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The Mellin transform to manage quadratic
forms in normal random variables

Aldo Gardini, Fedele Greco, Carlo Trivisano
Department of Statistical Sciences, University of Bologna, Italy

January 21, 2022

Abstract

The problem of computing the distribution of quadratic forms in normal variables
has a long tradition in the statistical literature. Well-established numerical algo-
rithms that deal with this task rely on the inversion of Fourier transforms or series
representations. In this paper, the Mellin transform is proposed as a tool to com-
pute both the density and the cumulative distribution functions of a positive definite
quadratic form: an outline of the numerical algorithm is presented, providing details
on the error analysis. The algorithm’s characteristics allow us to propose an efficient
way to compute the random variables’ quantiles. From the theoretical point of view,
the analytic properties of the Mellin transform are exploited to provide a novel repre-
sentation of the distribution of the ratio of independent quadratic forms as a mixture
of beta random variables of the second kind. Moreover, algorithms are proposed for
computations related to ratios of both independent and dependent quadratic forms.
The methods are tested and compared to popular numerical algorithms in terms of
computational times and accuracy. The R package QF implementing all the proposed
algorithms is also made available. Supplementary information is available online.

Keywords: Chi-Square Linear Combination, Integral Transform, Numerical Inversion, Com-
putational Probability
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1 Introduction

The study of the distribution of quadratic forms (q.f.s) in Gaussian random variables (r.v.s)

is of particular interest since several test statistics and estimators are q.f.s or a ratio of q.f.s.

The book by Provost and Mathai (1992) provides a comprehensive overview of the topic,

discussing also several applications in Chapter 7. The pioneering paper by Robbins and

Pitman (1949) deals with the distributions of positive definite q.f.s, expressing them as

mixtures. The fundamental contribution by Ruben (1962) provides the basis for our paper:

he expressed the cumulative distribution function (c.d.f.) of a linear combination of central

and non-central chi-square r.v.s with positive weights as an infinite linear combination of

chi-square c.d.f.s.

A relevant research question concerns the computational aspects related to q.f. dis-

tributions: Imhof (1961) and Davies (1980) provided algorithms for computing the c.d.f.

of indefinite q.f.s in Gaussian variables based on the numerical inversion of the Fourier

transform. On the other hand, Farebrother (1984) proposed an algorithm for computing

both the probability density function (p.d.f.) and the c.d.f. of a positive q.f. exploiting

the infinite series representation introduced by Ruben (1962). Many of these algorithms

are available in the R (R Core Team, 2020) package CompQuadForm (De Micheaux, 2017).

Other works focused on approximating the c.d.f. of q.f.s: for instance, Box (1954) pro-

posed a solution based on moments matching, whereas Kuonen (1999) derived a saddle

point approximation.

The ratio of q.f.s also received much attention in the literature. Kim et al. (2006)

proposed new computational methods and analytical approximations for the ratio between

a chi-squared r.v. and a positive q.f., independently distributed. Usually, computing the

c.d.f. of a ratio of dependent q.f.s is led back to the problem of computing the c.d.f. of

an indefinite q.f. (Imhof, 1961). Other remarkable works in this framework are Lieberman

(1994), which proposed a saddle-point approximation, and Broda and Paolella (2009),

which numerically evaluate the p.d.f..

Ratios of dependent q.f.s are widely used to test for the presence of correlation structures

in the residuals of a linear regression: Anderson (1948) studied a general form of test-
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statistic that has such distribution under the null hypothesis. The weights of the q.f. at

the numerator depends on the kind of structure assumed for the error: some examples of

such tests are provided in Table S1 of the Supplementary material. On the other hand,

several examples of tests, characterized by a test statistic distributed as a q.f. in Gaussian

r.v.s under the null hypothesis, are reported in Table S2. Moreover, some statistics are q.f.s

under the Gaussian assumption, such as the intralclass correlation coefficient, Cronbach’s

alpha, and the sample variance.

The target in this paper is the exact computation of the p.d.f., c.d.f., and quantile

function of positive definite q.f.s and the ratio of positive definite q.f.s in normal r.v.s.

Our findings rely on the Mellin transform of the p.d.f.. This mathematical tool enjoys

several properties useful in statistics and probability (Epstein, 1948), especially to derive

the distribution of product or ratio of random variables with positive support. As an

example, Provost and Rudiuk (1994) used the Mellin transform to derive the exact p.d.f.

of the ratio of dependent q.f.s, but the obtained expressions are not convenient from a

computational perspective. Provost (1989) exploited the Mellin transform to derive the

distribution of the sum of independent Gamma r.v.s and their ratio. Our proposal is to

retrieve the target quantities by numerically inverting the Mellin transform, controlling for

the numerical error of the algorithm.

The proposed algorithms are built starting from the evaluation of the Mellin transform,

which is the most computationally intensive step. However, once this task has been ac-

complished, the information contained in the transform can be exploited for computing

the p.d.f. and the c.d.f. with a computational effort that can be sensibly lower than the

one required by other existing algorithms: the convenience of our proposal depends on the

structure of the q.f. weights, as we will discuss in Section 5. Moreover, the algorithm allows

building an efficient routine to evaluate the quantile function by means of a simple Newton-

Raphson algorithm. To facilitate the usage of the algorithms, the R package QF (Gardini

et al., 2021) is available, where the routines are implemented in the C++ language through

the Rcpp package (Eddelbuettel and François, 2011). In addition, expressing the distribu-

tion as an inverse Mellin transform led us to a novel representation of the distribution of
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the ratio of independent q.f.s as a mixture of beta r.v.s of the second kind.

