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Abstract 

The crashworthiness of composites is investigated in an experimental campaign and simulated using the 

explicit Finite Element solver ESI-VPS. Two damage models, derived from Ladevèze and Waas-Pineda, 

are implemented in modified forms, to work with woven-fabrics. The former uses conventional continuum 

damage formulations, while the latter introduces a traction-separation law to simulate cracks with 

prescribed fracture energies. The Waas-Pineda approach aims to simplify the material card definition and 

make the calibration more straightforward. Characterization tests are carried out on specimens 

manufactured with plain weave carbon fiber-epoxy tape. Notched coupons are analysed, as these tests are 

representative of the conditions observed during crushing of a composite structure. Innovative procedures 

to calibrate the damage models are introduced to remove, where possible, the need for iterative tuning. 

Once implemented, the calibrated material cards are validated against quasi-static crushing of corrugated 

specimens with two different layups. In the Waas-Pineda model, mesh objectivity is obtained only after 

correction of the modal fracture energies, instead, the Ladevèze model formulation is already consistent at 

different scale lengths. In addition, a sensitivity analysis shows a modest influence of friction coefficient 

and interlaminar fracture toughness. Results demonstrate that it is possible to obtain adequate results from 

both damage models when the proposed calibration strategy is used, but validation on test results is still 

advised to ensure the mesh discretization is suitable for the selected problems. 
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1. Introduction 

Composite materials have been extensively used in many different industrial fields due to their competitive 

mechanical and physical characteristics. Thanks to their favorable strength-to-weight ratio and specific 

energy absorption (SEA), they represent an ally in the design of lightweight structures. Given the attention 

directed towards energy consumption and polluting emissions, efforts aimed at fuel-saving and increased 

payload are observed with great interest both in the automotive and aerospace industry. 

Moreover, the advantageous properties of composite materials represent a step forward in the design of 

crashworthiness components. These materials have been shown to generate stable crushing at elevated SEA 

values, which can additionally be fine-tuned by modifying the layup, thickness and geometry, offering 

increased flexibility compared to metals. However, this flexibility often comes at the cost of complexity. 



 

 

Many studies have been carried out in order to evaluate the influence of the resin and fiber materials [1–

6], laminate stacking sequence and ply weaving [5,7,8], trigger [8–11], and cross-section geometries 

[4,5,7,8,11,12]. 

The matrix properties are relevant for crashworthy components design. Both thermoplastic and thermoset 

polymer matrices have been evaluated: Ramakrishna et al. [1] and Chang and Lees [2] demonstrated that 

thermoplastic matrices exhibited a higher specific energy absorption strictly connected with their higher 

Mode I toughness. However, Cauchi Savona and Hobbs [3] demonstrated that, for flat specimens, if Mode 

I fracture toughness is too high, a very steep and unwanted stress peak is observed. At the same time, for 

thermoset glass fiber [4] and carbon fiber [5] composites, it has been demonstrated that a higher SEA could 

be assured by using a high modulus and high strength matrix, rather than a tough one. On the other hand, 

the influence of the matrix on the SEA also depends widely on the kind of reinforcement: as reported by 

Jacob and al. [6], an increment in matrix failure strain results in an increase in absorption capability for 

brittle fiber reinforcements (e.g. carbon) while a decrease is observed for ductile fiber reinforcements (e.g. 

Kevlar). Therefore, the correct combination of fiber and matrix is important when the goal is to maximize 

energy absorption. 

It is well known that in composite materials the load is mostly carried by the reinforcement. It would be 

logical, therefore, to use only unidirectional (UD) plies and monodirectional stacking sequences to 

maximize the energy absorption. However, it has been demonstrated that UD composites have an unstable 

failure mode, due to the lack of constraints that could reduce delamination growth [7]. Delamination failure, 

in fact, results in an energy absorption quite lower than that of a fragmentation mode. To investigate this 

effect on the SEA, Feraboli [5] studied different stacking sequences, founding out that a [0/±45]𝑛𝑠 

composite has a better SEA than a pure [±45]𝑛𝑠 or [0/90]𝑛𝑠 configuration with the same thickness. Other 

studies have investigated the use of fabric prepreg instead of UD laminae. Due to fibers weaving, the fiber 

sliding phenomenon and splaying of outer plies can be neglected and the predominant failure mode 

becomes the fragmentation of fibers [8].  

Fiber-reinforced materials usually have an elastic behavior which is beneficial to the rigidity and the 

dimension stability of components but leads to a fragile abrupt failure with resulting low energy absorption 

capability. However, composite components with a proper trigger result in a progressive failure mode 

which could absorb more energy than a common metal folding failure. Even metal crashworthy structures 

necessitate an initial defect to obtain a more efficient dissipation. Usually, a crimp can be found in metal 

crash components. For composite ones, a bevel or a saw tooth shape edge is typically used. Jiang et alii [9] 

studied many different kinds of triggers using numerical simulation. They found out that the 45° chamfer 

trigger maintains the highest sustained crush load and SEA while the wedge trigger (in the slanting and 

straight conformation) is effective in decreasing the initial peak load. A weakened lay-up is used as 

triggering system by Troiani et alii [8], Kohlgruber [10], and Hanagud et alii [11]. This consists of a ply 

drop-off trigger, a sector where one or more plies are cut out, located near the loading edge. This kind of 

trigger behaves differently from the chamfer: it is believed that the differences are related to the micro-

mechanical effects on the failure mode at the micro-mechanical level. 

The contribution of geometry to the crashworthiness of a structure depends on different parameters. 

Excessive unsupported height of a crashing flat structure, for example, could lead to a premature buckling 

failure and, consequently, to a low energy dissipation [12]. To remove this inconvenience, self-supporting 

structures are usually used in crashworthy components (like round tubes [7], square tubes [4], and truncated 

cones [13]). A corrugated geometry, close to the engineering application but easier to produce than tubes 

or cones, has been found extensively in the literature [5,8,11]. Hanagud et al. [11] presented a study of the 

sensibility of the curvature of a corrugated specimen on the specific energy absorption. Many different 



 

 

cross-sections are investigated, starting from the flat coupon, passing through different sinusoidal shapes, 

to a semicircular corrugated geometry. It is concluded that a semicircular section has a higher specific 

sustained crush stress than the other configurations, especially compared to the flat or the low-angle 

sinusoidal geometries, which occur in a buckling phenomenon if not correctly sustained.  

Experimental tests on full-scale components are quite expensive. To overcome this inconvenience, several 

predictive damage models have been developed, mostly based on a Finite Element Method (FEM) 

formulation These models usually require several physical properties as an input, that need to be measured 

by experimental tests. Moreover, these numerical models must be calibrated and, therefore, are valid only 

for specific conditions. Different damage models could be used for different applications. The main damage 

models can be divided into three groups: Progressive Failure Model (PFM), Continuum Damage Models 

(CDM), and Non-local Damage Model (NDM). 

