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Università di Bologna,

I.N.F.N., sezione di Bologna,

viale Berti Pichat, 6/2

Bologna, Italy

Email: roberto.zucchini@unibo.it, zucchinir@bo.infn.it

Abstract: The geometry of the total space of a principal bundle with regard to

the action of the bundle’s structure group is elegantly described by the bundle’s

operation, a collection of derivations consisting of the de Rham differential and

the contraction and Lie derivatives of all vertical vector fields and satisfying the

six Cartan relations. Connections and gauge transformations are defined by the

way they behave under the action of the operation’s derivations. In the first paper

of a series of two extending the ordinary theory, we constructed an operational

total space theory of strict principal 2–bundles with reference to the action of the

structure strict 2–group. Expressing this latter through a crossed module pE,Gq,

the operation is based on the derived Lie group er1s ¸ G. In this paper, the

second of the series, an original formulation of the theory of 2–connections and

1– and 2–gauge transformations of principal 2–bundles based on the operational

framework is provided.
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1 Introduction

Principal 2–bundle theory is a topic of higher geometry important, among other

reasons, for its relevance in higher gauge theory (see e. g. [1] for a review).

Various approaches to this subject have been developed so far constituting a

large body of literature [2–18].

This is the second of a series of two papers aimed at the construction of an

operational total space theory of principal 2–bundles. In a companion paper,

henceforth referred to as I [19], we laid the foundations of the operational total

space framework [20]. In this paper, referred to as II, based on the operational

setup worked out in I, we provide an original formulation of the theory of 2–

connections and 1– and 2–gauge transformations.

1.1 Operational theory of principal 2–bundles

Before proceeding to illustrating the plan of II, we review briefly the content of I

to privide the reader with a general overview of the matter.

A principal 2–bundle consists of a morphism manifold P̂ with an object sub-

manifold P̂0 forming a groupoid, a base manifold M , compatible projection maps

π̂ : P̂ Ñ M and π̂0 : P̂0 Ñ M describing a functor, a morphism group K̂ with an

object subgroup K̂0 organized as a strict Lie 2-group and compatible right actions

R̂ : P̂ ˆ K̂ Ñ P̂ and R̂0 : P̂0 ˆ K̂0 Ñ P̂0 constituting a functor and respecting π̂

and π̂0. The 2–bundle is also locally trivializable, that is on any sufficiently small

neighborhood U of M the groupoid pP̂ |U , P̂0|Uq is equivariantly projection pre-

servingly equivalent to the groupoid pU ˆ K̂, U ˆ K̂0q with the obvious projection

and right action structures.

In I, we showed that there exists a synthetic structure adjoined to a principal

2–bundle as above consisting of morphism and object manifolds P and P0, the

base manifold M , projections π and π0, morphism and object groups K and K0

and right K– and K0– actions R and R0 on P and P0. The synthetic setup is

formally obtained from the original non synthetic one as follows. Describe the

strict Lie 2–group pK̂, K̂0q by its associated Lie group crossed module pE,Gq so
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that K̂ “ E ¸ G and K̂0 “ G. Then, K “ er1s ¸ G and K0 “ G. Formally

extend further the K̂–action R̂ to a K–action. Then, P is the K–action image of

P̂0 and P0 “ P̂0, R is the restriction of R̂ to P and R0 “ R̂. Above, K and P

must be thought of as certain spaces of functions from Rr´1s to E ¸ G and P ,

respectively, in the spirit of synthetic smooth geometry. Although the synthetic

structure shares many of the properties of the underlying principal 2–bundle, it

is not one because neither pairs pK,K0q and pP, P0q have a groupoid structure.

With any Lie group crossed module such as pE,Gq, there are associated the

derived Lie group DM “ er1s¸G and its subgroup DM0 “ G whose rich properties

were exhaustively studied in I. When expressing K̂, K̂0 in terms of the crossed

module encoding their underlying 2–group, one has K “ DM and K0 “ DM0.

The K– and K0–actions on P and P0 can in this way be described in terms of DM

and DM0, respectively.

As explained at length in I, the right DM–action on P is codified in an oper-

ation OpSP . This is the geometrical structure consisting of the graded algebra

FunpT r1sP q of internal functions of T r1sP and the collection of graded deriva-

tions of FunpT r1sP q comprising the de Rham vector field dP and the contraction

and Lie vector fields jPZ , lPZ , Z P Dm, describing the action infinitesimally, where

Dm is the Lie algebra of DM. The derivations obey the six Cartan relations,

rdP , dP s “ 0, (1.1.1)

rdP , jPZs “ lPZ , (1.1.2)

rdP , lPZs “ 0, (1.1.3)

rjPZ , jPW s “ 0, (1.1.4)

rlPZ , jPW s “ jrZ,W s, (1.1.5)

rlPZ , lPW s “ lrZ,W s. (1.1.6)

It is possible to similarly construct an operation OpSP0 codifying the right DM0–

action on P0 consisting of the internal function algebra FunpT r1sP0q acted upon

by the de Rham vector field dP0
and the contraction and Lie vector fields jP0Z0

,

lP0Z0
, Z0 P Dm0.
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1.2 2–connections and 1– and 2–gauge transformations

The operational framework of I just reviewed is the geometric setup on which the

theory of 2–connections and 1– and 2–gauge transformations presented in this

paper rests.

In sect. 2, we review the ordinary total space theory of principal bundle

connections and gauge transformations concentrating on the two aspects of it

which are most relevant for us, the operational description (cf. subsect. 2.1) and

and the basic theory (cf. subsect. 2.2). This will furnish a prototypical model

inspiring the construction of the corresponding higher theory.

In sect. 3, synthetic definitions of 2–connections and 1– and 2–gauge transfor-

mations are given in the operational framework (cf. subsect. 3.1). A 2–connection

A is a degree 1 Dm–valued internal function on T r1sP behaving in a prescribed

way under the action of the vector fields dP , jPZ , lPZ of the operation OpSP

(cf. subsect. 3.2). The grading of Dm ensures that A has a degree 1 g–valued

component ω and a degree 2 e–valued component Ω which directly correspond

to and have properties closely related to those of the familiar components of a

2–connection in strict higher gauge theory. Similarly, a 1–gauge transformation

Ψ is a degree 0 DM–valued internal function on T r1sP acted upon in a certain

way by dP , jPZ , lPZ , which by the grading of DM has a degree 0 G–valued com-

ponent g and a degree 1 e–valued component J directly corresponding to and

with properties closely related to those of the components of a 1–gauge transfor-

mation in strict higher gauge theory (cf. subsect. 3.3). The action of a 1–gauge

transformation Ψ on a 2–connection A can be defined and has the expected prop-

erties. 2–gauge transformations and their action on 1–gauge transformations can

be incorporated into this operational framework as well (cf. subsect. 3.4).

A 2–connection A can be pulled back from T r1sP to T r1sP0 using the inclusion

map I : P0 Ñ P . The pull–back I˚A behaves under the action of the vector fields

dP0
, jP0Z0

, lP0Z0
of the operation OpSP0 in a way determined by the behaviour

of A under the vector fields dP , jPZ , lPZ of OpSP . It is possible to consistently

impose the condition that the degree 2 component I˚Ω of I˚A vanishes. Upon

doing so, the degree 1 component I˚ω of I˚A formally functions in OpSP0 as a
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connection of an ordinary principal bundle P0 with structure group DM0, though

P0 is not one in general. Similarly, a 1–gauge transformation Ψ can be pulled

back from T r1sP to T r1sP0 using I. The pull–back I˚Ψ behaves under the vector

fields dP0
, jP0Z0

, lP0Z0
of OpSP0 in a way determined by the behaviour of Ψ under

the vector fields dP , jPZ , lPZ of OpSP . It is possible to consistently impose

the condition that the degree 1 component I˚J of I˚Ψ vanishes. The degree 0

component I˚g of I˚Ψ then formally functions in OpSP0 as if it were a gauge

transformation of P0 as a would–be ordinary principal bundle.

The internal functions of T r1sP annihilated by all vector fields jPZ , lPZ with

Z P Dm constitute the basic subalgebra FunbpT r1sP q of FunpT r1sP q. Unlike for

ordinary principal bundles, FunbpT r1sP q cannot be identified with FunpT r1sMq,

as the DM–action of P is free but generally not fiberwise transitive. In the case

of a trivial principal 2–bundle, however, P “ M ˆ DM, the DM–action is both

free and fiberwise transitive and FunbpT r1sP q is isomorphic to FunpT r1sMq. So,

since a principal 2–bundle is locally weakly isomorphic to a trivial 2–bundle with

the same structure 2–group by definition, the basic internal functions of T r1sP

can still be identified with the internal functions of T r1sM locally in a weak

sense. By this feature, the basic theory of the higher case is definitely unlike

that of the ordinary one. Appropriate notions are so required for its formulation

and construction. It is possible in principle to work out the basic theory also for

the internal functions of T r1sP0 and similar considerations apply. However, there

apparently are no relevant applications of it.

On a trivializing neighborhood U Ă M of the principal 2–bundle, 2–connections

and 1– and 2–gauge transformations are described by basic Lie valued data on

the portion of T r1sP above T r1sU (cf. subsects. 3.5, 3.6). More specifically a

2–connection A is characterized by a local basic degree 1 Dm–valued internal

function Ab comprising a degree 1 g–valued function ωb and a degree 2 e–valued

function Ωb. Similarly, a 1–gauge transformation Ψ is characterized by a local

basic degree 0 DM–valued internal function Ψb comprising a degree 0 G–valued

function gb and a degree 1 e–valued function Jb. 2–gauge transformations too

have a basic representation. Local 2–connection and 1– and 2–gauge transforma-
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tion data relative to distinct overlapping trivializing neighborhoods of U, U 1 Ă M

match trough a local basic degree 0 DM–valued internal function Db decompos-

able in a degree 0 G–valued function fb and a degree 1 e–valued function Fb.

The local basic data mentioned in the previous paragraph can be constructed

for a full open covering of M made of trivializing neighborhoods (cf. 3.7). Un-

der certain conditions, among which fake flatness, the local 2–connection and

matching data fit into a structure called a differential paracocycle having formal

properties analogous to those of a (trivial) differential cocycle but defined on the

total space morphism manifold P rather than the base manifold M . The para-

cocycle data are then expressed through the pull–back of the bundle’s projection

map in terms of local Lie valued data defined on M constituting a genuine differ-

ential cocycle. Similarly, in the presence of a suitable differential paracocycle, the

local 1–gauge transformation data fit into a structure called a gauge paraequiv-

alence subordinated to it. The paraequivalence data are then expressed through

the projection map’s pull–back in terms of local Lie valued data defined on M .

Further, the gauge transform of the paracocycle is defined.

In sect. 4, we evaluate the results of the total space synthetic theory of 2–

connections and 1– and 2–gauge transformations illustrated above by comparing

it with other approaches to the topic (cf. subsect. 4.3) and outlining a more

geometric interpretation of it (cf. subscet. 4.2).

1.3 Outlook

Our work is an attempt to formulate principal 2–bundle geometry in a total space

perspective, while remaining committed as much as possible to the language and

the techniques of graded differential geometry which have shown their usefulness

in gauge theory. The operational formulation we propose enriches and completes

the range of approaches to and descriptions of principal 2–bundle geometry. It

may provide, it is our hope, alternative more elegant proofs of known facts and

point to new hitherto unknown developments.

The operational framework has shown its power in the study of the differential

topology, in particular the characteristic classes, of ordinary principal bundles
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[20]. It has thus the potential of being useful in the study of the corresponding

problems for strict principal 2–bundles.

More specific applications may include a strict Lie 2–algebraic extension of

the classic theory of coadjoint orbits [21] and the attendant Borel–Bott–Weil

theory [22], which at key points invoke a total space description of principal

bundles. Coadjoint orbit and Borel–Bott–Weil play an important role in the

one–dimensional path integral representation of Wilson lines (see ref. [23] for a

nice review of this topic). It is conceivable that their higher counterparts may

enter prominently in a two–dimensional path integral representation of Wilson

surfaces [24–26].

The operational framework has also some non standard features which call for

further investigation. The use of external function algebras introduces internal

multiplicities and endows 2–connections and 1– and 2–gauge transformations with

ghostlike partners rendering the whole geometrical framework akin to that used

in the AKSZ formulation of BV theory [27] (see also [28]). These are absent

though could be added in the ordinary operational framework. In higher one,

they are instead unavoidable.
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2 Connections and gauge transformations

In this section, we review the total space theory of principal bundle connections

and gauge transformations from an operational perspective. This will furnish a

guiding model for the construction of the corresponding higher theory carried out

later in sect. 3. For a comprehensive treatment, we refer the reader to [20].

2.1 Operational theory

The operational total space theory of principal bundles, expounded in this sub-

section, relies on the operational setup of subsect. 2.1 of I. As shown in subsect.

2.2 of I, with a principal G–bundle P there is associated the Lie group space

SP “ pP,G, Rq and with this the operation OpSP “ pFunpT r1sP q, gq. OpSP

provides a powerful graded differential geometric framework for the study of con-

nections and gauge transformations. Following the customary point of view, the

ordinary function algebra FunpT r1sP q is considered here. Much of the theory

presented below could be formulated also assuming the internal function algebra

FunpT r1sP q. In higher gauge theory, the latter turns out to be the only available

option, as we shall see in due course.

Definition 2.1. A connection of P is a pair of Lie algebra valued functions ω P

MappT r1sP, gr1sq and θ P MappT r1sP, gr2sq, called respectively connection and

curvature component, on which the operation derivations act as

dPω “ ´
1

2
rω, ωs ` θ, (2.1.1)

dP θ “ ´rω, θs, (2.1.2)

jPxω “ x, (2.1.3)

jPxθ “ 0, (2.1.4)

lPxω “ ´rx, ωs, (2.1.5)

lPxθ “ ´rx, θs (2.1.6)

with x P g.
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(2.1.1) is just the expression of the curvature component θ in terms of the con-

nection one ω. (2.1.2) is the Bianchi identity obeyed by the curvature. The

connection is said flat if θ “ 0. The definition of connection we gave in subsect.

2.2 of I is essentially the same as the one provided here. Indeed, it can be shown

that the horizontal G–invariant distribution H in term of which former definition

is formulated corresponds to the annihilator of ω of the latter one and the flatness

conditions of the two notions are equivalent.

Definition 2.2. A gauge transformation of P is a pair of Lie group and algebra

valued functions g P MappT r1sP,Gq and h P MappT r1sP, gr1sq, called respectively

transformation and shift component, on which the operation derivations act as

dPgg
´1 “ ´h, (2.1.7)

dPh “ ´
1

2
rh, hs, (2.1.8)

jPxgg
´1 “ 0, (2.1.9)

jPxh “ x ´ Ad gpxq, (2.1.10)

lPxgg
´1 “ ´x ` Ad gpxq, (2.1.11)

lPxh “ ´rx, hs (2.1.12)

with x P g.

Relations (2.1.7) effectively defines the shift component h in terms of the transfor-

mation one g. (2.1.8) is the associated Maurer–Cartan equation. The definition

of gauge transformation we gave in subsect. 2.2 of I coincides with the one pro-

vided here. The G–equivariant fiber preserving diffeomorphism Φ in the former

definition corresponds to the transformation component g in the latter one.

As well–known, gauge transformations act on connections of P .

Definition 2.3. The gauge transform of a connection of components ω, θ by a

gauge transformation of components g, h is given by

g,hω “ Ad gpωq ` h, (2.1.13)

g,hθ “ Ad gpθq. (2.1.14)
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Substituting above identity (2.1.7) expressing h in terms of g, these relations are

formally identical to the familiar ones of standard gauge theory.

Proposition 2.1.
g,hω, g,hθ are the components of a connection. Flatness is gauge

invariant.

Indeed, the action (2.1.1)–(2.1.6) and (2.1.7)–(2.1.12) of the operation derivations

on the components ω, θ and g, h ensures that the action of those derivations on

the transformed components g,hω, g,hθ also obey to (2.1.1)–(2.1.6).

