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Abstract General Defocusing Particle Tracking

(GDPT) is a single-camera, three-dimensional particle

tracking method that determines the particle depth

positions from the defocusing patterns of the corre-

sponding particle images. GDPT relies on a reference

set of experimental particle images which is used to

predict the depth position of measured particle images

of similar shape. While several implementations of the

method are possible, its accuracy is ultimately limited

by some intrinsic properties of the acquired data, such

as the signal-to-noise ratio, the particle concentration,

as well as the characteristics of the defocusing patterns.

GDPT has been applied in different fields by different

research groups, however, a deeper description and

analysis of the method fundamentals has hitherto

not been available. In this work, we first identity
the fundamental elements that characterize a GDPT

measurement. Afterwards, we present a standardized

framework based on synthetic images to assess the

performance of GDPT implementations in terms of

measurement uncertainty and relative number of mea-

sured particles. Finally, we provide guidelines to assess

the uncertainty of experimental GDPT measurements,

where true values are not accessible and additional
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image aberrations can lead to bias errors. The data

were processed using DefocusTracker, an open-source

GDPT software. The datasets were created using the

synthetic image generator MicroSIG and have been

shared in a freely-accessible repository.
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1 Introduction

Measurement methods based on the imaging of tracer

particles in a flow are standard tools in experimen-

tal fluid mechanics. Probably the most representative

method is the the Particle Image Velocimetry (PIV),

introduced in the mid-1980s, which in its basic con-
figuration allows to measure a two-dimensional, two-

component (2D2C) flow field by looking at the dis-

placement of tracer particles illuminated by a thin laser

sheet [1, 35]. In the following years, also thanks to the

improvement of digital cameras, computers, and im-

age analysis software, a great variety of new techniques

derived by PIV has come out, allowing time-resolved,

3D3C measurements, at large or microscopic scale. A

good overview can be found in the reference textbook

by Raffel et al. [23]. When the displacements of indi-

vidual particles are measured, rather than the aver-

age particle displacement in interrogation windows, the

method is more properly referred to as Particle Track-

ing Velocimetry (PTV).

Methods derived from PIV or PTV are lately be-

coming more and more important, not only in ex-

perimental fluid mechanics, but also in other disci-

plines such as medicine, biology, or bio-engineering,

in which the experimental characterization of com-

plex fluidic systems, like blood vessels or biochemi-
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cal microfluidic platforms, is crucial. In this domain,

a major role is played by single-camera, 3D PTV

methods, which are needed in environments where

the flow is three-dimensional and only one optical ac-

cess, typically through a microscope objective, is avail-

able [4, 13, 26, 28, 31]. In the past years, the devel-

opment of single-camera, 3D particle tracking methods

has become a research field on its own [6]. The ma-

jor challenge here is to obtain the depth information

from two-dimensional images of particles. Several prin-

ciples have been proposed to solve this problem, such

as holography [16], light-field cameras [9, 30], or image

defocusing [3, 8, 14, 21, 27, 34, 36, 37]. Defocusing is a

particularly attractive approach, since it does not nec-

essarily require the implementation of special optics or

cameras. The main idea is to use optical systems with

small depth of field, where the degree of defocusing of

the particle images is related to the particles’ depth

positions.

A large variety of 3D particle tracking methods re-

lying on defocusing has been proposed. A first notable

implementation was the Defocusing Digital PIV, where

a three-pinhole mask was used to more efficiently read-

out the defocusing information [21, 34]. Other research

groups looked at the changes of the radial intensity pro-

files of axisymmetric particle images [2, 14, 37]. Another

method is the Astigmatic PTV, where an astigmatic

aberration, introduced by a cylindrical lens, is used to

obtain particle image shapes with a characteristic el-

liptical shape directly related to their depth position

[8, 27].

All these methods share the same principle: The

particle image changes shape in a systematic fashion

depending on the particle’s depth position. This prin-

ciple can be generalized to any optics or image type,

by constructing a lookup table that maps the particle

image shapes with the corresponding depth positions.

This approach was introduced by Barnkob et al. [3]

and is referred to as the General Defocusing Particle

Tracking (GDPT). The same concept was developed

independently by Taute et al. [31] to track the 3D mo-

tion of bacteria using a standard phase-contrast mi-

croscope. Both implementations by Barnkob et al. and

Taute et al. used the normalized cross-correlation for

comparing the target images with the images in the

lookup table; however, different image comparison ap-

proaches can be used, and neural networks and artificial

intelligence are expected to play a significant role in the

future [17, 18].