The rest of the paper is organized as follows. In Section 2, some key concepts about the

Mellin transform and the q.f. distribution are briefly outlined. These notions are crucial to

develop the numerical algorithm aimed at computing the p.d.f. and the c.d.f. of a positive

definite q.f.s (Section 3). Section 4 deals with ratios of q.f.s. In Section 5, the proposed

methods are compared to other popular numerical algorithms in terms of computational

times and accuracy, and the results of some applications are presented. Finally, concluding

remarks are reported in Section 6.

2 Preliminaries

2.1 Basics of the Mellin Transform

The Mellin transform is a mathematical tool largely used throughout the paper. It is a

transformation strictly related to the more famous Laplace and Fourier transforms, and its

properties have been already exploited in statistics (Epstein, 1948), mainly to deal with

the distribution of the product (or ratio) of r.v.s and for its connection to moments.

In what follows, given a random variable X, the p.d.f. and c.d.f. are denoted as fX(·)

and FX(·), respectively. Moreover, given a function g(·), its Mellin transform (Paris and

Kaminski, 2001; Poularikas, 2018) is denoted as ĝ(·). For a r.v. having the positive real

axis as support, the Mellin transform of its p.d.f. is defined as:

f̂X(z) =

∫ +∞

0

xz−1fX(x)dx,

where z = h + iy ∈ C. The density function fX(·) can be recovered from f̂X(·) by the

inverse Mellin transform:

fX(x) =
1

2πi

∫ h+i∞

h−i∞
x−zf̂X(z)dz,

where h = <(z) individuates a Bromwich path of integration included in the strip of

analyticity of f̂X(·), that is denoted as S
(
f̂X
)
. Once the strip of analyticity is identified,

absolute convergence of both the previous integrals is guaranteed if h ∈ S
(
f̂X
)
.
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Some properties of the Mellin transform that turn out to be useful for managing com-

putations related to q.f.s distributions are summarized in the following.

� The Mellin transform is a linear operator, i.e. if g(x) = af1(x) + bf2(x), then:

ĝ(z) = af̂1(z) + bf̂2(z) with strip of analyticity S
(
ĝ
)

= S
(
f̂1

)
∩ S
(
f̂2

)
. (1)

� Let V1 and V2 be two independent r.v.s and let W = V1/V2. The Mellin transform of

fW (·) can be obtained from f̂V1(·) and f̂V2(·) as:

f̂W (z) = f̂V1(z)f̂V2(2− z) with strip of analyticity S
(
f̂W
)

= S
(
f̂V1
)
∩ S
(
f̂V2
)
. (2)

� In the strip of analyticity, it holds that f̂(z) → 0 as =(z) → ∞, and for a suitable

constant M <∞, the following inequality holds:∣∣∣f̂(z)
∣∣∣ < M |z|−2. (3)

� The general property concerning the Mellin transform of a function’s derivative allows

formalizing a relationship between the Mellin transform of the c.d.f. FX(x) and f̂X(z):

f̂X(z) = −(z − 1)F̂X(z − 1),

from which it follows that the Mellin transform of the c.d.f. can be expressed in terms

of f̂X(z):

F̂X(z−1) = − f̂X(z)

z − 1
with strip of analyticity S

(
F̂X
)

= S
(
f̂X
)
∩{z : <(z) < 1} , (4)

since the strip of analyticity of −(z − 1)−1 is <(z − 1) < 0.

2.2 Quadratic forms in Gaussian variables

To define a q.f. in Gaussian r.v.s, consider a p-dimensional random vector distributed as a

multivariate Gaussian: X ∼ Np (µ,Σ). The canonical expression of a q.f. in X is:

Q(X) = XTAX,
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where A ∈ Rp×p is a symmetric matrix.

Defining the matrix decomposition Σ = LTL, Q(X) can be expressed as a function of

the standardized Gaussian random vector Z ∈ Rp:

Q(X) = (Z + L−1µ)TLTAL(Z + L−1µ). (5)

A fundamental tool for studying the distribution of Q(X) is the spectral decomposition

of the matrix LTAL, i.e. PΛPT , where P is the orthogonal matrix whose columns

are the eigenvectors of LTAL, and Λ = diag(λ) is a diagonal matrix. The vector λ =

(λ1, . . . , λr, λr+1, . . . , λp) contains the eigenvalues of the matrix in descending order, where

r is the rank of LTAL. If r < p, then λi = 0, i = r + 1, . . . , p. Defining η̃ = PTL−1µ and

the transformed random vector U = PTZ, such that E[U] = 0 and Cov[U] = I, the q.f.

can be written as:

Q(X) = (U + η̃)TΛ(U + η̃) =
r∑
i=1

λi(Ui + η̃i)
2,

where (Ui + η̃i)
2 ∼ χ2

1,ηi
, i.e. a chi-square r.v. with 1 degree of freedom and non-centrality

parameter ηi = η̃2
i . If the original random vector X has zero mean (µ = 0), then ηi = 0, ∀i.

A q.f. can be labeled as positive definite if the eigenvalues λ are non-negative and as

indefinite if they are both positive and negative. In the rest of the paper, Q indicates the

complete expression Q(X) for the sake of brevity.

