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an fMRI dataset in response to 
“the Grand Budapest Hotel”, a 
socially-rich, naturalistic movie
Matteo Visconti di Oleggio Castello  1, Vassiki Chauhan2, Guo Jiahui2 & M. Ida Gobbini  3,4 ✉

Naturalistic stimuli evoke strong, consistent, and information-rich patterns of brain activity, and 
engage large extents of the human brain. they allow researchers to compare highly similar brain 
responses across subjects, and to study how complex representations are encoded in brain activity. 
Here, we describe and share a dataset where 25 subjects watched part of the feature film “The Grand 
Budapest Hotel” by Wes anderson. the movie has a large cast with many famous actors. throughout 
the story, the camera shots highlight faces and expressions, which are fundamental to understand the 
complex narrative of the movie. This movie was chosen to sample brain activity specifically related to 
social interactions and face processing. this dataset provides researchers with fMRI data that can be 
used to explore social cognitive processes and face processing, adding to the existing neuroimaging 
datasets that sample brain activity with naturalistic movies.

Background & Summary
In cognitive neuroscience the use of naturalistic stimuli such as commercial movies has advanced our under-
standing of the human brain. While simple, controlled experiments necessarily target a limited space of brain 
responses, naturalistic stimuli sample a much broader space1,2. Naturalistic stimuli are better suited to engage 
participants and hold their attention3. They evoke more reliable brain activity in comparison to controlled exper-
iments where the same stimuli in the same conditions are repeated multiple times4–6. Naturalistic stimuli allow 
researchers to compare highly similar brain responses across subjects1,4,5,7, and to study how complex representa-
tions are encoded in brain activity2,8,9.

Experiments with naturalistic stimuli are flexible because they can be analyzed with a variety of methods. 
Inter-Subject Correlation (ISC)10 can be used to study the similarity of brain activity across subjects. Multivariate 
Pattern Analysis (MVPA)11,12, including Representational Similarity Analysis (RSA)13,14, can be used to investigate 
information in population responses embedded in patterns of brain activity. Voxelwise encoding models can be 
used with naturalistic stimuli to create predictive models of brain activity and quantify complex, multidimen-
sional voxel tuning15–17. Across subjects, brain activity is highly similar in response to naturalistic stimuli5, and 
such brain responses can be used as a basis for functional alignment (e.g., Hyperalignment1,7,18). Hyperalignment 
outperforms anatomical alignment for statistical analysis and, most importantly, preserves the information 
encoded in fine-grained topographies of brain activity, which facilitates the study of individual differences19–21.

As an additional advantage, a single naturalistic fMRI dataset can be reused multiple times to answer different 
experimental questions with a variety of analytical methods. When datasets with responses to naturalistic stim-
uli are publicly shared, they can be used by many different laboratories and researchers to address their specific 
questions of interest (for example, see http://studyforrest.org/22). It is important, however, to use a variety of nat-
uralistic stimuli to sample brain activity more broadly. For example, multiple naturalistic movies can be used to 
test whether the experimental results of interest generalize beyond a specific stimulus set.

For this reason, in this paper we describe and share a dataset where 25 subjects watched part of the feature film 
“The Grand Budapest Hotel” by Wes Anderson. Their brain activity was measured with a state-of-the-art 3 T scan-
ner (Siemens Prisma) at the Dartmouth Brain Imaging Center. This movie was chosen to sample brain activity 
specifically related to social interactions and face processing. The movie has a large cast with many famous actors. 
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Throughout the story, the camera highlights many different faces and expressions, which are fundamental to 
understand the complex narrative of the movie. In a previous publication23, part of this dataset has been used as a 
basis for hyperalignment to show that face-specific functional ROIs can be recovered in new subjects using exist-
ing data, paving the way for a novel method to recover functional ROIs in detail without using time-consuming 
localizer tasks. This dataset adds to the existing neuroimaging datasets that sampled brain activity with natural-
istic movies22,24–26 to provide researchers with fMRI data that can be used by those especially interested in social 
interactions and face perception.