Since the shift component of a gauge transformation is determined by the

transformation one by (2.1.7), a gauge transformation is fully specified by these

latter. As MappT r1sP,Gq “ MappP,Gq, gauge transformations can be viewed as

elements of the group MappP,Gq of G–valued maps. They form indeed a distin-

guished subgroup of this latter, the gauge group of P . Gauge transformation is a

left action of the gauge group on connection space. As expected, the definitions

of gauge group and the gauge transformation action on connection space we gave

in subsect. 2.2 of I precisely correlate to the operational theoretic definitions of

the same notions provided here.

2.2 Basic theory

Every principal G–bundle P is trivializable on any sufficiently small neighbor-

hood U of the base M , that is π´1pUq is projection preservingly, G–equivariantly

isomorphic to the trivial G–bundle U ˆ G. The existence of a trivializing isomor-

phism ΦU : π´1pUq Ñ U ˆG provides structural information about the operation

OpSπ´1pUq of π
´1pUq. It entails the existence of coordinates of π´1pUq modelled

on U ˆ G with special properties under the action of the operation’s derivations.

In this way, an operational description of the local fibered geometry of P can be

furnished.

Proposition 2.2. There are coordinates of π´1pUq adapted to U ˆG, namely func-

tions u P MappT r1sπ´1pUq,RdimMq, v P MappT r1sπ´1pUq,RdimM r1sq for U and
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γ P MappT r1sπ´1pUq,Gq, σ P MappT r1sπ´1pUq, gr1sq for G on which the opera-

tion derivations act as follows. For u, v, one has

dπ´1pUqu “ v, dπ´1pUqv “ 0 (2.2.1)

with trivial action of all operation derivations jπ´1pUqx, lπ´1pUqx with x P g. For

γ, σ, the structure equations take the form

γ´1dπ´1pUqγ “ σ, (2.2.2)

dπ´1pUqσ “ ´
1

2
rσ, σs, (2.2.3)

γ´1jπ´1pUqxγ “ 0, (2.2.4)

jπ´1pUqxσ “ x, (2.2.5)

γ´1lπ´1pUqxγ “ x, (2.2.6)

lπ´1pUqxσ “ ´rx, σs (2.2.7)

with x P g.

Relation (2.2.1) can be viewed as the definition of the generator υ. Relation

(2.2.2) can similarly be viewed as the definition of the generator σ. Eq. (2.2.3)

states that σ is a fiberwise Maurer–Cartan form and (2.2.3) itself is the classic

Maurer–Cartan equation it satisfies.

We can use the explicit description of the operation OpSπ´1pUq we detailed

above to analyze such structures as connections and gauge transformations of the

principal bundle P in terms of data defined locally on U in the base M . This will

lead to basic theory.

Consider a connection of P of connection and curvature components ω, θ.

Definition 2.4. The basic components of the connection on U are defined as

ωb “ Ad γpω ´ σq, (2.2.8)

θb “ Ad γpθq. (2.2.9)

Above, restriction of ω, θ to T r1sπ´1pUq is tacitly understood. The name given

to ωb, θb is motivated by the fact that, by construction, they are annihilated by
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all derivations jπ´1pUqx and lπ´1pUqx with x P g.

Proposition 2.3. ωb, θb are basic elements of the operation OpSπ´1pUq.

Hence, ωb, θb can be identified with certain functions ωb P MappT r1sU, gr1sq,

θb P MappT r1sU, gr2sq.

Proposition 2.4. ωb, θb satisfy the relations

dπ´1pUqωb “ ´
1

2
rωb, ωbs ` θb, (2.2.10)

dπ´1pUqθb “ ´rωb, θbs. (2.2.11)

These are formally identical to relations (2.1.1), (2.1.2). We recover in this way

the familiar local base space description of connections used in the space–time

formulation of gauge theory.

Next, consider a gauge transformation of P of transformation and shift com-

ponents g, h.

Definition 2.5. The basic components of the gauge transformation on U are

gb “ γgγ´1, (2.2.12)

hb “ Ad γph ´ σ ` Ad gpσqq. (2.2.13)

Above, again, restriction of g, h to T r1sπ´1pUq is understood. The name given

to gb, hb is motivated by the fact that, by construction, they are annihilated by

all derivations jπ´1pUqx and lπ´1pUqx with x P g.

Proposition 2.5. gb, hb are basic elements of the operation OpSπ´1pUq.

Therefore, again, gb, hb can be identified with functions gb P MappT r1sU,Gq,

hb P MappT r1sU, gr1sq.

Proposition 2.6. gb, hb satisfy the relations

dπ´1pUqgbgb
´1 “ ´hb, (2.2.14)

dπ´1pUqhb “ ´
1

2
rhb, hbs. (2.2.15)

These are formally identical to relations (2.1.7), (2.1.8). We recognize here the
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familiar local base space description of gauge transformations of standard gauge

theory.

Next, consider the gauge transformed connection g,hω, g,hθ. A simple calcula-

tion yields the following result.

Proposition 2.7. The basic components g,hωb,
g,hθb of the gauge transformed con-

nection are given by

pg,hωqb “ Ad gbpωbq ` hb, (2.2.16)

pg,hθqb “ Ad gbpθbq. (2.2.17)

These have the same form as relations (2.1.13), (2.1.14). If, with an abuse of

notation, we read the above expressions as g,hωb “ gb,hbωb,
g,hθb “ gb,hbθb, we

recover the familiar local base space description of gauge transformations in gauge

theory.

For a given trivializing neighborhood U Ă M , the basic components of con-

nections and gauge transformations are Lie valued functions on T r1sU , so they

are only locally defined. The problem arises of matching the local data pertain-

ing to distinct but overlapping trivializing neighborhoods U, U 1 Ă M . Below, we

denote by u, v, γ, σ and u1, v1, γ1, σ1 the standard adapted coordinates of π´1pUq

π´1pU 1q, respectively.

Definition 2.6. The local basic matching transformation and shift components are

the Lie group and algebra valued functions fb P MappT r1sπ´1pU X U 1q,Gq and

sb P MappT r1sπ´1pU X U 1q, gr1sq defined by

fb “ γ1γ´1, (2.2.18)

sb “ Ad γpσ1 ´ σq. (2.2.19)

Above, γ, σ and γ1, σ1 are tacitly restricted to T r1sπ´1pU X U 1q.

Proposition 2.8. fb, sb are basic elements of the operation OpSπ´1pUXU 1q.

Therefore, fb, sb can be identified with functions fb P MappT r1spU X U 1q,Gq,

sb P MappT r1spU X U 1q, gr1sq.
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Proposition 2.9. The local basic components ωb, θb and ω1
b, θ

1
b of a connection

ω, θ are related on T r1spU X U 1q as

ω1
b “ Ad fbpωb ´ sbq, (2.2.20)

θ1
b “ Ad fbpθbq. (2.2.21)

Upon observing that sb “ fb
´1dπ´1pUXU 1qfb, one recognizes above the well–known

matching relations of local connection data.

Proposition 2.10. The local basic components gb, hb and g1
b, h

1
b of a gauge trans-

formation g, h are related on T r1spU X U 1q as

g1
b “ fbgbfb

´1, (2.2.22)

h1
b “ Ad fbphb ´ sb ` Ad gbpsbqq. (2.2.23)

The above are the matching relations of local gauge transformation data.

Upon choosing an open covering tUiu of M and for each set Ui adapted coor-

dinates ui, vi, γi, σi, one can describe a connection, respectively a gauge trans-

formation, by means of the collection tωbi, θbiu, respectively tgbi, hbiu, of its local

basic data defined according (2.2.8), (2.2.9), respectively (2.2.12), (2.2.13) on

the Ui. The matching of the local connection and gauge transformation data is

controlled through the rules (2.2.20), (2.2.21) and (2.2.22), (2.2.23) by the local

basic matching data tfbij , sbiju defined according to (2.2.18), (2.2.19) on the non

empty intersections Ui X Uj , respectively. This yields the familiar differential

cocycle theory of connections and gauge transformations.
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3 2–connections and 1– and 2–gauge transformations

In this section, we construct the synthetic operational total space theory of 2–

connections and 1– and 2–gauge transformations of a principal 2–bundle taking

the standard connection and gauge transformation reviewed in theory of subsect.

2.1 as a model. We also show that, just as in the ordinary case, a basic framework

can be worked out pointing in this way to a more conventional base space theory.

Finally, an explanation of the eventual relation of the formulation presented to

the theory of non Abelian differential cocycles is put forward.

3.1 General remarks on the operational setup

In what follows, we systematically refer to the synthetic apparatus of principal

2–bundle theory of subsect. 3.2 of I. The basic geometrical datum is so a principal

K̂ –2–bundle P̂. Its associated synthetic setup comprises the synthetic morphism

and object Lie groups K, K0 of K̂ , the synthetic morphism and object manifolds

P , P0 of P̂ together with their projections π, π0 on the base manifold M , the syn-

thetic right K–, K0–actions R, R0 of P , P0 and for any small open neighborhood

U Ă M synthetic K–, K0–equivariant trivializing maps ΦU , ΦU0, respectively.

In the synthetic theory, 2–connections and 1– and 2–gauge transformations of

P̂ are Lie valued graded differential forms on P suitably transforming under the

K–action R. These notions are best formulated by describing K as the derived

Lie group DM of the Lie group crossed module M “ pE,Gq underlying K̂ on one

hand and the graded differential form algebra of P as the internal function algebra

of T r1sP on the other (cf. subsect. 3.8 of I). Because of the role of the DM–

action R of P , the natural setting for studying 2–connections and 1– and 2–gauge

transformations is provided then by the morphism space SP “ pP,M, Rq of P

and the associated operation OpSP “ pFunpT r1sP q,mq.

The action of the derivations jPZ , lPZ with Z P Dm of OpSP on the internal

function algebra FunpT r1sP q is expressed as a rule through the image ζmZ of

Z under the isomorphism ζm : Dm
»

ÝÝÑ Dm` (cf. def. 3.19 and prop. 3.26 of

I). When decomposing Z in its components x P g, X P er1s according to 3.4.6
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of I, the action is correspondingly expressed through x P g, ζe,1X P er1s`. The

reason for this is slightly technical. The action of the vertical vector fields of P

on FunpT r1sP q is necessarily expressed in terms of constant Dm–valued internal

functions, i. e. functions of the space MappT r1sP,Dmq arising by pull–back by

the map T r1sP Ñ ˚ of functions of the space Mapp˚,Dmq “ Dm`, the cross

modality of Dm (cf. subsect. 3.6 of I). In an ungraded setting, this careful

distinction would make no difference. In a graded one, it is demanded by overall

consistency. However, to simplify the notation, we tacitly shall not distinguish

notationally between Z and ζmZ and similarly X and ζe,1X in the following.

The study of the properties of a 2–connections and 1–gauge transformations on

the object manifold P0 as a submanifold of the morphism manifold P can also be

performed. As the right DM–action R of P restricts to the the right DM0–action

R0 of P0, the appropriate framework for this analysis is the object space SP0 “

pP0,M0, R0q of P and the associated operation OpSP0 “ pFunpT r1sP0q,m0q (cf.

subsect. 3.8 of I). The action of the derivations of OpSP0 fits with the restriction

operation morphism OpL : OpSP Ñ OpSP0.

3.2 2–connections

In the synthetic formulation, a 2–connection of the K̂ –2–bundle P̂ is a degree

1 k–valued graded differential form over P suitably transforming under the K–

action R. Proceeding along the lines described in subsect. 3.1, a 2–connection is

most naturally defined making reference to the operation OpSP of P .

Definition 3.1. A 2–connection of P is a pair of Lie algebra valued internal func-

tions A P MappT r1sP,Dmr1sq and B P MappT r1sP,Dmr2sq, called respectively

connection and curvature component, on which the action of the derivations of

the operation OpSP is given by

dPA “ ´
1

2
rA,As ´ d 9τA ` B, (3.2.1)

dPB “ ´rA,Bs ´ d 9τB, (3.2.2)

jPZA “ Z, (3.2.3)
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jPZB “ 0, (3.2.4)

lPZA “ ´rZ,As ` d 9τZ, (3.2.5)

lPZB “ ´rZ,Bs (3.2.6)

with Z P Dm.

Above, r´,´s and d 9τ are the Lie bracket and the coboundary of the virtual Lie

algebra MappT r1sP,ZDmq (cf. eqs. 3.5.13, 3.5.15 of I). Z is tacitly viewed as

an element of Dm` as explained in subsect. 3.1. (3.2.1)–(3.2.6) are by design

formally analogous to relations (2.1.1)–(2.1.6) defining an ordinary connection,

once one assumes dP ` d 9τ as relevant differential. (3.2.1) is just the expression

of the curvature component B in terms of the connection component A. (3.2.2)

is the Bianchi identity obeyed by the curvature component. The 2-connection is

said flat if B “ 0.

Lemma 3.1. (3.2.1)–(3.2.6) respect the operation commutation relations 2.1.1–

2.1.6 of I.

Proof. One has to show that the six derivation commutators in the left hand

sides of eqs. 2.1.1–2.1.6 of I act as the corresponding derivations in the right

hand sides when they are applied to the functions A, B and the (3.2.1)–(3.2.6)

are used. The graded commutativity of d 9τ with all derivations must be taken into

account. This is a straightforward verification.

By 3.5.12 of I, we can express the components A, B of a 2–connection as

Apαq “ ω ´ αΩ, (3.2.7)

Bpαq “ θ ` αΘ, α P Rr1s, (3.2.8)

through projected connection and curvature components ω P MappT r1sP, gr1sq,

Ω P MappT r1sP, er2sq and θ P MappT r1sP, gr2sq, Θ P MappT r1sP, er3sq. We

further write Z P Dm as Zpᾱq “ x ` ᾱX , ᾱ P Rr´1s, with x P g and X P er1s as

in 3.4.6 of I.

Proposition 3.1. In terms of projected components, the operation relations (3.2.1)–
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(3.2.6) take the more explicit form

dPω “ ´
1

2
rω, ωs ` 9τpΩq ` θ, (3.2.9)

dPΩ “ 9́µ9pω,Ωq ` Θ, (3.2.10)

dPθ “ ´rω, θs ´ 9τpΘq, (3.2.11)

dPΘ “ 9́µ9pω,Θq ` 9µ9pθ, Ωq, (3.2.12)

jPZω “ x, (3.2.13)

jPZΩ “ X, (3.2.14)

jPZθ “ 0, (3.2.15)

jPZΘ “ 0, (3.2.16)

lPZω “ ´rx, ωs ` 9τpXq, (3.2.17)

lPZΩ “ 9́µ9px,Ωq ` 9µ9pω,Xq, (3.2.18)

lPZθ “ ´rx, θs, (3.2.19)

lPZΘ “ 9́µ9px,Θq ` 9µ9pθ,Xq. (3.2.20)

Above, X is tacitly viewed as an element of er1s` (cf. subsect. 3.1).

Proof. To get these relations, we substitute the expressions of A, B in terms of ω,

Ω, θ, Θ of eqs. (3.2.7), (3.2.8) and that of Z in terms of x, X into (3.2.1)–(3.2.6)

and use relations 3.5.13 and 3.5.15 of I. The calculations are elementary.

(3.2.9), (3.2.10) are just the expressions of the curvature components θ, Θ in

terms of the connection components ω, Ω and (3.2.11), (3.2.12) are the Bianchi

identities obeyed by θ, Θ familiar in strict higher gauge theory. The 2–connection

is flat if θ “ 0, Θ “ 0 and it is said fake flat if θ “ 0 only.

The study of the properties of a 2–connection on P0 as a submanifold of P

can also be performed. Following the lines of subsect. 3.1, the appropriate way

of doing this is by making reference to the operation OpSP0.