GDPT has been applied in different fields and by

different research groups [4, 5, 22, 26, 32]. However,

the description of GDPT is limited to the seminal pa-

pers in Refs. 3 and 31, and there is a need for a more

thorough definition and analysis of the fundamental el-

ements characterizing a GDPT measurement. This step

is crucial for a deeper understanding of the method and

for future developments and improvements. Moreover,

to be able to compare different GDPT algorithms and

implementations, standardized assessment schemes and

a database of reference images must be established,

in analogy to what is already available for PTV or

PIV [10]. Consequently, the objective of this work is

to fill this gap and provide the basis for further under-

standing and development of the GDPT method.

In Section 2 we identify the fundamental elements

that characterize a GDPT measurement and provide

a standardized scheme to assess its uncertainty. Fol-

lowing, in Section 3 we study the uncertainty of the

method as a function of image noise and particle im-

age density using synthetic images. Finally, in Sec-

tion 4 we provide guidelines to assess the uncertainty

of GDPT measurements in experimental cases where

bias errors are present and the true values are not ac-

cessible. The synthetic datasets used in this work are

presented in Appendix A and are freely-available to the

research community. The datasets are analyzed using

DefocusTracker, an open-source GDPT implementation

described in Appendix B.

2 Fundamentals of GDPT

The fundamental principles of a GDPT analysis are

outlined in Fig. 1 and involve (a) the physical system

under investigation, (b) a single-camera acquisition ap-

proach, (c) an image processing approach, and (d) the

evaluation of the measurement results. The list of sym-

bols and parameters used in this section is given in

Table 1.

2.1 Physical system

The purpose of a 3D particle tracking system is to lo-

cate the physical coordinates

xi, yi, zi, for i = 1, . . . , Np, (1)

of a number Np of tracer particles inside a measurement

volume V and to track their displacement in time. The

tracking problem will not be discussed here; in GDPT

analysis, the particle concentration is relatively low and

conventional tracking algorithms can be used. The fun-

damental analysis in this work concerns only the prob-

lem of particle location determination in GDPT. As

we consider single-camera acquisition, it is convenient

to define the reference frame with two in-plane coordi-

nates, x and y, perpendicular to the optical axis of the
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Fig. 1 Fundamentals of a GDPT analysis. (a) The analyzed system consists of a measurement volume V = l × w × h filled
with Np particles. (b) The particles in the volume are recorded on one image using a single-camera acquisition approach. As
a consequence of image defocusing, the particle images have different shapes according to their depth positions. (c) The depth
position of a target particle image is identified using a reference set of calibration images that maps the particle image shapes
as a function of their depth position. A similarity function is used to match the target particle image with the most similar
calibration image. (d) The result of a GDPT measurement is a set of measured particle coordinates (x′,y′,z′). The accuracy
of the measurement result is quantified by the respective estimated uncertainties (σx,σy,σz).

camera objective, and one depth coordinate, z, parallel

to the optical axis (Fig. 1). The measurement volume

can be approximated by a rectangular cuboid with di-

mensions l×w×h, being h the dimension in the depth
direction. The maximum size in the in-plane direction

(l×w) is set by the field of view of the imaging system.

The maximum depth h that can be achieved depends

on the imaging system, the particle size, and the illumi-

nation intensity, and corresponds to the region where

the signal of defocused particle images is strong enough

to be processed by the image analysis method.

2.2 Acquisition (GDPT)

When using single-camera systems, the tracer particles

in the measurement volume are recorded on a single

image. For a given optical system, we can define a par-

ticle image function Ic(X,Y, x, y, z) which provides the

image of one particle depending on its position in the

physical space. Ic can be seen as a point spread function

defined for one particle, where X and Y are the coordi-

nates in the image space, and where we impose that the

center of the particle image is located at (X,Y ) = (0, 0)

for any x, y, and z.

We consider an idealized optical system with no dis-

tortions, and where Ic is independent of the in-plane

coordinates (Fig. 2(a))

Ic(X,Y, x, y, z) ≈ Ic(X,Y, z). (2)

Under this approximation, we can represent a general

image I(X,Y ), containing a total number Np of parti-

cles, as

I(X,Y ) =
∑
i

Ic(X−Mxi, Y −Myi, zi)+I0(X,Y ), (3)

where M is the magnification of the optical system and

where I0 is a term that accounts for background inten-

sity and thermal noise of the camera.

