each contract’s function; each function assumes injective environments that respectively associate contract’s assets with 
fresh symbolic names. In turn, the type produced by [l-function] says that the complete execution of Q A.f Q′ has liquidity 
effects �[h′ 	→ 1] → �′{1/

ξ ′ }, assuming that the body S of the function is typed as �[h′ 	→ ξ ′] � S : �′ . That is, in the 
conclusion of [l-function] we replace the symbolic values of the liquidity names representing formal parameters with 1, 
because they may be any value when the function will be called.

Example 1. The set L of the Fill_Move contract contains the following liquidity types:

Q0 Alice.fill Q1 : [hA 	→ ξ1,hB 	→ ξ2,k 	→ 1] → [hA 	→ ξ1  1,hB 	→ ξ2,k 	→ 0]
Q1 Bob.move Q0 : [hA 	→ ξ1,hB 	→ ξ2] → [hA 	→ 0,hB 	→ ξ1  ξ2]
Q0 Bob.end Q2 : [hA 	→ ξ1,hB 	→ ξ2] → [hA 	→ ξ1,hB 	→ 0]

In the following we will always shorten � stipula C {parties A fields x assets h init Q F } : L into � C : L. A 
first property of the liquidity type system is that typed contracts are closed.

Proposition 1. If � C :L then C is closed.

Therefore typed contracts own the progress property (Theorem 1). The correctness of the system in Table 3 requires the 
following notions:

• A (liquidity) substitution is a map from liquidity names to liquidity expressions (that may contain names, as well). 
Substitutions will be noted either σ , σ ′ , · · · or {e/χ }. A substitution is ground when it maps liquidity names to ground 
liquidity expressions. For example {0,1/χ,ξ } and {01,1�0/χ,ξ } are ground substitutions, {0χ ′

/χ } is not.
We let σ(�) be the environment where σ(�)(x) = σ(�(x)).

• Let �e� be the partial evaluation of e by applying the commutativity axioms of  and � and the axioms 0  e = e, 
0 � e = 0, 1  e = 1, 1 � e = e. More precisely

�e� =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e if e = 0 or e = 1 or e = ξ

�e′� if (e = e′  e′′ or e = e′′  e′) and �e′′� = 0
�e′� if (e = e′ � e′′ or e = e′′ � e′) and �e′′� = 1
0 if e = e′ � e′′ and either �e′� = 0 or �e′′� = 0
1 if e = e′  e′′ and either �e′� = 1 or �e′′� = 1
�e′�#�e′′� if e = e′#e′′ and no-one of the above cases applies

(# is either  or �)

Notice that if e is ground then �e� is either 0 or 1.
• When � and �′ are ground, we write � ≤ �′ if and only if, for every h ∈ dom(�), ��(h)� ≤ ��′(h)�. Observe that 

this implies that dom(�) ⊆ dom(�′).
• �|h is the environment � restricted to the names h, defined as follows

�|h(k) =
{

�(k) if k ∈ h
undefined otherwise

• let � = [A 	→ A, x′ 	→ u, h′ 	→ v] be a memory, where x′ are contract’s fields and non-asset parameters, while h′ are 
contract’s assets and the asset parameters. We let E(�) be the ground environment defined as follows:

E(�)(k) =
⎧⎨
⎩

0 if k ∈ h′ and �(k) = 0
1 if k ∈ h′ and �(k) �= 0
undefined otherwise
7
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Liquidity types are correct, as stated by the following theorem.

Theorem 3 (Correctness of liquidity function types). Let � C : L and h be the assets of C and @QA:f(y)[k] { S }=>@Q′ ∈ C and 

Q A.f Q′ : � → �′ in L. If h⊆ dom(�) and C(Q , � , --) A.f(u)[v]=⇒ C(Q′ , �′ , --) then there are X and �′′ such that:

1. E(�[y 	→ u,k 	→ v]) �X S : �′′;
2. E(�[y 	→ u,k 	→ v])|dom(�) ≤ σ(�) and �′′|dom(�) ≤ σ(�′), for a ground substitution σ ;
3. E(�′)|dom(�) ≤ �′′ .

For example, consider the transition

Fill_Move(Q1 , � , --)
Bob.move()[]−→ Fill_Move(Q0 , �′ , --)

of Fill_Move where � = [hA 	→ 25.0, hB 	→ 5.0] and �′ = [hA 	→ 0.0, hB 	→ 30.0]. By definition, E(�) = [hA 	→ 1, hB 	→ 1]. 
Letting X = {Alice, Bob}, by the liquidity type system we obtain E(�) �X hA � hB : �′′ , �′′ = [hA 	→ 0, hB 	→ 1  1]. Since 
Q1 Bob.move Q0 : [hA 	→ ξ1, hB 	→ ξ2] → [hA 	→ 0, hB 	→ ξ1  ξ2] (see Example 1), the ground substitution σ that satisfies 
Theorem 3.2 is [ξ1 	→ 1, ξ2 	→ 1] (actually, in this case, the “≤” are equalities). Regarding the last item, E(�′) = [hA 	→
0, hB 	→ 1] and E(�′) ≤ �′′ follows by definition.

A basic notion of our theory is the one of abstract computation and its liquidity type.

Definition 2. An abstract computation of a Stipula contract, ranged over by ϕ, ϕ′, · · · , is a finite sequence Q1 A1.f1 Q2 ; · · · ;
Qn An.fn Qn+1 of contract’s functions, shortened into { Qi Ai .fi Qi+1 }i∈1..n . We use the notation Q 

ϕ
� Q′ to highlight the 

initial and final states of ϕ and we let { Qi Ai .fi Qi+1 }i∈1..n be the abstract computation of 
(
C(Qi , �i , --) Ai :fi(ui)[vi ]=⇒

C(Qi+1 , �i+1 , --)
)i∈1..n

.
An abstract computation ϕ is κ-canonical if functions occur at most κ-times in ϕ .

We notice that abstract computations do not mind of memories. Regarding canonical computations, every prefix of a 
κ-canonical computation is κ-canonical as well, including the empty computation.

Definition 3 (Liquidity type of an abstract computation). Let � C :L and h be the assets of C. Let also Qi Ai .fi Qi+1 : �i → �′
i ∈L

for every i ∈ 1..n. The liquidity type of ϕ = { Qi Ai .fi Qi+1 }i∈1..n , noted Lϕ , is �(b)
1 |h → �

(e)
n |h where �(b)

1 and �(e)
n (“b” stays 

for begin, “e” stays for end) are defined as follows

�
(b)
1 = �1 �

(b)
i+1 = �i+1{�

(e)
i (h)/ξ } �

(e)
i = �′

i{�
(b)
i (h)/ξ } .