The restriction operation morphism OpL : OpSP Ñ OpSP0 of subsect. 3.8

of I maps the components ω, Ω, θ, Θ of a 2–connection of P into
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ω0 “ I˚ω, (3.2.21)

Ω0 “ I˚Ω, (3.2.22)

θ0 “ I˚θ, (3.2.23)

Θ0 “ I˚Θ, (3.2.24)

where I˚ : FunpT r1sP q Ñ FunpT r1sP0q is the restriction morphism associated

to the inclusion map I : P0 Ñ P . The action of the derivations of the operation

OpSP0 on ω0, Ω0, θ0, Θ0 is given by the right hand side of eqs. (3.2.9)–(3.2.20)

with ω, Ω, θ, Θ replaced by ω0, Ω0, θ0, Θ0 and X set to 0. By inspecting the

resulting expressions, it appears that one can consistently impose the conditions

Ω0 “ 0, (3.2.25)

Θ0 “ 0. (3.2.26)

Upon doing so, the surviving components ω0, θ0 satisfy relations formally identical

to (2.1.1)–(2.1.6). In spite of the seeming similarities to a connection of a principal

G–bundle there are two basic differences. First, P0 is not a principal G–bundle, as

the G–action on P0 is free but fiberwise transitive only up to isomorphism of P .

Second, in the customary definition of connection the ordinary function algebras

MappT r1sP0, grpsq appears.

In certain cases, it may be appropriate to restrict the range of 2–connections

to those enjoying (3.2.25), (3.2.26)

Definition 3.2. A 2–connection ω, Ω, θ, Θ is special if (3.2.25), (3.2.26) are sa-

tisfied.

3.3 1–gauge transformations

In the synthetic formulation, of higher gauge theory of subsect. 3.2 of I, a 1–gauge

transformation of the K̂ –2–bundle P̂ is a degree 0 K–valued graded differential

form on P suitably transforming under the K–action R. Proceeding along the

lines described in subsect. 3.1, a 1–gauge transformation is most naturally defined

making reference to the operation OpSP , as for a 2–connection.
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Definition 3.3. A 1–gauge transformation of P is a pair of a Lie group valued

internal function Ψ P MappT r1sP,DMq and a Lie algebra valued internal function

Υ P MappT r1sP,Dmr1sq, called respectively transformation and shift component,

on which the action of the derivations of the operation OpSP reads as

dPΨΨ
´1 “ ´d 9τΨΨ

´1 ´ Υ, (3.3.1)

dPΥ “ ´
1

2
rΥ, Υ s ´ d 9τΥ, (3.3.2)

jPZΨΨ
´1 “ 0, (3.3.3)

jPZΥ “ Z ´ AdΨ pZq, (3.3.4)

lPZΨΨ
´1 “ ´Z ` AdΨ pZq, (3.3.5)

lPZΥ “ ´rZ, Υ s ` d 9τZ ´ AdΨ pd 9τZq (3.3.6)

with Z P Dm.

The above relations involve several algebraic constructs studied in subsect. 3.5

of I. r´,´s and d 9τ are respectively the Lie bracket and the coboundary of the

virtual Lie algebraMappT r1sP,ZDmq defined in eqs. 3.5.13, 3.5.15) of I. Ad is the

adjoint action of the virtual Lie group MappT r1sP,DMq on MappT r1sP,ZDmq

given in eq. 3.5.18 of I. The terms DΨΨ´1 with D “ dP , jPZ , lPZ are the pull–back

of the first Maurer–Cartan element of DM by Ψ followed by contraction with D

seen as a vector field on T r1sP , see eq. 3.5.22 of I. The term d 9τΨΨ
´1 is similarly

given by eq. 3.5.24 of I. Z is tacitly viewed as an element of Dm` as explained in

subsect. 3.1. Again, upon considering dP `d 9τ as relevant differential, the (3.3.1)–

(3.3.6) are formally analogous to relations (2.1.7)–(2.1.12) defining an ordinary

gauge transformation. Relation (3.3.1) effectively defines the shift component Υ

in terms of the transformation component Ψ . (3.3.2) is the associated Maurer–

Cartan equation.

Lemma 3.2. (3.3.1)–(3.3.6) respect the operation commutation relations 2.1.1–

2.1.6 of I.

Proof. One has to verify that the six derivation commutators in the left hand
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sides of eqs. 2.1.1–2.1.6 of I act as the corresponding derivations in the right

hand sides when they are applied to the functions Ψ , Υ and the (3.3.1)–(3.3.6)

are used. In the case of Ψ , one must employ systematically the basic relation

rD,D1sGG´1 “ DpD1GG´1q´p´1q|D}D1|D1pDGG´1q´rDGG´1, D1GG´1s holding

for two graded derivations D, D1 and a Lie group valued function G. The graded

commutativity of d 9τ with all derivations must further be taken into account. The

verification is straightforward.

Since by (3.3.1) the shift component Υ of a 1–gauge transformation can be

expressed in terms of the transformation component Ψ , a 1–gauge transformation

is effectively specified by this latter. 1–gauge transformations can thus be viewed

as elements of the virtual Lie group MappT r1sP,DMq of DM–valued internal

functions of T r1sP . As (3.3.3), (3.3.5) are evidently preserved under the group

operations of MappT r1sP,DMq, 1–gauge transformations form in fact a distin-

guished subgroup of this latter, the 1–gauge group in the present formulation.

1–gauge transformations act on 2–connections of P (cf. subsect. 3.2, def. 3.1)

compatibly with the K–action on both types of items.

Proposition 3.2. If A, B and Ψ , Υ are the components of a 2–connection and a

1–gauge transformation, respectively, then

A1 “ AdΨ pAq ` Υ, (3.3.7)

B1 “ AdΨ pBq (3.3.8)

are the components of a 2–connection.

Proof. To show that A1, B1 are the components of a 2–connection, we have to

check that the action of the derivations of the operation on A1, B1 conforms to

(3.2.1)–(3.2.6) using that the action of those derivations on A, B and Ψ , Υ is

given by (3.2.1)–(3.2.6) and (3.3.1)–(3.3.6), respectively. This is a matter of a

simple calculation.

Definition 3.4. The gauge transform of a 2–connection of components A, B by a

1–gauge transformation of components Ψ , Υ is the 2–connection of components
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Ψ,ΥA “ AdΨ pAq ` Υ, (3.3.9)

Ψ,ΥB “ AdΨ pBq. (3.3.10)

(3.3.9), (3.3.10) are formally identical to relations (2.1.13), (2.1.14) defining the

gauge transform of a connection in ordinary principal bundle theory. Notice that

flatness of a 2–connections is a 1–gauge invariant property. (3.3.9), (3.3.10) yield

a left action of the 1–gauge transformation group on the 2–connection space, as

it is readily verified.

Making use of 3.5.1, 3.5.12 of I, we can express the components Ψ , Υ of a

1–gauge transformation as

Ψ pαq “ eαJ g, (3.3.11)

Υ pαq “ h ´ αK, α P Rr1s, (3.3.12)

by means of projected transformation and shift components g P MappT r1sP,Gq,

J P MappT r1sP, er1sq and h P MappT r1sP, gr1sq, K P MappT r1sP, er2sq (cf. sub-

sect. 3.5 of I). We further write Z P Dm as Zpᾱq “ x ` ᾱX , ᾱ P Rr´1s, with

x P g and X P er1s as in 3.4.6 of I.

Proposition 3.3. In terms of projected components, the operation relations (3.3.1)–

(3.3.6) take the explicit form

dP gg
´1 “ ´h ´ 9τpJq, (3.3.13)

dPJ “ ´K ´
1

2
rJ, Js ´ 9µ9ph, Jq, (3.3.14)

dPh “ ´
1

2
rh, hs ` 9τpKq, (3.3.15)

dPK “ 9́µ9ph,Kq, (3.3.16)

jPZgg
´1 “ 0, (3.3.17)

jPZJ “ 0, (3.3.18)

jPZh “ x ´ Ad gpxq, (3.3.19)

jPZK “ 9µ9pAd gpxq, Jq ` X ´ µ9pg,Xq, (3.3.20)

lPZgg
´1 “ ´x ` Ad gpxq, (3.3.21)
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lPZJ “ 9́µ9px, Jq ´ X ` µ9pg,Xq, (3.3.22)

lPZh “ ´rx, hs ` 9τpXq ´ Ad gp 9τpXqq, (3.3.23)

lPZK “ 9́µ9px,Kq ` 9µ9ph,Xq ` rµ9pg,Xq, Js. (3.3.24)

Above, X is tacitly viewed as an element of er1s` (cf. subsect. 3.1).

Proof. To obtain the above relations, we substitute the expressions of Ψ , Υ in

terms of g J , h, K of eqs. (3.3.11), (3.3.12) and that of Z in terms of x, X into

(3.3.1)–(3.3.6) and use systematically relations 3.5.13, 3.5.15 and 3.5.18 as well

as expressions 3.5.22 and 3.5.24 of I. This is again a straightforward though a bit

length calculation.

In the projected framework we are using, so, the 1–gauge group is the subgroup

of MappT r1sP, er1s¸µGq formed by the pairs g, J satisfying (3.3.17), (3.3.18) and

(3.3.21), (3.3.22). g, J are indeed the data of a 1–gauge transformation familiar

in strict higher gauge theory.

Expressing the components A, B of a 2–connection and Ψ , Υ of a 1–gauge

transformation in terms of projected components ω, Ω, θ, Θ and g, J , h, K using

(3.2.7), (3.2.8) and (3.3.11), (3.3.12) respectively, we obtain projected component

expressions of the transformation relations (3.3.9), (3.3.10).

Proposition 3.4. In terms of projected components, the transformation relations

(3.3.9), (3.3.10) take the explicit form

g,J,h,Kω “ Ad gpωq ` h, (3.3.25)

g,J,h,KΩ “ µ9pg, Ωq ´ 9µ9pAd gpωq, Jq ` K, (3.3.26)

g,J,h,Kθ “ Ad gpθq, (3.3.27)

g,J,h,KΘ “ µ9pg, Θq ´ 9µ9pAd gpθq, Jq. (3.3.28)

One recognizes here the standard expressions of the gauge transform of a 2–

connection of strict higher gauge theory.

Proof. To obtain the above relations, we substitute the expressions of A, B in
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terms of ω, Ω, θ, Θ and Ψ , Υ in terms of g J , h, K of eqs. (3.2.7), (3.2.8) and

(3.3.11), (3.3.12) respectively, as anticipated above, and use 3.5.18 of I.

The study of the properties of a 1–gauge transformation on P0 as a sub-

manifold of P can also be carried out. Following the lines of subsect. 3.1, this

is most naturally done making reference to the operation OpSP0, just as for a

2–connection.

Under the restriction operation morphismOpL : OpSP Ñ OpSP0, of subsect.

3.8 of I, the components g, J , h, K of a 1–gauge transformation of P get

g0 “ I˚g, (3.3.29)

J0 “ I˚J, (3.3.30)

h0 “ I˚h, (3.3.31)

K0 “ I˚K, (3.3.32)

where I˚ : FunpT r1sP q Ñ FunpT r1sP0q is the restriction morphism associated

to the inclusion map I : P0 Ñ P . The action of the derivations of the operation

OpSP0 on g0, J0, h0, K0 is given by the right hand side of eqs. (3.3.13)–(3.3.24)

with g, J , h, K replaced by g0, J0, h0, K0 and X set to 0. From the resulting

expressions, it appears that one can consistently impose the conditions

J0 “ 0, (3.3.33)

K0 “ 0. (3.3.34)

Upon doing so, the surviving components g0, h0 satisfy relations formally identical

to (2.1.10)–(2.1.12). Again, in spite of similarities to a gauge transformation of

an ordinary principal G–bundle, the differences recalled below eq. (3.2.26) hold

and should be kept in mind.

In certain cases, it may be befitting to restrict the range of 1–gauge transfor-

mations so as to allow only those enjoying the above property.

Definition 3.5. A 1–gauge transformation g, J , h, K is special if (3.3.33), (3.3.34)

are met.
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Special 1–gauge transformations form a subgroup of the 1–gauge group.

In subsect. 3.2, def. 3.2, we introduced the notion of special 2–connection

which pairs with that of special 1–gauge transformation put forward above. It

turns out that the action of 1–gauge transformations on 2–connections is com-

patible with specialty in the following sense.

Proposition 3.5. If a 2–connection ω, Ω, θ, Θ and a 1–gauge transformation

g, J , h, K are both special then the 1–gauge transformed 2–connection g,J,h,Kω,

g,J,h,KΩ, g,J,h,Kθ, g,J,h,KΘ also is.

Proof. Inspection of (3.3.26), (3.3.28) shows that when the ω, Ω, θ, Θ and g, J ,

h, K satisfy respectively (3.2.25), (3.2.26) and (3.3.33), (3.3.34), then g,J,h,Kω,

g,J,h,KΩ, g,J,h,Kθ, g,J,h,KΘ also satisfy (3.2.25), (3.2.26) as well, as required.

Comparison of (3.3.25), (3.3.27) and (2.1.13), (2.1.14) shows further that

g,J,h,Kω0 “ g0,h0ω0, (3.3.35)

g,J,h,Kθ0 “ g0,h0θ0, (3.3.36)

where ω0, θ0 and g0, h0 are formally treated as an ordinary connection and gauge

transformation, respectively. In this sense, one recovers in this way the well–

known expressions of the gauge transform of a connection.

3.4 2–gauge transformations

In the synthetic formulation, a 2–gauge transformation of the K̂ –2–bundle P̂ is

a degree 0 E–valued graded differential form on P suitably transforming under

the K–action R. Hence, E instead of DM is the relevant target group in this case.

The operational framework remains however perfectly adequate. In this way, a

2–gauge transformation is most naturally defined by making again reference to

the operation OpSP .

To make contact with the standard higher gauge theoretic treatment of 2–

gauge transformations, it is necessary to express the action of the operation

derivations with reference to a given 2–connection of P̂ (cf. subsect. 3.2). We

assume so that a 2–connection of projected components ω, Ω, θ, Θ is assigned.
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Definition 3.6. We define a 2–gauge transformation as a pair of a Lie group valued

internal function E P MappT r1sP,Eq and a Lie algebra valued internal function

C P MappT r1sP, er1sq, called respectively modification and variation component,

which are acted upon by the operation derivations as

dPEE´1 “ ´C ´ 9µpω,Eq, (3.4.1)

dPC “ ´
1

2
rC,Cs ´ 9µ9pω,Cq ´ 9µpθ, Eq ´ Ω ` AdEpΩq, (3.4.2)

jPZEE´1 “ 0, (3.4.3)

jPZC “ 0, (3.4.4)

lPZEE´1 “ 9́µpx, Eq, (3.4.5)

lPZC “ 9́µ9px, Cq ´ X ` AdEpXq (3.4.6)

with Z P Dm written in terms of its projected components x P g, X P er1s.

Above, X is tacitly viewed as an element of er1s` as in earlier instances. Relations

(3.4.1) effectively defines the variation component C in terms of the modification

component E and the reference 2–connection ω, Ω, θ, Θ. (3.4.2) is the corre-

sponding Bianchi type identity.

Lemma 3.3. (3.4.1)–(3.4.6) respect the operation commutation relations 2.1.1–

2.1.6 of I.

Proof. The proof consists in checking that the six derivation commutators in the

left hand sides of eqs. 2.1.1–2.1.6 act as the corresponding derivations in the

right hand sides when they are applied to the functions E, C and the (3.4.1)–

(3.4.6) are used. In the case of E, it is necessary to use the basic relation

rD,D1sGG´1 “ DpD1GG´1q ´ p´1q|D}D1|D1pDGG´1q ´ rDGG´1, D1GG´1s hold-

ing for two graded derivations D, D1 and a Lie group valued function G. The

verification is straightforward.

2–gauge transformations act on 1–gauge transformations (cf. subsect. 3.3)

and do so in a proper way depending on the reference 2–connection and compat-

ibly with the K action on all these items.
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Proposition 3.6. If g, J , h, K and C, E are the components of a 1– and a 2–

gauge transformation, respectively, then

g1 “ τpEqg, (3.4.7)

J 1 “ AdEpJq ` 9µpω ´ Ad gpωq ´ h,Eq ` C, (3.4.8)

h1 “ Ad τpEqphq ` 9τp9µpAd gpωq ` h,Eqq, (3.4.9)

K 1 “ AdEpKq ` 9µ9pAdpτpEqgqpωq,9µpω ´ Ad gpωq ´ h,Eq ` Cq (3.4.10)

` 9µpAd gpθq ` 9τpµ9pg, Ωq ´ 9µ9pAd gpωq, Jq ` Kq, Eq

are the components of a 1–gauge transformation.