Methods
participants. Twenty-five participants (including three of the authors, 13 females, mean age 27.52 
years ± 2.26 SD) took part in the experiment. All had normal or corrected-to-normal vision. All participants 
provided written informed consent to the study and to the release of their data. Twenty-one participants used a 
custom-fitted CaseForge headcase (https://caseforge.co) to minimize head motion in the scanner (see Table 1). 
The study was approved by the Dartmouth Committee for the Protection of Human Subjects.

Stimuli. The full-length feature movie “The Grand Budapest Hotel” by Wes Anderson (DVD UPC 
024543897385) was divided into six parts of different durations. The movie was split at scene cuts to maintain the 
narrative of the movie as intact as possible. The audio of the movie was post-processed using FFMPEG (https://
www.ffmpeg.org) with an audio compressor filter to reduce the dynamic range and make dialogues clearer in the 
scanner. The code used to split and post-process the movie is available in the code repository.

procedure. Subjects took part in two experimental sessions, one behavioral and one in the fMRI scanner. In 
the behavioral session, participants watched the first part of the movie (approximately 46 minutes). Immediately 
after this session, participants went into the scanner and watched the remaining movie, divided into five parts. 
They were instructed to watch the movie without any additional task.

Imaging session. The imaging session comprised one anatomical (T1w) scan, one gradient echo (GRE) 
fieldmap estimation scan, and five functional runs. During the anatomical scan participants watched the last 
five minutes of the first part of the movie—which they watched in the behavioral session—to calibrate the sound 
volume for the scanner. They were asked to use a button box to increase or decrease the volume so that they could 
easily hear the dialogue. The volume chosen by the subject was used throughout the session without further 
modifications. The functional runs had a different duration depending on the part of the movie and ranged from 
approximately 9 to 13 minutes. Each run was padded with a 10 s fixation period both at the beginning and the 
end of the run. In all but the first run, the movie started with at least 10 s that overlapped with the previous run. 
The movie was presented to the subjects on a back-projected screen, and subtended approximately 16.27 × 9.17 

Subject ID Age Sex Headcase?

SID000005 29 M Yes

SID000007 25 M Yes

SID000009 28 M Yes

SID000010 29 M Yes

SID000013 26 F Yes

SID000020 28 F Yes

SID000021 31 M Yes

SID000024 31 M Yes

SID000025 29 M No

SID000029 25 F Yes

SID000030 29 F No

SID000034 25 F Yes

SID000050 27 F No

SID000052 24 F Yes

SID000055 30 M No

SID000114 28 F Yes

SID000120 25 F Yes

SID000134 29 F Yes

SID000142 26 F Yes

SID000278 29 M Yes

SID000416 28 M Yes

SID000499 29 M Yes

SID000522 27 F Yes

SID000535 22 M Yes

SID000560 29 F Yes

Table 1. Demographic information about subjects.
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(W × H) degrees of visual angle. The audio was delivered to the subject through MR-compatible in-ear head-
phones (Sensimetrics model S14).

Imaging parameters. All functional and structural volumes were acquired using a 3 T Siemens Magnetom 
Prisma MRI scanner (Siemens, Erlangen, Germany) with a 32-channel phased-array head coil at the Dartmouth 
Brain Imaging Center. Functional, blood oxygenation level-dependent (BOLD) images were acquired in an inter-
leaved fashion using gradient-echo echo-planar imaging with pre-scan normalization, fat suppression, a multib-
and (i.e., simultaneous multi-slice; SMS) acceleration factor of 4 (using blipped CAIPIRINHA), and no in-plane 
acceleration (i.e., GRAPPA acceleration factor of 1): TR/TE = 1000/33 ms, flip angle = 59◦, resolution = 2.5 mm3 
isotropic voxels, matrix size = 96 × 96, FoV = 240 × 240 mm, 52 axial slices with full brain coverage and no gap, 
anterior–posterior phase encoding. At the beginning of each run, three dummy scans were acquired to allow for 
signal stabilization. At the beginning of the imaging session, a single dual-echo GRE (gradient echo) scan was 
acquired. This scan was used to obtain a fieldmap estimate for spatial distortion correction.

