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Uncertainty relations with quantum memory for the
Wehrl entropy

Giacomo De Palma

Abstract We prove two new fundamental uncertainty relations with quantum
memory for the Wehrl entropy. The first relation applies to the bipartite mem-
ory scenario. It determines the minimum conditional Wehrl entropy among all
the quantum states with a given conditional von Neumann entropy, and proves
that this minimum is asymptotically achieved by a suitable sequence of quan-
tum Gaussian states. The second relation applies to the tripartite memory
scenario. It determines the minimum of the sum of the Wehrl entropy of a
quantum state conditioned on the first memory quantum system with the
Wehrl entropy of the same state conditioned on the second memory quantum
system, and proves that also this minimum is asymptotically achieved by a
suitable sequence of quantum Gaussian states. The Wehrl entropy of a quan-
tum state is the Shannon differential entropy of the outcome of a heterodyne
measurement performed on the state. The heterodyne measurement is one of
the main measurements in quantum optics, and lies at the basis of one of the
most promising protocols for quantum key distribution. These fundamental
entropic uncertainty relations will be a valuable tool in quantum information,
and will e.g. find application in security proofs of quantum key distribution
protocols in the asymptotic regime and in entanglement witnessing in quantum
optics.
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1 Introduction

Entropic uncertainty relations provide a lower bound to the sum of the en-
tropies of the outcomes of two incompatible measurements performed on the
same quantum state. Entropic uncertainty relations are a fundamental tool of
quantum information theory, since they are the central ingredient in the secu-
rity analysis of almost all quantum cryptographic protocols and can be used for
entanglement witnessing (see [6] for a review). The quantum information com-
munity has recently focused on the scenario with quantum memory [3,6,7,14],
where the entropies are conditioned on the knowledge of external observers
holding memory quantum systems correlated with the measured system.

The heterodyne measurement [27] is one of the main measurements in
quantum optics. It is used for quantum tomography [5], and lies at the ba-
sis of one of the most promising quantum key distribution protocols [29, 30].
The Wehrl entropy [31, 32] of a quantum state is the Shannon differential en-
tropy [8] of the outcome of a heterodyne measurement performed on the state.
The elements of the POVM that models the heterodyne measurement are the
projectors onto the coherent states [1, 16, 19, 20, 28]. Since the coherent states
are not orthogonal, the associated projectors do not commute, and nontriv-
ial entropic uncertainty relations are allowed for the heterodyne measurement
alone.

The basic uncertainty relation for the Wehrl entropy states that its mini-
mum is achieved by the vacuum state [4, 26]. This relation has been recently
improved: it has been proven that thermal quantum Gaussian states minimize
the Wehrl entropy among all the quantum states with a given von Neumann
entropy [9,13]. In this paper, we prove two new fundamental uncertainty rela-
tions for the Wehrl entropy in the scenario with quantum memory. The first
relation (Theorem 3) applies to the bipartite scenario with one memory quan-
tum system. It determines the minimum conditional Wehrl entropy among
all the quantum states with a given conditional von Neumann entropy, and
proves that this minimum is asymptotically achieved by a suitable sequence
of quantum Gaussian states (Theorem 5). This sequence is built from a two-
mode infinitely squeezed pure state shared between the system to be measured
and the memory, applying the quantum-limited amplifier to the system to be
measured. The second relation (Theorem 4) applies to the tripartite scenario
with two memory quantum systems. It determines the minimum of the sum of
the Wehrl entropy of a quantum state conditioned on the first memory quan-
tum system with the Wehrl entropy of the same quantum state conditioned
on the second memory quantum system, and proves that also this minimum
is asymptotically achieved by a suitable sequence of quantum Gaussian states
(Theorem 6). This sequence is the purification of the sequence that saturates
the bipartite memory uncertainty relation, and the purifying system plays the
role of the second memory.

The key ingredient of the proof of Theorem 3 is the Entropy Power Inequal-
ity with quantum memory [12, 21]. This fundamental inequality determines
the minimum conditional von Neumann entropy of the output of the beam-
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splitter or of the squeezing among all the input states where the two inputs are
conditionally independent given the memory and have given conditional von
Neumann entropies. This inequality generalizes the quantum Entropy Power
Inequality [10,11,22,23] to the scenario with quantum memory. The link with
the Wehrl entropy is provided by Theorem 1, stating that the heterodyne
measurement is asymptotically equivalent to the quantum-limited amplifier in
the limit of infinite amplification parameter. The proof of Theorem 1 is based
on a new Berezin-Lieb inequality (Theorem 2) for the scenario with quantum
memory.