Proof. A straightforward algebraic calculation shows that the action (3.2.9)–

(3.2.20), (3.3.13)–(3.3.24) and (3.4.1)-(3.4.6) of the operation derivations on the

components ω, Ω, θ, Θ, g, J , h, K and E, C ensures that the action of those

derivations on the transformed components g1, J 1, h1, K 1 satisfies (3.3.13)–(3.3.24)

as well and that consequently g1, J 1, h1, K 1 are also the components of a 1–gauge

transformation as claimed.

Definition 3.7. The 2–gauge transform of a 1–gauge transformation of components

g, J , h, K by a 2–gauge transformation of components E, C is given by

E,Cg “ τpEqg, (3.4.11)

E,CJ “ AdEpJq ` 9µpω ´ Ad gpωq ´ h,Eq ` C, (3.4.12)

E,Ch “ Ad τpEqphq ` 9τp9µpAd gpωq ` h,Eqq, (3.4.13)

E,CK “ AdEpKq ` 9µ9pAdpτpEqgqpωq,9µpω ´ Ad gpωq ´ h,Eq ` Cq (3.4.14)

` 9µpAd gpθq ` 9τpµ9pg, Ωq ´ 9µ9pAd gpωq, Jq ` Kq, Eq.

Inserting above relations (3.3.13), (3.3.14) expressing h, K in terms of g, J , and

relation (3.4.1) expressing C in terms of E, these expressions are formally identical

to the standard ones of strict higher gauge theory.

Since for an assigned reference 2–connection the variation component of a 2–

gauge transformation can be expressed in terms of the modification component by
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(3.4.1), a 2–gauge transformation is effectively specified by this latter. 2–gauge

transformations can hence be viewed as elements of the group MappT r1sP,Eq

of E–valued internal functions. They form indeed a distinguished subgroup of

this latter, the 2–gauge group, as (3.4.3), (3.4.5) are preserved under the group

operations of MappT r1sP,Eq (see eq. B.0.8 of I). 2–gauge transformation is a left

action of the 2–gauge group on 1–gauge transformations.

2–gauge transformation action has the further relevant property.

Proposition 3.7. For a 1– and a 2–gauge transformation of components g, J , h,

K and E, C, respectively, one has

E,Cg,E,CJ,E,Ch,E,CKω “ g,J,h,Kω, (3.4.15)

E,Cg,E,CJ,E,Ch,E,CKΩ “ g,J,h,KΩ ` 9µpAd gpθq, Eq, (3.4.16)

E,Cg,E,CJ,E,Ch,E,CKθ “ g,J,h,Kθ ´ 9τp9µpAd gpθq, Eqq, (3.4.17)

E,Cg,E,CJ,E,Ch,E,CKΘ (3.4.18)

“ g,J,h,KΘ ` dP9µpAd gpθq, Eq ` 9µ9pg,J,h,Kω,9µpAd gpθq, Eqq.

Above, the 1–gauge transformed connection components are given by (3.3.25)–

(3.3.28).

Proof. The proof is a matter of evaluating the right hand sides of relations

(3.3.25)–(3.3.28) with g, J , h, K replaced by E,Cg, E,CJ , E,Ch, E,CK. The calcu-

lations are straightforward.

Hence, the gauge transformation action of g, J, h,K and E,Cg, E,CJ, E,Ch, E,CK is

the same on fake flat 2–connections. With these qualifications, 2–gauge transfor-

mation corresponds to gauge for gauge symmetry.

3.5 Local operational description of a principal 2–bundle

The local trivializability of the relevant principal K̂ –2–bundle P̂ implies that of

the associated synthetic manifold P (cf. subsect. 3.2 of I). On any sufficiently

small neighborhood U of the base M , there exists so a projection preserving K–
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equivariant map ΦU P Mappπ´1pUq, U ˆ Kq (cf. def. 3.12 of I). ΦU provides a set

of coordinates of π´1pUq modelled on U ˆ K. These are in many ways analogous

to the standard adapted coordinates of an ordinary principal bundle. One must

keep in mind however that they are not anything like genuine coordinates, because

they arise from a local trivializing functor Φ̂U of P̂ that is only weakly invertible

(cf. subsect. 3.1 of I).

2–connections and 1– and 2– gauge transformations are Lie valued internal

functions on T r1sP rather than ordinary functions on P (cf. subsects. 3.2–

3.4). For this reason, their local description on U presumably requires a set of

coordinates modelled on U ˆ DM which are internal functions on T r1sπ´1pUq

rather than ordinary functions on π´1pUq. (Recalll that K “ DM by 3.8.1 of I.)

The coordinates furnished by the trivializing map ΦU are thus not general enough

to serve for our purposes. A more general and weaker notion of coordinates is

necessary here.

By the general philosophy of our operational framework, the natural setup

for studying the desired kind of internal adapted coordinates is the operation

OpSπ´1pUq “ pFunpT r1sπ´1pUqq,mq, since the synthetic morphism manifold of

the K̂ –2–bundle P̂|U is precisely π´1pUq.

A full set of internal coordinates of π´1pUq modelled on U ˆ DM comprises

two subsets of coordinates modelled on U and DM respectively. These require

separate consideration.

By virtue of prop. 3.4 of I, the internal coordinates of π´1pUq modelled on U

are yielded by the synthetic projection π (cf. def. 3.10 of I). They are so ordinary

functions. In the operational setup, they can be characterized as follows.

Proposition 3.8. A set of internal coordinates of π´1pUq modelled on U is de-

scribed by vector–valued ordinary functions u P MappT r1sπ´1pUq,RdimMq and

v P MappT r1sπ´1pUq,RdimM r1sq on which the operation derivations act as

dπ´1pUqu “ v, dπ´1pUqv “ 0 (3.5.1)

with trivial action of all derivations jπ´1pUqZ , lπ´1pUqZ for all Z P Dm.
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Above, u, v are treated as special cases of internal functions and as such are acted

upon by the derivations of the operation.

Proof. Upon composing the factor π with a set of ordinary coordinates of U , we

obtain an ordinary function u P Mappπ´1pUq,RdimMq Ă MappT r1sπ´1pUq,RdimMq.

The scalar nature and DM–invariance of π (cf. prop. 3.3 of I) entail that u is an-

nihilated by all the derivations jπ´1pUqZ , lπ´1pUqZ . With u there is associated a fur-

ther ordinary function v P MappT r1sπ´1pUq,RdimM r1sq defined through (3.5.1).

The action of dπ´1pUq and the jπ´1pUqZ , lπ´1pUqZ on v follows from that on u and

the operation relations 2.1.1–2.1.6 of I.

The internal coordinates of π´1pUq modelled on DM are a novelty requiring a

precise definition. The one provided here is generic and may require some tuning

at a later stage, but it is enough for our purposes for the time being.

Definition 3.8. A set of internal coordinates of π´1pUq modelled on DM is con-

stituted by a Lie group valued internal function Λ P MappT r1sπ´1pUq,DMq and

a Lie algebra valued internal function ∆ P MappT r1sπ´1pUq,Dmr1sq acted upon

by the operation derivations as

Λ´1dπ´1pUqΛ “ ´Λ´1d 9τΛ ` ∆, (3.5.2)

dπ´1pUq∆ “ ´
1

2
r∆,∆s ´ d 9τ∆, (3.5.3)

Λ´1jπ´1pUqZΛ “ 0, (3.5.4)

jπ´1pUqZ∆ “ Z, (3.5.5)

Λ´1lπ´1pUqZΛ “ Z, (3.5.6)

lπ´1pUqZ∆ “ ´rZ,∆s ` d 9τZ (3.5.7)

with Z P Dm. It is further required that Λ|π´1pUq P Mappπ´1pUq,DMq and that

Λ|π´1pUq “ prK ˝ΦU , where π´1pUq is embedded in T r1sπ´1pUq as its zero section.

The notational remarks stated below eqs. (3.3.1)–(3.3.6) apply here as well with

obvious changes and will not be repeated. As in similar cases considered earlier,

upon considering dπ´1pUq ` d 9τ as relevant differential (3.5.2)–(3.5.7) are formally
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analogous to relations (2.2.2)–(2.2.7) holding for the adapted coordinates of or-

dinary principal bundles. Eq. (3.5.2) defines the coordinate ∆ in terms of its

partner Λ. (3.5.3) is the associated Maurer–Cartan–like equation. Upon com-

paring eqs. (3.5.3), (3.5.5), (3.5.7) with (3.2.1), (3.2.3), (3.2.5), it emerges also

that ∆ is the connection component of a flat 2–connection of the principal 2–

bundle P̂|U (cf. subsect. 3.2).

Lemma 3.4. The operation commutation relations 2.1.1–2.1.6 of I are respected

by (3.5.2)–(3.5.7).

Proof. This is shown by checking that the six derivation commutators in the left

hand sides of eqs. 2.1.1–2.1.6 of I act as the corresponding derivations in the right

hand sides when they are applied to the functions Λ, ∆ and the (3.5.2)–(3.5.7)

are used.

The requirement on Λ|π´1pUq is added in order to render the definition of coordi-

nates modelled on DM provided above geometrically meaningful, though it plays

no direct role in the basic theory of subsects. 3.6, 3.7. Note also that the condi-

tion that Λ|π´1pUq be an ordinary rather than internal function is not preserved

by the derivations lπ´1pUqZ by (3.5.6). This is expected on general grounds, since

by the graded nature of Dm lπ´1pUqZ turns ordinary functions on π´1pUq into

internal ones.

Employing 3.5.1, 3.5.12 of I, we can expand the fiber coordinates Λ, ∆ as

Λpαq “ eαΓ γ, (3.5.8)

∆pαq “ σ ´ αΣ, α P Rr1s. (3.5.9)

In the above relations, γ P MappT r1sπ´1pUq,Gq, Γ P MappT r1sπ´1pUq, er1sq

and σ P MappT r1sπ´1pUq, gr1sq, Σ P MappT r1sπ´1pUq, er2sq are the projected

internal coordinates modelled on DM “ er1s ¸µ9 G. We also write Z P Dm as

Zpᾱq “ x ` ᾱX , ᾱ P Rr´1s, with x P g and X P er1s as in 3.4.6 of I.

Proposition 3.9. Expressed in terms of projected internal adapted coordinates, the

operation relations (3.5.2)–(3.5.7) take the form
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γ´1dπ´1pUqγ “ σ ´ 9τpµ9pγ´1, Γ qq, (3.5.10)

µ9pγ´1, dπ´1pUqΓ q “ Σ ´
1

2
µ9pγ´1, rΓ, Γ sq, (3.5.11)

dπ´1pUqσ “ ´
1

2
rσ, σs ` 9τpΣq, (3.5.12)

dπ´1pUqΣ “ 9́µ9pσ,Σq, (3.5.13)

γ´1jπ´1pUqZγ “ 0, (3.5.14)

µ9pγ´1, jπ´1pUqZΓ q “ 0, (3.5.15)

jπ´1pUqZσ “ x, (3.5.16)

jπ´1pUqZΣ “ X, (3.5.17)

γ´1lπ´1pUqZγ “ x, (3.5.18)

µ9pγ´1, lπ´1pUqZΓ q “ X, (3.5.19)

lπ´1pUqZσ “ ´rx, σs ` 9τpXq, (3.5.20)

lπ´1pUqZΣ “ 9́µ9px,Σq ` 9µ9pσ,Xq. (3.5.21)

Moreover, γ|π´1pUq P Mappπ´1pUq,Gq, Γ |π´1pUq P Mappπ´1pUq, er1sq and γ|π´1pUq,

Γ |π´1pUq, in the combination (3.5.8), yield pr
K

˝ ΦU .

Proof. The proof is a matter of a straightforward albeit lengthy calculation. We

substitute the expressions of Λ, ∆ in terms of γ Γ , σ, Σ of eqs. (3.5.8), (3.5.9)

and that of Z in terms of x, X into (3.5.2)– (3.5.7) and use relations 3.5.13, 3.5.15

and 3.5.18 as well as expressions 3.5.23 and 3.5.25 of I.

Under the restriction operation morphism OpLU : OpSπ´1pUq Ñ OpSπ´1pUq0

of subsect. 3.8 of I, the projected internal coordinates γ, Γ , σ, Σ of π´1pUq get

γ0 “ IU
˚γ, (3.5.22)

Γ0 “ IU
˚Γ, (3.5.23)

σ0 “ IU
˚σ, (3.5.24)

Σ0 “ IU
˚Σ, (3.5.25)
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where IU
˚ : FunpT r1sπ´1pUqq Ñ FunpT r1sπ0

´1pUqq is the restriction morphism

associated with the inclusion map IU : π0
´1pUq Ñ π´1pUq.

Definition 3.9. The internal coordinates π´1pUq modelled on DM are special if

Γ0 “ 0, (3.5.26)

Σ0 “ 0. (3.5.27)

γ0, σ0 are then a subset of internal coordinates of π0
´1pUq adapted to DM0.

Proposition 3.10. For special adapted coordinates, the action of the operation

derivations on γ0, σ0 is given by the right hand side of eqs. (3.5.10)–(3.5.21) with

γ, σ replaced by γ0, σ0 and Γ , Σ and X set to 0.

Proof. The action of the derivations of the operationOpSπ´1pUq0 on γ0, Γ0, σ0, Σ0

is given by the right hand side of eqs. (3.5.10)–(3.5.21) with γ, Γ , σ, Σ replaced

by γ0, Γ0, σ0, Σ0 and X set to 0. Taking (3.5.26), (3.5.27) into account, the

action on γ0, σ0 has the properties stated.

3.6 Basic formulation of principal 2–bundle theory

As recalled in subsect. 3.5, for the K̂ –2–bundle P̂, on any sufficiently small

neighborhood U Ă M there exists a projection preserving K–equivariant trivi-

alizing map ΦU P Mappπ´1pUq, U ˆ Kq. We saw further that it is possible to

attach to ΦU a special set of internal coordinates of π´1pUq modelled on U ˆDM

the adapted coordinates u, v and Λ, ∆, or γ, Γ , σ, Σ in projected form, for the

factors U and DM, respectively. These are internal functions on T r1sπ´1pUq with

special properties in the operation OpSπ´1pUq of the morphism space Sπ´1pUq.

In this subsection, we shall use these coordinates to analyze 2–connections

and 1– and 2–gauge transformations of P̂ in terms of basic Lie valued function

data on T r1sπ´1pUq. Remember that a function Fb P FunpT r1sπ´1pUqq is basic

if it is annihilated by all derivations jπ´1pUqZ , lπ´1pUqZ (cf. subsect. 2.1 of I).

Before proceeding further, we note that the inclusion map NU : π´1pUq Ñ P

yield a morphisms QU : Sπ´1pUq Ñ SP of the morphism spaces of π´1pUq and
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P and through this a morphism OpQU : OpSP Ñ OpSπ´1p Uq of the associated

operations (cf. subsect. 3.7 of I). Therefore, if a function F P FunpT r1sP q

obeys certain relations under the actions of the derivations jPZ , lPZ of OpSP ,

its restriction F |T r1sπ´1pUq “ NU
˚F P FunpT r1sπ´1pUqq obeys formally identical

relations under the actions of the derivations jπ´1pUqZ , lπ´1pUqZ of OpSπ´1pUq.

Consider a 2–connection of P̂ with connection and curvature components A,

B (cf. subsect. 3.2, def. 3.1).

Definition 3.10. The basic connection and curvature components of the 2–connec-

tion are the Lie algebra valued internal functions Ab P MappT r1sπ´1pUq, Dmr1sq

and Bb P MappT r1sπ´1pUq,Dmr2sq defined by

Ab “ AdΛpA ´ ∆q, (3.6.1)

Bb “ AdΛpBq. (3.6.2)

Above, restriction of A, B to T r1sπ´1pUq is tacitly understood in order not to

clutter the notation. The names given to Ab, Bb are justified by the following

proposition.

Proposition 3.11. Ab, Bb are basic elements of the operation OpSπ´1p Uq.