Progressive Failure Models are usually found in large-scale simulations. Implementations of these models 

use failure criteria like Chang and Chang [14] and Tsai-Wu [15] to drive an algorithm for element 

elimination. Due to their nature, these models do not capture the complexity of the crushing phenomena: 

their accuracy depends on extensive calibration and requires the adjustment of numerical parameters to 

control the crush energy.    

In Continuum Damage Models the material softening is implemented through internal variables to 

deteriorate the mechanical properties. This is done by introducing damage variables into the constitutive 

equations, to decrease material stiffness through damage evolution functions. In this case, there is a higher 

level of detail than with PFMs.  

The Non-local Damage Model is similar to CDM, but it can scale up to large simulations like PFM without 

any additional calibration. In these models, the effect of cracks is smeared across the finite element and 

treated using traction-separation formulations, effectively overcoming stress localization at discontinuities. 

NDM gained recent attention thanks to the convincing comparison with experimental crash applications.  

In a previous work by Rondina and Donati [16], the crushing response of unidirectional carbon/epoxy 

corrugated coupons is simulated by means of ESI-VPS explicit solver. Two damage models, a CDM 

(Ladevèze [17–19]) and an NDM (Waas-Pineda [20]) are compared. It is demonstrated that the CDM 

formulation does have a limitation to maintain a stable simulation when large deformations occur. On the 

other hand, the non-local model can overcome this limitation. Moreover, with the Ladevèze model, there 

is a loss of contact between the specimen and the crashing plate due to element elimination; with Waas-

Pineda this does not occur, and contact is assured throughout the simulation reducing load oscillations. 

In this work, the crashworthiness properties of woven corrugated specimens are experimentally and 

numerically investigated. Specimens are made with a carbon/epoxy prepreg (GG285P Plain Weave fabric), 

and two stacking sequences are used ([0f]6 and [45f/45f/0f]s). Numerical models are implemented to 

predict the absorbed energy of the coupons, after calibration against relevant experimental tests. Two 

damage models are compared: a continuum damage mechanics model for an orthotropic fabric composite 

([21], based on Ladevèze damage model for unidirectional composites [19]) and a non-local model (Waas-

Pineda, modified for fabrics [20,22]). 

 

2. Numerical Models 

All finite element simulations are carried out in ESI-VPS commercial software. The laminate is modeled 

as a shell with plane stress formulation. The fabric-reinforced composite is defined as an orthotropic elastic-



 

 

plastic material, whose stiffness is gradually degraded by microcracking before failure. For this material, 

the in-plane stress and strain components are expressed as: 
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where 𝐸11
0 , 𝐸22

0  and 𝐺12
0  are the elastic moduli of the undamaged material, 𝑑11, 𝑑22 are the damage 

parameters in the fiber directions and 𝑑12 is the damage parameter in the shear direction. These damage 

parameters vary from 0 for the pristine material to a value of 1 at ultimate failure. To account for the 

different material response to tension and compression loads, different elastic moduli 𝐸11𝑐
0  and 𝐸22𝑐

0  are 

considered for compression.  

In the next sections, the two damage formulations implemented in the numerical model are presented. 

2.1. Modified Ladevèze continuum damage model 

A continuum damage model for unidirectional laminates was originally introduced by Ladevèze [17]. This 

model was then modified by Johnson et al. [21] to make it suitable for fabric-reinforced laminates. The 

model (LV) possesses the following features: 

1. Fiber and matrix damage modes are assumed to be decoupled, with the former being driven by 

tension and compression loads and the latter by shear loads. 

2. Fiber damage modes in tension and compression are different. 

3. Distinct damage parameters are used in the two fiber directions. 

4. The material is non-healing, i.e., accumulated damage is not recovered upon unloading and can 

only increase. 

Condition 4 implies that the damage evolution reflects the maximum stress levels reached throughout the 

loading history; this condition can be imposed concisely as:  𝑑𝑖𝑗(𝑡) = max
𝜏≤𝑡

{𝑑𝑖𝑗(𝜏)}, where 𝑑𝑖𝑗 are the 

damage parameters defined below. 

Following the framework identified by Ladevèze, the conjugate quantities governing the damage 

progression are defined as partial differences of the damaged strain energy 𝐸𝐷 with respect to the damage 

parameters and are therefore analogous to energy release rates. For a woven fabric ply Johnson et al. [21] 

use three distinct damage scalars 𝑑11, 𝑑22 and 𝑑12, relative to the two fiber directions and in-plane shear 

loading, with associated conjugate quantities 𝑌11
2 , 𝑌22

2  and 𝑌12
2  as defined in Eq. (2): 

𝑌𝑖𝑗
2 ∶=

𝜕𝐸𝐷

𝜕𝑑𝑖𝑗
= 

𝜎𝑖𝑗
2 (𝜏)

2𝐸𝑖𝑗
0 (1−𝑑𝑖𝑗(𝜏))

2, 𝑖, 𝑗 ∈ {1,2} 
(2) 

With the damage driving parameters defined as such, Johnson et alii found that the fiber-aligned damage 

accumulation functions, 𝑑11 and 𝑑22 evolve linearly with respect to the square root of the conjugate 

quantities: 𝑌11 and 𝑌22, whereas the shear damage is found to fit linearly against the natural logarithm of 



 

 

𝑌12. The VPS implementation reflects these findings and the functions in Eq. (3) are used for the damage 

accumulation of the lamina. 

𝑑11 = {

0, 𝑌11 < 𝑌110

𝑌11 − 𝑌110

𝑌11𝑐
, 𝑌110 < 𝑌11 < 𝑌11𝑓

 

𝑑22 = {

0, 𝑌22 < 𝑌110

𝑌22 − 𝑌110

𝑌11𝑐
, 𝑌110 < 𝑌22 < 𝑌11𝑓

 

𝑑12 = {

0, 𝑌12 < 𝑌120

ln(𝑌12) − ln(𝑌120)

𝑌12𝑐
, 𝑌120 < 𝑌12 < 𝑌12𝑓

 

(3) 

Notably, the fiber-aligned damage modes share the same set of inputs for warp and weft directions but are 

distinct for tension and compression (identified hereafter by superscript c). The complete set of damage 

inputs consists of twelve parameters, namely the stresses required for damage initiation, 𝑌110, 𝑌110
𝑐  and 

𝑌120, those at failure, 𝑌11𝑓, 𝑌11𝑓
𝑐  and 𝑌12𝑓, and interpolation coefficients 𝑌11𝑐, 𝑌11𝑐

𝑐  and 𝑌12𝑐. Post-damage 

ensues once the failure stress level is reached and acts as a limitation to the maximum transmissible stress. 

