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Abstract—Effective communication and information shar-
ing among different districts and cities are crucial for the
management of utility flows, traffic, and emergencies in smart
cities. In this scenario, a smart city requires cloud-native
solutions to collect and analyze data from various sources,
including traffic sensors and public transport vehicles. Thus,
a multi-cloud observability approach is proposed to aggregate
data from different localities. The solution aims to provide
a complete suite for observability capable of collecting data
across layers of a multi-cloud and integrating already existing
open-source projects.

Index Terms—Observability, Multicloud, ElasticSearch,
Terraform

I. INTRODUCTION

In the context of smart cities, communication and in-
formation sharing among different districts is crucial for
the effective management of utility flows, traffic, and
potential disastrous or harmful events that could impact
neighbouring areas. Thus, it is imperative to develop and
implement applications that can collect and sense data from
multiple locations and share relevant information between
different regions. From the perspective of IT assets should
be capable of gathering real-time data about various aspects
of urban life, such as traffic flow, energy consumption,
and water usage, to facilitate better decision-making and
enable prompt response to emergencies. By leveraging
these technologies, cities can enhance their capacity to
manage and maintain critical infrastructure, optimize re-
source utilization, and enhance the citizens quality life.

To facilitate this kind of communication, also a federated
application environment is essential. This environment
should allow for the collection and analysis of data from
various sources, including traffic sensors, public transport
vehicles, and other relevant sources. The data should then
be processed and shared with all relevant parties in a timely
and efficient manner.

In this federated scenario, multiple actors are involved,
necessitating to operate seamlessly across different plat-
forms to run applications on the cloud. Since there is
a pullulating number of Cloud Service Providers (CSP)
providing their Platform as a Service PaaS support, it is
likely that different actors involved in the smart cities

services management adopt multiple PaaS based on their
need to run digital twins, real-time alerting and other data
analytics applications. Many cloud providers already offer
Application Performance Monitoring (APM) to observe,
manage, and optimize the performance of applications.
However, as recently noted [1] this is not a feasible solution
to aggregate information in a federated and heterogeneous
environment.

In distributed neighbours, cities and companies facilities,
spanning multiple cloud providers, logs generated from dif-
ferent tools may be stored across various locations, creating
the need for efficient data aggregation and analysis across
multiple cloud environments. Collecting and aggregating
logs from different cloud platforms can be a complex
task that requires careful attention to data consistency and
synchronization. Appropriate tools and techniques must be
used for efficient data processing.

Although the use of a multi-cloud approach typically
entails increased orchestration complexity, the adoption
of a practical multi-cloud strategy provides significant
benefits in terms of attaining crucial business objectives,
such as ensuring high availability, avoiding vendor lock-
in, and implementing failover mechanisms. In this regard,
the successful implementation of a comprehensive solution
for observability that covers different layers of service
is paramount to meeting user requirements and serves
as a foundation for the (semi)automatic detection and
mitigation of faults.

To this end, the proposed solution for observability in
a multi-cloud context proposes a federated observability
approach to aggregate data from different localities. Our
proposal aims at providing a complete suite for observabil-
ity capable to collect data across layers of a multi-cloud.
In addition, our solution aims to integrate already existent
open-source projects in order to allow distributed query
and storage along with the different districts and cities.

The structure of this article is as follows, Section II
covers the motivations and the design guidelines for this
work. Section III presents the technologies involved in
multi-cloud and observability including the ELK stack,
Kubernetes and Terraform. Section IV illustrates an ar-



chitectural solution for observability in the multi-cloud
environment, whilst Section V explains the experimental
results of the proposed architecture. Section VI shows
related work significant for this article. Finally, Section
VII draws the conclusions and ongoing work directions.

II. DESIGN GUIDELINES

Cloud Computing technologies have revolutionized
many fields and aspects of our life, providing unprece-
dented access to easy-to-manage computational resources
accessible through the network. In Smart Cities, many
cloud-native solutions serving city management and pro-
viding services to citizens rely on Cloud Computing
hosting. The increasing reliance on these solutions seeks
mechanisms guaranteeing a high level of availability of
these services. Another major issue is represented by the
need for interoperability among different cloud providers
that are adoptable by the several stakeholders composing
the smart cities services scenario.

The Multi-Cloud paradigm by combining services pro-
vided by different CSP allows end-users to benefit from the
best features offered by each vendor. This approach fea-
tures portability across multiple cloud infrastructures and
it is typically built on open-source cloud-native solutions
[2]. Nowadays, the swarming increase of CSP has led to
an urgent need for the integration of open-source solutions.
In this context, multi-cloud solutions have emerged as a
promising approach that provides a more extensive range
of features and capacity to end-users, ensuring the best fit
for their requirements. However, the extensive heterogene-
ity and lack of standardization among different vendors
pose a significant challenge to the seamless compatibility
required for cross-cloud solutions.