Proof. One has to show that Ab, Bb are annihilated by all derivations jπ´1pUqZ

and lπ´1pUqZ with Z P Dm. This can be verified using relations (3.2.3)–(3.2.6)

and (3.5.4)–(3.5.7).

Proposition 3.12. Ab, Bb obey the relations

dπ´1pUqAb “ ´
1

2
rAb, Abs ´ d 9τAb ` Bb, (3.6.3)

dπ´1pUqBb “ ´rAb, Bbs ´ d 9τBb. (3.6.4)

These are formally analogous to (3.2.1), (3.2.2).

Proof. Relations (3.6.3), (3.6.4) to be proven follow from (3.2.1), (3.2.2) and

(3.5.2), (3.5.3) through a simple calculation.

Just as the connection and curvature components A, B can be expressed in
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terms of the projected connection and curvature components ω, Ω, θ, Θ according

to (3.2.7), (3.2.8), so the basic components Ab, Bb can be expressed in terms of

basic projected components ωb, Ωb, θb, Θb as

Abpαq “ ωb ´ αΩb, (3.6.5)

Bbpαq “ θb ` αΘb, α P Rr1s. (3.6.6)

In the above relations, ωb P MappT r1sπ´1pUq, gr1sq, Ωb P MappT r1sπ´1pUq, er2sq,

θb P MappT r1sπ´1pUq, gr2sq, Θb P MappT r1sπ´1pUq, er3sq.

Proposition 3.13. ωb, Ωb, θb, Θb are related to ω, Ω, θ, Θ by

ωb “ Ad γpω ´ σq, (3.6.7)

Ωb “ µ9pγ,Ω ´ Σq ´ 9µ9pAd γpω ´ σq, Γ q, (3.6.8)

θb “ Ad γpθq, (3.6.9)

Θb “ µ9pγ, Θq ´ 9µ9pAd γpθq, Γ q. (3.6.10)

Restriction of ω, Ω, θ, Θ to T r1sπ´1pUq is here also tacitly understood.

Proof. Inserting (3.2.7), (3.2.8), (3.5.8), (3.5.9) and (3.6.5), (3.6.6) into (3.6.1),

(3.6.2) and using 3.5.18 of I, one gets (3.6.7)–(3.6.10) by simple calculations.

Proposition 3.14. ωb, Ωb, θb, Θb satisfy

dπ´1pUqωb “ ´
1

2
rωb, ωbs ` 9τpΩbq ` θb, (3.6.11)

dπ´1pUqΩb “ 9́µ9pωb, Ωbq ` Θb, (3.6.12)

dπ´1pUqθb “ ´rωb, θbs ´ 9τpΘbq, (3.6.13)

dπ´1pUqΘb “ 9́µ9pωb, Θbq ` 9µ9pθb, Ωbq. (3.6.14)

These relations are formally identical to (3.2.9)–(3.2.12). Our basic formulation

has so reproduced the familiar local description of 2–connections of strict higher

gauge theory. This statement will be qualified more precisely in subsect. 3.7.

Proof. One demonstrates (3.6.11)–(3.6.14) by substituting (3.6.5), (3.6.6) into

(3.6.3), (3.6.4) and using 3.5.13 and 3.5.15 of I.
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The basic components of the 2–connection behave as expected when the 2–

connection is special.

Proposition 3.15. If the 2–connection and the adapted coordinates are both special

(cf. defs. 3.2, 3.9), then one has

IU
˚Ωb “ 0, (3.6.15)

IU
˚Θb “ 0, (3.6.16)

where IU : π0
´1pUq Ñ π´1pUq is the inclusion map.

Proof. This follows from (3.6.8), (3.6.10) upon substituting (3.2.25), (3.2.26) and

(3.5.26), (3.5.27)

Next, consider a 1–gauge transformation of P̂ with transformation and shift

components Ψ , Υ (cf. subsect. 3.3, def. 3.3).

Definition 3.11. The basic transformation and shift components of the 1–gau-

ge transformation are the Lie group and algebra valued internal functions Ψb P

MappT r1sπ´1pUq, DMq and Υb P MappT r1sπ´1pUq,Dmr1sq defined by

Ψb “ ΛΨΛ´1, (3.6.17)

Υb “ AdΛpΥ ´ ∆ ` AdΨ p∆qq. (3.6.18)

Above, restriction of Ψ , Υ to T r1sπ´1pUq is understood. The name given to Ψb,

Υb are justified by the following proposition.

Proposition 3.16. Ψb, Υb are basic elements of the operation OpSπ´1pUq.

Proof. One has to show that Ψb, Υb are annihilated by all derivations jπ´1pUqZ

and lπ´1pUqZ with Z P Dm. This can be verified using relations (3.3.3)–(3.3.6)

and (3.5.4)–(3.5.7).

Proposition 3.17. Ψb, Υb satisfy the relations

dπ´1pUqΨbΨb
´1 “ ´d 9τΨbΨb

´1 ´ Υb, (3.6.19)

dπ´1pUqΥb “ ´
1

2
rΥb, Υbs ´ d 9τΥb. (3.6.20)
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These are analogous in form to (3.3.1), (3.3.2).

Proof. Relations (3.6.19), (3.6.20) to be shown follow from eqs. (3.3.1), (3.3.2)

and (3.5.2), (3.5.3) through a simple calculation.

Next, consider the 1–gauge transform Ψ,ΥA, Ψ,ΥB of a 2–connection A, B (cf.

subsect. 3.3, def. 3.4).

Proposition 3.18. The basic components Ψ,ΥAb,
Ψ,ΥBb of the 1–gauge transformed

transformed 2–connection are given in terms of Ab, Bb and Ψb, Υb by

Ψ,ΥAb “ AdΨbpAbq ` Υb, (3.6.21)

Ψ,ΥBb “ AdΨbpBbq. (3.6.22)

Proof. Relations (3.6.21), (3.6.22) can be straightforwardly verified combining

(3.6.1), (3.6.2) and (3.6.17), (3.6.18) with (3.3.9), (3.3.10).

Eqs. (3.6.21), (3.6.22) suggest defining the basic component gauge transforms

Ψb,ΥbAb,
Ψb,ΥbBb to be given by the right hand sides of (3.6.21), (3.6.22) themsel-

ves. By doing so, Ψb,ΥbAb,
Ψb,ΥbBb are given be expressions formally analogous to

those holding for the ordinary components, viz (3.3.9), (3.3.10).

Again, in the same way as the transformation and shift components Ψ , Υ can

be expanded in their projected transformation and shift components g, J , h, K

according to (3.3.11), (3.3.12), so their basic counterparts Ψb, Υb can be expanded

in basic projected components gb, Jb, hb, Kb as

Ψbpαq “ eαJb gb, (3.6.23)

Υbpαq “ hb ´ αKb, α P Rr1s. (3.6.24)

In the above relations, gb P MappT r1sπ´1pUq,Gq, Jb P MappT r1sπ´1pUq, er1sq,

hb P MappT r1sπ´1pUq, gr1sq, Kb P MappT r1sπ´1pUq, er2sq.

Proposition 3.19. gb, Jb, hb, Kb are related to g, J , h, K as

gb “ γgγ´1, (3.6.25)
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Jb “ µ9pγ, Jq ` Γ ´ µ9pγgγ´1, Γ q, (3.6.26)

hb “ Ad γph ´ σ ` Ad gpσqq, (3.6.27)

Kb “ µ9pγ,K ´ Σ ` µ9pg, Σq ´ 9µ9pAd gpσq, Jq (3.6.28)

´ 9µ9ph ´ σ ` Ad gpσq, µ9pγ´1, Γ qqq.

Restriction of g, J , h, K to T r1sπ´1pUq is here also tacitly understood.

Proof. Substituting (3.3.11), (3.3.12), (3.5.8), (3.5.9) and (3.6.23), (3.6.24) into

(3.6.17), (3.6.18) and using 3.5.2, 3.5.3 and 3.5.18 of I, one gets (3.6.25)–(3.6.28)

by straightforward computations.

Proposition 3.20. gb, Jb, hb, Kb obey

dπ´1pUqgbgb
´1 “ ´hb ´ 9τpJbq, (3.6.29)

dπ´1pUqJb “ ´Kb ´
1

2
rJb, Jbs ´ 9µ9phb, Jbq, (3.6.30)

dπ´1pUqhb “ ´
1

2
rhb, hbs ` 9τpKbq, (3.6.31)

dπ´1pUqKb “ 9́µ9phb, Kbq. (3.6.32)

These relations are of the same form as (3.3.13)–(3.3.16). We have reobtained

in this way in our basic formulation the familiar local description of 1–gauge

transformations of strict higher gauge theory. More on this in subsect. 3.7.

Proof. (3.6.29)–(3.6.32) are shown by inserting (3.6.23), (3.6.24) into (3.6.19),

(3.6.20) and using 3.5.13, 3.5.15, 3.5.22 and 3.5.24 of I.

Concerning the 1–gauge transformed 2–connection g,J,h,Kω, g,J,h,KΩ, g,J,h,Kθ,

g,J,h,KΘ we have the following result.

Proposition 3.21. The basic components g,J,h,Kωb,
g,J,h,KΩb,

g,J,h,Kθb,
g,J,h,KΘb are

given in terms of ωb, Ωb, θb, Θb and gb, Jb, hb, Kb by

g,J,h,Kωb “ Ad gbpωbq ` hb, (3.6.33)

g,J,h,KΩb “ µ9pgb, Ωbq ´ 9µ9pAd gbpωbq, Jbq ` Kb, (3.6.34)
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g,J,h,Kθb “ Ad gbpθbq, (3.6.35)

g,J,h,KΘb “ µ9pgb, Θbq ´ 9µ9pAd gbpθbq, Jbq. (3.6.36)

Proof. (3.6.33)–(3.6.36) follow from inserting (3.6.5), (3.6.6), (3.6.23), (3.6.24)

into (3.6.21), (3.6.22) and using 3.5.18 of I.

Following the remarks below eqs. (3.6.21), (3.6.22), we can regard the right

hand sides of eqs. (3.6.33)–(3.6.36) as the expressions of the basic projected

component gauge transforms gb,Jb,hb,Kbωb,
gb,Jb,hb,KbΩb,

gb,Jb,hb,Kbθb,
gb,Jb,hb,KbΘb,

respectively. Again, such expressions are formally identical to those holding for

the ordinary projected components, viz (3.3.25)–(3.3.28) and so reproduce at the

basic level the usual local description of 2–connection 1–gauge transformation of

strict higher gauge theory. This matter will be reconsidered in subsect. 3.7.

The basic components of the 1–gauge transformation behave as expected when

the 1–gauge transformation is special.

Proposition 3.22. If the 1–gauge transformation and the adapted coordinates are

both special (cf. defs. 3.5, 3.9), then

IU
˚Jb “ 0, (3.6.37)

IU
˚Kb “ 0, (3.6.38)

where IU : π0
´1pUq Ñ π´1pUq is the inclusion map.

Proof. This follows from (3.6.26), (3.6.28) upon substituting (3.3.33), (3.3.34)

and (3.5.26), (3.5.27)

Finally, we consider a 2–gauge transformation of P of modification and vari-

ation components E, C relative to the reference 2–connection ω, Ω, θ, Θ (cf.

subsect. 3.4, def. 3.6).

Definition 3.12. The basic modification and variation components of the 2–gau-

ge transformation are the Lie group and algebra valued internal functions Eb P

MappT r1sπ´1pUq,Eq and Cb P MappT r1sπ´1pUq, er1sq given by
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Eb “ µpγ, Eq, (3.6.39)

Cb “ µ9pγ, Cq ` Γ ´ Adµpγ, EqpΓ q. (3.6.40)

Again, restriction of E, C to T r1sπ´1pUq is here also tacitly understood. Further,

the names given to Eb, Cb reflect their basicness.

Proposition 3.23. Eb, Cb are basic elements of the operation OpSπ´1pUq.

Proof. To show that Eb, Cb are annihilated by all derivations jπ´1pUqZ and lπ´1pUqZ

with Z P Dm we use relations (3.4.3)–(3.4.6) and (3.5.4)–(3.5.7).

Proposition 3.24. Eb, Cb satisfy obey the relations

dπ´1pUqEbEb
´1 “ ´Cb ´ 9µpωb, Ebq, (3.6.41)

dπ´1pUqCb “ ´
1

2
rCb, Cbs ´ 9µ9pωb, Cbq ´ 9µpθb, Ebq ´ Ωb ` AdEbpΩbq. (3.6.42)

As expected by now, these are analogous in form to (3.4.1), (3.4.2).

Proof. Combining (3.4.1), (3.4.2) and (3.5.2), (3.5.3) and carrying out a simple

computation, (3.6.41), (3.6.42) are readily obtained.

As to the 2–gauge transform E,Cg, E,CJ , E,Ch, E,CK of the 1–gauge transfor-

mation g, J , h, K (cf. subsect. 3.4, def. 3.7), the following result holds.

Proposition 3.25.
E,Cgb,

E,CJb,
E,Chb,

E,CKb are given in terms of gb, Jb, hb, Kb

and Eb, Cb by the expressions

E,Cgb “ τpEbqgb, (3.6.43)

E,CJb “ AdEbpJbq ` 9µpωb ´ Ad gbpωbq ´ hb, Ebq ` Cb, (3.6.44)

E,Chb “ Ad τpEbqphbq ` 9τp9µpAd gbpωbq ` hb, Ebqq, (3.6.45)

E,CKb “ AdEbpKbq ` 9µ9pAdpτpEbqgbqpωbq,9µpωb ´ Ad gbpωbq ´ hb, Ebq (3.6.46)

` Cbq ` 9µpAd gbpθbq ` 9τpµ9pgb, Ωbq ´ 9µ9pAd gbpωbq, Jbq ` Kbq, Ebq.

Proof. Relations (3.6.43)–(3.6.46) are obtained by combining (3.6.25)–(3.6.28)

and (3.6.39), (3.6.40) with (3.4.11)–(3.4.14) through simple computations.
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Above, we can regard the right hand sides of eqs. (3.6.43)–(3.6.46) as the expres-

sions of the basic projected component gauge transform Eb,Cbgb,
Eb,CbJb,

Eb,Cbh,

Eb,CbK, respectively. Such expressions are formally identical to those holding for

the ordinary projected components, viz (3.4.11)–(3.4.14). Moreover, they pro-

vide a local basic description of 1–gauge transformation 2–gauge transformation

of strict higher gauge theory.

Remark 3.1. The basic components ωb, Ωb, θb, Θb, gb, Jb, hb, Kb and Eb, Cb

satisfy relations formally identical to (3.4.15)–(3.4.18).

Proof. Indeed, the basic projected components formally obey the same relations

as the ordinary projected ones. Moreover, the basic projected component 2-

connection 1–gauge transformation and 1–gauge transformation 2–gauge trans-

formation are formally given by the same expressions as their ordinary projected

counterparts.

For a given trivializing neighborhood U Ă M , the basic components of 2–

connections and 1– and 2 gauge transformations are Lie valued internal functions

on T r1sπ´1pUq so that they are only locally defined. The problem arises of match-

ing the local data pertaining to distinct but overlapping trivializing neighbor-

hoods U, U 1 Ă M . Below, we denote by Λ,∆ and Λ1, ∆1 the adapted coordinates

modelled on DM of π´1pUq π´1pU 1q, respectively.

The inclusion map NU
UXU 1 : π´1pU X U 1q Ñ π´1pUq induces a morphisms

QU
UXU 1 : Sπ´1pUXU 1q Ñ Sπ´1pUq of the morphism spaces of π´1pU X U 1q and

π´1pUq and via this a morphism OpQU
UXU 1 : OpSπ´1pUq Ñ OpSπ´1pUX pU 1q of the

associated operations. Thus, if a function F P FunpT r1sπ´1pUqq obeys certain

relations under the action of the derivations jπ´1pUqZ , lπ´1pUqZ of OpSπ´1pUq, its

restriction F |T r1sπ´1pUXU 1q :“ NU
UXU 1

˚F P FunpT r1sπ´1pU X U 1qq obeys formally

identical relations under the action of the derivations jπ´1pUXU 1qZ , lπ´1pUXU 1qZ of

OpSπ´1p UXU 1q. Similar remarks hold with U replaced by U 1.