The fundamental uncertainty relations proven in this paper will be a valu-
able tool in quantum information and quantum cryptography. Indeed, one of
the most promising protocols for quantum key distribution is based on the ex-
change of Gaussian coherent states and on the heterodyne measurement [29].
The security of a variant of this protocol has recently been proven [24, 25].
This variant requires integrating in the protocol a symmetrisation procedure
that is difficult to implement. The security of the original protocol without
the symmetrisation has not been proven yet. With the uncertainty relations
proven in this paper, it will be possible to prove the security of the original
protocol in the asymptotic regime of a key of infinite length [6]. The proof
might exploit the techniques of [15], which proves the security of a quantum
key distribution protocol based on the homodyne measurement through an
entropic uncertainty relation for the joint measurement of position and mo-
mentum. Among the other possible applications of our results, we mention e.g.
entanglement witnessing (see Corollary 1).

The paper is structured as follows. In section 2, we introduce Gaussian
quantum systems and the heterodyne measurement. In section 3, we prove
the equivalence between heterodyne measurement and quantum-limited am-
plifier. In section 4 and section 5, we prove the bipartite and tripartite memory
entropic uncertainty relations, respectively, and in section 6 we prove their op-
timality.

2 Gaussian quantum systems

We consider the Hilbert space of M harmonic oscillators, or M modes of the
electromagnetic radiation, i.e. the irreducible representation of the canonical
commutation relations[

âi, â
†
j

]
= δij Î , i, j = 1, . . . , M . (1)

The operators â†1â1, . . . , â
†
M âM have integer spectrum and commute. Their

joint eigenbasis is the Fock basis {|n1 . . . nM 〉}n1,..., nM∈N. The Hamiltonian

N̂ =

M∑
i=1

â†i âi (2)
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counts the number of excitations, or photons. We define the quadratures

Q̂i =
âi + â†i√

2
, P̂i =

âi − â†i
i
√

2
, i = 1, . . . , M . (3)

We can collect them in the vector

R̂2i−1 = Q̂i , R̂2i = P̂i , i = 1, . . . , M , (4)

and (1) becomes [
R̂i, R̂j

]
= i∆ij Î , i, j = 1, . . . , 2M , (5)

where

∆ =

M⊕
i=1

(
0 1
−1 0

)
(6)

is the symplectic form.

2.1 Quantum Gaussian states

A quantum Gaussian state is a density operator proportional to the exponen-
tial of a quadratic polynomial in the quadratures:

γ̂ =
exp

(
− 1

2

∑2M
i, j=1 hij R̂i R̂j

)
Tr exp

(
− 1

2

∑2M
i, j=1 hij R̂i R̂j

) , (7)

where h is a positive real 2M × 2M matrix. A quantum Gaussian state is
completely identified by its covariance matrix

σij =
1

2
Tr
[(
R̂i R̂j + R̂j R̂i

)
γ̂
]
, i, j = 1, . . . , 2M . (8)

The von Neumann entropy of a quantum Gaussian state is

S =

M∑
i=1

g

(
νi −

1

2

)
, (9)

where

g(x) = (x+ 1) ln (x+ 1)− x lnx , (10)

and ν1, . . . , νM are the symplectic eigenvalues of its covariance matrix σ, i.e.,
the absolute values of the eigenvalues of σ∆−1.
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2.2 Coherent states

The classical phase space associated with aM -mode Gaussian quantum system
is CM , and for any z ∈ CM we define the coherent state

|z〉 = e−
|z|2
2

∞∑
n1, ..., nM=0

zn1
1 . . . znMM√
n1! . . . nM !

|n1 . . . nM 〉 . (11)

Coherent states satisfy the resolution of the identity [17]∫
CM
|z〉〈z| d

2Mz

πM
= Î , (12)

where the integral converges in the weak topology. The POVM associated with
the resolution of the identity (12) is called heterodyne measurement [27].