As a response to this challenge, the Cloud Native Foun-
dation has been undertaking a significant effort towards
enabling broad compatibility of their financed tools to
manage a multi-cloud environment. By leveraging this
compatibility, users can benefit from the flexibility, hori-
zontal scalability and advantages of multi-cloud solutions,
without facing the potential obstacles and complexities
of managing different cloud environments from multiple
vendors.

Observability refers to the ability to gain insights into
the behaviour of complex systems through the collection,
analysis, and correlation of data from various sources [3].
These insights are the result of the aggregations of different
data sources, which comprehend logs, metrics, and tracing.
In multi-cloud environments, achieving observability can
be challenging due to the distributed and heterogeneous
nature of the infrastructure.

To address these challenges and achieve observability
in multi-cloud environments, it is necessary to employ
several key practices and technologies. Instrumentation,
which involves the use of monitoring tools and agents to
collect and transmit data from all relevant components of
the multi-cloud environment, is essential. Once the data
is collected, it must be aggregated and centralized in a
single location for analysis and correlation, which can

Fig. 1. Architecture overview for smart cities

be accomplished through the use of log aggregation and
metrics aggregation platforms.

Data analysis is also critical to gaining insights from the
collected data, and advanced analytics and machine learn-
ing techniques can be used to identify patterns, anomalies,
and correlations that may be indicative of problems or
opportunities for optimization. The results of the data
analysis should be presented in a clear and actionable
manner, such as through dashboards or alerts, to enable
quick and effective decision-making.

Collaboration is also important in a multi-cloud envi-
ronment, as all relevant stakeholders, including developers,
operations teams, and business leaders, must have access
to the observability data and insights. Collaboration tools
and processes can facilitate communication and decision-
making across different teams and organizations.

By adopting these practices and leveraging the appropri-
ate technologies, one can achieve observability in multi-
cloud environments and gain greater visibility and control
over complex systems. In particular, in this paper, we
explore state-of-the-art Multi-Cloud enabled observability
platforms to support cloud-native services for Smart Cities,
as shown in Fig. 1.

III. BACKGROUND

Our solution is at the crossroad of several different
technologies. The following sections present some core
technologies involved in the observability stack supported
by multi-cloud tools.

A. ELK Stack

The ELK stack is an open-source project maintained by
the Apache software foundation which aims at providing a
full stack for observability purposes [4]. The ELK stack
comprises four different tools Beats, Logstash, Elastic-
Search and Kibana. The ELK stack offers a huge flexibility
to their users, in fact, one does not necessarily have to
deploy all the tools, but it can adjust them to its demand.

Beats. Following the data flow, the Beats are lightweight
data shippers, which offer organized data gathering, by
distinguishing the different sources like files, packets,
metrics, audits, and logs. Beats ship all the required data to
the subsequent layers of the stack represented by Logstash
or ElasticSearch by conforming it to the Elastic Common
Schema (ECS). ECS defines a common set of fields to
be used when storing event data in ElasticSearch, such as



logs and metrics. Beats are a plug-and-play tool which is
perfectly incorporated into the data ingestion process.

In fact, through modules, the beats can accelerate the
data visualization experience by collecting, parsing, and
visualizing information from key data sources such as
cloud platforms, containers and systems, and network
technologies. One of the main advantages of these agents
is that they are highly lightweight components and do not
require a lot of computational resources to perform data
collection. In this way, the performance of the monitored
system services will not be affected by the execution of
the Beats modules.

Logstash. Logstash fulfils the tasks of the transform
and ingestion layer. It simultaneously collects data from
the different data sources and based on the specified
tailored masks, it filters them [5]. Finally, it forwards
the transformed data to ElasticSearch. The Logstash work
pipeline begins with the data inputs, thus all the possible
data sources which generate events, including the Beats,
are suitable inputs. The filtering phase provides some user
define filters to select only those events which satisfy
certain requirements. Logstash offers many filter function-
alities to drop, mutate, clone, geolocate or simply transform
the events. Once the transformation phase is completed the
filtered events are forwarded to ElasticSearch or eventually
stored in some non-relational database like MongoDB or
a streaming platform like Kafka.