Definition 3.13. The local basic matching transformation and shift components are

the Lie group and algebra valued internal functions Gb P MappT r1sπ´1pU X U 1q,
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DMq and Db P MappT r1sπ´1pU X U 1q,Dmr1sq defined by

Gb “ Λ1Λ´1, (3.6.47)

Db “ AdΛp∆1 ´ ∆q. (3.6.48)

Above, restriction of Λ, ∆ and Λ1, ∆1 to T r1sπ´1pU X U 1q is understood for

simplicity. The names given to Gb, Db are justified by the following proposition.

Proposition 3.26. Gb, Db are basic elements of the operation OpSπ´1pUXU 1q.

Proof. Using relations (3.5.4)–(3.5.7) and their primed counterpart, one easily

verifies that Gb, Db are annihilated by all derivations jπ´1pUXU 1qZ and lπ´1pUXU 1qZ

with Z P Dm.

Proposition 3.27. The following relation holds,

Db “ Gb
´1dπ´1pUXU 1qGb ` Gb

´1d 9τGb. (3.6.49)

Proof. Identity (3.6.49) is easily verified substituting relation (3.5.2) and its

primed counterpart into eq. (3.6.48).

By virtue of 3.5.1, 3.5.12 of I, we can expand the local basic matching com-

ponents Gb, Db as

Gbpαq “ eαFb fb, (3.6.50)

Dbpαq “ sb ´ αSb, α P Rr1s, (3.6.51)

where fb P MappT r1sπ´1pU X U 1q,Gq, Fb P MappT r1sπ´1pU X U 1q, er1sq and

sb P MappT r1sπ´1pU X U 1q, gr1sq, Sb P MappT r1sπ´1pU X U 1q, er2sq are suitable

projected local basic matching components.

Let γ, Γ , σ, Σ and γ1, Γ 1, σ1, Σ 1 be the projected components of Λ, ∆ and

Λ1, ∆1, respectively (cf. eqs. (3.5.8)–(3.5.9)).

Proposition 3.28. The basic projected components fb, Fb, sb, Sb can be expressed

in terms of the projected components γ, Γ , σ, Σ and γ1, Γ 1, σ1, Σ 1 as

fb “ γ1γ´1, (3.6.52)
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Fb “ Γ 1 ´ µ9pγ1γ´1, Γ q, (3.6.53)

sb “ Ad γpσ1 ´ σq, (3.6.54)

Sb “ µ9pγ,Σ 1 ´ Σq ´ 9µ9pAd γpσ1 ´ σq, Γ q. (3.6.55)

Here, γ, Γ , σ, Σ and γ1, Γ 1, σ1, Σ 1 are restricted to T r1sπ´1pU X U 1q.

Proof. Relations (3.6.52)–(3.6.55) follow straightforwardly from inserting (3.5.8)–

(3.5.9), its primed counterpart and (3.6.50), (3.6.51) into (3.6.47), (3.6.48) and

applying 3.5.2, 3.5.3 and 3.5.18 of I.

Proposition 3.29. The basic projected components fb, Fb, sb, Sb are related as

sb “ fb
´1dπ´1pUXU 1qfb ` 9τpµ9pfb

´1, Fbqq, (3.6.56)

Sb “ µ9pfb
´1, dπ´1pUXU 1qFb ` rFb, Fbs{2q. (3.6.57)

Proof. Substituting (3.6.50) into (3.6.49) and applying 3.5.23 and 3.5.25 of I, one

readily obtains relations (3.6.56)–(3.6.57).

Consider next a 2–connection of P̂ of components A, B.

Proposition 3.30. The basic components Ab, Bb and A1
b, B

1
b of the 2–connection

are related on T r1sπ´1pU X U 1q as

A1
b “ AdGbpAb ´ Dbq, (3.6.58)

B1
b “ AdGbpBbq. (3.6.59)

Proof. Exploiting relations (3.6.1), (3.6.2), we can express A, B in terms of Ab,

Bb, Λ, ∆. Inserting these identities into the primed counterparts of (3.6.1),

(3.6.2), we obtain expressions of A1
b, B

1
b in terms of Ab, Bb, Λ, ∆, Λ1, ∆1. These

latter can be cast in the form (3.6.58), (3.6.59) employing (3.6.47), (3.6.48).

The matching relation (3.6.58), (3.6.59) can be written in terms of projected

components.

Proposition 3.31. The projected basic components ωb, Ωb, θb, Θb and ω1
b, Ω

1
b,

θ1
b, Θ

1
b of the 2–connection are related on T r1sπ´1pU X U 1q as
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ω1
b “ Ad fbpωb ´ sbq, (3.6.60)

Ω1
b “ µ9pfb, Ωb ´ Sbq ´ 9µ9pAd fbpωb ´ sbq, Fbq, (3.6.61)

θ1
b “ Ad fbpθbq, (3.6.62)

Θ1
b “ µ9pfb, Θbq ´ 9µ9pAd fbpθbq, Fbq. (3.6.63)

Relations (3.6.56), (3.6.57) entail that, at the basic level, eqs. (3.6.60)–(3.6.63)

are of the same form as the matching relations of the projected components of a

2–connection in strict higher gauge theory. See subsect. 3.7 for more in this.

Proof. Inserting (3.6.5), (3.6.6), their primed counterparts and (3.6.50), (3.6.51),

into (3.6.58), (3.6.59) and using 3.5.18 of I, we obtain the (3.6.60)–(3.6.63) by

simple calculations.

Next, consider a 1–gauge transformation of P̂ of components Ψ , Υ .

Proposition 3.32. The basic components Ψb, Υb and Ψ 1
b, Υ

1
b of the 1–gauge trans-

formation are related on T r1sπ´1pU X U 1q as

Ψ 1
b “ GbΨbG

´1

b
, (3.6.64)

Υ 1
b “ AdGbpΥb ´ Db ` AdΨbpDbqq. (3.6.65)

Proof. Exploiting relations (3.6.17), (3.6.18), we can express Ψ , Υ in terms of

Ψb, Υb, Λ, ∆. Inserting these identities into the primed counterparts of (3.6.17),

(3.6.18), we obtain expressions of Ψ 1
b, Υ

1
b in terms of Ψb, Υb, Λ, ∆, Λ1, ∆1. These

latter can be cast in the form (3.6.64), (3.6.65) employing (3.6.47), (3.6.48).

The matching relation (3.6.64), (3.6.65) can be written in terms of projected

components.

Proposition 3.33. The projected basic components gb, Jb, hb, Kb and g1
b, J 1

b,

h1
b, K

1
b of the 1–gauge transformation are related on T r1sπ´1pU X U 1q as

g1
b “ fbgbfb

´1, (3.6.66)

J 1
b “ µ9pfb, Jbq ` Fb ´ µ9pfbgbfb

´1, Fbq, (3.6.67)
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h1
b “ Ad fbphb ´ sb ` Ad gbpsbqq, (3.6.68)

K 1
b “ µ9pfb, Kb ´ Sb ` µ9pgb, Sbq ´ 9µ9pAd gbpsbq, Jbq (3.6.69)

´ 9µ9phb ´ sb ` Ad gbpsbq, µ9pfb
´1, Fbqqq.

In view of eqs. (3.6.56), (3.6.57), the (3.6.66)–(3.6.69) reproduce at the basic level

the matching relations of the projected components of a 1–gauge transformation

of strict higher gauge theory. We will come back to this in subsect. 3.7.

Proof. Inserting (3.6.23), (3.6.24), their primed counterparts and (3.6.50), (3.6.51),

into (3.6.64), (3.6.65) and using 3.5.2, 3.5.3 and 3.5.18 of I, we obtain the (3.6.66)–

(3.6.69) through straightforward computations.

Finally consider a 2–gauge transformation of P̂ of components E, C.

Proposition 3.34. The projected basic components Eb, Cb and E 1
b, C 1

b of the

2–gauge transformation are related on T r1sπ´1pU X U 1q as

E 1
b “ µpfb, Ebq, (3.6.70)

C 1
b “ µ9pfb, Cbq ` Fb ´ Adµpfb, EbqpFbq. (3.6.71)

Proof. By relations (3.6.39), (3.6.40), we can express E, C in terms of Eb, Cb,

γ, Γ . Inserting these identities into the primed counterparts of (3.6.39), (3.6.40),

we obtain expressions of E 1
b, C

1
b in terms of Eb, Cb, γ, Γ , γ

1, Γ 1. These latter

can be rewritten in the form (3.6.70), (3.6.71) employing (3.6.52), (3.6.53).

It is noteworthy that the matching relations do not involve the underlying refer-

ence 2–connection.

The basic matching components behave as expected when the adapted coor-

dinates used are special.

Proposition 3.35. If the two sets of adapted coordinates involved are both special

(cf. defs. 3.9), then one has

IUXU 1

˚Fb “ 0, (3.6.72)

IUXU 1

˚Sb “ 0, (3.6.73)
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where IUXU 1 : π0
´1pU X U 1q Ñ π´1pU X U 1q is the inclusion map.

Proof. This follows from (3.6.53), (3.6.55) upon substituting (3.5.26), (3.5.27)

and its primed counterpart.

Note that this property renders the matching relations (3.6.61), (3.6.63), respec-

tively (3.6.67), (3.6.69), compatible with (3.6.15), (3.6.16), respectively (3.6.37),

(3.6.38), in case the relevant 2–connection, respectively 1–gauge transformation,

is special.

3.7 Relation to non Abelian differential cocycles

In this subsection, we shall explore whether 2–connections and 1–gauge transfor-

mations as defined in the synthetic theory of subsects. 3.2, 3.3 can be related

to non Abelian differential cocycles and their equivalences [13, 29]. We consider

again a synthetic principal K̂ –2–bundle P̂ and its associated synthetic setup.

In subsect. 3.5, we have seen that we can describe the portion π´1pUq of P

lying above a trivializing neighborhood U of M by means of adapted coordinates

γ, Γ , σ, Σ. Since σ and Σ are expressible in terms of γ, Γ through relations

(3.5.10), (3.5.11), only these latter are truly independent. So, we shall limit

ourselves to their sole consideration.

In subsect. 3.6, using adapted coordinates we have constructed via (3.6.7)–

(3.6.10) the local basic data ωb, Ωb, θb, Θb associated with a 2–connection on

π´1pUq. Of these, θb, Θb. can be expressed in terms of ωb, Ωb by eqs. (3.6.11),

(3.6.12) and so can be disregarded in the following. Similarly, through adapted

coordinates we have constructed via (3.6.25)–(3.6.28) also the local basic data

gb, Jb, hb, Kb associated with a 1–gauge transformation on π´1pUq. Again, of

these hb and Kb can be given in term of gb, Jb by eqs. (3.6.29), (3.6.30) and

so can be once more disregarded. In this way, the basic data g,Jωb,
g,JΩb of the

1–gauge transformed 2–connection can be expressed in terms of ωb, Ωb and gb, Jb

only by the familiar higher gauge theoretic relations, as we found out by inserting

(3.6.29), (3.6.30) into (3.6.33), (3.6.34).

In subsect. 3.6, further, we have seen that the matching of local basic 2–
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connection and 1–gauge transformation data relative to overlapping neighbor-

hoods U , U 1 of M is governed by local basic transition data fb, Fb, sb, Sb given

by eqs. (3.6.52)–(3.6.55) of which the latter two are expressible in terms of the

former two by eqs. (3.6.56), (3.6.57) and so can be also safely left aside in the

following.

We now choose an trivializing covering tUiu of M and for each set Ui adapted

coordinates γi, Γi and consider the associated local 2–connection, 1–gauge trans-

formation and transition data. To relate the present framework to non Abelian

differential cocycle theory, we shall restrict ourselves fake flat 2–connections as

appropriate.

For a 2–connection, there are then defined for every set Ui of the covering

local basic data ωbi P MappT r1sπ´1pUiq, gr1sq, Ωbi P MappT r1sπ´1pUiq, er2sq via

(3.6.7), (3.6.8). By the assumed fake flatness, these satisfy

dπ´1pUiqωbi `
1

2
rωbi, ωbis ´ 9τpΩbiq “ 0. (3.7.1)

For a 1–gauge transformation, local basic data gbi P MappT r1sπ´1pUiq,Gq, Jbi P

MappT r1sπ´1pUiq, er1sq can be similarly defined on each Ui via (3.6.25), (3.6.26).

For every couple of intersecting sets Ui, Uj of the covering, transition data

fbij P MappT r1sπ´1pUi XUjq,Gq, Fbij P MappT r1sπ´1pUi XUjq, er1sq are likewise

built through (3.6.52), (3.6.53). The local 2–connection data ωbi, Ωbi, match as

ωbi “ Ad fbijpωbjq ´ dπ´1pUiXUjqfbijfbij
´1 ´ 9τpFbijq, (3.7.2)

Ωbi “ µ9pfbij, Ωbjq ´ dπ´1pUiXUjqFbij ´
1

2
rFbij, Fbijs ´ 9µ9pωbi, Fbijq (3.7.3)

on Ui X Uj , as follows readily from eqs. (3.6.60), (3.6.61) using the (3.6.56),

(3.6.57). Similarly, the the local 1–gauge transformation data gb, Jb match as

gbi “ fbijgbjfbij
´1, (3.7.4)

Jbi “ µ9pfbij , Jbjq ` Fbij ´ µ9pgbi, Fbijq (3.7.5)

by eqs. (3.6.66), (3.6.67).

By virtue of relations (3.6.52), (3.6.53), the data fbij . Fbij form a DM–valued
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1–cocycle on P , as on every non empty triple intersection Ui X Uj X Uk

fbik “ fbijfbjk, (3.7.6)

Fbik “ Fbij ` µ9pfbij, Fbjkq. (3.7.7)

By the way it is constructed, this cocycle is trivial.

Combining (3.6.29), (3.6.30) into (3.6.33), (3.6.34), the local basic data g,Jωbi,

g,JΩbi of the 1–gauge transformed 2–connection are found to be given by

g,Jωbi “ Ad gbipωbiq ´ dπ´1pUiqgbigbi
´1 ´ 9τpJbiq, (3.7.8)

g,JΩbi “ µ9pgbi, Ωbiq ´ dπ´1pUiqJbi ´
1

2
rJbi, Jbis ´ 9µ9pg,Jωbi, Jbiq (3.7.9)

for any covering set Ui.

Our aim next is ascertaining whether the above setup can be naturally related

to (some internal variant of) non Abelian differential cocycle theory. We are

going to submit a proposal in this sense. Before proceeding further, however,

the following remark is in order. In an ordinary principal G–bundle P , basic

forms of P are pull–backs via the bundle’s projection map π of ordinary forms

of the base M . The proof of this important property requires crucially that the

right G–action of P is transitive on the fibers. In a principal K̂ –2–bundle P̂,

transitiveness holds only up to isomorphism. For this reason, basic forms of P do

not necessarily arise as pull–backs via the bundle’s projection map π of ordinary

forms of the base M , though they may do. Our reformulation of differential

cocycle theory hinges on this property.

We have found the following notion useful.

Definition 3.14. A quasi trivializer consists in an assignment of a basic Lie group

valued internal function Tbij P MappT r1sπ´1pUi X Ujq,Eq for each pair of inter-

secting covering sets Ui, Uj.

We stress that the basicness of the Tbij is crucial.