This requires the remaining three parameters: 𝐷11𝑚𝑎𝑥, 𝐷11𝑚𝑎𝑥
𝑐  and 𝐷12𝑚𝑎𝑥. The determination of these 

parameters is accomplished by experimental tests. 

The material response in the fiber directions is purely elastic so that the material returns to its initial state 

during unloading. On the other hand, the shear response, dominated by the matrix behavior, can exhibit a 

plastic behavior with permanent deformation. To introduce this effect, the total shear strain is split into 

elastic and plastic contributions: 𝜀12 = 𝜀𝑒𝑙 + 𝜀𝑝. To account for the matrix plastic strain, an elastic domain 

function F is introduced, which depends on the effective shear stress 𝜎12 (1 − 𝑑12)⁄  and an isotropic 

hardening term 𝑅(𝜀𝑝), as described by Eq. (4). If the shear stress is below the yield criterion 𝐹 < 0, the 

material remains under elastic deformation; beyond that, the plastic flow condition 𝐹 = 0 is satisfied by 

accumulation of plastic strain through the hardening function. In particular, 𝑅0 is the initial yield stress, 

and the hardening function follows the form identified by Johnson et alii [21] to fit well with test data for 

woven fabrics. The parameters 𝑚 and 𝛽 as well as the initial yield condition are determined from cyclic 

tensile loading tests on a [45𝑓]
𝑛

 laminate; a detailed example of calibration for unidirectional ply model 

can be found in previous work from the authors [16].  

𝐹 =
|𝜎12|

1 − 𝑑12
− 𝑅(𝜀𝑝) − 𝑅0 

𝑅(𝜀𝑝) = 𝛽𝜀𝑝
𝑚 

(4) 

To improve the numerical stability, the elements must be eliminated if their damaged stiffness becomes too 

low. To solve this, an elimination criterion is introduced to remove the elements from the computation once 

a prescribed condition is reached. In the LV model, this condition is defined as a set of limit strains 𝜀𝑖𝑗 
𝑙𝑖𝑚 

consisting of distinct values for positive and negative domains of each of the six 𝑖𝑗 components. 

2.2. Waas-Pineda nonlocal damage model 



 

 

Waas-Pineda model (WP) was originally described in [20,22]. This model combines the orthotropic elastic-

plastic behavior of the LV with a nonlocal approach to include cracks in the continuum. The model can be 

used to describe the effects of both fiber and matrix failure, including phenomena such as fiber rupture and 

kinking, fiber-matrix debonding, and matrix cracking. 

The model consists of three distinct material states: continuum state, cohesive state, and post-damage state. 

The transition from the continuum state to the cohesive (damaged) state is triggered by the failure criterion 

shown in Eq. (5), where five threshold values 𝑋𝑡, 𝑋𝑐, 𝑌𝑡, 𝑌𝑐 and 𝑍12 are required. 

(
𝜎11

𝑋𝑡
)
2

≥ 1 𝜎11 ≥ 0 

(5) 

(
𝜎11

𝑋𝑐
)
2

≥ 1 𝜎11 < 0 

(
𝜎22

𝑌𝑡
)
2

≥ 1 𝜎22 ≥ 0 

(
𝜎22

𝑌𝑐
)
2

≥ 1 𝜎22 < 0 

(
𝜎12

𝑍12
)
2

≥ 1 
 

In the cohesive state, the material response is defined by a traction-separation law. The element stresses are 

computed as a function of the separation lengths 𝛿𝑖𝑗, according to Eq. (6): 

𝜎𝑖𝑗 = (1 − 𝑑𝑖𝑗)𝐾𝑖𝑗𝛿𝑖𝑗 (6) 

where 𝑑𝑖𝑗 are the damage parameters and 𝐾𝑖𝑗 the cohesive stiffnesses. The separation lengths are calculated 

from the element dimensions 𝑙𝑓1, 𝑙𝑓2 along the main directions of orthotropy: 

𝛿11 = 𝑙𝑓1𝜀11 

𝛿22 = 𝑙𝑓2𝜀22 

𝛿12 = (𝑙𝑓1 + 𝑙𝑓2)(𝜀12 − 𝜀𝑝) 

(7) 

The element dimensions 𝑙𝑓1 and 𝑙𝑓2, shown in Figure 1, are defined as the lengths of the lines parallel to 

the local fiber directions passing through the center of mass of the element and intersecting the two opposite 

edges of the element. Differently from the model proposed by Pineda [22], the implementation found in 

VPS does not calculate distinct damage conditions for each integration point within the element, but the 

damage is unique across its volume. 



 

 

 

Figure 1: Representation of the internal element dimensions calculated for WP damage model: 1 and 2 are the fiber 

directions, and M is the center of mass of the element.  

Damage evolution is defined by the following formula: 

𝑑𝑖𝑗 =
𝛿𝑖𝑗

𝑓
(𝛿𝑖𝑗

𝑚𝑎𝑥 − 𝛿𝑖𝑗
0 )

𝛿𝑖𝑗
𝑚𝑎𝑥(𝛿𝑖𝑗

𝑓
− 𝛿𝑖𝑗

0 )
 (8) 

where 𝛿𝑖𝑗
𝑚𝑎𝑥 = max

𝜏≤𝑡
{|𝛿𝑖𝑗|} is the maximum separation reached during previous loading history, 𝛿𝑖𝑗

0  is the 

initial separation at the transition to the cohesive state and 𝛿𝑖𝑗
𝑓

 is the separation at failure. For fiber damage 

modes 𝑑11, 𝑑22, the separation at failure can be computed as 𝛿𝑖𝑖
𝑓

= 2𝐺𝐼𝐶𝑖 𝜎𝑖𝑖
0⁄ , being 𝐺𝐼𝐶𝑖 the mode I 

fracture energy in the fibers directions and 𝜎𝑖𝑖
0 the stress at the transition to the cohesive state. The different 

damage modes caused by tension and compression are accounted for by implementing two different 

fracture energies 𝐺𝐼𝐶𝑖 and 𝐺𝐼𝐶𝑖
𝑐 , respectively. For matrix damage 𝑑12 it results that 𝛿12

𝑓
= 2𝐺𝐼𝐼𝐶 𝜎12

0⁄ , where 

𝐺𝐼𝐼𝐶 is the mode II fracture energy of the matrix and 𝜎12
0  is the shear stress at transition. 

Once the stresses 𝜎𝑖𝑗 reach a lower threshold value, defined by 1 − |𝜎𝑖𝑗/𝜎𝑖𝑗
0 | ≥ 𝐷𝑚𝑎𝑥, the elements enter a 

post-damage state, akin to the Ladevèze model. Finally, the elements are eliminated and removed from 

computation once a prescribed limit strain is reached. In this case, 𝜀𝑙𝑖𝑚 is defined as the square root of the 

second invariant of the deviatoric strain tensor. 