In the multi-cloud context, there can be many data
sources generating logs and metrics with different formats
and standards. A large number of input and output plug-
ins have been developed making it an extremely flexi-
ble and powerful tool that manages to interact with a
wide variety of different architectures and technologies.
However, this flexibility comes at a price in terms of
hardware requirements. For this reason, Logstash is hardly
deployed in performance-limited machines. On the other
hand, on the other hand, ElasticSearch’s Ingest nodes can
process documents prior to indexing, applying transfor-
mations and enriching the content of logs using fewer
computational resources than the tool operating in the
Transform&Ingestion layer. These particular nodes dupli-
cate most of the functionality of Logstash, making its use
sometimes superfluous.

ElasticSearch. ElasticSearch is a distributed research
engine capable of storing large amounts of data in an opti-
mized full-text format [6]. It is evident that ElasticSearch
couples the storage and research activity. Its innovative
features consist in the capability to comply with high
availability and real-time full-text search. ElasticSearch
was designed as a modular framework to support parallel
searches. In this way, the computational and storage capac-
ity of the system can be increased simply by adding nodes
to the system. The reliability of the system is automatically
managed by ElasticSearch, which migrates data and elects
replica data to primary data as a response to failures of the
system.

The communication within the ElasticSearch topology is
carried out using the JSON language associated with the

REST API. The storage paradigm used in ElasticSearch is
the Document Oriented NoSQL, this allows the database
to parse large amounts of text in any format, indexing and
parsing documents efficiently based on the metadata of the
document itself.

In the Storage and search layers, ElasticSearch uses a
master-slave paradigm to manage the interaction between
nodes. When a new node is added to the cluster, through an
election, a master node is chosen from the available ones.
The active master node will be responsible for organizing
the cluster and managing the data. To ensure the fault-
tolerance property, when the master node stops working,
ElasticSearch will ensure that another one is selected.
Indexes within the ElasticSearch ecosystem are logical
namespaces formed by one or more shards, a low-level
data distribution unit. Each index shard is a single instance
of Lucene. It is through this mechanism that ElasticSearch
distributes the data within the cluster.

B. Kubernetes and Terraform

1) Kubernetes: Much like ElasticSearch, Logstash does
not natively possess mechanisms that allow it to scale its
number of instances as the workload changes. To solve
the problem related to the management of the monitor-
ing stack, we use the open-source container orchestration
system, Kubernetes [7]. The platform makes it possible to
automate the deployment, scalability, and management of
containers in multi-cloud environments. Kubernetes tech-
nology relies on the vast adoption by the community, which
results in a standard de facto [8] in the cloud computing
environment [9].

The advantages of the Kubernetes deployment are many.
Kubernetes automates the deployment of the Elastic-
Search Logstash Kibana (ELK) stack across multiple cloud
providers, moreover, it also provides tools for infrastructure
management, including auto-scaling, load balancing, self-
healing, and rolling updates, which make it an ideal
solution for managing containerized workloads at scale.

2) Terraform: In order to address the multitude of
CSP across a multi-cloud environment, Terraform is em-
ployed to manage and provision cloud resources in a
programmatic way [10]. Since Terraform is an open source
Infrastructure as Code tool for the Kubernetes infrastruc-
ture, it results in the best solution for this cross-cloud
environment.

Terraform deploys and manages Kubernetes resources
across multiple cloud providers, allowing users to take
advantage of the strengths of each CSP while avoiding
vendor lock-in. With Terraform, it is possible to define
Kubernetes resources as code, enabling various benefits,
like version control, and automation of the infrastructure
deployment and management. Furthermore, it ensures that
the Kubernetes infrastructure is consistent and reliable, by
applying the same configuration across multiple environ-
ments and enforcing the desired state of your infrastructure.



Fig. 2. Proposed architecture

IV. MULTI-CLOUD ELASTICSEARCH DEPLOYMENT FOR
OBSERVABILITY OF LARGE CLOUD-NATIVE SERVICES

This paper proposes a cloud architecture that provides
a scalable, flexible, and reliable solution for managing
ElasticSearch, Logstash, and Kibana in a production en-
vironment.

Fig. 2 shows how we originally integrate the use of
Kubernetes for containerization of ElasticSearch, Logstash,
and Kibana, combined with Terraform for configuration
management in a novel multi-cloud architecture aimed to
ease and fasten the development of new cloud-native ser-
vices for smart cities scenarios. This multi-cloud approach
has several benefits.

Kubernetes provides a robust platform for container
orchestration, including scaling, health monitoring, and
service discovery which runs on multiple cloud providers.
By leveraging Kubernetes, the cloud architecture can take
advantage of these features to ensure the availability and
scalability of the ElasticSearch, Logstash, and Kibana
containers.