Definition 3.15. A differential paracocycle is a pair of a fake flat 2–connection

tωbi, Ωbiu and a quasi trivializer tTbiju enjoying the following properties.
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1. For any set Ui, Lie algebra valued internal functions ω̄i P MappT r1sUi, gr1sq,

Ω̄i P MappT r1sUi, er2sq exist with the property that

ωbi “ π˚ω̄i, (3.7.10)

Ωbi “ π˚Ω̄i. (3.7.11)

2. For any two intersecting sets Ui, Uj, Lie group and algebra valued internal

functions f̄ij P MappT r1spUi XUjq,Gq, F̄ij P MappT r1spUi XUjq, er1sq exist

such that on Ui X Uj

fbij “ τpTbijqπ
˚f̄ij , (3.7.12)

Fbij “ AdTbijpπ
˚F̄ijq ´ 9µpπ˚ω̄i, Tbijq ´ dπ´1pUiXUjqTbijTbij

´1. (3.7.13)

3. For any three intersecting sets Ui, Uj, Uk, there is a Lie group valued inter-

nal function T̄ijk P MappT r1spUi X Uj X Ukq,Eq such that on Ui X Uj X Uk

Tbik
´1µpfbij, TbjkqTbij “ π˚T̄ijk. (3.7.14)

The content of the above definition is motivated by the following result which it

leads to.

Proposition 3.36. The local 2–connection and transition data tω̄i, Ω̄i, f̄ij, F̄ij, T̄ijku

of a differential paracocycle tωbi, Ωbi, Tbiju constitute a differential cocycle. In-

deed, the 2–connection data ω̄i, Ω̄i satisfy the fake flatness condition

dUi
ω̄i `

1

2
rω̄i, ω̄is ´ 9τpΩ̄iq “ 0 (3.7.15)

on every set Ui and the matching conditions

ω̄i “ Ad f̄ijpω̄jq ´ dUiXUj
f̄ij f̄ij

´1 ´ 9τpF̄ijq, (3.7.16)

Ω̄i “ µ9pf̄ij, Ω̄jq ´ dUiXUj
F̄ij ´

1

2
rF̄ij, F̄ijs ´ 9µ9pω̄i, F̄ijq (3.7.17)

on every non empty intersection Ui X Uj. Moreover, the transition data f̄ij, F̄ij,

T̄ijk satisfy the consistency conditions

f̄ik “ τpT̄ijkqf̄ij f̄jk, (3.7.18)
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F̄ik “ Ad T̄ijkpF̄ij ` µ9pf̄ij, F̄jkqq ´ 9µpω̄i, T̄ijkq ´ dUiXUjXUk
T̄ijkT̄ijk

´1 (3.7.19)

on every non empty intersection Ui X Uj X Uk. Finally,

T̄iklT̄ijk “ T̄ijlµpf̄ij, T̄jklq (3.7.20)

on every non empty intersection Ui X Uj X Uk X Ul.

Proof. Relations (3.7.15)–(3.7.19) follow from substituting expressions (3.7.10)–

(3.7.13) into relations (3.7.1)–(3.7.3), (3.7.6), (3.7.7) and using (3.7.14). The

proof involves combined use of the identities of app. B of I. The property of π

being a surjective submersion (cf. prop. 3.2 of I) is used to deduce that τ̄ “ 0

from any identity of the form π˚τ̄ “ 0 with τ̄ some local internal function on M .

(3.7.20) follows directly from (3.7.14) through a simple calculation.

The above result can be intuitively understood as follows. The local basic data

tωbi, Ωbi, fbij , Fbij , 1Eu can be viewed as something like a trivial differential cocycle

on P . By (3.7.10)–(3.7.14), the local basic data tπ˚ω̄i, π
˚Ω̄i, π

˚f̄ij , π
˚F̄ij , π

˚T̄ijku

form a trivial differential cocycle on P equivalent to the former. The fundamental

cocycle relations obeyed by the data tπ˚ω̄i, π
˚Ω̄i, π

˚f̄ij , π
˚F̄ij, π

˚T̄ijku are then

satisfied also by the data tω̄i, Ω̄i, f̄ij, F̄ij, T̄ijku, since π is a surjective submersion.

The local data tω̄i, Ω̄i, f̄ij, F̄ij , T̄ijku constitute therefore a differential cocycle on

M . Unlike its counterpart in P , this cocycle is generally non trivial since in eq.

(3.7.14) Tbij is not necessarily of the form Tbij “ π˚T̄ij for some internal function

T̄ij P MappT r1spUi X Ujq,Eq.

Definition 3.16. Two differential paracocycles tωbi, Ωbi, Tbiju, tω̃bi, Ω̃bi, T̃biju are

said to be equivalent if for every set Ui

ω̃bi “ ωbi, (3.7.21)

Ω̃bi “ Ωbi (3.7.22)

and for every intersecting set pair Ui, Uj there is a Lie group valued internal

function T̄ij P MappT r1spUi X Ujq,Eq such that

T̃bij “ Tbijπ
˚T̄ij

´1. (3.7.23)
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Differential paracocycle equivalence is manifestly an equivalence relation as sug-

gested by its name. Further, it implies the equivalence of the underlying differ-

ential cocycles.

Proposition 3.37. If tωbi, Ωbi, Tbiju, tω̃bi, Ω̃bi, T̃biju are two equivalent differen-

tial paracocycles, then their associated differential cocycles tω̄i, Ω̄i, f̄ij, F̄ij, T̄ijku

t ¯̃ωi,
¯̃
Ωi,

¯̃
fij,

¯̃
Fij ,

¯̃
Tijku are equivalent. Indeed,

¯̃ωi “ ω̄i, (3.7.24)

¯̃
Ωi “ Ω̄i (3.7.25)

on each set Ui,

¯̃
fij “ τpT̄ijqf̄ij , (3.7.26)

¯̃
Fij “ Ad T̄ijpF̄ijq ´ 9µp ¯̃ωi, T̄ijq ´ dUiXUj

T̄ijT̄ij
´1 (3.7.27)

on every non empty intersection Ui X Uj and

¯̃
Tijk “ T̄ikT̄ijkµpf̄ij, T̄jk

´1qT̄ij
´1 (3.7.28)

on every non empty intersection Ui X Uj X Uk

Proof. Relations (3.7.24), (3.7.25) are an immediate consequence of (3.7.21),

(3.7.22) and (3.7.10), (3.7.11) and their tilded analogues. Relations (3.7.26),

(3.7.27) follow from equating the tilded and untilded versions of expressions

(3.7.12), (3.7.13) and use the resulting equations together with (3.7.23) to express
¯̃
fij ,

¯̃
Fij in terms of f̄ij , F̄ij . The proof involves combined use of the identities of

app. B of I. Finally, (3.7.28) follows from the tilded version of (3.7.14) upon using

(3.7.23) and the untilded form of (3.7.14).

Intuitively, the above result can be understood as follows. In P , the differ-

ential cocycles tπ˚ω̄i, π
˚Ω̄i, π

˚f̄ij, π
˚F̄ij , π

˚T̄ijku, tπ˚ ¯̃ωi, π
˚ ¯̃
Ωi, π

˚ ¯̃fij , π
˚ ¯̃Fij , π

˚ ¯̃Tijku

are equivalent to the cocycles tωbi, Ωbi, fbij , Fbij , 1Eu, tω̃bi, Ω̃bi, fbij , Fbij, 1Eu, re-

spectively. Since the latter two coincide by (3.7.21), (3.7.22), the former two are
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equivalent. Thanks to (3.7.23), this property entails the equivalence of the cocy-

cles tω̄i, Ω̄i, f̄ij, F̄ij , T̄ijku t ¯̃ωi,
¯̃
Ωi,

¯̃
fij,

¯̃
Fij ,

¯̃
Tijku. Note that this equivalence is not

of the most general form, as it does not involve 1–gauge transformation.

The above analysis shows that the local basic data tωbi, Ωbiu of a fake flat

2–connection together with the data tTbiju of a quasi trivializer can fit into a

differential paracocycle. This in turn is directly related to a genuine differential

cocycle. The natural question arises about whether the local basic data tgbi, Jbiu

of a 1–gauge transformation can fit into some object with somewhat analogous

properties capable of relating in a meaningful way to an assigned differential

paracocycle.

Definition 3.17. A gauge paraequivalence subordinated to a differential paraco-

cycle tωbi, Ωbi, Tbiju consists of a 1–gauge transformation tgbi, Jbiu enjoying the

following properties.

1. For any set Ui, there exist Lie group and algebra valued internal functions

ḡi P MappT r1sUi,Gq, J̄i P MappT r1sUi, er1sq such that

gbi “ π˚ḡi, (3.7.29)

Jbi “ π˚J̄i. (3.7.30)

2. For any two intersecting sets Ui, Uj, there exists a Lie group valued internal

function Āij P MappT r1spUi X Ujq,Eq such that

µpgbi, Tbij
´1qTbij “ π˚Āij . (3.7.31)

The following proposition shows the naturality of the above definition.

Proposition 3.38. Let tωbi, Ωbi, Tbiju be a differential paracocycle and let tgbi, Jbiu

be gauge paraequivalence subordinated to it. Then, tg,Jωbir,
g,JΩbi, Tbiju is a dif-

ferential paracocycle as well. In terms of the cocycle and equivalence data of

tωbi, Ωbi, Tbiju and tgbi, Jbiu the cocycle data of tg,Jωbir,
g,JΩbi, Tbiju read as

ḡ,J̄ ω̄i “ Ad ḡipω̄iq ´ dUi
ḡiḡi

´1 ´ 9τpJ̄iq, (3.7.32)

ḡ,J̄Ω̄i “ µ9pḡi, Ω̄iq ´ dUi
J̄i ´

1

2
rJ̄i, J̄is ´ 9µ9pḡ,J̄ ω̄i, J̄iq, (3.7.33)
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ḡ,J̄ f̄ij “ f̄ij , (3.7.34)

ḡ,J̄ F̄ij “ Ad Āij
´1pJ̄i ` µ9pḡi, F̄ijqq ´ µ9pf̄ij, J̄jq (3.7.35)

´ 9µpḡ,J̄ ω̄i, Āij
´1q ´ dUiXUj

Āij
´1Āij,

ḡ,J̄ T̄ijk “ T̄ijk. (3.7.36)

Proof. Inserting (3.7.10), (3.7.11) and (3.7.29), (3.7.30) into (3.7.8), (3.7.9), one

readily finds that g,Jωbi “ π˚ḡ,J̄ ω̄i,
g,JΩbi “ π˚ḡ,J̄Ω̄i with

ḡ,J̄ ω̄i,
ḡ,J̄Ω̄i given by

(3.7.32), (3.7.33), respectively. (3.7.34) is evident by relation (3.7.12) expressing

fbij . To verify (3.7.35), one has to show that Fbij can be expressed as in (3.7.13)

with ω̄i, F̄ij replaced by ḡ,J̄ ω̄i,
ḡ,J̄ F̄ij as given by (3.7.32), (3.7.35), respectively.

This is straightforward using (3.7.5) together with (3.7.12), (3.7.13) and (3.7.31)

and the identities of app. B of I. (3.7.36) is evident from relation (3.7.14).

The following proposition describes the global matching of the local data of a

gauge paraequivalence.

Proposition 3.39. Let tgbi, Jbiu be a gauge paraequivalence subordinated to the

differential paracocycle tωbi, Ωbi, Tbiju. Then,

ḡi “ τpĀijqf̄ij ḡj f̄ij
´1, (3.7.37)

J̄i “ Ad Āijpµ9pf̄ij, J̄jq ` ḡ,J̄ F̄ijq ´ 9µpḡ,J̄ ω̄i, Āijq (3.7.38)

´ dUiXUj
ĀijĀij

´1 ´ µ9pḡi, F̄ijq

on every non empty intersection Ui X Uj. Moreover,

Āik “ µpḡi, T̄ijkqĀijµpf̄ij, ĀjkqT̄ijk
´1 (3.7.39)

on every non empty intersection Ui X Uj X Uk.

Proof. Inserting (3.7.12) and (3.7.29) into (3.7.4) and rearranging the resulting

factors in the right hand side using also (3.7.31), relation (3.7.37) is obtained. To

show (3.7.38), one substitutes (3.7.12), (3.7.13) and (3.7.29), (3.7.30) into (3.7.5).

In the first insertion of (3.7.13), one expresses Fbij in terms of ḡ,J̄ ω̄i,
ḡ,J̄ F̄ij ; in the

second, one writes Fbij through ω̄i, F̄ij . Use of the identities of app. B of I leads
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to (3.7.38) straightforwardly. (3.7.39) follows from combining (3.7.4), (3.7.12),

(3.7.14), (3.7.29), (3.7.31) trough a simple algebraic computation.

We note that eq. (3.7.38) is an equivalent rewriting of eq. (3.7.35). However, we

deduced (3.7.38) from (3.7.5) by suitably expressing the latter relation in terms of

barred objects. So, eq. (3.7.38) does not constitute anything new, but it merely

shows the consistency of eqs. (3.7.5) and (3.7.35).

Definition 3.18. Two pairs of differential paracocycles and subordinated gauge

paraequivalences tωbi, Ωbi, Tbiju, tgbi, Jbiu, tω̃bi, Ω̃bi, T̃biju, tg̃bi, J̃biu are equiva-

lent if tωbi, Ωbi, Tbiju, tω̃bi, Ω̃bi, T̃biju are equivalent differential paracocycles and

furthermore for every set Ui

g̃bi “ gbi, (3.7.40)

J̃bi “ Jbi. (3.7.41)

Equivalence of differential paracocycle and subordinated gauge paraequivalence

pairs is manifestly an equivalence relation as suggested by its name.

Proposition 3.40. If tωbi, Ωbi, Tbiju, tgbi, Jbiu, tω̃bi, Ω̃bi, T̃biju, tg̃bi, J̃biu are equiv-

alent pairs of differential paracocycles and subordinated gauge paraequivalences,

then identities (3.7.24)–(3.7.28) hold and moreover

¯̃gi “ ḡi, (3.7.42)

¯̃
Ji “ J̄i (3.7.43)

on each set Ui and

¯̃
Aij “ µpḡi, T̄ijqĀijT̄ij

´1 (3.7.44)

on every non empty intersection Ui X Uj.

Proof. Since tωbi, Ωbi, Tbiju, tω̃bi, Ω̃bi, T̃biju are equivalent differential cocycles ac-

cording to def. 3.18, eqs. (3.7.24)–(3.7.28) hold by virtue of prop. 3.37. Relations

(3.7.42), (3.7.43) are an immediate consequence of (3.7.40), (3.7.41) and (3.7.29),

(3.7.30) and their tilded analogues. (3.7.44) follows form (3.7.31) and its tilded

form and (3.7.23).
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Gauge paraequivalences subordinated to the same differential paracocycle

form a group.

Proposition 3.41. The gauge paraequivalences tgbi, Jbiu subordinated to a fixed

differential paracocycle tωbi, Ωbi, Tbiju constitute a subgroup of the 1–gauge group.

Proof. Suppose that tg1bi, J1biu, tg2bi, J2biu are gauge paraequivalences subordi-

nated to tωbi, Ωbi, Tbiju and that tg3bi, J3biu is their product as 1–gauge trans-

formations, so that g3bi “ g2big1bi, J3bi “ J2bi ` µ9pg2bi, J1biq. Then, g3bi, J3bi

satisfy (3.7.29)–(3.7.31) too with ḡ3i “ ḡ2iḡ1i, J̄3i “ J̄2i ` µ9pḡ2i, J̄1iq and Ā3ij “

µpḡ2i, Ā1ijqĀ2ij . Similarly, suppose that tg1bi, J1biu is a gauge paraequivalence

subordinated to tωbi, Ωbi, Tbiju and that tg2bi, J2biu is its inverse as a 1–gauge

transformation, so that g2bi “ g1bi
´1, J2bi “ ´µ9pg1bi, J1biq. Then, g2bi, J2bi

satisfies (3.7.29)–(3.7.31) too with ḡ2i “ ḡ1i
´1, J̄2i “ ´µ9pḡ1i

´1, J̄1iq and Ā2ij “

µpḡ1i
´1, Ā1ij

´1q. This is enough to show the proposition.

We assume now that for each set Ui of the covering the adapted coordinates

γi, Γi can be chosen to be special (cf. def. 3.9). Then, by (3.5.26)

Ii
˚Γi “ 0, (3.7.45)

where Ii : π0
´1pUiq Ñ π´1pUiq is the injection map.

Proposition 3.42. The basic matching data Fbij satisfy

Iij
˚Fbij “ 0 (3.7.46)

for each non empty intersection Ui X Uj

Above, Iij : π0
´1pUi X Ujq Ñ π´1pUi X Ujq is the injection map.