Notice that, by definition, the initial environment of the i-th type is updated so that it maps assets to the values com-
puted at the end of the (i −1)-th transition. These values are also propagated to the final environment of the i-th transitions 
by substituting the occurrence of a liquidity name with the computed value of the corresponding asset. Notice also that the 
domains of the environments �(b)

i , 1 ≤ i ≤ n, are in general different because they are also defined on the asset parameters 
of the corresponding function. However, formal parameters are not relevant because they are always replaced by 1 and are 
therefore dropped in the liquidity types of computations.

For example, consider the computation of the Fill_Move contract

ϕ = Q0 Alice.fill Q1 ; Q1 Bob.move Q0 ; Q0 Bob.end Q2

(we refer to Example 1 for the types of the contract). Let H = {hA, hB} and � = [hA 	→ ξ1, hB 	→ ξ2]. ϕ has liquidity type 
�

(b)
1 |H → �

(e)
3 |H where:

�
(b)
1 = �[k 	→ 1] �

(e)
1 = �[hA 	→ ξ1  1,k 	→ 0]

�
(b)
2 = �{ξ11/ξ1 } �

(e)
2 = [hA 	→ 0,hB 	→ ξ1  ξ2]{ξ11/ξ1 }

= �[hA 	→ ξ1  1] = [hA 	→ 0,hB 	→ ξ1  ξ2  1]
�

(b)
3 = �{0,ξ1ξ21/ξ1,ξ2 } �

(e)
3 = [hA 	→ 0,hB 	→ ξ2]{0,ξ1ξ21/ξ1,ξ2 }

= [hA 	→ 0,hB 	→ ξ1  ξ2  1] = [hA 	→ 0,hB 	→ 0]

Therefore Lϕ = � → [hA 	→ 0, hB 	→ 0]. That is, whatever they are the initial values of hA and hB , which are represented in 
� by the liquidity names ξ1 and ξ2, respectively, their liquidity values after the computation ϕ are 0 (henceforth they are 
0 by the following Theorem 4). Notice also the differences between Lϕ and � → [hA 	→ ξ1, hB 	→ 0], which is the type of
Bob.end: from this last type we may derive that hB is 0 in the final environment, while the value of hA is the same of 
the initial environment (in fact, Bob.end only empties hB and does not access to hA at all).
8
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We recall that the operational semantics of Stipula in Table 2 does not remove garbage names in the memories (the 
formal parameters of functions once the functions have terminated, see Section 3). However, these names do not exist in 
environments of the liquidity types of abstract computations. For this reason, in the following statement, we restrict the 
inequalities to the names of the contract’s assets.

Theorem 4 (Correctness of liquidity types of abstract computations). Let � C :L and 
(
C(Qi , �i , --) Ai :fi(ui)[vi ]=⇒ C(Qi+1 , �i+1 , --)

)i∈1..n

with dom(�1) containing the assets h of C. Let also ϕ = { Qi Ai .fi Qi+1 }i∈1..n have liquidity type Lϕ = � → �′ .
Then there is a substitution σ such that E(�1)|h ≤ σ(�) and E(�n+1)|h ≤ σ(�′).

The following proposition is used in the definition of our algorithms.

Proposition 2. Let � = [h 	→ ξ ], where ξ is a tuple of pairwise different symbolic names, � �X S : �′ and ��(h)� �= ��′(h)�. Then S
either contains h � h′ or h′ � h or c × h′ � h or h � A (we say that h has been updated in S).

Similarly, if � C :L and Lϕ = � → �′ for an abstract computation ϕ and ��(h)� �= ��′(h)� then h has been updated by (the body 
of) at least one of the functions in ϕ .

By Proposition 2, given a liquidity type � → �′ , ��(h)� �= ��′(h)� is a sufficient condition of the fact that h is updated 
in the corresponding computation. Of course, ��(h)� = ��′(h)� does not imply that h has not been modified by the com-
putation. For example, according to the rules in Table 3, if � �X c × h � h′ : �′ then �(h) = �′(h). That is, the liquidity 
type system does not record move operations that reduce an asset without emptying it.

5. The algorithms for separate liquidity and liquidity

Analyzing the liquidity of a Stipula contract amounts to verifying the two constraints of Definition 1. In both cases, 
checking constraint 1 is not difficult: for every transition QA.fQ′ of the contract with assets h, we consider its liquidity type 
� → �′ and verify whether, for every parameter k /∈ h, ��′(k)� = 0. Since there are finitely many transitions, this analysis 
is exhaustive. The correctness is the following: if k /∈ h implies ��′(k)� = 0 then, for every substitution σ , �σ(�′)�(k) = 0. 
Specifically for the substitution σ ′ such that E(�′) ≤ �σ ′(�′)�, which is guaranteed by Theorem 3.

On the contrary, verifying the constraints 2 of Definition 1 is harder because the transition system of a Stipula contract 
may be complex (cycles, absence of final states, nondeterminism). We design two algorithms (for both separate liquidity 
and liquidity) that have different precisions and different computational costs.

We first define the notions of reachable function and reachable state of a Stipula contract C. Let � C : L; QQ is the least 
set such that

1. if Q A.f Q′ : � → �′ ∈L then Q A.f Q′ : � → �′ ∈ QQ;
2. if Q′ B.g Q′′ : � → �′ ∈ QQ and Q′′ B′.g′ Q′′′ : �′′ → �′′′ ∈L then Q′′ B′.g′ Q′′′ : �′′ → �′′′ ∈ QQ .

That is QQ contains all the liquidity function types of functions whose initial state is reachable through computations starting 
at Q. In short, when Q′ B.g Q′′ : � → �′ ∈ QQ , we say that both Q′ and Q′′ are reachable from Q. For example, in the
Fill_Move contract, the set QQ0 contains the liquidity function types listed in Example 1, while QQ2 = ∅.

Notice that, (i) QQ is finite, (ii) if Q′ is reachable from Q, then QQ′ ⊆ QQ , (iii) if no function starts at Q then QQ = ∅ and 
(iv) if Q is the initial state and every state is reachable, then QQ contains all the functions of the contract.

Below, without loss of generality, we assume that every state in the contract is reachable from the initial state. A straight-
forward optimization allows us to reduce to this case. We also assume that our contracts satisfy item 1 of separate liquidity 
and liquidity. Therefore we focus on item 2.

5.1. The efficient algorithms

Our first two algorithms verify a stronger property than separate liquidity and liquidity. We use the following terminol-
ogy:

• A function Q A.f Q′ ∈ C empties k if, for every memory � and every C(Q, �, --)
A. f (u)[v]=⇒ C(Q′, �′, --), we have �′(k) = 0.