Moreover, containerizing the ElasticSearch, Logstash,
and Kibana components allows for a more modular and
flexible deployment. Each component can be scaled inde-
pendently based on resource needs, and updates can be
performed without impacting other components.

The use of Terraform for configuration management of
the previous tools provides a consistent and repeatable way
to deploy the architecture. Terraform allows for infras-
tructure as code easing the versioning and maintainance
of changes to the deployment over time. Additionally,
Terraform can be used to automate the deployment process,
reducing the risk of human error and saving time.

Overall, this architecture provides a robust, scalable, and
highly available solution for containerizing and managing
ElasticSearch, Logstash, and Kibana across different cloud

providers, while ensuring efficient and effective data anal-
ysis.

To avoid the case where a single instance of Logstash
may fail in an attempt to ingest a large amount of input
data, a Kubernetes Horizontal Pod Autoscaling (HPA) was
created to allow automatic scaling as the computational
load of the single pod increases, this is possible by defining
a maximum and minimum number of Logstash instances.
The Kubernetes LoadBalancer allows load balancing be-
tween instances of a given service. In this way, incoming
traffic to the service is randomly distributed among all
instances of Logstash so as to ensure higher availability
and scalability. The use of an HPA to manage the workload
variation of the instances of the Transform&Ingestion is
justified in cloud-native application scenarios such as smart
cities that invest a lot of computational resources to achieve
real-time analysis.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The testbed for the infrastructure evaluation has been
set up as follows. Five virtual machines were created to
host a Kubernetes cluster in the first instance. The VMs
specifications present 4 CPUs, 8GB of RAM, a 72GB disk
size and the 18.04.6 Ubuntu version. Then, a Kubernetes
cluster was deployed with a Kubernetes operator, and the
given specification consists of two masters and three slaves.
ElasticSearch is deployed upon Kubernetes, by default the
ElasticSearch cluster requires three pods to accomplish the
three different functions: master, data and client. However,
to simulate heavy workloads caused by many searches
and update requests, ElasticSearch is provided with two
coordination nodes, one master and one for data. The
Logstash instances were supplied with 4 CPUs, and 1 GB
RAM and received the Filebeats on port 5044.

Listing 1 and 2 show examples of the Terraform de-
ployments for, respectively, ElasticSearch and Logstash
on Kubernetes. These are examples of how the proposed
architecture eases, in a real testbed, the deployment of
components without using Helm charts.

The deployment consists of defining two Kubernetes De-
ployments, one for ElasticSearch and another for Logstash,
along with associated Services and ConfigMaps. The Elas-
ticSearch Deployment includes StatefulSet configuration,
which is necessary for data persistence. The Logstash
Deployment has ten replicas and mounts a ConfigMap to
define the Logstash configuration.
resource "kubernetes\_deployment"

"elasticsearch-master" {
name = "elasticsearch-master"
replicas = 1
selector = {
app = "elasticsearch"
component = "master"

}
template {
metadata {
labels = {
app = "elasticsearch"
component = "master"

}
}
spec {
containers {
name = "elasticsearch"



image = "elasticsearch:7.10.0"
ports {
container_port = 9200

}
volumeMounts {
mountPath = "/data"
name = "elasticsearch-data"

}
}

}

Listing 1. Terraform description for ElasticSearch master

resource "kubernetes\_deployment" "logstash" {
name = "logstash"
replicas = 10
selector = {
app = "logstash"

}
template {
metadata {
labels = {
app = "logstash"

}
}
spec {
containers {
name = "logstash"
image = "logstash:7.10.0"
ports {
container_port = 5044

}
volumeMounts {
mountPath = "/etc/logstash/conf.d"
name = "logstash-conf"

}
}

}

Listing 2. Terraform description for Logstash

The presented experiments aim to provide a first assess-
ment of our infrastructure to support observability appli-
cations in a multi-cloud environment for smart city assets.
in particular, we focused our analysis on the more critical
components, to evaluate a multi-cloud solution based on
the ELK stack. Namely, Logstash and ElasticSearch are
stressed to test their response to heavy workloads.

In the first experimental scenario, Logstash is stressed
with different workloads with the aim of demonstrating
its resistance. The Logstash instances contain some simple
filters to simulate the processing of incoming data flow. To
test the effective operation of the input balancing service
to the instances of Logstash, we decided to create an
architecture with two pods and a Load Balancer type
service offered by Kubernetes HPA. Fig. 3 represents
the request distribution between different Logstash pod
instances, since the Logstash is hosted in two VMs the
graph outlines the load balancing of the interactions.