2.3 The Gaussian quantum-limited amplifier

The M -mode Gaussian quantum-limited amplifier Aκ with amplification pa-
rameter κ ≥ 1 performs a two-mode squeezing on the input state ρ̂ and the
vacuum state of an M -mode ancillary Gaussian system E with ladder opera-
tors ê1, . . . , êM :

Aκ(ρ̂) = TrE

[
Ûκ (ρ̂⊗ |0〉〈0|) Û†κ

]
. (13)

The squeezing unitary operator

Ûκ = exp

(
arccosh

√
κ

M∑
i=1

(
â†i ê
†
i − âi êi

))
(14)

acts on the ladder operators as

Û†κ âi Ûκ =
√
κ âi +

√
κ− 1 ê†i , (15a)

Û†κ êi Ûκ =
√
κ− 1 â†i +

√
κ êi , i = 1, . . . , M . (15b)

The Gaussian quantum-limited amplifier acts on quantum Gaussian states
as follows. Let A and B be Gaussian quantum systems with MA and MB

modes, respectively. Let γ̂AB be the joint quantum Gaussian state on AB
with covariance matrix

σAB =
1

2

(
X Z
ZT Y

)
. (16)

Then, (Aκ ⊗ IB)(γ̂AB) is the quantum Gaussian state with covariance matrix

σ′AB =
1

2

(
κX + (κ− 1) IMA

√
κZ√

κZT Y

)
. (17)
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3 Asymptotic equivalence between heterodyne measurement and
amplifier

In this Section, we extend the asymptotic equivalence between the heterodyne
measurement and the quantum-limited amplifier proven in [9] to the scenario
with quantum memory.

Theorem 1 (heterodyne measurement - amplifier equivalence) Let A
be an M -mode Gaussian quantum system and B a generic quantum system.
For any concave function f : [0, 1] → [0,∞) and for any joint quantum state
ρ̂AB on AB,∫

CM
TrBf (〈z|ρ̂AB |z〉) ≥ lim sup

κ→∞

TrABf
(
κM (Aκ ⊗ IB)(ρ̂AB)

)
κM

. (18)

3.1 Proof of Theorem 1

The proof is based on the following generalization of the Berezin-Lieb inequal-
ity [2] to the scenario with quantum memory.

Theorem 2 (Berezin-Lieb inequality with quantum memory) Let A
be an M -mode Gaussian quantum system and B a generic quantum system.
Then, for any trace-class operator X̂ on AB with 0 ≤ X̂ ≤ ÎAB and any
concave function f : [0, 1]→ [0,∞),∫

CM
TrBf

(
〈z|X̂|z〉

) d2Mz

πM
≥ TrABf

(
X̂
)
. (19)

Proof Let us diagonalize X̂:

X̂ =

∞∑
k=0

xk |ψk〉〈ψk| , 〈ψk|ψl〉 = δkl ∀ k, l ∈ N ,

∞∑
k=0

|ψk〉〈ψk| = ÎAB .

(20)
We have

0 ≤ xk ≤ 1 ∀ k ∈ N ,

∞∑
k=0

xk <∞ . (21)

From the completeness of the |ψk〉 we have for any z ∈ CM

∞∑
k=0

〈z|ψk〉〈ψk|z〉 = 〈z|̂IAB |z〉 = ÎB . (22)

We can then apply Lemma 1 to |φk〉 = 〈z|ψk〉 and get

TrBf
(
〈z|X̂|z〉

)
= TrBf

( ∞∑
k=0

xk 〈z|ψk〉〈ψk|z〉

)
≥
∞∑
k=0

〈ψk|z〉〈z|ψk〉f(xk)

= TrB〈z|f
(
X̂
)
|z〉 . (23)
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Finally, from the completeness relation (12) we have∫
CM

TrBf
(
〈z|X̂|z〉

) d2Mz

πM
≥
∫
CM

TrB〈z|f
(
X̂
)
|z〉 d2Mz

πM
= TrABf

(
X̂
)
.

(24)

From [18], Theorem 9, the map κMAκ is unital, and

0 ≤ κM (Aκ ⊗ IB)(ρ̂AB) ≤ κM (Aκ ⊗ IB)
(
ÎAB

)
= ÎAB . (25)

We can then apply Theorem 2 to X̂ = κM (Aκ ⊗ IB)(ρ̂AB) and get∫
CM

TrBf
(
κM 〈z|(Aκ ⊗ IB)(ρ̂AB)|z〉

) d2Mz

πM
≥ TrABf

(
κM (Aκ ⊗ IB)(ρ̂AB)

)
.

(26)
Since for any z ∈ CM

κM 〈z|(Aκ ⊗ IB)(ρ̂AB)|z〉 = 〈z/
√
κ|ρ̂AB |z/

√
κ〉 (27)

( [9], Lemma 4), (26) becomes∫
CM

TrBf (〈z|ρ̂AB |z〉)
d2Mz

πM
≥ 1

κM
TrABf

(
κM (Aκ ⊗ IB)(ρ̂AB)

)
, (28)

and the claim follows taking the limit κ→∞.