In order for the numerical model to maintain the calibration parameters down to a reasonable number, the 

interaction between damage modes has not been taken into account; instead, the different damage modes 

activate and evolve independently following the criteria illustrated earlier. This additionally reduces the 

need for specialized testing at mixed-mode loading conditions, with a modest impact on performance and 

fidelity. 

 

3. Materials and methods for model calibration 

The input parameters of the numerical model are determined by experimental tests on composite specimens. 

To fully characterize the elastic-plastic and damage properties required by the model, several tests are 

conducted. The different test types and the input data they provide are summarized in Table 1. 

 

 

 

 

 

 



 

 

Table 1. Types of tests conducted and corresponding direct input parameters of the LV and WP models. 

Test type Elastic-plastic properties LV model WP model 

Cyclic tension 0° 𝐸11
0 , 𝜈12 𝑌110, 𝑌11𝑐, 𝑌11𝑓 𝑋𝑡 

Static tension 90° 𝐸22
0   𝑌𝑡 

Cyclic compression 0° 𝐸11𝑐
0  𝑌110

𝑐 , 𝑌11𝑐
𝑐 , 𝑌11𝑓

𝑐  𝑋𝑐 

Static compression 90° 𝐸22𝑐
0   𝑌𝑐 

Cyclic tension 45° 𝐺12
0 , 𝑅0, 𝛽, 𝑚 𝑌120, 𝑌12𝑐, 𝑌12𝑓, 𝜀12𝑙𝑖𝑚

 𝑍12, 𝐺12   

Compact Tension (CT)  𝜀11𝑡𝑙𝑖𝑚
, 𝜀22𝑡lim  𝐺𝐼𝑡, 𝐺𝐼𝐼𝑡  

Compact Compression (CC)  𝜀11𝑐𝑙𝑖𝑚
, 𝜀22𝑐lim  𝐺𝐼𝑐, 𝐺𝐼𝐼𝑐 

 

The specimens are made of commercial GG285P prepreg plies, produced by Toray. These plies consist of 

T700-12K plain weave carbon fabric, impregnated with DT120 high-toughness epoxy resin. All the 

samples are obtained from a single plate, which is cured in an autoclave at 120°C and 5 bar for 90 min and 

then cut to the final dimensions. The stacking sequence of the laminate is [0f]12. The specimens shape and 

size are chosen according to conventional ASTM standards for laminated composites, while CT and CC 

test method is derived from previous work of Pinho et al. [23]. 

In order to obtain the damage model parameters from experiments, the test results are elaborated using a 

procedure similar to that described in [16] and here adapted to the woven fabric material model. A detailed 

explanation of the calibration procedure is reported in Section 5. 

Finally, quasi-static compressive crush tests are performed on corrugated CFRP specimens manufactured 

with the same fabric prepreg used for the coupon test campaign. The geometry of the samples, already 

employed in previous works [5,15,16], is adopted here in configurations using one, three, and five semi-

circular patterns, hereafter denominated 1HC, 3HC, and 5HC. Two different stacking sequences are 

produced and tested, namely [0f]6 and [45f/45f/0f]s, which result in specimens with a thickness of 2.10 

and 2.15 mm, respectively. All samples have the same semi-circle radius of 6.5 mm and a height of 50 mm. 

The tests are conducted at a constant plate displacement rate of 5 mm/min until half of the total specimen 

height has been crushed. 

4. Experimental results  

Experimental test results are described and listed below. Table 2 lists the test results for tensile and 

compressive tests of specimens loaded along the main orthotropy directions, here denoted as 11 and 22. At 

least three repetitions for every set have been conducted: the results report the average values of each set. 

Table 2. Tensile and compressive tests results and calculated numerical input parameters.  

Property Description Value 

𝐸11𝑡 Longitudinal tensile modulus 60.8 GPa 

𝐸22𝑡 Transverse tensile modulus 59.4 GPa 

𝐸11𝑐 Longitudinal compressive modulus 56.3 GPa 

𝐸22𝑐 Transverse compressive modulus 54.0 GPa 

𝜈12 Poisson’s ratio 0.04 

𝜎11 𝑡  Longitudinal tensile strength 1008 MPa 



 

 

𝜎11 𝑐  Longitudinal compressive strength 958 MPa 

 

Three in-plane shear cyclic tensile tests are performed as shown in Figure 2. The in-plane shear damage 

model inputs for LV are calculated from the cyclic loadings as described in [21], and the damage parameters 

are reported in  

Table 3.  

 
Figure 2. Example curves of cyclic tensile loading test on ±45 laminates. 

 

Table 3. In-plane shear results and calculated numerical input parameters.  

Property Description Value 

𝐺12 Shear modulus 3.3 GPa 

𝜎12.𝑖 In-plane shear yield strength  17.8 MPa 

𝜎12,𝑢 In-plane shear ultimate strength  65 MPa 

𝑅0 Initial plasticity stress 10 MPa 

𝛽 Plasticity multiplier 0.304 

𝑚 Plasticity exponent 0.4368 

 

4.1 Compact Tension and Compact Compression tests 

Three Compact Compression (CC) and four Compact Tension (CT) coupons are tested. In Figure 3, the 

load-displacement curves are shown. Fracture toughness values are calculated in accordance with the test 

procedure proposed by Pinho [23]; the main results are shown in Figure 4. Although the scatter in the 

experiments is significant, the compliance method has been found to give more consistent values for CC 

tests while the E399 method showed to be better suited for CT tests. In both cases, the data elaborations 

derive from fracture mechanics principles with the assumption that a single fracture plane develops during 

loading. In reality, due to the fiber weaving, multiple fracture paths are generated under tension, while fiber 

kinking and fragmentation occur under compression. Therefore, the reported fracture energies of CT and 

CC tests should be interpreted as volumetric averages of the multiple damage modes generated under tensile 

and compressive loads respectively. 
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Figure 3. Load-Displacement curves for CT tests (left) and CC tests (right). 

 
Figure 4. 𝐺𝐼 values for tension (left) and compression (right) loading case. Compliance method values are shown 

for compressive tests, while E399 method values are reported for the tensile coupons. 

 

4.2 Crush tests 

The test results for both stacking sequences and different coupon geometries are presented in Figure 5, 

while SEA values are summarized in Table 4. Here, the SEA is calculated as: 

𝑆𝐸𝐴 =
∫ 𝐹𝑑𝑥

𝐿

0

𝜌𝐴𝐿
≅  

𝐹̃

𝑚𝑐
 (9) 

Where 𝐹̃ is the average crush load throughout the total crosshead displacement L, and the crushed mass is 

calculated as 𝑚𝑐 = 𝑚𝐿/ℎ, where ℎ is the specimen height. 