3 Positive definite quadratic forms

In Ruben (1962), the following representation of fQ(·) is proposed

fQ(q) =
∞∑
k=0

ak
qα+k−1 exp

{
− q

2β

}
(2β)α+kΓ(α + k)

=
∞∑
k=0

akfG(q;α + k, 2β), (6)

where fG(q;α + k, 2β) denotes the p.d.f. of a r.v. G following a gamma distribution with

shape parameter α + k and scale 2β evaluated at q. The ak coefficients are recursively

defined as follows:

a0 = exp
{
−η

2

} r∏
i=1

(
β

λi

) 1
2

; ak = (2k)−1

k−1∑
l=0

bk−lal, k ≥ 1;
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bk = kβ

r∑
i=1

ηi
λi
ck−1
i +

r∑
i=1

cki , k ≥ 1,

where

η =
r∑
i=1

ηi, α =
r

2
, ci = 1− β

λi
.

To guarantee the absolute convergence of the series, the arbitrary constant β must fulfill

the condition
∣∣∣1− β

λi

∣∣∣ < 1, ∀i. Ruben (1962) discusses how the choice of β affects the

convergence speed of the series. For the following developments, it is worth noting that, if

0 < β ≤ λr, the coefficients ak have the following properties:

ak ≥ 0, ∀k;
∞∑
k=0

ak = 1, (7)

i.e. (6) turns out to be a mixture of gamma densities, whose Mellin transform is:

f̂G(z;α + k, 2β) = (2β)z−1 Γ (z + α + k − 1)

Γ (α + k)
, k ≥ 0

within the strip of analyticity <(z) > 1− α− k. The Mellin transforms of fQ(·) and FQ(·)

are derived in the following proposition.

Proposition 1. Considering Ruben’s expression for the p.d.f. of positive definite q.f.s (6),

its Mellin transform is:

f̂Q(z) = (2β)z−1
∞∑
k=0

ak
Γ (z + α + k − 1)

Γ (α + k)
, <(z) > 1− α. (8)

A computationally convenient recursive reformulation is

f̂Q(z) = (2β)z−1
∞∑
k=0

akPk(α, z − 1),

where

Pk(α, z − 1) =


Γ(z+α−1)

Γ(α)
, k = 0;

Pk−1 (α, z − 1)
(
1 + z−1

α+k+1

)
, k > 0.

The Mellin transform of the c.d.f. is:

F̂Q(z) = −(2β)z

z

∞∑
k=0

ak
Γ (z + α + k)

Γ (α + k)
, −α < <(z) < 0.

Proof. See Supplementary material.
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We propose to compute fQ(·) and FQ(·) numerically inverting the Mellin transform, i.e.

by numerical evaluation of the integrals:

fQ(q) =
1

2πi

∫ h+i∞

h−i∞
q−zf̂Q(z)dz,

and

FQ(q) =
1

2πi

∫ h+i∞

h−i∞
q−(z−1)F̂Q(z − 1)dz = − 1

2πi

∫ h+i∞

h−i∞
q−(z−1) f̂Q(z)

z − 1
dz,

where the last equality follows from equation (4).

Note that both the p.d.f. and the c.d.f. can be recovered from f̂Q(·) provided that 1−α <

<(z) < 1. Since f̂Q(·) does not depend on q, once f̂Q(·) is obtained, it can be used for

computing the p.d.f., c.d.f., and quantile function of the q.f.. As a matter of fact, numerical

inversion of these two integrals requires a small computational effort, the most intensive

computiational step being the evaluation of the Mellin transform.

3.1 Numerical algorithm

The algorithm receives as input the vector of positive weights λ1, . . . , λr, the non-centrality

parameters η1, . . . , ηr, the absolute error ε, and a probability level ρ. The latter input

determines the range of q values for which it is required to keep the desired error: the

algorithm is built to guarantee an absolute error lower than ε for every fQ(q) and FQ(q)

such that F−1
Q ((1− ρ)/2) < q < F−1

Q ((1 + ρ)/2). Computation of fQ(·), FQ(·) and F−1
Q (·)

is possible via the functions dQF, pQF, and qQF that are available in the in the R package QF.

All the R functions take as input the Mellin transform of the p.d.f. that can be computed

by means of the function mellin QF. For further details see the package documentation

(Gardini et al., 2021). The quantile function qQF is based on a Newton-Raphson algorithm

exploiting the dQF and pQF functions.

In order to provide a reliable evaluation of the target functions, the numerical error

must be controlled. In particular, three different error sources can be individuated: the

Mellin transform truncation error eM , the inversion integral truncation error eT , and the

discretization error eD. To isolate the different error sources annexed to the computed
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value f̃Q(q), the Mellin transform is decomposed as follows:

fQ(q) =
1

2πi

∫ h+i∞

h−i∞
q−zf̂Q(z)dz

=
1

2πi

∫ h+i∞

h−i∞
q−z (2β)z−1

∞∑
k=0

akPk(α, z − 1)dz

=
1

2π

∫ +∞

−∞
q−(h+iy) (2β)h+iy−1

∞∑
k=0

akPk(α, h+ iy − 1)dy

=
∆ (2β)−1

2π

T∑
t=−T

(
2β

q

)h+i∆t K∑
k=0

akPk(α, h− 1 + i∆t) + eM + eT + eD

= f̃Q(q) + eM + eT + eD,

(9)

where ∆ is the numerical integration step size. Thus, the numerical error is∣∣∣fQ(q)− f̃Q(q)
∣∣∣ = |eM + eT + eD| = |ε| .