With respect to the final result of a GDPT evalua-

tion, two primary parameters must be considered:

– Signal-to-noise ratio (SNR). Following a con-

vention used in image analysis, we define the SNR

as the ratio between the mean particle image signal
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Fig. 2 (a) The particle image
function Ic describe the image
of one particle as a function of
its depth position. (b) The SNR
and particle image area Ap de-
pends on the particle depth posi-
tion. (c-d) Given the same num-
ber of particle per pixels (ppp),
the number of overlapping par-
ticles is strongly affected by the
particle image size.

µp and the standard deviation of the noise σI

SNR =
µp

σI
. (4)

Practically, σI can be estimated as the standard de-

viation of the image intensity in a region without

particles, and µp can be calculated as the average

intensity of the particle image minus the average

background intensity. We can define the boundary

of a particle image by setting a threshold, as shown

in Fig. 2(b).

– Particle image density NS. This parameter is

often given in particles per pixels (ppp). This ap-

proach, however, does not consider the particle im-

age size, which is an important factor in defocusing

applications with respect to overlapping particles,

as shown in Fig. 2(c-d). For GDPT analysis, it is

more convenient to consider the ratio between the

sum of the particle image areas A
(i)
p and full image

area AI [11]

NS =
1

AI

∑
i

A(i)
p ≈ Np

Āp

AI
. (5)

Here, Āp is the average of the particle image areas,

which can be estimated for instance from the cali-

bration stack. One can easily translate the NS value

in ppp, by dividing it with Āp. It should be noted

that this parameter is equivalent to the source den-

sity encountered in classical PIV literature [1, 33].

In real optical systems, the approximation in Eq. (2)

may not hold as a consequence of optical aberrations.

The most common aberrations which are relevant for

GDPT applications are:

– Parallax or perspective error. The magnifica-

tion is not constant across the measurement depth,

i.e. objects closer to the lens appear larger on the

image. This error is typically small and can be ne-

glected for microscope objective lenses.

– Field curvature. The focal plane is not flat, there-

fore the measured z position must be corrected de-

pending on the particle in-plane position. This effect

is relevant in GDPT applications since a field cur-

vature of a few micrometers can have a significant

impact in the measurement.

– Distortion. The particle images are distorted as

they move away from the image center. This error

is difficult to correct in GDPT analysis based on a

single calibration stack but is normally not strong

in conventional optical setups.

More details about practical strategies to deal with op-

tical aberrations and bias errors are discussed in Sec-

tion 4.

2.3 Processing (GDPT)

The aim of a GDPT processing is to determine the 3D

particle positions from the defocused particle images.

The in-plane position can be obtained using one of the

many approaches developed for 2D PTV [15, 19, 20,

23]. The out-of-plane component is determined using a

reference set of calibration images and must contain the

following elements:

1. A discrete reference set of calibration images, re-

ferred to as the calibration stack. This can be seen

as a discrete sampling at known positions of the

particle image function Ic

I(k)c (X,Y ) =Ic(X,Y, zk) + I0(X,Y )

with k = 1, 2, ..., Ncal. (6)

I
(k)
c is typically obtained experimentally by taking

subsequent images of a reference particle which is

displaced at known positions, for instance using a

motorized focusing stage [3].

2. A function or procedure to identify target particle

images I
(i)
t inside the image I. This normally relies

on segmentation algorithms that can be applied on

raw or filtered/pre-processed images.

3. A function or procedure to quantify the similarity

between different images. This is used to rank the

calibration images in I
(k)
c with respect to their sim-

ilarity to a given target particle image I
(i)
t .
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Table 1 List of symbols and parameters.