4 Bipartite quantum memory uncertainty relation for the Wehrl
entropy

Theorem 3 (bipartite quantum memory uncertainty relation for the
Wehrl entropy) Let A be an M -mode Gaussian quantum system and B
a generic quantum system. Let ρ̂AB be a joint quantum state on AB such
that its marginal ρ̂A = TrB ρ̂AB has finite average energy, and its marginal
ρ̂B = TrAρ̂AB has finite von Neumann entropy. Let ρ̂ZB be the probability
measure on CM taking values in positive operators on B associated with the
heterodyne measurement on A:

dρ̂ZB(z) = 〈z|ρ̂AB |z〉
d2Mz

πM
, z ∈ CM . (29)

Then, the following bipartite quantum memory uncertainty relation holds:

S(Z|B)ρ̂ZB ≥M ln

(
exp

S(A|B)ρ̂AB
M

+ 1

)
≥ 0 , (30)

where

S(Z|B)ρ̂ZB = S(ρ̂ZB)− S(ρ̂B) (31)
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is the Shannon differential entropy of the outcome Z of the heterodyne mea-
surement performed on A conditioned on the quantum system B, and

S(ρ̂ZB) = −
∫
CM

TrB [〈z|ρ̂AB |z〉 ln〈z|ρ̂AB |z〉]
d2Mz

πM
(32)

is the joint entropy of Z and B.

Remark 1 If B is the trivial system, (30) becomes

S(ρ̂Z) ≥M ln

(
exp

S(ρ̂A)

M
+ 1

)
≥ 0 . (33)

However, the optimal inequality satisfied by the unconditioned Wehrl entropy
is [9]

S(ρ̂Z) ≥M ln

(
g−1

(
S(ρ̂A)

M

)
+ 1

)
+M ≥M , (34)

that is strictly stronger than (33). The presence of the quantum memory then
both changes the form of the optimal inequality and reduces the minimum
uncertainty: while the minimum Wehrl entropy is M , the minimum conditional
Wehrl entropy is 0.

Corollary 1 (entanglement witnessing) Under the hypotheses of Theo-
rem 3, if the quantum state ρ̂AB is separable, the following bipartite quantum
memory uncertainty relation holds:

S(Z|B)ρ̂ZB ≥M ln 2 . (35)

Proof Since ρ̂AB is separable, we have S(A|B)ρ̂AB ≥ 0. The claim then follows
from Theorem 3.

4.1 Proof of Theorem 3

Applying Theorem 1 to f(x) = −x lnx we get

S(ρ̂ZB) ≥ lim sup
κ→∞

(S((Aκ ⊗ IB)(ρ̂AB))−M lnκ) . (36)

Subtracting S(ρ̂B) on both sides we get

S(Z|B)ρ̂ZB ≥ lim sup
κ→∞

(
S(A|B)(Aκ⊗IB)(ρ̂AB) −M lnκ

)
. (37)

From the Entropy Power Inequality with quantum memory [12],

S(A|B)(Aκ⊗IB)(ρ̂AB) ≥M ln

(
κ exp

S(A|B)ρ̂AB
M

+ κ− 1

)
. (38)

We then have

S(Z|B)ρ̂ZB ≥M lim sup
κ→∞

ln

(
exp

S(A|B)ρ̂AB
M

+ 1− 1

κ

)
= M ln

(
exp

S(A|B)ρ̂AB
M

+ 1

)
. (39)
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5 Tripartite quantum memory uncertainty relation for the Wehrl
entropy

Theorem 4 (tripartite quantum memory uncertainty relation for the
Wehrl entropy) Let A be an M -mode Gaussian quantum system, and let B,
C be arbitrary quantum systems. Let ρ̂ABC be a joint quantum state on ABC
such that its marginal ρ̂A = TrBC ρ̂ABC has finite average energy, and its
marginals ρ̂B = TrAC ρ̂ABC and ρ̂C = TrAB ρ̂ABC have finite von Neumann
entropy. Let ρ̂ZBC be the probability measure on CM taking values in positive
operators on BC associated with the heterodyne measurement on A:

dρ̂ZBC(z) = 〈z|ρ̂ABC |z〉
d2Mz

πM
, z ∈ CM . (40)

Then, the following tripartite quantum memory uncertainty relation holds:

S(Z|B)ρ̂ZB + S(Z|C)ρ̂ZC ≥M ln 4 , (41)

where S(Z|B)ρ̂ZB and S(Z|C)ρ̂ZC are defined as in (31).