A similar decomposition and equivalent expression of the errors can be obtained for the

c.d.f..

More in detail, the error term eM arises from truncation at term K of the infinite sum

(8), its absolute value is:

|eM | =

∣∣∣∣∣ 1

2πi

∫ h+i∞

h−i∞
q−z (2β)z−1

∞∑
k=K+1

akPk(α, z − 1)dz

∣∣∣∣∣ . (10)

The error term eT is due to truncation of the integration interval from (h− i∞;h+ i∞)

to (h− i∆T ;h+ i∆T ):

|eT | =
∣∣∣∣ 1

2πi

∫ h−iT∆

h−i∞
q−zf̂Q(z)dz

∣∣∣∣+

∣∣∣∣ 1

2πi

∫ h+i∞

h+iT∆

q−zf̂Q(z)dz

∣∣∣∣
=

∣∣∣∣∣ 1

πi

∫ h+i∞

h+iT∆

q−z (2β)z−1
K∑
k=0

akPk(α, z − 1)dz

∣∣∣∣∣ .
Finally, the discretization error eD arises from using a Riemann sum with constant inte-

gration step ∆ for numerical integration.

Without loss of generality, scaled weights λ∗i = λi/λr are considered to enhance stability

of the algorithm. In order to allow a mixture representation of the p.d.f., β = λ∗r = 1 is

fixed, i.e. the lowest scaled weight. This allows to obtain a bound for eM .
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Proposition 2 (Mellin truncation error bound). The error eM can be bounded by

|eM | ≤

(
1−

K∑
k=0

ak

)
fG (2(α +K);α +K + 1, 2)

for the p.d.f. and

|eM | ≤

(
1−

K∑
k=0

ak

)
(11)

for the c.d.f..

Proof. See Supplementary material.

This error bound is employed to chose the value K, i.e. the number of ak coefficients

needed to ensure the required precision. A bound for the integral truncation error eT is

provided in the following proposition.

Proposition 3 (Integral truncation error bound). The error eT can be bounded by:

|eT | ≤
∣∣∣f̂Q(h+ i∆T )

∣∣∣ h2 + (∆T )2

πhqh

(
π

2
− arctan

(
∆T

h

))
for the p.d.f., and

|eT | ≤
∣∣∣f̂Q(h+ i∆T )

∣∣∣ h2 + (∆T )2

π(h− 1)2
q1−h

(
1− ∆T√

(∆T )2 + (h− 1)2

)
for the c.d.f..

Proof. See Supplementary material.

From the practical point of view, truncation value T is selected when both the right-

hand sides of the rules derived in Proposition 3 are below the chosen absolute value ε.

With regard to the discretization error eD, a bound could be sought by observing that

the Mellin transform can be cast as a two-sided Laplace transform. For a review on these

approaches see Abate and Whitt (1992). However, we found it more practical to implement

the following iterative procedure to control eD:

1. the Mellin transform is computed using an initial integration step ∆I ;

2. quantiles qL = F−1
Q ((1− ρ)/2) and qU = F−1

Q ((1 + ρ)/2) are computed;
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3. both the p.d.f. and the c.d.f. are evaluated at qL and qU , and these values are

compared to those computed integrating the Mellin with a wider integration step

∆I + δ, δ > 0;

4. if the attained precision exceeds the required precision, i.e. if the maximum difference

is lower than ε, the integration step is increased. Otherwise, the integration step is

halved until the difference is below ε.

4 The ratio of quadratic forms

The distribution of the ratio of q.f.s has been widely studied since it involves the sampling

distribution of several test statistics. In this paper, the basic properties of the Mellin

transform are employed for studying such distributions. The interest lies in the following

r.v.:

D =
Q1

Q2

,

where Q1 and Q2 are independent positive q.f.s in the framework of Section 4.1, dependent

q.f.s in Section 4.2.

4.1 The ratio of independent positive quadratic forms

In this section, the r.v. D previously defined is studied assuming Q1 and Q2 being inde-

pendent, possibly non-central, q.f.s:

Q1 =

r1∑
i=1

λi,1(Ui,1 + η̃i,1)2, Q2 =

r2∑
i=1

λi,2(Ui,2 + η̃i,2)2.

Kim et al. (2006) obtained exact results for the distribution of the ratio between a

non-central chi-square and a positive q.f., and they also provided an approximation for the

distribution of the ratio between independent q.f.s. The exact result is expressed as an

infinite weighted sum of Fisher’s F p.d.f.s and c.d.f.s.

Starting from the property (2) of the Mellin transform, it is possible to derive the analogous

result for the general case in which Q1 is any positive definite q.f.. Recalling the expression
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for f̂Q(z) (8), the Mellin transform of D can be written as:

f̂D(z) = f̂Q1(z)f̂Q2(2− z)

=

(
β1

β2

)z−1
(
∞∑
k=0

ak,1
Γ (α1 + z + k − 1)

Γ (α1 + k)

)(
∞∑
j=0

aj,2
Γ (α2 + j + 1− z)

Γ (α2 + j)

)
,

(12)

where the subscripts 1 and 2 denote the quantities related to Q1 and Q2 respectively and co-

efficients ak,1 and aj,2 are obtained via Ruben’s recursion. Note that S
(
f̂Q1

)
= {z : <(z) >

1−α1} and S
(
f̂Q2

)
= {z : <(2−z) > 1−α2}, hence S

(
f̂D
)

= {z : 1−α1 < <(z) < 1+α2}.