It is noticeable that, while the influence of the geometry on the load carrying capability is clear, its effect 

on the SEA seems less relevant. Comparing coupons with the same stacking sequence, in fact, SEA values 

vary within 5.4% and 3.8% respectively for [0f]6 and [45f/45f/0f]s. 
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Figure 5. Load–Displacement results from compression crushing test. Results for all tested specimens are shown. 

Table 4. Summary of crush tests specific energy absorption. Mean and standard deviation values are shown. 

Layup Group # Repetitions 

SEA (J/g) 

𝜇 𝜎 

[0f]6 
5HC_0 3 99.6 2.99 

3HC_0 6 104.5 3.47 

[45f/45f/0f]s 
5HC_45 3 86.3 2.88 

1HC_45 6 82.7 2.10 

 

A limited scatter is observed across the three different geometries. In the following section, only the 5HC 

specimens are modeled and simulated, so to highlight the relevant differences between the two layups using 

a shared case. 

 

5. Numerical Simulation 

One peculiarity of crush simulation, that sets it apart from other scenarios where damage is predominant, 

is that loading is typically aligned with one axis of the component and contact pressure is uniformly 

distributed. Consequently, when damage is initiated in one element, the stress does not redistribute across 

neighboring elements (like for example under an impact type of loading). Instead, as damage leads to a 

reduction of the orthotropic stiffness along one specific direction, it will promote increasing deformation 

along that same path, which ultimately causes additional damage accumulation. For this reason, continuum 

models become quickly unstable as soon as the material properties impose a negative tangent stiffness. 

Although the numerical models presented in Section 2 offer an exceptional flexibility, there is no guidance 

on how to obtain a valid calibration that maintains both adequate physical significance and stability in the 

solution phase. In this section, a streamlined procedure is introduced and exposed to efficiently calibrate 

the LV and WP damage models with minimal reliance on iterative methods and without the need for 

complex optimization algorithms. 

To the best of the authors knowledge, established best practices to simulate the composite crushing are, to 

this date, rare and specialized to unique combinations of material and geometrical features. In fact, although 

several applications have been documented in the literature, little work has been done in proposing 

calibration methods that allows the designers to obtain a valid and reliable material card to be used in crush 

applications, spanning multiple scenarios. 
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5.1 LV model calibration strategy 

In this paragraph, we clarify some of the details of the LV model as implemented in ESI-VPS. Moreover, 

some practical limitations of the model are exposed and resolved, allowing to simplify the determination 

of the damage parameters and giving rise to a straightforward procedure for optimal material calibration 

specific for crush simulation. 

Firstly, in order to have numerical stability, we introduce a condition that guarantees positive tangent 

stiffness of the stress-strain relation. Rearranging Eq. (2-3), this condition is rewritten as in Eq. (10a) and 

Eq. (10b) for fiber and matrix modes respectively: 

𝑌𝑖𝑖𝑓 =
𝑌𝑖𝑖0 + 𝑌𝑖𝑖𝐶

2
 (10a) 

ln(𝑌12𝑓) =
ln(𝑌120) + 𝑌12𝐶

2
 (10b) 

Furthermore, the modal damage parameters must be chosen in such a way that they do not introduce 

discontinuities in the stress-strain relation. In Figure 6, three damage evolution paths are shown for equal 

initiation and failure parameters 𝑌𝑖𝑖0, 𝑌𝑖𝑖𝑓 and different 𝑌𝑖𝑖𝐶 . It shows that curve (2) is the only one that 

satisfies the smoothness of 𝜎(𝜀); this condition is derived analytically in Eq. (11) under the shear mode, 

the linearity is recovered by taking the logarithms of 𝑌. 

𝑌𝑐 = (𝑌𝑓 − 𝑌0)/𝑑𝑚𝑎𝑥  (11) 

From Figure 6, it is also clear that the curve (3) is not acceptable because of the discontinuity at 𝜀𝑓 (Figure 

6-b), while curve (1) has an undesirable behavior once the damage has reached the maximum value 𝑑 =

 𝑑𝑚𝑎𝑥 and the material is still in the damage phase (𝜀 < 𝜀𝑓). 

 
Figure 6. Behaviour of the Ladevèze damage with different input parameters. Effect of different d(Y) functions (a) 

on the stress-strain relation (b). Unload/reload path assumes no plasticity. 

In the LV model, the initial and ultimate stress are not direct inputs of the material card but are derived 

from the damage functions. It is convenient, therefore, to have an explicit formulation by rewriting the 

damage functions as in Eq. (12). The latter can then be rewritten substituting Eq. (11) for 𝑑𝑚𝑎𝑥 to obtain a 

quadratic function of 𝑌𝑓 with one positive root. 

𝜎𝑖 = √2𝐸0𝑌0
2 (12) 



 

 

𝜎𝑓 = √2𝐸0𝑌𝑓
2(1 − 𝑑max)

2 (13) 

The total strain energy to failure (shaded area in Figure 6-b) is finally controlled by the choice of an 

appropriate value of 𝜀lim at which the element is eliminated and thus removed from the computation. This 

quantity is useful in controlling the output SEA during crash simulations and is calibrated from CT and CC 

tests. 

The LV model, modified using the conditions previously discussed, allows to decouple the damage 

parameters without excessive loss of generality and performs properly in compressive crush simulations. 

This decoupling enables a straightforward procedure to calibrate the damage model. This, for fiber-oriented 

damage modes, looks as follows: 

1) Calculate the undamaged Yo n ’s  o    s 𝐸0 and find the stress 𝜎𝑖 at first nonlinearity from 

experimental tests. 

2) Use Eq. (10a) to fix the initial damage parameter 𝑌0. 

3) From experimental tests, obtain the ultimate failure stress 𝜎𝑓. 

4) Find the final damage limit 𝑌𝑓 by solving the quadratic expression 𝑌𝑓
2√2𝐸0 = 𝜎𝑓(2𝑌𝑓 − 𝑌0) where 

each parameter is known. 

5) Iteratively, determine the best fit value for the limit strains 𝜀lim from direct simulations of CT and 

CC tests. 

With this procedure, the model retains the main physical properties of the material, allowing at the same 

time a quicker calibration procedure acting only on a reduced number of free inputs. The modal element 

elimination strains are thus the only numerical inputs left to calibrate iteratively from CT, CC, and in-plane 

shear tests. 

Table 5. LV damage parameters calibrated from experiments. 