Definition 4. A Stipula contract C with assets h and initial configuration C is

k-separate liquid+: if, for every C =⇒ C(Q, �, --) with �(k) > 0, there are C(Q, �, --) =⇒ C(Q′, �′, --) and Q′ A.f Q′′ ∈ C such 
that Q′ A.f Q′′ empties k.

liquid+: if, for every C =⇒ C(Q, �, --) with �(h) > 0, there are C(Q, �, --) =⇒ C(Q′, �′, --) and Q′ A.f Q′′ ∈ C such that 
Q′ A.f Q′′ empties h.
9
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Table 4
The efficient algorithms – Z contains pairs (Q, k) for k-separate liquidity+ and pairs (Q, h) for liquidity+.

Let Q be the initial state of C whose assets are h:
step 1. Compute QQ′ for every Q′ reachable from Q; set Z = ∅.
step 2. For every Q′ A.f Q′′ : � → �′ ∈ QQ and k ∈ h such that

(a) ��′(k)� �= 0 and ��′(k)� �= ��(k)�
(b) (Q′′, k) /∈ Z (respectively, (Q′′, h) /∈Z):
2.1 if there is no Q′ A.f Q′′ : � → �′ ∈ QQ and k then exit: the contract is k-separate liquid+ (respectively, the contract is liquid+);
2.2 otherwise, verify whether there is Q1 B.g Q2 : �1 → �2 ∈ QQ′′ such that ��2(k)� = 0 (respectively, ��2(h)� = 0). If this is the case, add 

(Q′′, k) (respectively, add (Q′′, h)) to Z and reiterate step 2, otherwise exit: the contract is not k-separate liquid+ (respectively, the contract is 
not liquid+).

k-separate liquidity+ and liquidity+ require that the properties hold for every memory, while the corresponding k-separate 
liquidity and liquidity require the properties hold for at least one memory. (The former properties are stronger than the latter 
ones, respectively.)

Proposition 3. Let � C :L:

1. if Q A.f Q′ : � → �′ ∈L and �′(k) ≤ 0 then, for every C(Q, �, --) A:f(u)[v]=⇒ C(Q′, �′, --), �′(k) = 0;
2. if C is k-separate liquid+ then it is k-separate liquid; if C is liquid+ then it is liquid.

Table 4 reports the algorithms for k-separate liquidity+ and liquidity+. We comment the k-separate liquidity+ algorithm, 
the other one is similar. In this case, the set Z contains all the verifications that have been already done; that is if (Q, k) ∈ Z
then it has been verified that there is a function type in QQ such that k is 0 in its final environment. The analysis ends 
when Z does not increase anymore with output k-separate liquid+/liquid+.

In the step 2(a), following Proposition 2 in Appendix B, the algorithm verifies ��′(k)� �= ��(k)� to check whether a 
function Q′ A.fQ′′ updates the value of an asset. Additionally, it also verifies that ��′(k)� �= 0 because we are interested 
in updates that do not empty the assets. Notice that there is a mismatch with the definition of separate liquidity+ that 
looks for assets’ values greater than 0. We explain the mismatch with an example: consider the liquidity type � → �′
of Bob.end in Example 1. We have �(hA) = �′(hA) = ξ2 then this function does not modify hA (this is a property of 
the system in Table 3). Therefore, regarding hA, Bob.end does not play any role: if some function updates hA then we 
must look elsewhere for a function turning hA to 0. Notice also that �(hA) and �′(hA) are both different from 0. Finally 
we remark that the algorithm takes ��′(h)� instead of �′(h) in order to discard ground expressions that are syntactically 
different but semantically equivalent to 0.

Once a state Q′′ is found where k has been updated and the pair (Q′′, k) does not belong to Z , k-separate liquidity+
amounts to looking for a function in QQ′′ that empties k. This is what is specified in 2.2. For example, consider the liquidity 
types of the Fill_Move contract in Example 1. There are two problematic types Q0 Alice.fill Q1 : �1 → �2 and 
Q1 Bob.move Q0 : �′

1 → �′
2. In particular, �2(hA) �= �1(hA) and �′

2(hB) �= �′
1(hB) (all the values are not-0). In these 

cases, the algorithm finds two liquidity function types, one that is reachable from Q1 and one that is reachable from Q0
that empty the corresponding assets. The reader is invited to verify that these are the types of Q1 Bob.move Q0 and Q0 
Bob.end Q2, respectively.

Proposition 4. Let � C : L. If the algorithm of Table 4 returns that C is k-separate liquid+ (respectively, liquid+) then it is k-separate 
liquid+ (respectively, liquid+). Additionally, the algorithms always terminate.

Since k-separate liquidity+ and liquidity+ have been advocated for the efficiency of the analysis, we conclude by com-
puting their cost. Let n be the size of the Stipula contract (the number of instructions of the contract), m be the number of 
states and m′ be the number of functions. Then

• the cost of the inference of liquidity types is linear with respect to the size of the contract, i.e. O (n);
• the cost of computing QQ , for every Q is O (m × m′) (with a straightforward fixpoint technique);
• the cost for verifying step 2 of the algorithm is O (m′ × m′) because, for every function of step 2 it looks for another 

function satisfying 2.2.

Therefore the overall cost of the weak algorithm is O (n + (m + m′) × m′), which means it is O (m′2), assuming that m and 
m′ are in linear relation.
10
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Table 5
The costly algorithm for liquidity – Z contains pairs (Q, k).

Let Q be the initial state of C whose assets are h.
step 1. Compute Tκ

Q′ for every Q′ reachable from Q; let Z = ∅.

step 2. For every Q′ and Q′ ϕ
� Q′′ : � → �′ ∈ Tκ

Q′ and ∅ � k⊆ h is the maximal set such that
(a) for every k′ ∈ k, ��′(k′)� �= 0 and ��′(k′)� �= ��(k′)�
(b) (Q′′, k) /∈ Z:

2.1 If there is no Q′ , Q′ ϕ
� Q′′ : � → �′ and k then exit: the contract is liquid.

2.2 otherwise verify whether there is Q′′ ϕ′
� Q′′′ : �′′ → �′′′ ∈ Tκ

Q′′ such that ��′′′(k)� = 0 and, for every k′ ∈ h \ k, either ��′′′(k′)� = 0 or 
��′′′(k′)� = ��′′(k′)�. If this is the case, add (Q′′, k) to Z and reiterate step 2, otherwise exit: the contract is not liquid.