Moreover, the Mellin transform of the c.d.f. can be recovered from f̂D(z) using (4), with

strip of analyticity 1− α1 < h < 1.

The analytical inversion of f̂D(·) allows to express the p.d.f. (c.d.f.) of the ratio of inde-

pendent q.f.s as a weighted sum of p.d.f.s (c.d.f.s) of 2nd kind beta r.v.s, as stated in the

following theorem.

Theorem 1 (Distribution of the ratio of independent q.f.s). Let D be a ratio of two

independent positive definite q.f.s Q1 and Q2. The p.d.f. fD(·) can be expressed as:

fD(d) =
+∞∑
k=0

+∞∑
j=0

ak,1aj,2fB2

(
d;
β1

β2

, α1 + k, α2 + j

)
,

where fB2 (x; b, p, q) indicates the p.d.f. of a beta r.v. of the 2nd kind (B2) with parameters

b, p, q:

fB2(x; b, p, q) =
b−p

B(p, q)
xp−1

(
1 +

x

b

)−p−q
. (13)

and B(p, q) = Γ(p)Γ(q)/Γ(p+ q) is the beta function.

Analogously, the c.d.f. FD(·) can be expressed as

FD(d) =
+∞∑
k=0

+∞∑
j=0

ak,1aj,2FB2

(
d;
β1

β2

, α1 + k, α2 + j

)
.

Proof. Starting from the analytical inversion of f̂D(·), after arranging the terms and switch-

ing the integral and sums in virtue of the absolute convergence of the integral and the

12



consequent application of Fubini’s theorem, one has:

fD(d) =
1

2πi

∫ h+i∞

h−i∞
d−zf̂D(z)dz

=

(
β1

β2

)−1 +∞∑
k=0

+∞∑
j=0

ak,1aj,2
Γ (α1 + k) Γ (α2 + j)

×

× 1

2πi

∫ h+i∞

h−i∞

(
β1

dβ2

)z
Γ (α1 + z + k − 1) Γ (α2 + j + 1− z) dz

=

(
β1

β2

)−1 +∞∑
k=0

+∞∑
j=0

ak,1aj,2
B (α1 + k, α2 + j)

(
β1

dβ2

)α2+j+1(
β1

dβ2

+ 1

)−α1−k−α2−j

=
+∞∑
k=0

+∞∑
j=0

ak,1aj,2

(
β1β

−1
2

)−α1−k

B (α1 + k, α2 + j)
dα1+k−1

(
1 +

d

β1β
−1
2

)−α1−k−α2−j

=
+∞∑
k=0

+∞∑
j=0

ak,1aj,2fB2

(
d;
β1

β2

, α1 + k, α2 + j

)
,

where the equality involving the integral is due to equation 5.13.1 in Olver et al. (2010).

The expression of the c.d.f. can be recovered by integrating fD(d) switching the order of

integration and summations.

From a computational point of view, the double infinite sum characterizing the density

derived in Theorem 1 is difficult to handle since fB2 (d; β1/β2, α1 + k, α2 + j) depends on

both k and j. For this reason, the algorithm proposed in the following section takes

advantage of the Mellin transform expression (12), which is the product of two infinite

sums.

4.1.1 Numerical algorithm

As in Section 3.1, the target quantities fD(d), FD(d) and F−1
D (p) are obtained by numerically

inverting the Mellin transform, and the associated numerical error has three sources that

must be controlled as before. In parallel to decomposition in equation (9), it is worth to

remark that the actual computed quantity is:

f̃D(d) =
∆

2π

(
β2

β1

) T∑
t=−T

(
β1

dβ2

)h+i∆t
(

K∑
k=0

ak,1Pk(α1, h− 1 + i∆t)

)
×(

J∑
j=0

aj,2Pj(α2, 1− h− i∆t)

)
.
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The proposed algorithm considers the scaled eigenvalues of the q.f. at the numerator

λ∗i,1 = λi,1/λr,1 and it traces the algorithm presented for the computation of quantities

related to the distribution of Q. The number of coefficients used to compute f̃D(d) are

fixed using criterion (11) as stopping rule both at the numerator and at the denominator.

The inequality (3) is used to control eT . In this case, same expressions of the bounds

derived in Proposition 3 are retrieved, plugging in f̂D(z) instead of f̂Q(z). Finally, the

discretization error eD is controlled using an iterative procedure, as before.

4.2 The ratio of dependent quadratic forms

In this section, the case in which D is defined in terms of dependent quadratic forms Q1

and Q2 is considered. As most of the approaches proposed in the literature, we focus on

computation of FD(·), while computation of fD(·) is not addressed. To the best of our

knowledge, the only attempt to compute fD(·) is the one by Broda and Paolella (2009).

Using the canonical notation (5), D can be expressed as:

D =
Q1

Q2

=
YTA?Y

YTB?Y
;

where Y = Z + L−1µ. Matrices A? = LTAL and B? = LTBL are (p × p)-dimensional

semi-positive definite matrices. The most common approach to evaluate the c.d.f. at a

generic quantile d is transforming the original problem to the evaluation of the c.d.f. of an

indefinite q.f.:

FD(d) = P [Q1/Q2 ≤ d] = P
[
YT (A? − dB?) Y ≤ 0

]
.

Then, an algorithm like the one by Imhof (1961) or Davies (1980) is used to compute the

value considering the eigenvalues of the matrix A? − dB?, i.e. λ(d).