A T1-weighted structural scan was acquired using a high-resolution single-shot MPRAGE sequence with 
an in-plane acceleration factor of 2 using GRAPPA: TR/TE/TI = 2300/2.32/933 ms, flip angle = 8°, resolu-
tion = 0.9375 × 0.9375 × 0.9 mm voxels, matrix size = 256 × 256, FoV = 240 × 240 × 172.8 mm, 192 sagittal slices, 
ascending acquisition, anterior–posterior phase encoding, no fat suppression, 5 min 21 s total acquisition time.

preprocessing. The description of the anatomical and functional preprocessing (sections Anatomical data 
preprocessing and Functional data preprocessing) was automatically generated by fMRIprep27, and it is copied here 
with minimal changes for style (see https://fmriprep.org/en/stable/citing.html#note-for-reviewers-and-editors 
for more information).

Results included in this manuscript come from preprocessing performed using fMRIPrep 20.1.127 
(RRID:SCR_016216), which is based on Nipype 1.5.028,29 (RRID:SCR_002502).

Anatomical data preprocessing. The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) 
with N4BiasFieldCorrection30, distributed with ANTs 2.2.031 (RRID:SCR_004757), and used as T1w-reference 
throughout the workflow. The T1w-reference was then skull-stripped with a Nipype implementation of the ants-
BrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of 
cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w 
using fast32 (FSL 5.0.9, RRID:SCR_002823).

Brain surfaces were reconstructed using recon-all33 (FreeSurfer 6.0.1, RRID:SCR_001847) and the brain 
mask estimated previously was refined with a custom variation of the method to reconcile ANTs-derived 
and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle34 (RRID:SCR_002438). 
Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) was performed through 
nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w refer-
ence and the T1w template. The following template was selected for spatial normalization: ICBM 152 Nonlinear 
Asymmetrical template version 2009c35 (RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym).

Functional data preprocessing. For each of the five BOLD runs per subject, the following preprocessing was per-
formed. First, a reference volume and its skull-stripped version were generated using a custom methodology of 
fMRIPrep. A B0-nonuniformity map (or fieldmap) was estimated based on a phase-difference map calculated with 
a dual-echo GRE (gradient-recall echo) sequence, processed with a custom workflow of SDCFlows inspired by 
the epidewarp.fsl script (http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl) and further improve-
ments in HCP Pipelines36. The fieldmap was then co-registered to the target EPI (echo-planar imaging) reference 
run and converted to a displacements field map (amenable to registration tools such as ANTs) with FSL’s fugue 
and other SDCflows tools. Based on the estimated susceptibility distortion, a corrected EPI (echo-planar imaging) 
reference was calculated for a more accurate co-registration with the anatomical reference. The BOLD reference 
was then co-registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based 
registration37. Co-registration was configured with six degrees of freedom. Head-motion parameters with respect 
to the BOLD reference (transformation matrices, and six corresponding rotation and translation parameters) are 
estimated before any spatiotemporal filtering using mcflirt38 (FSL 5.0.9). BOLD runs were slice-time corrected 
using 3dTshift from AFNI 2016020739 (RRID:SCR_005927). The BOLD time-series were resampled onto the 
fsaverage surface (FreeSurfer reconstruction nomenclature).

The BOLD time-series (including slice-timing correction when applied) were resampled onto their original, 
native space by applying a single, composite transform to correct for head-motion and susceptibility distortions. 
These resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just preproc-
essed BOLD.