Symbol Description

AI Image area
Ap Particle image area
Cm Normalized cross-correlation maximum
dmed Median filter size
I(X,Y ) Image
I0(X,Y ) Image background
Ic(X,Y, z) Particle image function

I
(k)
c (X,Y ) Calibration image stack

I
(i)
t (X,Y ) Target particle image
M Magnification
µp Mean particle image signal
Ncal Number of calibration images
Np Number of particles per image
N ′p Number of meas. particles per image
NS Particle image density (source density)
N∗S Critical particle image density
N ′S Measured particle image density
σx,y Meas. uncertainty, in-plane coords.
σδx,y(z) Local meas. uncertainty, in-plane coords.
σz Meas. uncertainty, depth coord.
σδz(z) Local meas. uncertainty, depth coord.
σI Image noise level (standard deviation)
φ Relative num. of meas. particles
φδ(z) Local relative num. of meas. particles
SNR Image signal-to-noise ratio
S / S(·, ·) Similarity parameter / function
V = l w h Measurement volume
x, y, z Coordinates in physical space
xi, yi, zi Particle coordinates
x′i, y

′
i, z
′
i Measured particle coordinates

X, Y Coordinates in image space

4. A function or procedure to estimate the final depth

position z′i of the target particle from the similarity

values between I
(i)
t and I

(k)
c . It should be noted that

a simple identification of the most similar image in

the stack would produce a discrete output. Inter-

polation schemes are needed to obtain a continuous

output with a “sub-image” resolution, in analogy

with what is typically done in digital PIV evalua-

tions to obtain sub-pixel resolution.

More generally, the determination of the depth po-

sition in GDPT can be seen as a supervised learning

problem, where the calibration stack is the training set

used to calibrate a prediction algorithm. The scheme of

the prediction algorithm remains the same but it can be

trained on different setups just using different calibra-

tion stacks. We used in this paper the implementation

based on the normalized cross-correlation proposed in

Ref. 3, but other approaches using neural networks or

more sophisticated classification schemes would be nat-

ural improvements of the method.

2.4 Measurement results

The result of a GDPT evaluation on a single image,

containing a total number Np of particles, is a set of

measured particle coordinates x′i, y
′
i, z
′
i, where

z′i =

{
zi + εzi if measured

undefined otherwise
, (7)

where εzi is the measurement error and the same def-

inition applies for the other coordinates. To assess the

performance of a GDPT measurement, the following

parameters must be considered:

1. The measurement uncertainty in the particle posi-

tion determination.

2. The relative number of measured particles.

3. The depth of the measurement volume.

For a fair assessment of a GDPT measurement, all

these three parameters should be considered, since they

are interconnected among each other. For instance, a

stricter validation criterion can reduce the error but at

the expenses of a smaller number of measured particles.

– Measurement uncertainty. When the true parti-

cle position is known, as in the case of synthetic im-

ages, the measurement uncertainty in the determi-

nation of one coordinate is normally given in terms

of the root-mean-square of the error

σz =

√∑′
i(z
′
i − zi)2∑′
i 1

, (8)

where
∑′
i indicates summation over the measured

values and
∑′
i 1 is equal to the total number of mea-

sured particles N ′p. Since the particle images have

different shapes, a non-uniform uncertainty along z

is expected and it is useful to define a local uncer-

tainty

σδz(z) =

√∑′
i(z
′
i − zi)2 θδ(z, zi)∑′
i θ
δ(z, zi)

, (9)

with

θδ(z, zi) =

{
1 for z − δ < zi < z + δ

0 otherwise
. (10)

Eq. (9) indicates the uncertainty associated to a bin

centered at z and having a width of 2δ. The same ap-

plies for the uncertainty of the in-plane coordinates

x and y. For particle images with rotational sym-

metry, we can assume σx = σy. Note that Eqs. (8)

and (9) give the total error, since the true values zi
are used. If the uncertainty is calculated around a
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Fig. 3 Concept of similarity
and discrete sampling of the par-
ticle image function. (a) Simi-
larity S between the two images
at coordinates z1 (blue) and z2
(red) and the full particle im-
age function along z. (b) Illus-
tration of self-similarity, the av-
erage similarity between parti-
cle images at identical height but
different in-plane positions, as a
function of image subpixel dis-
placements and noise. (c) Ex-
amples of the calibration stack

I
(k)
c , the discrete representation

of the particle image function Ic.
(d) Similarity between neighbor
images in calibration stacks of
Ncal = 15, 50, or 500 calibration
images.

mean value, as in case of experimental images, the

uncertainty does not take into account bias errors.

A discussion about how to apply these formulas to

experimental images is presented in Section 4.