We retrieve FD(·) by leading back the problem to a ratio of independent q.f.s. and

then applying the method outlined in Section 4.1. The indefinite q.f. YT (A? − dB?) Y is

considered as a linear combination of chi-square r.v.s with weights λ(d). As highlighted

by the notation, the weights depend on d, i.e. the quantile where the c.d.f. is evaluated.

Then, positive and negative terms are separated as follows:
r∑
i=1

λi(d)(Ui + η̃i)
2 =

∑
i:λi(d)>0

λi(d)(Ui + η̃i)
2 −

∑
i:λi(d)<0

|λi(d)|(Ui + η̃i)
2 = P (d)−N(d);
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finding a difference of two independent positive definite q.f.s: P (d) and N(d). Hence, FD(d)

can be evaluated as the c.d.f. of a ratio of independent positive definite q.f.s:

FD(d) = P [P (d)−N(d) ≤ 0] = P
[
P (d)

N(d)
≤ 1

]
; (14)

i.e., FD(d) is retrieved by evaluating the c.d.f. of the r.v. P (d)/N(d) at 1. Clearly, the

dependence of the weights on d causes a considerable computational burden, since the

Mellin transform needs to be recomputed for each d: this problem is common to all the

approaches proposed in the literature. The function pQF depratio is available in the QF

package for computing the c.d.f. of dependent q.f.s.

5 Numerical evaluations and applications

In Section 5.1, our routine is compared to other popular procedures with respect to both

computational time and accuracy. Then, three applications are discussed: Section 5.2 deals

with the sample variance distribution of a Gaussian random vector with an autoregressive

(AR) covariance matrix, corresponding to the distribution of a positive q.f.. Section 5.3

deals with the computation of size and power of the Behrens-Fisher test statistic, for testing

equality of means of two Gaussian populations, under departure from the homoschedasticity

hypothesis: this requires dealing with the ratio of independent q.f.s. Finally, Section 5.4

deals with computation of the c.d.f. of the Cronbach’s alpha statistic that can be cast as

the ratio of dependent q.f.s. The last two examples have also been discussed in Kim et al.

(2006).

5.1 Testing the algorithms

The proposed computational algorithm is compared to some popular existing procedures

such as algorithms by Davies (1980), Imhof (1961) and Farebrother (1984): all these algo-

rithms are designed to evaluate the c.d.f. of the considered r.v.. Only the latter provides the

p.d.f., but cannot be used when the focus is on the ratio of independent q.f.s. The R package

CompQuadForm (De Micheaux, 2017) provides the implementation of these algorithms. In

Table 1, the chosen q.f.s and ratios are listed. Some of them are taken from Imhof (1961)
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R.v.s (λi, ηi, multiplicity) R.v.s (λi, ηi, multiplicity)

Q1 (6, 0, 1); (3, 0, 1); (1, 0, 1) Q6 (30, 0, 1); (1, 0, 30)

Q2 (6, 0, 2); (3, 0, 2); (1, 0, 2) Q7 (i, 0, 1); i = 1, . . . , 10

Q3 (6, 0, 6); (3, 0, 4); (1, 0, 2) D1 Q1/Q7

Q4 (7, 6, 6); (3, 2, 2) D2 Q7/Q3

Q5 (7, 6, 1); (3, 2, 1) D3 Q4/Q1

Table 1: Positive definite q.f.s (Ql, l = 1, . . . , 7) and ratios (Dj, j = 1, 2, 3) studied in

Section 5.1.

and they are defined in terms of weights (λi), multiplicities, and non-centrality parameters

(ηi). An absolute precision level ε = 10−6 is adopted. For our procedure, ρ = 0.9999 is

fixed: this guarantees the precision ε between quantiles (1− ρ)/2 and (1 + ρ)/2.

The computational times for repeated evaluation (n = 7 and n = 1000 equally spaced

quantiles) of the c.d.f. and p.d.f. have been studied. Note that results from Imhof and

Davies algorithms refer to c.d.f. computation only. The complete results consist of the

average time obtained with 100 replications on a PC with processor Intel Core i7-9750H

(2.60GHz), and are available in Table S3 in the Supplementary material. This analysis

allows to highlight that our proposal is competitive in terms of computational times, and

a substantial time saving can be noted in case of repeated evaluations (n = 1000) since

the most computationally expensive step of the algorithm concerns the Mellin transform

computation, but this task is accomplished only one time.

Focusing on positive definite q.f.s, the accuracy in computing the c.d.f. at different

quantiles is compared. The quantiles related to the following probabilities are chosen:

p = (5×10−6, 0.25, 0.5, 0.75, 1−5×10−6), noting that the first and the last values correspond

to quantiles laying outside the range of values (determined by ρ) for which the desired

absolute error ε is guaranteed by our algorithm. To measure the accuracy, the absolute

relative difference between the value computed by each algorithm (with ε = 10−6) and

the benchmark (Farebrother’s algorithm with ε = 10−26) is computed. All the registered

values are below 1 (further details in Table S4 in the supplementary material), hence the
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requested accuracy has been achieved in every considered case. Focusing on our algorithm,

we remark that this result occurs also for quantiles outside the range of values for which the

error level is guaranteed. This finding points out the reliability of the proposed algorithm.

5.2 Sample variance distribution under AR model

In this section, we consider the distribution of the sample variance of an n-dimensional

Gaussian random vector Y ∼ Nn (0,Σ(φ)), where Σ(φ) determines an autoregressive pro-

cess of order 1 with standard normal errors, i.e. the ij-th entry is:

[Σ(φ)]ij =
1

1− φ2
φ|i−j| i, j = 1, . . . , n.