Several confounding time-series were calculated based on the preprocessed BOLD: framewise displacement 
(FD), DVARS and three region-wise global signals. FD and DVARS are calculated for each functional run, both 
using their implementations in Nipype (following the definitions by Power et al.40). The three global signals are 
extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors 
were extracted to allow for component-based noise correction (CompCor41). Principal components are estimated 
after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128 s cut-off) 
for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components are 
then calculated from the top 5% variable voxels within a mask covering the subcortical regions. This subcortical 
mask is obtained by heavily eroding the brain mask, which ensures it does not include cortical GM regions. For 
aCompCor, components are calculated within the intersection of the aforementioned mask and the union of CSF 
and WM masks calculated in T1w space, after their projection to the native space of each functional run (using 

https://doi.org/10.1038/s41597-020-00735-4
https://fmriprep.org/en/stable/citing.html#note-for-reviewers-and-editors
http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl


4Scientific Data |           (2020) 7:383  | https://doi.org/10.1038/s41597-020-00735-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

the inverse BOLD-to-T1w transformation). Components are also calculated separately within the WM and CSF 
masks. For each CompCor decomposition, the k components with the largest singular values are retained, such 
that the retained components’ time series are sufficient to explain 50 percent of variance across the nuisance mask 
(CSF, WM, combined, or temporal). The remaining components are dropped from consideration.

The head-motion estimates calculated in the correction step were also placed within the corresponding con-
founds file. The confound time series derived from head motion estimates and global signals were expanded with 
the inclusion of temporal derivatives and quadratic terms for each42. Frames that exceeded a threshold of 0.5 mm 
FD or 1.5 standardized DVARS were annotated as motion outliers. All resamplings can be performed with a single 
interpolation step by composing all the pertinent transformations (i.e. head-motion transform matrices, suscepti-
bility distortion correction when available, and co-registrations to anatomical and output spaces). Gridded (volu-
metric) resamplings were performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation 
to minimize the smoothing effects of other kernels43. Non-gridded (surface) resamplings were performed using 
mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.244 (RRID:SCR_001362), mostly within the functional 
processing workflow. For more details of the pipeline, see the section corresponding to workflows in fMRIPrep’s 
documentation (https://fmriprep.readthedocs.io/en/latest/workflows.html).

Functional data denoising. The functional data preprocessed by fMRIprep was then denoised using custom 
Python scripts. The following nuisance parameters were regressed out from the functional time series using ordi-
nary least-squares regression: six motion parameters and their derivatives, global signal, framewise displace-
ment40, the first six noise components estimated by aCompCor41, and polynomial trends up to second order. All 
metrics of interest were computed on data denoised as described, either in volume space or in surface space. No 
additional spatial smoothing or temporal filtering was performed.

Hyperalignment. We functionally aligned the functional data using whole-brain searchlight hyperalign-
ment1,7,18,20. The functional data projected to the fsaverage surface template and resampled to a low-resolution 
surface (10,242 vertices per hemisphere, approximately 3 mm resolution) was split in two separate datasets to per-
form hyperalignment and compute quality metrics on independent splits. The first split included runs 1–3, and 
the second split included runs 4 and 5. Transformation matrices were determined for disc searchlights of radius 
15 mm, ignoring vertices in the medial wall. One subject (sub-sid000009) was used as the reference subject to cre-
ate the hyperalignment common space. Data was z-scored before and after hyperalignment to normalize variance.

estimation of temporal signal-to-noise ratio (tSNR). We first computed tSNR for each preprocessed 
functional run using data in each subject’s anatomy without template normalization, which would smooth the 
data spatially and affect tSNR. For each voxel, tSNR was calculated within each separate run as the temporal 
mean divided by the temporal standard deviation45. A tSNR map was generated for each subject by computing 
the median tSNR across runs within each voxel. To qualitatively visualize how tSNR varied according to brain 
areas and generate a group tSNR map, the same analysis was performed with functional data resampled to the 
fsaverage surface.

Inter-Subject correlation. Inter-Subject Correlation was computed to estimate what proportion of the 
brain signal in response to the movie was consistent across subjects10. The BOLD time series were projected to the 
template surface fsaverage, so that the data were spatially matched across subjects. Each subject’s data in a cortical 
node was correlated to the average time-series of the other 24 subjects in the same cortical node. This generated a 
map that quantifies the similarity of an individual subject’s response with the group response. The procedure was 
repeated for all subjects, and a median ISC map was computed at the group level.