Property Description Value 

𝑌11𝑡0 Initial longitudinal tensile damage limit 0.09 GPa0.5 

𝑌11𝑡𝐶 Yield longitudinal tensile damage limit 0.14 GPa0.5 

𝑌11𝑡𝑓 Final longitudinal tensile damage limit 0.0914 GPa0.5 

𝐷11 𝑚𝑎𝑥  0.01 

𝑌11𝑐0
 Initial longitudinal compressive damage limit  0.0369 GPa0.5 

𝑌11𝑐𝐶
 Yield longitudinal compressive damage limit 0.0952 GPa0.5 

𝑌11𝑐𝑓
 Final longitudinal compressive damage limit 0.0589 GPa0.5 

𝐷11𝑐 𝑚𝑎𝑥  0.021 

𝑌120
 Initial shear damage limit 0.024 GPa0.5 

𝑌12𝐶
 Yield shear damage limit 3.061 GPa0.5 

𝑌12𝑓
 Final shear damage limit 0.0122 GPa0.5 

𝐷12 𝑚𝑎𝑥 Post-damage level 0.42 

 

5.2 WP model calibration strategy 

The more recent WP model has a different approach to damaging compared to the traditional LV 

formulation and allows for an easier calibration procedure that explicitly fixes the maximum stress levels 



 

 

and the fracture energies associated with each of the five damage modes. The failure envelope for damage 

initiation and the fracture energies for fiber-aligned fractures are directly obtained from experimental tests 

at failure and from CT and CC tests. Despite this simplicity, the model suffers from mesh sensitivity during 

crushing, as demonstrated later in Section 6.1. This phenomenon does not affect the calibration procedure 

but must be taken into account when different mesh sizes are used; the correction technique aims to recover 

the consistency of the strain energy density to failure and is addressed below. 

The post-damage state for WP is set from numerical stability criteria and has no direct physical meaning. 

Furthermore, since element elimination follows the deviatoric strain, it cannot be decoupled for each 

fracture mode. This method trades simplicity for precision, as it is not possible to define uniquely the strain 

energy to failure for each failure mode, given that the post-damage state does not have fixed boundaries. 

The post-damage state conditions are thus fixed to 𝐷𝑚𝑎𝑥 = 0.85 and 𝜀𝑙𝑖𝑚 = 0.15 and these are not further 

modified in the model calibration.  

 

Figure 7. Behavior of the Waas-Pineda damage with different input parameters. Effect of different Gc functions on 

the stress-strain relation. The shaded area represents the total strain energy to failure for the curve (2). 

Hence, a logical procedure to calibrate the WP model looks as follows: 

1) From experimental tests, obtain the ultimate failure stresses 𝜎𝑖𝑗
𝑓
. 

2) Set the ultimate stresses as stress thresholds for damage initiation. 

3) Calculate the fiber fracture energies from CT and CC tests and apply them to the model. 

4) Fix 𝐷𝑚𝑎𝑥 and 𝜀lim to fulfil the numerical stability criterion. 

Concerning the in-plane shear damage mode, the modal fracture energy is obtained by equating the total 

strain energy to failure with experimental tests, using trapezoidal integration of the stress-strain curve of 

the tensile tests. For the fiber-aligned fracture energies, the influence of experimental scatter on the 

numerical models is evaluated by simulating the test with increased and reduced parameters; the results are 

reported in the following section.  

Table 6. WP damage parameters calibrated from experiments. 

Property Description Value 

𝑋𝑡 Longitudinal tensile initiation stress 1008 MPa 

𝑋𝑐 Longitudinal compressive initiation stress 598 MPa 



 

 

𝑌𝑡 Transverse tensile initiation stress 958 MPa 

𝑌𝑐 Transverse compressive initiation stress 578 MPa 

𝑍12 In-plane shear initiation stress 65 MPa 

𝐺𝐼𝑡 Longitudinal tensile fracture energy 0.105 kJ/m2 

𝐺𝐼𝑐 Longitudinal compressive fracture energy 0.085 kJ/m2 

𝐺𝐼𝐼𝑡 Transverse tensile fracture energy 0.105 kJ/m2 

𝐺𝐼𝐼𝑐 Transverse compressive fracture energy 0.085 kJ/m2 

𝐺12 In-plane shear fracture energy 0.038 kJ/m2 

 

5.3 Fracture energy corrections for WP model 

The fracture energies used as input in the WP model are equivalent to energy release rates corresponding 

to the theoretical fracture generated inside the finite element. The characteristic of the WP model is that 

only one fracture plane per damage mode is allowed to exist within one element; therefore, a finer 

discretization, effectively allowing a higher number of fracture surfaces, ultimately leads to a higher total 

fracture energy available to be dissipated. This effect becomes critical in crush scenarios, where the failure 

mode is dominated by fragmentation and the fracture density is lost at the typical discretization scales 

allowed by FEM. For this reason, to avoid incurring in mesh sensitivity, the fracture energy must be defined 

in a broader sense to recover the consistency of the strain energy density.  

This phenomenon is shown graphically in Figure 8 for two different meshes: when only one fracture is 

allowed in the model (a.), the total dissipated energy is proportional to the surface area given by the internal 

length 𝑙𝑓 and the element thickness 𝑤. If the input fracture energy is unchanged, reducing the mesh size in 

half (b.) consists in doubling the total surface area accounting for damage, thus the total energy that can be 

dissipated is increased twofold. In (c.) the mesh objectivity is restored with a correction of the fracture 

energy, which guarantees the equivalency of the total dissipated energy in the unit volume.  

Concisely, the consistency of the energy density 𝑒𝐷 is recovered by Eq. (14), where the fracture energies 

calculated in Section 4.1 are understood as the energy release rates dissipated in a unitary volume. 

𝑒𝐷 =
𝐺𝑐𝑖𝑖

𝑙𝑓𝑖
= 𝑐𝑜𝑛𝑠𝑡 (14) 

This approach, although following a different path, is essentially equivalent to the solution adopted by 

Reiner et. al. [24]. In their work, the Bažant crack band scaling is first implemented in two numerical 

models to maintain objectivity in conventional fracture application, and ultimately it is found that the 

scaling is not applicable in progressive crush simulations, where the dissipated energy must be maintained 

at different element sizes. 



 

 

Figure 8. Without correction of the fracture energy GC, the total strain energy is inconsistent at different mesh 

densities (a., b.). When the fracture energy is corrected at the finer mesh (c.) the strain energy density is recovered.  

 

5.4 Calibration on CT and CC tests 

The numerical models for CT and CC are built using a single shell with multi-layered formulation. The 

notch region was discretized with elements of 0.2 mm length and the out-of-plane displacement was 

constrained in order to remove undesired buckling. The load was applied by prescribing a constant 

displacement at the two loading regions via a multi-point constraint, leaving rotation around the out-of-

plane axis free. In the CT model, the notch is realized by a V-shape mesh offset (Figure 9). Different notch 

configurations have been evaluated, showing a minimal influence on the overall load response. 

 
Figure 9. Example mesh used for CT (left) and CC (right) simulations. The element size around the notch is 0.2 mm, 

and far from the stress concentration is 1 mm. A magnification of the V-shaped notch region at the crack tip of the 

CT model is shown. 