The sample variance V |φ = n−1YTMY, where M is the centering matrix, is a positive defi-

nite q.f.. Defining L(φ) such that Σ(φ) = L(φ)TL(φ), V |φ can be expressed as the weighted

sum of independent central χ2 r.v.s with weights λ(φ) corresponding to the eigenvalues of

L(φ)TML(φ). In what follows, we report results obtained for computing fQ(·) and FQ(·)

fixing ρ = 0.9999 and ε = 10−6.

A quantity of major interest for understanding the merit of our approach is the condition

number of L(φ)TML(φ), κ(φ) = λ1(φ)/λr(φ), which is a measure of the skewness of the

spectrum and is an increasing function of φ, as can be check from Table 2. The same table

reports the number of terms required by Farebrother’s algorithm (denoted as K) and the

number of integration points for numerical inversion of the Mellin transform (denoted as

T ).

Note that the number of terms required by the Farebrother’s algorithm dramatically

increases with φ: this is expected when using Ruben’s formula since the ak coefficients

show slow decay when the skewness of the weights increases. On the other hand, the Mellin

transform method is able to store the information required to compute the target quantities

using a small number of integration points and the number of terms required for numerical

integration decreases with the skewness of the weights. This is coherent with the typical

behavior of integral transforms, that stretching in the time domain turns out in squeezing

in the frequency domain. An example of the decay rate of the imaginary part of the Mellin

transform for two values of φ is shown in the left-panel of Figure 1, while the right-panel
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φ 0.00 0.25 0.50 0.75 0.95 0.975

κ(φ) 1.00 2.76 8.74 42.57 667.73 2068.13

K 1 57 162 563 6159 17838

T 132 126 80 42 34 34

F
−

1
Q

(p
) p = 0.025 0.6311 0.6488 0.7268 0.9369 1.6401 2.0116

p = 0.5 0.9667 1.0143 1.2212 1.8870 6.0711 10.8916

p = 0.975 1.4044 1.5129 1.9900 3.8046 23.6796 59.7212

Table 2: Condition number κ(φ), number of ak coefficients for Farebrother’s algorithm

(K), number of Mellin transform integration points T , and distribution quantiles F−1
Q (p)

for V |φ, with φ = 0, 0.25, 0.5, 0.75, 0.95, 0.975.

shows the imaginary part of the Fourier transform f̄Q(y). In both cases, non-negligible

values of both the integral transforms referred to φ = 0.975 are contained in a shorter range,

reflecting the aforementioned squeezing in the frequency domain behaviour. Moreover, when

φ increases, the Fourier transform becomes less smooth, hence more difficult to numerically

integrate: this generates the well-known pathological behaviors of the Imhof and Davies

algorithms. To evaluate the Mellin transform at integration points h+ i∆t, t = −T, . . . , T ,

computation of the K coefficients of Ruben’s expansion is required. However, once these

values are available, they can be used for computing any probabilistic quantity related to

the q.f. distribution. In synthesis, the Mellin transform is able to conveniently store all

the relevant features of the q.f. in few terms and turns out to be particularly useful when

several evaluations of fQ(·) or FQ(·) are required, as pointed out in Section 5.1. Moreover,

the computational saving is remarkable when the skewness of the weights increases.

In Figure 2, the p.d.f.s of V |φ are shown for φ = 0 and φ = 0.975: they are computed

through our algorithm in the range containing a probability mass equal to ρ. Referring

to the QF package, the function compute MellinQF can be used to evaluate the Mellin

transform. An object of class MellinQF is produced and it serves as input of functions

dQF and pQF. The plots confirm that the higher skewness of weights in the case φ = 0.975

induces a probability distribution with a marked positive asymmetry. The function qQF
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Figure 1: Imaginary part of f̂Q(z) and f̄Q(y), with Q = V |φ and φ ∈ {0, 0.975}.

is an appealing tool provided in the package: it receives as input a vector of probabilities

and the MellinQF object, delivering the quantiles of the q.f. through a Newton-Raphson

algorithm, requiring repeated evaluation of the c.d.f and the p.d.f.. In the second part of

Table 2, the outcomes related to quantiles of V |φ at different values of parameter φ are

reported.

5.3 Behrens-Fisher test statistic

Consider two Gaussian r.v.s Yk ∼ N (µk, σ
2
k), k = 1, 2 and the hypothesis system H0 : µ1 =

µ2 vs H1 : µ1 6= µ2. In this Section, we study power and size of the Behrens-Fisher test

statistic for different values of the ratio σ2
1/σ

2
2 and different sample sizes n1 and n2. The

Behrens-Fisher test statistic is

t =
Ȳ1 − Ȳ2 − δ√
s2

1/n1 − s2
2/n2

where Ȳk, s
2
k and nk are the sample mean, variance and size respectively, k = 1, 2, and

δ = µ1 − µ2. Kim et al. (2006) have shown that, for fixed values of the ratio σ2
1/σ

2
2:

t2 =
λ0X0

λ1X1 + λ2X2

(15)

where λ0 = σ2
1/n1 + σ2

2/n2 and λk = σ2
kn1n2[n1n2(n1 + n2 − 2)], k = 1, 2, while X0, X1

and X2 are independently distributed as chi-squared r.v.s, namely X0/λ0 ∼ χ2
1(δ2) and
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Figure 2: Plot of fQ(q) for φ = 0.05 and φ = 0.975, with Q = V |φ.