Time-segment classification. Time-segment classification was used to estimate how much signal is availa-
ble in local patterns of brain activity across subjects. First, functional data projected to the fsaverage template was 
hyperaligned (see Methods) with sub-sid000009 as the reference subject. We used a nearest-neighbor classifier to 
distinguish between 15 s segments of the movie across subjects (chance level < 0.1%). The movie segments were 
1 TR apart and could have overlaps (see previous publications for more details18,19). Classification was performed 
within surface searchlights with a radius of 10 mm. The data from 24 subjects was averaged and used as a training 
set, and the classifier was tested on the left-out subject. This process was repeated for all 25 subjects, and a final 
map was created by averaging across the 25 cross-validation folds.

Data Records
The raw data was standardized following the Brain Imaging Data Structure46 (version 1.3.0) to facilitate data shar-
ing and the use of tools such as fMRIprep and MRIQC47. The dataset48 is available on OpenNeuro (https://doi.
org/10.18112/openneuro.ds003017.v1.0.2), and can be easily downloaded using DataLad49 from http://datasets.
datalad.org/?dir=/labs/gobbini. While we cannot share the raw stimuli for copyright reasons, we provide the 
scripts that were used to preprocess the stimuli with all the information needed for other researchers to generate 
the same stimuli. We also share presentation, preprocessing, and analyses scripts in the github repository (https://
doi.org/10.5281/zenodo.3942173, https://github.com/mvdoc/budapest-fmri-data).

technical Validation
The dataset was validated using different metrics that quantify data quality in separate domains. We analyzed 
the amount of subjects’ motion to quantify potential noise in the data caused by subjects’ behavior. We estimated 
tSNR for each voxel separately to make sure that all subjects had comparable levels of SNR and to highlight areas 
with low SNR. We computed Inter-Subject Correlation (ISC) as a metric that is specific to experiments with 
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Fig. 1 Framewise displacement for each subject across all runs. Subject motion was low in this dataset, as 
indicated by a median framewise displacement well below 0.5 mm for all subjects (the median value across 
subjects was 0.09 mm, minimum median across subjects of 0.06 mm, max 0.19 mm). Twenty out of 25 subjects 
had less than 5% volumes marked as motion outliers (fMRIprep defines an outlier as a volume in which 
framewise displacement is greater than 0.5 mm or standardized DVARS is greater than 1.5; see Methods).

Fig. 2 Temporal SNR across subjects. (a) Violin plots showing tSNR values across the brain. For each subject, 
a tSNR map was first generated by computing the median tSNR value across runs within each voxel. This plot 
shows the distribution of values in the tSNR map within a brainmask, computed in each subject’s volumetric 
anatomical space. Subjects are ordered in increasing median tSNR. Across subjects, the mean tSNR was 
74.42 ± 3.91. (b) Median tSNR across subjects computed on data that was projected to the template surface 
fsaverage. As expected, areas closer to air-tissue boundaries such as the anterior temporal lobe and orbito-
frontal cortex show signal dropout, while tSNR is high across the whole cortex.

https://doi.org/10.1038/s41597-020-00735-4
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naturalistic paradigms. We consider ISC as a sanity check that the stimulus generated similar brain responses 
across subjects. All the metrics described so far provide information about data quality at the level of single voxels 
or surface nodes. To quantify data quality for multivariate analyses, we functionally aligned the data using search-
light hyperalignment and performed time-segment classification across subjects.

We first quantified motion in the dataset by inspecting the motion parameters estimated by fMRIprep (see 
Methods). Overall subject’s motion was low. The median framewise displacement across subjects was 0.09 mm 
(minimum median across subjects of 0.06 mm, max 0.19 mm, see Fig. 1). Across subjects, the median percentage 
of volumes marked as motion outliers by fMRIprep was 2.72% (min 0.03%, max 22.72%), with 20 subjects out of 
25 having less than 5% volumes marked as outliers (fMRIprep defines an outlier as a volume in which framewise 
displacement is greater than 0.5 mm or standardized DVARS is greater than 1.5; see Methods.)