5.2. The costly algorithms

Verifying k-separate liquidity and liquidity is more complex because a single asset or a tuple of assets may become 0 
during a computation, rather than just one transition. Let us discuss the case of liquidity with an example. Consider the
Ugly contract with assets w1 and w2 and functions:

@Q0 Mark: get()[u]{ u � w2 } => @Q1
@Q1 Sam: shift()[]{ w1 � Sam w2 � w1 } => @Q1
@Q1 Sam: end()[]{ } => @Q2

Ugly has no function that, for every memory �, empties both w1 and w2. In fact, the contract is not liquid+ (this contract is 
not w1-separate liquid+, as well. However there is a liquid computation (a computation that empties all the assets), which 
is the one invoking shift two times: Q1 Sam.shift Q1; Q1 Sam.shift Q1. In particular, we have

Q1 Sam.shift Q1 : [w1 	→ ξ1,w2 	→ ξ2] → [w1 	→ 0  ξ2,w2 	→ 0]
Q1 Sam.shift Q1 ; Q1 Sam.shift Q1 : [w1 	→ ξ1,w2 	→ ξ2] → [w1 	→ 0,w2 	→ 0]

(we have simplified the final environment). That is, in this case, liquidity requires the analysis of 2-canonical computations 
to be assessed. (When the contract has no cycle, 1-canonical computations are sufficient to verify liquidity.) Since we have 
to consider cycles, in order to force termination of the analysis, we restrict to κ-canonical abstract computations (with a 
finite value of κ ).

Let Tκ
Q be the set of elements Q 

ϕ
� Q′ : Lϕ where ϕ is a κ-canonical computation starting at Q in the contract (the contract 

is left implicit).
The costly algorithm for liquidity is reported in Table 5. It uses the set Tκ

Q′ , for every state Q′ of the contract that is 
reachable from Q – see step 1 of Step 2 identifies the “critical pairs” (Q′′, k) such that there is a computation updating the 

assets k and terminating in the state Q′′ . Assume that (Q′′, k) /∈ Z . Then we must find Q′′ ϕ′
� Q′′′ : �′′ → �′′′ in Tκ

Q′′ such 
that �′′′(k) = 0 and the other assets in h \ k are either 0 or equal to the corresponding value in �′′ . That is, as for the 
efficient algorithms, assets h \ k have not been modified by ϕ′ and may be overlooked. Notice that these checks are exactly 

those defined in step 2.2. If no liquidity type Q′′ ϕ′
� Q′′′ : �′′ → �′′′ is found in Tκ

Q′′ such that �′′′(k) = 0, the liquidity cannot 
be guaranteed and the algorithm exits stating that the contract is not liquid (which might be a false negative because the 
liquidity type might exist in Tκ+1

Q′′ ).

For example, in case of the Fill_Move contract, the liquidity algorithm spots Q0 Alice.fill
� Q1 : � → �′ because 

��′(hA)� �= ��(hA)�. Therefore it parses the liquidity types in T1
Q1 and finds the type Q1

ϕ′
� Q2 : [hA 	→ ξ1, hB 	→ ξ2] →

[hA 	→ 0, hB 	→ 0], where ϕ′ = Q1 Bob.move Q0 ; Q0 Bob.end Q2. Henceforth (Q1, hA) is added to Z . There is also 
another problematic type: Q1 Bob.move

� Q0 :�′′ → �′′′ , because ��′′′(hA)� �= ��′′(hA)�. In this case, the liquidity type of the 
abstract computation Q0 Bob.end Q2 (still in T1

Q0) satisfies the liquidity constraint. We leave this check to the reader.
The correctness of the costly algorithm follows from Theorem 4 (the formal proof is in Appendix C). For example, assume 

that step 2.2 returns Q 
ϕ
� Q′ : � → �′ where �′(k) = 0 and �′(h \ k) = �(h \ k). Then, for every initial memory �, the 

concrete computation corresponding to ϕ ends in a memory �′ such that E(�′)|k ≤ �σ(�′|k)� = �σ([k 	→ 0])� = [k 	→ 0] (for 
every σ ) and E(�′)|h\k ≤ �σ(�′|h\k)� = �σ([h \ k 	→ ξ ])� = [k 	→ 1], by taking a σ = [ξ 	→ 1]. As regards termination, the 
set Z increases at every iteration. When no other pair can be added to Z (and we have not already exited) the algorithm 
terminates by declaring the contract as liquid.

Proposition 5. Let � C : L. If the algorithm of Table 5 returns that C is liquid then it is liquid. Additionally, the algorithm always 
terminates.

Table 6 reports the costly algorithm for k-separate liquidity. We omit comments about the steps of the algorithm because 
they are similar to those of the algorithm in Table 5, actually simpler because here we are considering one asset only.
11
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Table 6
The costly algorithm for k-separate liquidity – Z contains pairs (Q, k).

Let Q be the initial state of C whose assets are h.
step 1. Compute Tκ

Q′ for every Q′ reachable from Q; let Z = ∅.

step 2. For every Q′ and Q′ ϕ
� Q′′ : � → �′ ∈ Tκ

Q′ such that
(a) ��′(k)� �= 0 and ��′(k)� �= ��(k)�
(b) (Q′′, k) /∈Z:

2.1 If there is no Q′ and Q′ ϕ
� Q′′ : � → �′ then exit: the contract is k-separate liquid.

2.2 otherwise verify whether there is Q′′ ϕ′
� Q′′′ : �′′ → �′′′ ∈ Tκ

Q′′ such that ��′′′(k)� = 0. If this is the case, add (Q′′, k) to Z and reiterate step 2, 
otherwise exit: the contract is not k-separate liquid.

The correctness and termination of the costly algorithm for k-separate liquidity are proved in a similar way to Proposi-
tion 5, therefore they are omitted. We only report the statement.

Proposition 6. If the algorithm of Table 6 returns that a Stipula contract is k-separate liquid then it is k-separate liquid. Additionally, 
the algorithm always terminates.

The computational costs of liquidity and k-separate liquidity are way larger than the algorithm in Table 4. Let n be the 
size of the Stipula contract (the number of functions, prefixes and conditionals in the code), h be the number of assets, m
be the number of states and m′ be the number of functions. Then

• the cost of the inference of liquidity types is linear with respect to the size of the contract, i.e. O (n);
• the length of κ-canonical traces starting in a state is less than κ × m′; therefore the cardinality of Tκ

Q is bounded by ∑
0≤i≤κ×m′ i!. The cost of computing Tκ

Q , for every Q, and the liquidity types of the elements therein are proportional 
to the number of κ-canonical traces, which are N = m × (

∑
0≤i≤κ×m′ i!);

• The cost for verifying step 2 of the algorithm in Table 5 is O (N × N × 2h) because, for every κ-canonical trace and 
every subset of h, we must look for a κ-canonical trace satisfying either step 2.1 or step 2.2. The cost for verifying step 
2 of the algorithm in Table 6 is O (N × N) because, for every κ-canonical trace, we must look for a κ-canonical trace 
satisfying either step 2.1 or step 2.2.