Xk ∼ χ2
nk−1, k = 1, 2. Hence, equation (15) corresponds to the ratio of independent q.f.s

that can be managed with the algorithm outlined in Section 4.1.

Table S5 in the Supplementary material reproduces the results reported by Kim et al.

(2006), comparing the proposed algorithm with Imhof’s procedure: numerical Mellin in-

version confirms its accuracy for computations involving q.f.s. Figure 3, left panel, shows

three power functions with fixed sample sizes n1 = 6, n2 = 51, σ2
1 = 1, δ ∈ [0; 4] and ratios

σ2
2/σ

2
1 equal to 1, 0.1 and 10. When the ratio is 1, the test is correctly specified and the

size of the test is equal to the nominal significance level α = 0.05. On the other hand, the

size is lower than the nominal level for σ2
2/σ

2
1 = 10 and higher than the nominal level for

σ2
2/σ

2
1 = 0.1; this ordering characterizes the whole power functions.

In the right panel, we report the Mellin transforms referred to three values of δ, fixing

σ2
2/σ

2
1 = 1. Even if the algorithm can be used to compute the power function with the

required accuracy, it is worth noting that this application represents the worst case scenario

for methods based on the inversion of the Mellin transform. This is due to divergence at 0

of the density of the χ2
1 r.v. at the numerator of (15), implying a Mellin transform peaked

at =(z) = 0. As a consequence, numerical inversion requires a dense integration grid. This

behaviour is mitigated when the χ2 non-centrality parameter δ increases.
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Figure 3: Left panel: power curves of the Behrens-Fisher test. Right-panel: Imaginary

part of f̂D(z) under different values of δ.

5.4 Cronbach’s alpha distribution function

In this application, the objective is retrieving the c.d.f. of the Cronbach’s alpha statistic

(ρα), considering the case of N groups each with n observations, for which independent

normal distributions Yi ∼ Nn (0,Σ(φ)) , i = 1, . . . , N are assumed, and Σ(φ) is the

covariance matrix of an AR(1) process. We are in the same framework of Kim et al.

(2006), and the following probability needs to be evaluated:

P [ρα ≤ rα] = P

[
n∑
k=1

λk (rα, φ)Wk ≤ 0

]
,

where Wk ∼ χ2
N−1 and [λ1 (rα, φ) , . . . , λn (rα, φ)] are the eigenvalues of the matrix

L(φ)T
[
(n/(n− 1)− rα) 1n1

T
n − n/(n− 1)In

]
L(φ).

Since it is known that n − 1 of them are negative and one is positive, an indefinite q.f. is

faced (Kistner and Muller, 2004). Our algorithm can be applied leading the problem back

to a ratio of independent q.f.s through expression (14).

In the left-panel of Figure 4, the c.d.f. of ρα is reported for the case n = 5, N = 10,

and φ = 0.5. To document the efficiency of our algorithm in these situations, we stress

that the plot is produced using 1000 points: the requested computational time averaged on
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Figure 4: In the left-panel, the c.d.f. of Cronbach’s alpha statistic is reported. In the right-

panel, the difference between values obtained using our algorithm and Imhof’s is displayed.

100 replications is 0.674s for the Mellin inversion based algorithm and 0.615s for Imhof’s

procedure. Moreover, in the right-panel, the difference between the computed values under

the two procedures is displayed: the absolute value of this difference is far below the

required precision ε = 10−6.

6 Concluding remarks

The Mellin transform has been shown to be a useful tool for managing the distribution of

q.f.s both from the computational and analytical point of view. From the computational

perspective, the proposed algorithms start from the series representation by Ruben (1962)

and store the information about the q.f. in a more compact way through the Mellin

transform: the convenience of this summarization increases with the skewness of the q.f.

weights. In Section 5.2, we show that the number of coefficients of Ruben’s expansion

needed to guarantee a given precision can be far higher than the integration points required

for the Mellin inversion. In other words, the proposed method is particularly convenient

when the q.f. is dominated by few weights: in this case, both Davies and Imhof algorithms

show some pitfalls, as discussed in Kim et al. (2006). This is expected from methods relying

on numerical inversion of the Fourier transform since such transform can show pathological

behaviors in terms of smoothness, being less prone to numerical integration. Since the
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evaluation of the Mellin transform requires computation of the Ruben’s coefficients, the

proposed algorithms generate appreciable savings in computational time when repeated

evaluations are needed: in this case, time-saving can be considerable. However, in Section

5, the algorithms have been shown to be competitive with other approaches in terms

of computational time: the approach that outperforms the others depends on the q.f.

structure.

From the theoretical point of view, the Mellin transform is particularly suitable for

studying the distribution of products and ratios of r.v.s, as pointed out in Epstein (1948):

in this paper, the properties of the Mellin transform have been exploited to deliver a

representation of the ratio of independent q.f.s as a mixture of beta distributions of the

second kind. Analytical treatment of the Mellin transform involves Mellin-Barns integrals

that define Meijer’s G functions: the theory in this field is rich and well-developed and

can be fruitful in providing further insights into the study of estimators or test statistics

involving q.f.s.

SUPPLEMENTARY MATERIAL

Supplementary pdf file: it contains some examples of statistical tests that involves q.f.s

or ratios of q.f.s, the proofs of the propositions, and additional tables about Section

5.

R-code: a zipped folder containing the code to reproduce the results discussed in the

paper.
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