The second experimental scenario assesses the resilience
of ElasticSearch when exposed to intense data workloads:
the master and client nodes are stressed with six scripts
which generate 258 requests per second. Each demon oper-
ates some searches and randomly applies some updates on
the storage. The test of these capabilities is relevant to eval-
uate the behaviour of ElasticSearch in clusters involving
numerous nodes and test its workload management, load
balancing and eventually the ability to detect congestions.
The graphs in Fig. 4 plots the CPU percentage for the
whole experiment duration. It is noteworthy to highlight
that the CPU utilization for the master node is particularly

crushed by requests especially due to data indexing, node
updates and shards.

The presented results show how is possible to provide
an adequate architecture for a multi-cloud environment.
However, the stress of ElasticSearch, especially for the
master node, proves the limited scalability in case of many
update requests. A relevant increase in the number of
client nodes on ElasticSearch can then result in slowing
down the whole monitoring support and eventually in a
possible crash of the master. In order to avoid previ-
ous issues, is possible to deploy more master replicas.
However, the replication of the master can increase the
workload for the coordination nodes. Furthermore, the
replication of Logstash is applied to the system to support
the heavy workloads from FileBeats, though this can cause
congestion in the data flow towards the master node of
ElasticSearch, and possibly result in saturation of the data
nodes.

VI. RELATED WORKS

The pervasive diffusion of mobile and IoT devices
continuously generating and sensing data in the city con-
texts, has immediately highlighted the need for monitoring
systems able to gather those data and present them through
aggregated forms through dashboards or query services. In
the following, without any pretense of being exhaustive, we
report a set of solutions that similarly to ours address the
cloud-native service observability problem, starting with
those that are more distant to terminate with the closer
ones.

We start with [11] where authors proposed a monitoring
system to estimate the positioning of IoT devices in
cities in order to achieve an optimized transmission of
data. The proposed solutions leverage cloud computing
technologies and an automation layer that takes advan-
tage of analytics delivered by the monitoring platform
and provides insights on how to deploy devices. In [12]
the authors proposed Triangulum a cloud-based prototype
that supports city management with real-time monitoring
and visualizations of information concerning city trends.
The proposed solutions also support online analysis and
queries. Through the proposed solutions the authors aim
to provide effective support and communication between
users and urban services providers giving also a global
perspective on the state of the managed city.

In [13] authors propose and validate an extensive use of
the ElasticSearch framework as a support to the collection,
aggregation and analysis of big data coming from various
sources in the city context. Analyzed data are then offered
to urban service providers who make informed decisions.
While validating ElasticSearch as a valuable technical
solution for the monitoring of smart city aspects authors
do not consider the issue of cloud availability nor the more
than likely eventuality that different actors in the smart city
ecosystem could opt for different cloud providers following
conveniences or peculiar needs.

The theme of observability in a multi-cloud environment
has been already addressed in the literature. In particular,
in [14] authors proposed a novel middleware able to
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effectively monitor the availability and performance of
services hosted on public cloud Platform as a Service
(PaaS). The proposed solution exploits gathered metrics to
opportunistically redirect service traffic achieving adaptive
load balancing and fault mitigation. However, the approach
addresses observability at the infrastructural layer, moni-
toring the health and performance of services in execution
on the different Cloud and not exploiting the capabilities
of these frameworks to aggregate and extract insights of
real use cases in the Smart City context.

All aforementioned approaches support the validity of
exploiting observability systems to monitor and manage
cloud-native services for Smart Cities extracting important
analytics from them. Our proposal aims to expand this
solution by providing a more reliable architecture sup-
porting Smart Cities services development and enabling
to overcome eventual vendor lock-ins.

VII. CONCLUSIONS

The observability of cloud-native services in Smart
Cities plays a crucial role in city management providing
the capabilities of aggregating and analyzing big volumes
of data in a near real-time fashion with also the possibility
of integrating query and alerting systems as well as visual-

ization dashboards. Cloud Computing technologies are at
the forefront of this revolution by providing fast scalable
computational resources on which host observability ser-
vices. However, centralized cloud solutions can not offer
strong guarantees in terms of availability, since the failure
of a single provider could cause major outages having
drastic consequences on the smart city offer. The creation
of an observability platform able to leverage a Multi-Cloud
approach could overcome these issues and offer also the
possibility to city service offers of adopting different cloud
providers following their preferences. In this paper, we
proposed a monitoring solution based on the ElasticSearch
stack that exploits built-in federation systems and it is
able to leverage multiple cloud providers. The proposed
solution is tested in a real-use case environment simulating
the exchange of information among several smart city
actors showing that our proposal suits the requirements
of this scenario, and is capable of managing a multi-cloud
scenario.
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