The tuning of the free inputs for the LV model is shown in Figure 10, where the calibrated model is 

highlighted in red and the respective elimination strains are reported in Table 7. Due to the scatter measured 

in CT and CC tests, a sensitivity study on the WP model is carried out to evaluate the effect of fracture 

  a   

 a



 

 

energies inputs on the resulting load (Figure 11). It should be noted that here the mesh density does not 

affect the results in the WP model, since damage only affects a single row of elements. 

 

 
Figure 10. Comparison of experimental and simulated load-displacement output for CT (left) and CC (right) models 

using the LV model at different element elimination strain thresholds. Calibrated model highlighted in red. 

In the CC models, the contact algorithm is introduced to compensate for the loss of material deriving from 

the elimination of elements as the crack tip advances. This is necessary to maintain a stable propagation, 

but it causes the models to break at elevated deformations. The effect is seen in Figure 10, where all 

simulations converge to similar results after 3 mm displacement, as a result of the contact algorithm 

overcoming the damage criterion. The same applies to the WP model below (Figure 11). 

Table 7. Calibrated values of the elimination algorithm inputs for LV damage. 

Property Description Value 

𝜀11𝑡 Longitudinal tensile limit strain 0.28 

𝜀11𝑐 Longitudinal compressive limit strain 0.15 

𝜀22𝑡 Transverse tensile limit strain 0.28 

𝜀22𝑐 Transverse compressive limit strain 0.15 

𝜀12 In-plane shear limit strain 0.6 

 

 
Figure 11. Comparison of experimental and simulated load-displacement output for CT (left) and CC (right) models 

using the WP model at different fracture energy values. Model derived from experimental values highlighted in red. 
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6. Crush test validation 

The crush models are built from shell elements using six stacked plies. The load is shared across adjacent 

plies through tied links with included damage from a traditional interlaminar cohesive formulation. The 

bilinear cohesive model is taken from previous work on a similar unidirectional composite material [16] 

sharing the same matrix system as the fabric material investigated here. The influence of the cohesive 

model on the overall crush response is evaluated below. The trigger region consists of a combination of 

sawtooth shape and node offset from the midplane, to encourage ply splaying and reduce the risk of 

instability after the initial peak load. The effect of mesh configuration on the numerical crush load stability 

has been investigated thoroughly in [24], showing that better results are found when using skewed or 

unstructured mesh, as opposed to oriented mesh. The unstructured mesh configuration at 1 mm target 

element side length, shown in Figure 12, consists in 30k elements and is used as baseline configuration. 

Additional tests at smaller (0.5 mm, 120k elements) and larger (1.5 mm, 15k elements) mesh sizes are 

reported in Section 5.5. The use of cohesive elements for the lamina interfaces prohibits the choice of larger 

elements, since their conditional stability is well documented in the literature and in a previous work by the 

authors [16]. The bottom nodes of the model are constrained in all degrees of freedom, while the top 

crushing plate is modeled as a rigid body with an imposed velocity of 1 mm/ms. The explicit time 

integration step is 2.3E-5 ms and no dynamic mass scaling is used to speed up the computation. The 

simulation is stopped after 25 ms internal time, equivalent to 25 mm of crushed length. The elapsed runtime 

using 24 parallel processing units is 1 hour for the coarse mesh, 2.5 hours for the baseline mesh and 8.5 

hours for the fine mesh. 

 
Figure 12. Detail of the unstructured mesh and the trigger region at the three discretization levels. The top nodes of 

the two central plies are offset by 0.2 mm from the midplane to improve splaying. Tied links between adjacent plies 

are not shown.  

The load-displacement and SEA results of the four baseline simulation cases (5HC-0 and 5HC-45 layups, 

with both LV and WP damage models) are shown below. These distinct cases additionally share inputs 

related to the interlaminar model, contact algorithms, and stability criteria. The baseline cohesive 

interlaminar fracture energies are 470 J/m2 and 1790 J/m2 for Mode I and Mode II respectively. The 

cohesive stiffness and traction limits have been calibrated in a previous campaign and can be found in [16]. 

The contact interaction between the damaged plies and the rigid wall is modeled with 0.2 Coulomb friction 

coefficient. When the inter-ply tied links are removed after ultimate interface damage, the adjacent plies 

are allowed to transfer load through a contact interaction with 0.4 friction coefficient. The calibrated 

baseline results are shown in Figure 13 below. In accordance with the experimental campaign, the 

               



 

 

numerical SEA is calculated taking into consideration the full loading curve up to 25 mm crushed length, 

while the crushed mass is derived from the model mass. 

The results related to the baseline 1.0 mm mesh size indicate that the calibration of both models leads to a 

satisfactory prediction of the crushing energy, with an error of 0.8% and 5.6% for the LV model in the [0]6 

and [452/0]s layups respectively. Comparatively, the WP models have a 12% and 5.6% error with respect 

to experimental values. In addition, the load curves show limited oscillations, bounded within ±3.5 kN 

under all configurations. Different trigger configurations were investigated in a previous work [16], 

indicating that the trigger only affects the initial region of the load curve, while the steady-state region is 

unaffected. In this work, despite the use of a sophisticated geometric trigger mechanism, the initial peak 

load is not eliminated. 

 
Figure 13. Calibrated force-displacement curves (left) and resulting SEA compared to test data (right). Error bars 

represent the standard variation scatter in the quasi-static region (5-25mm). 

6.1 Mesh objectivity 

The LV damage formulation is calibrated from the global strain energy density to failure; therefore, it does 

not suffer from mesh sensitivity, as can be seen from the numerical results at the three different mesh sizes 

in Figure 14. Nevertheless, the smaller mesh discretization yields to a moderately higher sustained load 

and consequently higher SEA. The morphology of damage after 10 mm of plate displacement (Figure) 

clearly shows that the 0.5 mm mesh is characterized by more tearing and element erosion compared to the 

runs with 1.0 mm and the 1.5 mm meshes, ultimately leading to a higher dissipation of energy. 

Nevertheless, the results are only slightly affected, with a maximum of 10% SEA increase on [0]6 and 6% 

on [452/0]s laminates. 

 

Figure 14. Mesh sensitivity study with the LV damage model for the two investigated laminates. Numerical outputs 

of the force-displacement plots (left), numerical and experimental SEA (right).  
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The results for the WP model are highlighted in Figure 15: as anticipated in Section 5.3, the default material 

card calibrated according to the proposed procedure can only produce accurate results for a given mesh 

configuration, namely the 1 mm mesh; varying the element size leads to poor performance.   

When the material card is corrected with respect to the consistency of the strain energy, the mesh objectivity 

is greatly recovered, although the results, similarly to the LV case, still retain some scaling effects. Again, 

Figure shows that the finer elements generate a different failure profile: more fragmentation and element 

erosion is observed after 10 mm of crush plate displacement, whereas the larger mesh is more prone to 

generate splaying and folding of the plies. 