Proof Let us first prove that we can assume ρ̂ABC pure. Let ρ̂ABCR be a
purification of ρ̂ABC . We have from the data-processing inequality for the
quantum conditional entropy

S(Z|C)ρ̂ZC ≥ S(Z|CR)ρ̂ZCR . (42)

Defining C ′ = CR, we have

S(Z|B)ρ̂ZB + S(Z|C)ρ̂ZC ≥ S(Z|B)ρ̂ZB + S(Z|C ′)ρ̂ZC′ , (43)

and we can then assume ρ̂ABC pure.
For any z ∈ CM , the state

ρ̂BC|Z=z =
〈z|ρ̂ABC |z〉
〈z|ρ̂A|z〉

(44)

is also pure, hence
S(ρ̂B|Z=z) = S(ρ̂C|Z=z) , (45)

and
S(B|Z)ρ̂ZB = S(C|Z)ρ̂ZC . (46)

We then have

S(Z|C)ρ̂ZC = S(C|Z)ρ̂ZC + S(ρ̂Z)− S(ρ̂C) = S(B|Z)ρ̂ZB + S(ρ̂Z)− S(ρ̂AB)

= S(Z|B)ρ̂ZB − S(A|B)ρ̂AB . (47)

Finally, Theorem 3 implies

S(Z|B)ρ̂ZB + S(Z|C)ρ̂ZC = 2S(Z|B)ρ̂ZB − S(A|B)ρ̂AB

≥M ln

(
2 + 2 cosh

S(A|B)ρ̂AB
M

)
≥M ln 4 . (48)
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6 Optimality of the uncertainty relations

Theorem 5 (optimality of the bipartite memory uncertainty rela-
tion) The uncertainty relation with bipartite memory (30) is optimal and the
minimum (30) for S(Z|B) is asymptotically achieved by a suitable sequence of
quantum Gaussian states. Indeed, let A and B be M -mode Gaussian quantum

systems, and for any a ≥ 1 let γ̂
(a)
AB be the tensor product of M two-mode

squeezed pure quantum Gaussian states, with covariance matrix

σ
(a)
AB =

M⊕
i=1

1

2

(
a I2

√
a2 − 1σZ√

a2 − 1σZ a I2

)
, (49)

where

I2 =

(
1 0
0 1

)
, σZ =

(
1 0
0 −1

)
. (50)

Let us fix s ∈ R, and let us define

κ = exp
s

M
+ 1 . (51)

Then, the quantum Gaussian state

γ̂
(s,a)
AB = (Aκ ⊗ IB)

(
γ̂
(a)
AB

)
(52)

satisfies

lim
a→∞

S(A|B)
γ̂
(s,a)
AB

= s , lim
a→∞

S(Z|B)
γ̂
(s,a)
ZB

= M ln
(

exp
s

M
+ 1
)
, (53)

where γ̂
(s,a)
ZB is the probability measure on CM with values in positive operators

on B associated to the heterodyne measurement on A, defined as in (29).

Proof The quantum Gaussian state γ̂
(s,a)
AB has covariance matrix

σ
(s,a)
AB =

M⊕
i=1

1

2

(
(κ a+ κ− 1) I2

√
κ (a2 − 1)σZ√

κ (a2 − 1)σZ a I2

)
, (54)

whose symplectic eigenvalues are

ν+ =
κ a+ κ− a

2
, ν− =

1

2
, (55)

each with multiplicity M . We then have

S(A|B)
γ̂
(s,a)
AB

= M g

(
κ a+ κ− a− 1

2

)
−M g

(
a− 1

2

)
, (56)

and

lim
a→∞

S(A|B)
γ̂
(s,a)
AB

= M ln (κ− 1) = s . (57)
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From [9], Lemma 4, we have for any z ∈ CM

〈z|γ̂(s,a)AB |z〉 = 〈z| (Aκ ⊗ IB)
(
γ̂
(a)
AB

)
|z〉 =

〈z/
√
κ|γ̂(a)AB |z/

√
κ〉

κM
, (58)

where |z〉 is the coherent state on A. Then, since γ̂
(a)
AB is pure, also 〈z|γ̂(s,a)AB |z〉

is pure and
S(B|Z)

γ̂
(s,a)
ZB

= 0 . (59)

We have from [9], Eq. (70)

S
(
γ̂
(s,a)
Z

)
= M ln

κ (a+ 1)