Therefore the overall cost of the algorithm in Table 5 is O (n + N + N2 × 2h) and the one in Table 6 is O (n + N + N2). 
Next, assuming that the number of asset h is a constant upper bound (while Stipula does not bound the assets, in the 
realistic examples we wrote, some of them are reported in [9,8,14], the assets are never more than 3) and assuming that 
the other values are in linear relation with m′ , then the computational cost of the algorithms in Table 5 and Table 6 is 
O (N2), i.e. exponential with respect to m′ .

6. Related works

Liquidity properties have been put forward by Tsankov et al. in [18] as the property of a smart contract to always admit 
a trace where its balance is decreased (so, the funds stored within the contract do not remain frozen). Later, Bartoletti and 
Zunino in [3] discussed and extended this notion to a general setting – the Bitcoin language – that takes into account the 
strategy that a participant (which is possibly an adversary) follows to perform contract actions. More precisely, they observe 
that there are many possible flavors of liquidity, depending on which participants are assumed to be honest and on what 
are the strategies. In the taxonomy of [3,2], the notion of liquidity that we study in this work is the so-called multiparty 
strategyless liquidity, which assumes that all the contract’s parties cooperate by actually calling the functions provided by the 
contract. We notice that, without cooperation, there is no guarantee that a party that has the permission to call a function 
will actually call it.

Both [18] and [3,2] adopt a model checking technique to verify properties of contracts. However, while [18] uses finite 
state models and the Uppaal model checker to verify the properties, [3,2] targets infinite state system and reduces them 
to finite state models that are consistent and complete with respect to liquidity. This mean that the technique of [3,2] is 
close to ours (we also target infinite state models and reduce to finite sets of abstract computations that over-approximate 
the real ones), even if we stick to a symbolic approach. Last, the above contributions and the ones we are aware of in 
the literature always address programs with one asset only (the contract balance). In this work we have understood that 
analyzing liquidity in programs with several different assets is way more complex than the case with a single asset.

A number of research projects are currently investigating the subject of resource-aware programming, as the prototype 
languages Obsidian [6] Nomos [11,4], Marlowe [16] and Scilla [17]. As discussed in the empirical study [6], programming 
with linear types, ownership and assets is difficult and the presence of strong type systems can be an effective advantage. 
In fact, the above languages provide type systems that guarantee that assets are not accidentally lost, even if none of them 
address liquidity. More precisely, Obsidian uses types to ensure that owning references to assets cannot be lost unless they 
are explicitly disowned by the programmer. Nomos uses a linear type system to prevent the duplication or deletion of 
12
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assets and amortized resource analysis to statically infer the resource cost of transactions. Marlowe [16], being a language 
for financial contracts, does not admit that money be locked forever in a contract. In particular, Marlowe’s contracts have 
a finite lifetime and, at the end of the lifetime, any remaining money is returned to the participants. In other terms, all 
contracts are liquid by construction. In the extension of Stipula with events, the finite lifetime constraint can be explicitly 
programmed: a contract issues an event at the beginning so that at the timeout all the contract’s assets are sent to the 
parties. Finally, Scilla is an intermediate-level language for safe smart contracts that is based on System F and targets a 
blockchain. It is unquestionable that a blockchain implementation of Stipula would bring in the advantages of a public 
and decentralized platform, such as traceability and the enforcement of contractual conditions. Being Scilla a minimalistic 
language with a formal semantics and a powerful type system, it seems an excellent candidate for implementing Stipula.

7. Conclusions

We have studied liquidity, a property of programs managing resources that pinpoints those programs not freezing any re-
source forever. In particular we have designed and demonstrated the correctness of two algorithms that verify two different 
liquidity properties.

We are currently prototyping the two algorithms. In case of liquidity, our prototype takes in input an integer value κ and 
verifies liquidity by sticking to types in Tκ

Q . This allows us to tune the precision of the analysis according to the contract 
to verify. We are also considering optimizations that improve both the precision of the algorithms and the performance. 
For example, the precision of the checks ��′(k)� �= 0 and ��′(k)� �= ��(k)� may be improved by noticing that the algebra 
of liquidity expressions is a distributive lattice with min (0) and max (1). This algebra has a complete axiomatization 
that we may implement (for simplicity sake, in this paper we have only used min-max rules – see definition of �e�). 
Other optimizations we are studying allow us to reduce the number of canonical computations to verify (such as avoiding 
repetition of cycles that modify only one asset).

Another research objective addresses the liquidity analysis in languages featuring conditional transitions and events, such 
as the full Stipula [9]. These primitives introduce internal nondeterminism, which may undermine state reachability and, for 
this reason, they have been dropped in this paper. In particular, our analysis might synthesize a computation containing a 
function whose execution depends on values of fields that never hold. Therefore the computation will never be executed (it 
is a false positive) and must be discarded (and the contract might be not liquid). To overcome these problems, we will try 
to complement our analysis with an (off-the-shelf) constraint solver technique that guarantees the reachability of states of 
the computations synthesized by our algorithms.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-
peting interests: Cosimo Laneve reports financial support was provided by the SERICS project (PE00000014) under the MUR 
National Recovery and Resilience Plan funded by the European Union – NextGenerationEU – and by the H2020-MSCA-RISE 
project ID 778233 “Behavioural Application Program Interfaces (BEHAPI)”.

Data availability

No data was used for the research described in the article.

Acknowledgements

I thank Silvia Crafa that co-authored the extended abstract for the discussions about liquidity. I also thank the FACS 2022 
and the JLAMP referees for their careful reading and the many constructive suggestions on the submitted paper.

Appendix A. Progress and soundness of assets

Theorem 1. (Progress). Let C be a closed Stipula contract with fields x, assets h, parties A and @Q A:f(y)[k]{ S }=>@Q′ ∈ C. For 

every � such that x, h, A⊆ dom(�), there is �′ such that C(Q, �, --) A.f(u)[v]=⇒ C(Q′, �′, --).