With both numerical models, the finer mesh appears to bring an overall improvement in the fidelity of the 

results, although a definite overestimation of the SEA is observed in two cases: 5HC-45 WP and 5HC-0 

LV. 

 

Figure 15. Simulated SEA for WP models at different mesh sizes. Comparison between default (coloured line) and 

corrected (black line) material model inputs; shaded area represents the test results range.  
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Figure16. Morphology of damage at 10 mm of crushed displacement for different mesh sizes (0.5 mm: a., d., 1.0 mm 

b., e., 1.5 mm c., f.) and numerical models (Ladevèze: a., b., c., Waas-Pineda: d., e., f.). The WP contours are 

relative to the inputs with corrected fracture energies.  

6.2 Sensitivity analysis on secondary parameters 

A study is carried out on the effects of interlaminar toughness and friction algorithms on the dissipated 

energy, with particular focus on the on the load curve profile, peak load and SEA.  

Firstly, interlaminar Mode I and Mode II fracture toughness values are investigated: the interlaminar 

damage is scaled with respect to the baseline calibration by increasing the fracture energy and the initial 

traction consistently. This is chosen in order to maintain the cohesive zone length constant, to avoid 

alterations of the morphology of the damage. The fracture energies (EFRAC) are thus evaluated at 2x, 4x, 

and 0.5x with respect to the baseline. The comparison here is limited to the single case of the 5HC-45 LV. 

The results, shown in Figure 16, indicate that the baseline value is the one that performs better in the tested 

configuration. The other values yield either a less stable load or a significantly lower sustained load for the 

4x case. This effect is made clear by comparing the contour plots of the cohesive damage at 10 mm crushed 
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displacement, representative of the steady-state zone (Figure 17): the baseline model is the condition with 

the shortest damaged zone. This allows to have a more stable crushing profile and, therefore, a load curve 

that remains at a more constant load throughout the displacement range. From the 4x case it is evident, 

surprisingly, that a too stiff cohesive response does not guarantee either a higher sustained load or a stable 

crush profile.  

 
Figure 16. Comparison of numerical simulation of the 5HC-45 LV model at different interlaminar fracture 

toughness:  crush force load curves (left), SEA, and peak load (right). Calibrated model (baseline) highlighted in 

red. 

 

 
Figure 17. Comparison of cohesive damage contour plots after 10 mm crushed height: a) 0.5x fracture toughness, 

b) baseline, c) 2x fracture toughness d) 4x fracture toughness. 

The process of CFRP compressive crushing generates high frictional forces at the wall in contact with the 

damaging specimen and across delaminated plies. While some researchers carried out studies evaluating 

the extent of frictional forces in damaging components [25], an accurate estimation of the forces during 

crushing is difficult to obtain. Instead, most numerical models rely on standardized values used for impact 

simulations and other scenarios. 
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In this section, different values of Coulomb friction coefficients are compared in the base 5HC-45_LV 

model. For the contact between the specimen and the rigid wall, the values investigated were 0, 0.2, 0.4, 

0.6, and 0.8, while for self-contact of plies, the coefficient was varied between 0, 0.4, and 0.8. For ease of 

comparison, a full factorial campaign was not performed. Instead, the baseline values were set to 0.2 and 

0.4 for the wall contact and self-contact respectively, and only one of the two contact pairs was modified 

each time. The results are reported in Figure 18, showing the SEA and peak force of each configuration. 

Whereas increasing friction coefficients is initially correlated with increased SEA, an excessive friction 

can effectively reduce the sustained crush load, leading to unstable failure. Indeed, Figure 19 and Figure 

20 show the morphology of the crushed specimens in the simulated and experimental case at varying values 

of the wall contact friction. It is evidenced that a higher friction between the rigid wall and the specimen 

contrasts the splaying of the outer plies and leads the coupon to fold onto itself (a configuration that is not 

supported by experimental evidence). 

  
Figure 18. Comparison of numerical simulation of the 5HC-45 LV model at different contact friction coefficients: 

SEA and peak load values. Calibrated model (baseline) highlighted in red. Error bars represent the standard 

variation in the quasi-static region (5-25 mm) 
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Figure 19. Comparison of ply deformation at the free edge after 20mm crushed height at different wall contact 

friction coefficients a) no friction b) 0.2 baseline, c) 0.4 d) 0.6 e) 0.8. 

 
Figure 20. Example of lateral ply splaying for [0]6 layup (left) and [452/0]s layup (right). 

7. Conclusions 

The energy absorbed during crushing of woven fiber CFRP is simulated via FEM analysis using the explicit 

solver of ESI-VPS. Two damage models are implemented and compared: Ladevèze model, which uses ply-

level  ontin     a a       ani s  an   aas‐Pin  a model, which uses discrete traction-separation laws 

to model smeared cracks within the continuum elastic-plastic formulation. 

The two numerical models for damage are suitable for a wide range of applications, but crash simulations 

impose additional constraints in the shape of the damage curves, to remove the occurrence of numerical 

instabilities. A calibration procedure has been implemented for LV and WP models to avoid instabilities 

while minimizing the need for iterative procedures. Compact Tension and Compact Compression tests are 

found to be useful in recreating, in a controlled environment, the failure and fracture propagation 

phenomena that occur during crushing. Therefore, they are used as reference load cases for calibration of 

the material cards: it is shown that replicating the CT and CC load cases in the numerical environment is 

effective in obtaining satisfactory results using both Ladevèze and Waas-Pineda models for the 

compressive crush scenario. 

Coupons with corrugated geometry and two different layups are tested, and the results are replicated in the 

FE environment using an orthotropic stacked shell with unstructured mesh. Interlaminar damage is included 

using a cohesive formulation. Both calibrated models show satisfactory results under all scenarios, being 

able to capture the absorbed energy with a maximum error well below 15%.  

The mesh sensitivity of the two numerical models is also investigated: with LV, the variation of SEA for 

three different element sizes is well controlled since the model is calibrated at constant strain energy at 

failure. Instead, the WP model is based on fracture energy quantities that do not scale correctly with mesh 

size in progressive crushing applications. When the correction scheme is applied, to recover the consistency 

of energy density, the variation in SEA is significantly reduced. 

Finally, the interlaminar fracture toughness and contact frictions are investigated: it is shown that an 

adequate calibration is necessary, as both interlaminar model and contact friction algorithms show a 

nonlinear correlation to inputs parameters. In particular, adequate interlaminar damage is greatly 

responsible for crush stability, as values that are either too high or too low may equally lead to irregular 

delamination patterns with extensive delaminated areas. The authors believe that further investigations are 



 

 

required on this specific topic, as, currently, no guidelines are available to adjust the interlaminar damage 

models in order to assure stable crushing load under different conditions.  

 

Data Availability 

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical 

or time limitations. 
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