Proof. Eq. (3.7.46) follows immediately from (3.6.53) and (3.7.45).

Proposition 3.43. If tωbi, Ωbi, Tbiju is a differential paracocycle, then for each non

empty intersection Ui X Uj

Ad Iij
˚Tbijpπ0

˚F̄ijq ´ 9µpπ0
˚ω̄i, Iij

˚Tbijq (3.7.47)

´ dπ0
´1pUiXUjqIij

˚TbijIij
˚Tbij

´1 “ 0.
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Proof. Eq. (3.7.47) is a direct consequence of (3.7.13) and (3.7.46).

Definition 3.19. A differential paracocycle tωbi, Ωbi, Tbiju is said to be special if

the underlying 2–connection is special (cf. def. 3.2).

By (3.6.16), then, in each set Ui

Ii
˚Ωbi “ 0. (3.7.48)

We note that by (3.7.3) the condition of specialty is globally consistent if (3.7.46)

holds.

Proposition 3.44. If the differential paracocycle tωbi, Ωbi, Tbiju is special, then

Ω̄i “ 0 (3.7.49)

in each set Ui.

Proof. By virtue of (3.7.11) and the relation π ˝ Ii “ π0|π0
´1pUiq, (3.7.48) implies

that 0 “ Ii
˚π˚Ω̄i “ π0

˚Ω̄i. Since π0 is a surjective submersion (cf. prop. 3.2 of

I), (3.7.49) holds.

Proposition 3.45. If the differential paracocycle tωbi, Ωbi, Tbiju is special, so is any

other paracocycle tω̃bi, Ω̃bi, T̃biju equivalent to it.

Proof. By (3.7.21), (3.7.22) and (3.6.7), (3.6.8) and their tilded counterparts, the

2–connections underlying two equivalent paracocycles are equal. So, if the first

paracocycle is special, so is the second by virtue of def. 3.19.

Definition 3.20. A gauge paraequivalence tgbi, Jbiu subordinated to a differential

paracocycle tωbi, Ωbi, Tbiju is said to be special if the underlying 1–gauge transfor-

mation is special.

By (3.6.37), then, in each set Ui

Ii
˚Jbi “ 0. (3.7.50)

We note that by (3.7.5) the condition of specialty is globally consistent if (3.7.46)

holds.
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Proposition 3.46. It the gauge paraequivalence tgbi, Jbiu subordinated to a differ-

ential paracocycle tωbi, Ωbi, Tbiju is special, then in each set Ui.

J̄i “ 0. (3.7.51)

Proof. This follows from (3.7.30) through a reasoning similar to that leading to

(3.7.49).

Proposition 3.47. If tωbi, Ωbi, Tbiju, tgbi, Jbiu is a pair of a differential paracocycle

and a subordinated gauge paraequivalence with tgbi, Jbiu special and tω̃bi, Ω̃bi, T̃biju,

tg̃bi, J̃biu is a pair of a differential paracocycle and a subordinated gauge paraequi-

valence equivalent to the former, then tg̃bi, J̃biu is special.

Proof. By (3.7.40), (3.7.41) and (3.6.25), (3.6.26) and their tilded counterparts,

the 1–gauge transformations underlying two equivalent differential paracocycle

and subordinated gauge paraequivalence pairs are equal. So, if the first parae-

quivalence is special, so is the second by virtue of def. 3.20.

The reader certainly noticed that we did not include 2–gauge symmetry in

our discussion. The reason for this is that, apparently, there is no way of making

it fitting into the framework described in this subsection. An analysis of the

global matching of the local basic data Ebi, Cbi of a 2–gauge transformation

would unavoidably be based on relations (3.6.70), (3.6.71). Forcing on Ebi, Cbi

relations analogous to (3.7.10), (3.7.11) and (3.7.29), (3.7.30) does not seem to

yield any reasonable relation on M . This is an open problem requiring further

investigation including possibly a revision of the synthetic theory of subsect. 3.4.
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4 Appraisal of the results obtained

It is important to critically assess the strengths and weaknesses of the opera-

tional synthetic formulation of the total space theory of principal 2–bundles and

2–connections and 1– and 2–gauge transformations thereof developed in this pa-

per. A number of points can be raised concerning its viability and its eventual

relationship with other approaches. We are going address some of these issues in

this section.

4.1 Some open problems

The geometry of a principal K̂ –2–bundle P̂ is characterized not only by the

right K̂–action but also by the morphism composition of P̂ . Our operational

formulation relies heavily of the former while it leaves the latter in the background

(cf. subsect. 3.8 of I). However, the second is a constitutive element of the

principal 2–bundle structure as basic as the first.

Since morphisms belonging to different fibers of a principal 2–bundle can

never be composed, morphism composition is essentially a local operation. For a

chosen local neighborhood U of M , through a pair of reciprocally weakly inverse

trivializing functors Φ̂U : π̂´1pUq Ñ U ˆ K̂ and
˜̂
ΦU : U ˆ K̂ Ñ π̂´1pUq composition

of morphisms of π̂´1pUq is turned into composition of corresponding morphisms

of K̂ and viceversa. It is known [30] that the groupoid structure of a strict 2–

group such as K̂ can be reduced to the group one as follows. With any morphism

A P K̂ there is associated a morphism ˆ̺pAq P K̂ given by

ˆ̺pAq “ t̂pAq´1A, (4.1.1)

such that for composable morphisms A, B P K̂

ˆ̺pB ˝ Aq “ ˆ̺pBq ˆ̺pAq. (4.1.2)

So, as t̂pB ˝ Aq “ t̂pBq, right composition of B by A is equivalent to right mul-

tiplication of B by ˆ̺pAq. It follows that, for any two composable morphisms

X , Y P P̂ , right composition of Y by X can be reduced, in the appropriate
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categorical sense, to the right action of some element of AX P K̂ depending on X

on Y .

Shifting to the synthetic setup of P̂, it is in the way explained above that the

operation OpSP indirectly includes the morphism composition structure of P̂ in

spite of the fact that its synthetic counterpart P has no groupoid structure (cf.

subsect. 3.2 of I) A more explicit incorporation of this latter in our formulation

would be desirable.

To construct the basic theory, we proposed a notion of coordinates adapted

to the local product structure U ˆ K of a principal K̂ –2–bundle P̂ in subsect.

3.5. These coordinates are Lie valued internal functions on T r1sπ´1pUq behaving

in a certain way under the action of the derivations of the operation OpSπ´1pUq.

The definition provided is essentially algebraic. It leads to a seemingly viable

basic formulation of principal 2–bundle 2–connection and 1–gauge transformation

theory. However, the eventual relation of adapted coordinates to trivialization

functors remains blurred at best and calls for further investigation.

To make contact with other widely studied formulations of 2–connections and

1–gauge transformations of principal 2–bundles, we introduced the notions of dif-

ferential paracocycle and gauge paraequivalence in subsect. 3.7. The definitions

of these entities we gave are admittedly somewhat ad hoc. The cocycle data

tω̄i, Ω̄i, f̄ij, F̄ij , T̄ijku associated with a differential paracocycle tωbi, Ωbi, Tbiju are

simply assumed to exist as part of the definition of this latter. Similarly, the

equivalence data tḡi, J̄i, Āiju associated with a gauge paraequivalence tgbi, Jbiu

are again assumed to exist. It would be desirable instead to have a formulation

where the cocycle and equivalence data can be constructively shown to exist in

analogy to the ordinary theory.

The viability of the formulation furnished here remains to be tested in concrete

examples. This left for future work.

4.2 Toward a more geometric interpretation

In this paper, we worked out an operational synthetic total space theory of 2–

connections and 1– and 2–gauge transformations for strict principal 2–bundles
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adopting a graded differential geometric approach and mimicking to a large extent

the corresponding formulation of connection and gauge transformation theory for

ordinary principal bundles. In the ordinary case, however, these notions have

also a more conventional intuitive geometric interpretation in terms of the overall

geometry of the principal bundle and its fibered structure. The natural question

arises whether a similar interpretation exists also in the higher theory.

As already observed in subsect. 3.1 of I, at the moment no definition of 2–

connection on a strict principal 2–bundle akin to that of the ordinary theory

formulated in terms of a horizontal invariant distribution in the tangent bundle

of the bundle is available. There exits however a definition of 1–gauge transfor-

mation analogous to that of the ordinary theory as an equivariant fiber preserving

bundle automorphism formulated by Wockel in ref. [7]. The interpretation of

2–connections as defined in subsect. 3.2 along the lines just indicated remains an

open problem. It is conversely possible to attempt a comparison of the notion of

1–gauge transformation of subsect. 3.3 and Wockel’s categorical one.

For a given strict principal K̂ –2–bundle P̂, the synthetic counterpart of the

gauge 2–group FunK̂pP̂, K̂Adq (cf. subsect. 3.1 of I) is the group FunKpP,KAdq of K–

equivariant maps of MappP,Kq restricting to K0–equivariant maps of MappP0,K0q.

FunKpP,KAdq is formally analogous to FunK̂pP̂, K̂Adq in several respects, but by the

lack of a groupoid structure of K (cf. subsect. 3.2 of I) it has no morphisms and

is thus a mere mapping group. FunKpP,KAdq cannot be directly equated with

the 1–gauge group as defined earlier in subsect. 3.3. Rather, FunKpP,KAdq can

be identified as a distinguished subgroup of the special subgroup of the 1–gauge

transformation group, as we show next.

Recalling that K “ DM, an element of FunKpP,KAdq is an instance of an inter-

nal function Ψ P MappT r1sP,DMq that is DM–horizontal and DM–equivariant

and restricts to an internal function Ψ0 P MappT r1sP0,DM0q that is DM0–ho-

rizontal and DM0–equivariant, the action of DM, respectively DM0, on itself be-

ing the right conjugation one. DM–horizontality translates directly into relation

(3.3.3). DM–equivariance is equivalent to the condition that

RF
˚Ψ “ F´1ΨF (4.2.1)
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for F P DM, where in the right hand side F is identified with its image under

the isomorphism zM : DM Ñ DM` defined in eq. 3.6.1 of I. In infinitesimal form,

expressing F as 1`tZ, where Z P Dm and t is a formal parameter such that t2 “ 0,

this relation takes the form (3.3.5). Thus Ψ is the transformation component of

a 1–gauge transformation. Since Ψ restricts on T r1sP0 to a DM0–valued DM0–

horizontal and DM0–equivariant internal map, this 1–gauge transformation is

special.

In the present formulation of the theory, 2–gauge transformations of P̂ cannot

be obviously related to morphisms of the gauge 2–group FunK̂pP̂, K̂Adq, because

the synthetic form FunKpP,KAdq of this latter does not have any. Moreover,

2–gauge transformations are supposed to act on 1–gauge transformations (cf.

subsect. 3.4) and do so in a proper way depending on an assigned 2–connection

(cf. subsect. 3.2). As long we do not have a purely geometric total space theory

of 2–connections, any attempt to relate 2–gauge transformations to morphisms

of the gauge 2–group is premature at best.

4.3 Comparison with other formulations

An interesting total space formulation of 2–connections theory has been worked

out by Waldorf in refs. [17, 18]. We anticipate that Waldorf’s theory is not

obviously equivalent to ours and most likely it is not. We outline it briefly below

referring the interested reader to the cited papers for a full exposition.

Waldorf’s approach is based on a special differential geometric framework.

For a given principal K̂ –2–bundle P̂, its main ingredients are the morphism and

object manifolds P̂ and P̂0 of P̂ and the Lie group crossed module M “ pE,G, τ, µq

associated with the structure Lie 2–group K̂ . He defines a vector space A‚pP̂, k̂q

of k̂–valued differential forms of P̂ and endows it with a structure of differen-

tial graded Lie algebra with Lie bracket r´,´s and differential D. AppP̂, k̂q is a

certain subspace of the vector space ΩppP̂0, gq ‘ ΩppP̂, eq ‘ Ωp`1pP̂0, eq defined

by algebraic constraints expressed in terms of the face maps of the nerve of the

groupoid P̂ , the simplicial complex P̂‚ “ ¨ ¨ ¨ //

//

//
// P̂2 //

//

// P̂1 //

// P̂0 of compos-

able sequences of P̂ . Each p–form possesses therefore three components. The Lie
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bracket combines the form wedge product and the Lie bracket of the Lie algebra

e 9̧µ9 g. The differential D is constructed assembling the de Rahm differentials

dP̂ , dP̂0
, the face maps of P̂‚ and target map 9τ . An adjoint action Ad of functors

P̂ Ñ K̂ on A‚pP̂, k̂q preserving degree is also defined.

A 2–connection is defined again in terms of its behaviour under the right K̂

action of P̂ . A K̂–valued variable Q is considered and a Maurer–Cartan 1–form

Γ P A1pK̂, k̂q obeying the Maurer–Cartan equation DΓ ` rΓ, Γ s{2 “ 0 is defined.

A 2–connection of P̂ is a 1–form A P A1pP̂, k̂q such that

RQ
˚A “ AdQ´1pAq ` Γ, (4.3.1)

which must be viewed as a 1–form of A1pP̂ ˆK̂, k̂q. The curvature of A is a 2–form

B P A2pP̂, k̂q defined by

B “ DA `
1

2
rA,As. (4.3.2)

By (4.3.1), it obeys

RQ
˚B “ AdQ´1pBq. (4.3.3)

More explicitly, denoting by g and pH, hq the G and E¸µG variables underlying Q

above, a 2–connection A consists of a triplet of forms ω P Ω1pP̂0, gq, Ω1 P Ω1pP̂, eq,

Ω P Ω2pP̂0, eq satisfying the simplicial constraints and such that

Rg
˚ω “ Ad g´1pωq ` g´1dg, (4.3.4)

RpH,hq
˚Ω1 “ µ9ph´1,AdHpΩ1 ` 9µpŝ˚ω,Hqq ` H´1dHq, (4.3.5)

Rg
˚Ω “ µ9pg´1, Ωq, (4.3.6)

where ŝ, t̂t are the source and target maps of P̂ . The curvature of the 2–connection

is the triplet of forms θ P Ω2pP̂0, gq, Θ1 P Ω2pP̂, eq, Θ P Ω3pP̂0, eq given by

θ “ dP̂0
ω `

1

2
rω, ωs ´ 9τpΩq, (4.3.7)

Θ1 “ pt̂˚ ´ ŝ˚qΩ ` dP̂Ω
1 `

1

2
rΩ1, Ω1s ` 9µ9pŝ˚ω,Ω1q, (4.3.8)

Θ “ dP̂0
Ω ` 9µ9pω,Ωq (4.3.9)
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satisfying certain simplicial constraints and such that

Rg
˚θ “ Ad g´1pθq, (4.3.10)

RpH,hq
˚Θ1 “ µ9ph´1,AdHpΘ1 ` 9µpŝ˚θ,Hqqq, (4.3.11)

Rg
˚Θ “ µ9pg´1, Θq. (4.3.12)

The following differences between Waldorf’s formulation, henceforth marked as

W, and the formulation presented in this paper emerge, marked as O, emerge

even leaving aside the non synthetic nature of W and the synthetic one of O.

In W, a 2–connection has three components ω, Ω1, Ω whereas, in O, it has

only two components ω, Ω. In W, ω, Ω are forms on P̂0, while, in O, ω, Ω

are forms on P . It is not possible to forget Ω1 in W because it enters into the

simplicial constraints together with ω, nor it is possible to set Ω1 “ 0 because

this would be inconsistent with (4.3.5). Apparently, the components ω, Ω of W

correspond to the pull-back components ω0 “ I˚ω, Ω0 “ I˚Ω of O (cf. subsect.

3.2). Relations (4.3.4), (4.3.6) of W in infinitesimal form are compatible with

relations (3.2.17), (3.2.18) of O under the operation morphism OpL. Similar

remarks apply when comparing the three curvature components θ, Θ1, Θ of W

and the two components θ, Θ of O. From these remarks, it appears that W is

not obviously equivalent to O and most likely it is not. Yet, the two formulations

may yield at the end equivalent descriptions of 2–connections on the bundle’s

base manifold. This remains an issue deserving further investigation.
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