Proof. In the thesis we are assuming �(A) = A. Because of the thesis and [Function] we have

C(Q, �,--)
A.f(u)[v]−→ C(Q, �[y 	→ u,k 	→ v], S =>Q′)

therefore we are reduced to show the existence of

C(Q, �[y 	→ u,k 	→ v], S =>Q′) μ1−→ · · · μn−→ C(Q′, �′,--)

when y, k, x, h, A⊆ dom(�[y 	→ u, k 	→ v]). Let �′′ = �[y 	→ u, k 	→ v]; we reason by induction on S . The base case is S = --, 
which is immediate by [State-Change]. The inductive cases are (i) S = P S ′ and (ii) S = if (E) { S ′ } else { S ′′ } S ′′′ . We only 
13
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discuss (i), in particular when P = E → x and P = c × h � A. When P = E → x, since C is closed, then fv(E), x ⊆ dom(�′′). 
In order to apply [Field-Update] we need to verify the existence of v such that �E��′′ = v . This follows by the fact that every 
operation in E is total and returns a real number and because names in E are bound in �′′ . Hence

C(Q, �′′, E → x S =>Q′) −→ C(Q, �′′[x 	→ v] , S =>Q′)

by [Field-Update]. The thesis follows by induction since dom(�′′) = dom(�′′[x 	→ v]). When P = c × h � A, we notice that 
h, A ∈ dom(�′′) because C is closed and h is either an asset or an asset parameter. Additionally, since c is a constant, there 
is v such that �c × h��′′ = v and v ′ such that �h − v��′′ = v ′ . Therefore

C(Q, �′′, c × h� A S =>Q′) v ′�A−→ C(Q, �′′[h 	→ v ′] , S =>Q′)
by [Asset-Send]. The thesis follows by induction since dom(�′′) = dom(�′′[x 	→ v]).

Theorem 2. (Soundness of assets). Let C be a Stipula contract and @Q A:f(y)[k]{ S }=>@Q′ ∈ C. If � is sound and v ≥ 0 and 

C(Q, �, --) A.f(u)[v]=⇒ C(Q′, �′, --) then �′ is sound.

Proof. The computation in the hypothesis is actually

C(Q, �,--)
A.f(u)[v]−→ C(Q, �[y 	→ u,k 	→ v], S =>Q′) =⇒ C(Q′, �′,--)

and, by hypothesis, �[y 	→ u, k 	→ v] is sound. We demonstrate that every memory �′′ in the computation C(Q, �[y 	→
u, k 	→ v], S =>Q′) =⇒ C(Q′, �′, --) is sound. We do a case analysis on the transitions. In particular, those that modify assets 
are the instances of [Asset-Send] and [Asset-Update]. Let

C(Q, �1, c × h� A S ′ =>Q′) v�A−→ C(Q′, �2, S ′ =>Q′)

one of the transitions and assume that �1 is sound. Then, by [Asset-Send], h ∈ dom(�1) (otherwise �c × h��1 should be 
undefined) and A ∈ dom(�1) by the hypothesis of the rule. Since 0 ≤ c ≤ 1, we obtain that 0 ≤ �c × h��1 ≤ �h��1 . Let v
be the corresponding value; we derive �h − v��1 = v ′ ≥ 0. Therefore �2 = �1[h 	→ v ′] is sound as well. The arguments 
demonstrating that �2 is sound provided that �1 is and

C(Q, �1, c × h� h′ S ′ =>Q′) −→ C(Q′, �2, S ′ =>Q′)
are similar to the foregoing ones. Notice that, in this case �c × h��1 = v ≥ 0 and �h − v��1 ≥ 0 and �h′ + v��1 ≥ 0.

Appendix B. The theory of liquidity: technical material

Lemma 1. The following properties hold true:

(Weakening) Let � �X S : �′ and �w be such that �w |dom(�) = �. Then there exists �′
w such that �w �X S : �′

w and �′
w |dom(�′) =

�′ .
(Substitution) Let σ be a substitution mapping liquidity names to liquidity expressions. If � �X S : �′ then σ(�) �X S : σ(�′).
(Monotonicity) Let �, �′′ be ground environments such that � ≤ �′′ . If � �X S : �′ then there is �′′′ such that �′′ �X S : �′′′ and 

�′ ≤ �′′′ .

Proof. The proofs of Weakening and Substitution are standard and therefore omitted; we discuss the Monotonicity. The 
proof is by induction on the structure of S . The basic case, i.e. S = --, is immediate. The inductive cases are P S and 
if (E) { St } else { Se } S , assuming the Monotonicity holds on S , St and Se . Regarding P S , the interesting cases are when 
P is (i) c × h � h′ , or (ii) c × h � A, or (iii) h � h′ .

In case (i), monotonicity must be proved for � �X c × h → h′ S : �′ , given � ≤ �′′ . By [L-seq], we have � �X c × h →
h′ : �1 and �1 �X S : �′ . By [L-expaupd], �1 = �[h′ 	→ e], where e = �(h)  �(h′). Taking an environment �′′ such that 
� ≤ �′′ and applying [L-expaupd], we obtain �′′ �X c × h → h′ : �′

1 such that �′
1 = �′′[h′ 	→ e′], where e′ = �′′(h)  �′′(h′). 

Therefore, by monotonicity of , �1 ≤ �′
1. The thesis follows by inductive hypotheses on S . Cases (ii) and (iii) are similar.

When the statement is if (E) { St } else { Se } S we use [l-cond]. To this aim, we observe that fn(E) ⊆ X ∪dom(�′′) follows 
by fn(E) ⊆ X ∪ dom(�) and � ≤ �′′ . In this case the thesis is a straightforward application of the inductive hypothesis.

Theorem 3. (Correctness of liquidity function types). Let � C : L and h be the assets of C and @QA:f(y)[k] { S }=>@Q′ ∈ C and 

Q A.f Q′ : � → �′ in L. If h⊆ dom(�) and C(Q , � , --) A.f(u)[v]=⇒ C(Q′ , �′ , --) then there are X and �′′ such that:

1. E(�[y 	→ u,k 	→ v]) �X∪y S : �′′;
14
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2. E(�[y 	→ u,k 	→ v])|dom(�) ≤ σ(�) and �′′|dom(�) ≤ σ(�′), for a ground substitution σ ;
3. E(�′)|dom(�) ≤ �′′ .

Proof. Regarding item 1, by Q A.f Q′ : � → �′ ∈ L and [l-function] and rule [l-contract], we have that �0[k 	→ ξ ′] �X∪y
S : �1, where �0 = [h 	→ ξ ] and � = �0[k 	→ 1] and �′ = �1{1/

ξ ′ } (ξ and ξ ′ are tuples of fresh liquidity names). We 
first notice that dom(�) = dom(�0[k 	→ ξ ′]) = h∪ k⊆ dom(E(�[y 	→ u,k 	→ v])) because of the hypothesis h⊆ dom(�). The 
containment may be strict because dom(E(�[y 	→ u,k 	→ v])) may have asset names that do not occur in dom(�0[k 	→ ξ ′])
(these names are the formal parameters of previous invocations, which have not been garbage-collected by the semantics). 
By definition of �0[k 	→ ξ ′], there exists a ground substitution σ such that

E(�[y 	→ u,k 	→ v])|dom(�) = σ(�0[k 	→ ξ ′]) .