2
+M , (60)

hence

S(Z|B)
γ̂
(s,a)
ZB

= S(B|Z)
γ̂
(s,a)
ZB

+ S
(
γ̂
(s,a)
Z

)
− S

(
γ̂
(s,a)
B

)
= M ln

κ (a+ 1)

2
+M −M g

(
a− 1

2

)
. (61)

Finally,

lim
a→∞

S(Z|B)
γ̂
(s,a)
ZB

= M lnκ = M ln
(

exp
s

M
+ 1
)
. (62)

Theorem 6 (optimality of the tripartite memory uncertainty rela-
tion) The uncertainty relation with tripartite memory (41) is optimal and
the value M ln 4 for S(Z|A) +S(Z|B) is asymptotically achieved by a suitable

sequence of quantum Gaussian states. Indeed, for any a ≥ 1 let γ̂
(0,a)
ABC be the

purification of the quantum Gaussian state γ̂
(0,a)
AB defined in (52). We then

have
lim
a→∞

(
S(Z|B)

γ̂
(0,a)
ZB

+ S(Z|C)
γ̂
(0,a)
ZC

)
= M ln 4 . (63)

Proof From Theorem 5 we have

lim
a→∞

S(A|B)
γ̂
(0,a)
AB

= 0 , lim
a→∞

S(Z|B)
γ̂
(0,a)
ZB

= M ln 2 . (64)

We then have from (48)

lim
a→∞

(
S(Z|B)

γ̂
(0,a)
ZB

+ S(Z|C)
γ̂
(0,a)
ZC

)
= lim
a→∞

(
2S(Z|B)

γ̂
(0,a)
ZB

− S(A|B)
γ̂
(0,a)
AB

)
= M ln 4 . (65)
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A

Lemma 1 (Jensen’s trace inequality) Let us consider the operator

Â =
∞∑

k=0

ak |φk〉〈φk| , 0 ≤ ak ≤ 1 ∀ k ∈ N ,
∞∑

k=0

ak <∞ , (66)

where the vectors |φk〉 form a resolution of the identity:

∞∑
k=0

|φk〉〈φk| = Î . (67)

Then, for any concave function f : [0, 1]→ [0,∞),

Tr f
(
Â
)
≥

∞∑
k=0

f(ak) 〈φk|φk〉 . (68)

Proof From (67) we get
〈φk|φk〉 ≤ 1 ∀ k ∈ N . (69)

We then have

Tr Â =
∞∑

k=0

ak 〈φk|φk〉 ≤
∞∑

k=0

ak <∞ . (70)

Â has then discrete spectrum, and we can diagonalize it:

Â =

∞∑
l=0

λl |vl〉〈vl| , 〈vk|vl〉 = δkl ∀ k, l ∈ N ,

∞∑
l=0

|vl〉〈vl| = Î . (71)

From the completeness of the |φk〉, for any l ∈ N

∞∑
k=0

|〈vl|φk〉|2 = 〈vl|vl〉 = 1 , (72)

hence |〈vl|φk〉|2 is a probability distribution on N. We then have from Jensen’s inequality

Tr f
(
Â
)

=

∞∑
l=0

f(λl) =

∞∑
l=0

f

( ∞∑
k=0

|〈vl|φk〉|2ak

)
≥

∞∑
k, l=0

|〈vl|φk〉|2 f(ak)

=
∞∑

k=0

〈φk|φk〉 f(ak) , (73)

where we have used that for the completeness of the |vl〉, for any k ∈ N

∞∑
l=0

|〈vl|φk〉|2 = 〈φk|φk〉 . (74)
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28. Schrödinger, E.: Der stetige übergang von der mikro-zur makromechanik. Naturwis-
senschaften 14(28), 664–666 (1926)

29. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quan-
tum cryptography without switching. Physical review letters 93(17), 170,504 (2004)

30. Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H.,
Lloyd, S.: Gaussian quantum information. Reviews of Modern Physics 84(2), 621 (2012)

31. Wehrl, A.: General properties of entropy. Reviews of Modern Physics 50(2), 221 (1978)
32. Wehrl, A.: On the relation between classical and quantum-mechanical entropy. Reports

on Mathematical Physics 16(3), 353–358 (1979)


	Copertina_postprint_IRIS_UNIBO
	1709.04921
	1 Introduction
	2 Gaussian quantum systems
	3 Asymptotic equivalence between heterodyne measurement and amplifier
	4 Bipartite quantum memory uncertainty relation for the Wehrl entropy
	5 Tripartite quantum memory uncertainty relation for the Wehrl entropy
	6 Optimality of the uncertainty relations
	A 