We estimated temporal SNR for all subjects, both in the subject’s own anatomical space (to reduce interpola-
tions that can affect tSNR) and in the fsaverage template space for a qualitative assessment of tSNR across cortical 
areas. Temporal SNR is expected to vary across areas due to signal susceptibility artifacts, differences in anatomy 
across subjects, and overall subject arousal levels during the scan45. The mean whole-brain tSNR across subjects 
was 74.42 ± 3.91, which is comparable to previous datasets50,51. As expected, temporal SNR varied across areas, 
with higher tSNR in dorsal areas, and lower tSNR in anterior temporal cortex and orbito-frontal cortex (see 
Fig. 2).

We used Inter-Subject Correlation to highlight areas where brain activity in response to the movie was sim-
ilar across subjects. As expected from an audio-visual movie, visual and auditory areas showed the highest ISC 
values (see Fig. 3). In addition, areas known to process social information such as precuneus, temporo-parietal 
junction (TPJ), and medial prefrontal cortex (MPFC)52 also showed positive ISC values. We speculate that this 
can reflect processing of the rich social information present in the movie, but future analyses might be required 
to investigate what further representations are encoded in these brain areas. Note that the ISC results in Fig. 3 

Fig. 3 Inter-subject functional correlation. As expected from an audio-visual movie, visual and auditory areas 
showed the largest correlation in brain responses across subjects. Additional areas belonging to the theory-of-
mind network, such as precuneus, temporo-parietal junction (TPJ) and medial prefrontal cortex (MPFC) also 
showed high correlation across subjects, as well as prefrontal areas, possibly highlighting the richness in social 
information available in the movie used for this dataset.

Fig. 4 Between-subject time-segment classification on hyperaligned data. The left panel (split 1) shows results 
obtained from hyperaligning on the first half of the data (runs 1–3), and classifying on the second half (runs 4, 5).  
The right panel shows the complementary analysis, that is, hyperaligning on the second half of the data, and 
classifying on the first half. Despite differences in absolute classification values due to differences in amount of 
data, the results are qualitatively similar. The highest classification values could be found in visual and auditory 
areas, as well as theory-of-mind areas such as precuneus, TPJ, and MPFC, and also prefrontal areas.

https://doi.org/10.1038/s41597-020-00735-4
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provide a lower bound of what can be obtained with this dataset. The analysis that we report was performed after 
anatomical alignment, which is known to be suboptimal for between-subject analyses such as ISC when com-
pared to hyperalignment1.

Finally, we performed between-subject time-segment classification to highlight areas whose patterns encode 
shared information across subjects. We first split the movie data into two independent sets (split 1: runs 1–3; 
split 2: run 4, 5). Then, we used data from one split to functionally align the subject’s data with whole-brain 
surface-searchlight hyperalignment1,7,18,20. The data from the other split was then used to classify 15 s 
time-segments across participants. The process was repeated for both splits (see Fig. 4). The average searchlight 
classification accuracy was 16.64%, and the maximum accuracy was 71.24%, with chance level less than 0.1% 
(split 1: mean accuracy 18.91%, max accuracy 77.43%; split 2: mean 14.37%, max 65.05%). Classification accuracy 
was higher than chance level across the whole cortex. The highest accuracy values were found in visual and audi-
tory cortex, but also in prefrontal and medial areas such as precuneus and medial prefrontal cortex.

These analyses validate the quality of this dataset for both univariate and multivariate analyses. We found evi-
dence of overall good subject compliance, as reflected by low motion during scanning, as well as comparable tSNR 
levels across subjects. Inter-Subject correlation analysis and time-segment classification analyses both revealed 
shared information in visual and auditory areas, as well as the default mode network53,54, which also plays a role 
in theory-of-mind processes52,55,56.

Code availability
All code is available in the github repository57 https://github.com/mvdoc/budapest-fmri-data. The code includes 
scripts to process the stimuli, presentation scripts, and scripts for the analyses presented in this paper. The scripts 
rely heavily on open source Python packages such as PyMVPA58, nilearn44, pycortex59, scipy60, and numpy61.
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