Therefore, by Lemma 1 (Substitution) applied to �0[k 	→ ξ ′] �X∪y S : �1, we have

E(�[y 	→ u,k 	→ v])|dom(�) �X∪y S : σ(�1) (B.1)

Item 1 follows by applying Lemma 1 (Weakening) to (B.1). The environment �′′ of the thesis is σ(�1) after the weakening, 
i.e. �′′|dom(�) = σ(�1).

We demonstrate 2. Observe that � = �0[k 	→ ξ ′]{1/
ξ ′ }. Therefore, by �0[k 	→ ξ ′] �X∪y S : �1 and Lemma 1 (Substitu-

tion), we obtain

σ ′(�0[k 	→ ξ ′]) �X∪y S : σ ′(�1) (B.2)

where σ ′ = {1/
ξ ′ }. Next observe that σ ′(�0[k 	→ ξ ′]) = � and σ ′(�1) = �; hence we rewrite (B.2) as

� �X∪y S : �′ (B.3)

Finally, notice that, using the substitution σ of (B.1) we have

E(�[y 	→ u,k 	→ v])|dom(�) = σ(�0[k 	→ ξ ′])
≤ σ |h(�0[k 	→ 1])
= σ |h(�)

where σ |h is the substitution σ that is only defined on ξ ; the “≤” follows by the fact that, in E(�)|dom(�) , some asset 
parameter in k might be 0, while these parameters are all 1 in �. We conclude by Monotonicity applied to (B.3) obtaining 
�′′|dom(�) ≤ σ |h(�′).

To demonstrate 3, we proceed by induction on the length of the computation C(Q , �[y 	→ u, k 	→ v] , S =>@Q′) =⇒
C(Q′ , �′ , --), assuming that the properties of items 1 and 2 hold. The base case is immediate. If the property holds for 
computations of length n, we demonstrate the case of computations of length n + 1 by reasoning on the first transition 
and applying inductive hypotheses to the continuation. We discuss the case when the first transition is an instance of
[asset-update] with c �= 1. Let �′′ = �[y 	→ u, k 	→ v] and

C(Q , �′′ , c × h� h′ S =>@Q′) −→ C(Q , �′′[h 	→ v ′,h′ 	→ v ′′] , S =>@Q′)
=⇒ C(Q , �′ , --=>@Q′)

where �c ×h��′′ = v and �h − v��′′ = v ′ and �h′ + v��′′ = v ′′ . By the property of item 1, E(�′′) �X∪y c ×h � h′ S : �′′ , which 
is obtained by [L-Expaupd] and [L-Seq] with premises

E(�′′) �X∪y c × h� h′ : E(�′′)[h′ 	→ e] (e = E(�′′)(h)  E(�′′)(h′)) (B.4)

E(�′′)[h′ 	→ e] �X∪y S : �′′ (B.5)

Additionally, by inductive hypotheses, we also have

E(�′′[h 	→ v ′,h′ 	→ v ′′]) �X∪y S : �′′′ (B.6)

E(�′)|dom(�) ≤ �′′′ (B.7)

We then observe that, by definition of v ′ , v ′′ and e: E(�′′[h 	→ v ′,h′ 	→ v ′′]) ≤ E(�′′)[h′ 	→ e]. Therefore, by Lemma 1 (Mono-
tonicity) and (B.5) and (B.6), we derive �′′′ ≤ �′′ . The conclusion follows by this inequality, (B.7) and transitivity of ≤.

Theorem 4. (Correctness of liquidity types of abstract computations). Let � C :L and 
(
C(Qi , �i , --) Ai :fi(ui)[vi ]=⇒ C(Qi+1 , �i+1 , --)

)i∈1..n

with dom(�1) containing the assets h of C. Let also ϕ = { Qi Ai .fi Qi+1 }i∈1..n have liquidity type Lϕ = � → �′ .
Then there is a substitution σ such that E(�1)|h ≤ σ(�) and E(�n+1)|h ≤ σ(�′).
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Proof. Let ϕ = {Qi Ai .fi Qi+1}i∈1..n and, for every i, Qi Ai .fi Qi+1 : �i → �′
i ∈L. Let also Lϕ = �

(b)
1 |h → �

(e)
n |h such that

�
(b)
1 = �1 �

(b)
i+1 = �i+1{�

(e)
i (h)/ξ } �

(e)
i = �′

i{�
(b)
i (h)/ξ } .

By definition we have

�i |h = [h 	→ ξ ] and �
(e)
i+1 = �′

i+1{�
(b)
i+1(h)/ξ } = �′

i+1{�
(e)
i (h)/ξ }

because �(b)
i+1(h) = �

(e)
i (h). Next, by Qi Ai .fi Qi+1 : �i → �′

i ∈L and [l-function], we derive

�i[ki 	→ ξi] �X∪yi Si : �′′
i where �′

i = �′′
i {1/ξi

}
for every i ∈ 1..n. Therefore, Lemma 1 (Substitution) (�(e)

0 (h) = ξ ):

�i[ki 	→ ξi]{�
(e)
i−1(h)/ξ } �X∪yi Si : �′′

i {�
(e)
i−1(h)/ξ }

and applying the substitution {1/ξi
} we also have

�i[ki 	→ ξi]{�
(e)
i−1(h),1/ξ,ξi

} �X∪yi Si : �′′
i {�

(e)
i−1(h),1/ξ,ξi

} (B.8)

Notice that (B.8) is exactly �(b)
i �X∪yi Si : �

(e)
i ; therefore, letting h′

i = dom(�
(b)
i ), if there is a ground substitution σi such 

that E(�′
i)|h′

i
≤ σi(�

(b)
i ) then, by Theorem 3.2, E(�i+1)|h′

i
≤ σi(�

(e)
i ). In the following we demonstrate that the σi do exist 

and are all equal for every i.
Let h1 = dom(�

(b)
1 ). By definition of �(b)

1 , there is σ such that

E(�1)|h1
≤ σ(�

(b)
1 ) (B.9)

From this we derive:

E(�2)|h1
≤ σ(�

(e)
1 ) (by Theorem 3.2) (B.10)

hence E(�1)|h ≤ σ(�
(b)
1 )|h (by (B.9) and h⊆ h1) (B.11)

hence E(�2)|h ≤ σ(�
(e)
1 )|h (by (B.10) and h⊆ h1) (B.12)

By definition, �′
2 = �2[y2 	→ u2, k2 	→ v2]. Let dom(�

(b)
2 ) = h2 = h∪ k2. Then E(�′

2)|h2
≤ E(�2)|h [k2 	→ 1] ≤ σ(�

(e)
1 )|h[k2

	→ 1] (because of (B.12)). We conclude by observing that �(b)
2 = �

(e)
1 |h [k2 	→ 1] and that σ(�

(b)
2 ) = σ(�

(e)
1 |h [k2 	→ 1]) =

σ(�
(e)
1 )|h [k2 	→ 1].

The theorem follows by repeating the arguments on every function in the abstract computation.

Corollary 1. Let � C : L and 
(
C(Qi , �i , --) Ai :fi(ui)[vi ]=⇒ C(Qi+1 , �i+1 , --)

)i∈1..n
with dom(�1) containing the assets h of C. Let also 

ϕ = { Qi Ai .fi Qi+1 }i∈1..n have liquidity type Lϕ = � → �′ .
If k ∈ h and ��(k)� = ��′(k)� then E(�n+1) ≤ E(�1). In particular, if E(�1) = 0 then E(�n+1) = 0.

Proposition 2. Let � = [h 	→ ξ ], where ξ is a tuple of pairwise different symbolic names, � �X S : �′ and ��(h)� �= ��′(h)�. Then S
either contains h � h′ or h′ � h or c × h′ � h or h � A (we say that h has been updated in S).

Similarly, if � C :L and Lϕ = � → �′ for an abstract computation ϕ and ��(h)� �= ��′(h)� then h has been updated by (the body 
of) at least one of the functions in ϕ .

Proof. We first notice that ��(h)� �= ��′(h)� implies �(h) �= �′(h) because �·� is applying a number of axioms of  and 
�. Therefore we demonstrate the proposition when �(h) �= �′(h) and we restrict to the case of statements; the proof for 
abstract computations is similar. By induction on the structure of S . The basic case S = -- is vacuous. The inductive case 
is S = P1 , · · · , Pn , Pn+1 where the Pi (with an abuse of notation) are either prefixes or conditionals. By rules [l-seq] and
[l-cond], there is �′′ such that

� �X P1 , · · · , Pn : �′′ and �′′ �X Pn+1 : �′

and, by inductive hypotheses, if �(h) �= �′′(h) then h has been updated by P1 , · · · , Pn . Therefore, if �(h) �= �′(h) then 
S updates h. The interesting case is when �(h) = �′′(h) and �′′(h) �= �′(h). By cases on Pn+1. If Pn+1 = h′ � h′′ then, 
since ��′′(h)� �= ��′(h)�, either h′ or h′′ must be h because, by [l-aupdate], �′′ = �′[h′ 	→ 0, h′′ 	→ �(h′)  �(h′′)]. Hence 
S updates h. The cases Pn+1 = c × h′ � h′′ and Pn+1 = h′ � A are similar. The case when Pn+1 = if (E) { S ′ } else { S ′′ }
follows by inductive hypotheses on S ′ and S ′′ .
16
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Appendix C. Correctness of the algorithms

The following Proposition is about the correctness of k-separate liquidity+ and of liquidity+.

Proposition 4. If the algorithm of Table 4 returns that a Stipula contract is k-separate liquid+ (respectively, liquid+) then it is k-
separate liquid+ (respectively, liquid+). Additionally, the algorithms always terminate.

Proof. The set QQ is a closure that contains functions Q′ A.fQ′′ of states Q′ reachable from Q. This set is finite because 
the functions are finitely many. Next, take a function with liquidity type � → �′ and ��′(k)� �= 0 and ��′(k)� �= ��(k)�
(hypothesis (a) of step 2) then, by Proposition 2, the function updates the asset k in a way that may be problematic for 
κ-separate liquidity (because ��′(k)� �= 0). In this case, the algorithm must find a function in the continuation that empties
k.

If there is a function in QQ′′ , namely Q1B.gQ2 with a liquidity type �1 → �2 such that ��2(k)� = 0 (step 3) then, by 
Theorem 3, Q1B.gQ2 empties k and, by Theorem 1 it is possible to synthesize a (concrete) computation starting at Q′ , with 
initial transition the invocation of A.f and B.g the last function invocation (therefore ending at Q2). By Theorem 4, this 
computation empties k. If there is no function then the algorithm terminates without granting κ-separate liquidity.

We reiterate the process on every possible function satisfying step 2(a) and every time we store our result in Z , in oder 
to avoid repetitions. This guarantees termination because Z may contain a finite number of pairs (Q, k) and every QQ is 
finite.

The proof for liquidity+ is similar.

The correctness of the costly algorithm for liquidity follows.

Proposition 5. Let � C : L. If the algorithm of Table 5 returns that C is liquid then it is liquid. Additionally, the algorithm always 
terminates.

Proof. The set Tκ
Q′ contains all the κ-canonical abstract computations starting at Q′ . This set is finite because the functions 

are finitely many (we observe that there are infinite concrete computations corresponding to an abstract computation). 
Additionally, the number of such sets is finite because the states Q′ (reachable from Q) are finite. So we take Q′ ϕ

� Q′′ : � →
�′ ∈ Tκ

Q′ such that there is a k′ with (a) ��′(k′)� �= 0 and ��′(k′)� �= ��(k′)� and (b) (Q′′, k′) /∈ Z (for simplicity we are 
assuming that there is a unique k′ satisfying (a) and (b)).

Then, by Proposition 2, the computation updates the asset k′ in a way that may be problematic for liquidity (because 
��′(k′)� �= 0). In this case, the algorithm must find a continuation that is suitable for liquidity.

Notice that all the assets in k ∈ h \ k′ are such that either ��′(k)� = 0 or ��′(k)� = ��(k)�.

Then, according to step 2.2, the algorithm looks for a continuation Q′′ ϕ′
� Q′′′ : �′′ → �′′′ ∈ Tκ

Q′′ such that ��′′′(k′)� = 0

and, for every k ∈ h \ k′ , either ��′′′(k)� = 0 or ��′′′(k)� = ��′′(k)�. Now consider the composition ϕ · ϕ′; by definition its 
liquidity type is � → �
 such that �
(h) = ��′′′(h)�{�′(h)/ξ }. Additionally, according to the hypotheses on ϕ and ϕ′ , for 
every h, either �
(h) = 0 or �
(h) = �(h). Now, by Theorem 1, it is possible to synthesize a computation corresponding 
to ϕ · ϕ′ . Let � and �′ be the memories of the initial and final configurations. Since in the initial configuration all the assets 
are 0 then, by Theorem 4, the assets are also 0 in �′ . This guarantees liquidity for the computation ϕ .

The algorithm accumulates in Z all the proofs that have been done in order to avoid repetitions. It also guarantees 
termination because Z may contain a finite number of pairs (Q, k).
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