– Relative number of measured particles. This is

defined as the ratio between the number of measured

particles and the total number of particles in one

image

φ =

∑′
i 1∑
i 1

=
N ′p
Np

. (11)

Also in this case it is useful to define a local φ defined

as

φδ(z) =

∑′
i θ
δ(z, zi)∑

i θ
δ(z, zi)

. (12)

The relative number of measured particles φ tends

to decrease as the particle concentration is in-

creased, due to the more frequent occurrence of

overlapping particle images. For a given GDPT im-

plementation, there will be a critical particle image

density N∗S above which the number of measured

particles N ′p starts to decrease. This sets the max-

imum possible seeding density that should be used

for that implementation. Furthermore, it should be

noted that φ is not directly accessible in experimen-

tal images, where only the number of measured par-

ticles N ′p is available.

– Measurement volume. The choice of the depth h

of the measurement volume affects the total number

of particles Np to be measured and, consequently,

the number of overlapping particles and the mea-

surement uncertainty. For instance, a large depth h

can include highly-defocused particle images, which

have a smaller SNR and are more difficult to detect.

To fairly estimate the uncertainty of a given imple-

mentation, the measurement depth on which it is

applied must be indicated. In GDPT systems, h is

practically set by the lowest and highest z coordi-

nate in the stack.

2.5 Concept of similarity

The calibration stack I
(k)
c represents a discrete sam-

pling of the particle image function across z. The depth

position of a particle is obtained by comparing a target

particle image I
(i)
t with the images in the stack using

a similarity function S, usually normalized between 0

and 1, with 1 being the perfect match (Fig. 3(a)). In an

ideal case, the measurement resolution can be increased

indefinitely by increasing the number of images Ncal in

the stack (Fig. 3(c)). In a real case, however, beyond a

certain Ncal the difference in shape between two neigh-

bor images will be smaller than the difference induced

by the image noise and in-plane image discretization

(i.e. the light-intensity distribution is discretized into

pixels).

This concept is illustrated in Fig. 3(b), where the

self-similarity, i.e. the average S between particle im-

ages at the same height but different in-plane positions,

is shown as a function of z. Even in the case with no

noise (blue line), S is not unity due to tiny differences

induced by sub-pixel displacements of the particle im-

ages. By adding noise (red line, σI = 25), S decreases

significantly, especially in regions where the SNR is

lower. A way to check whether a calibration stack is

over-sampling Ic, is to calculate the similarity between
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Fig. 4 GDPT uncertainties as
a function of calibration sam-
pling and image signal-to-noise
ratios [Dataset I, Fig. 8(a)].
(a,c,e) Local depth coordinate
uncertainty σδz(z) as a function
of the depth coordinate z for
(a) noise-less images (σI = 0)
and varying number of calibra-
tion images Ncal, (c) fixed num-
ber of calibration images Ncal =
50 and varying noise level σI ,
and (e) fixed number of calibra-
tion images Ncal = 50, fixed
noise level σI = 50, and for
the application of different me-
dian filters dmed to the im-
ages prior to the GDPT analy-
sis. (b,d,f) Depth coordinate un-
certainty σz as a function of
the number of calibration images
Ncal for (b) noise-less images
σI = 0 with and without sub-
image interpolation, (d) varying
noise level σI , and for (f) fixed
noise level σI = 50 and use of
different image median filtering
dmed.

neighbor images in the stack, i.e., S(I
(k)
c , I

(k+1)
c ). In the

example in Fig. 3(d), the stack with Ncal = 500 (orange

line) is clearly over-sampled, since it coincides with the

self-similarity curve in Fig. 3(b). Further refining the

stack will not bring any advantage. For Ncal = 15 (blue

line), the S between neighbor images is small, showing

that the stack under-samples the particle image func-

tion. The stack with Ncal = 50 (red line) is a better

compromise, with a slightly under-sampled region for

z/h < 0.5 and over-sampled above.

3 Standardized uncertainty assessment using

synthetic images

For a complete assessment of the effect of Ncal, SNR,

and NS on the final results, it is necessary to look at the

final error in the z determination, which is also affected

by the choice of the similarity function and the practical

implementation of the method (e.g. algorithms used,

interpolation schemes, and smoothing). In this section,

we present a systematic procedure based on synthetic

images to address these aspects. Guidelines for the un-

certainty assessment in experimental cases is provided

in the next section.

The particle images are generated using Mi-

croSIG [24]. We consider here three datasets to analyze,

respectively, the effect of noise, particle concentration,

and background intensity gradients. The datasets are

freely available1, more details are given in Appendix A.

The datasets are analyzed using DefocusTracker which

is an open-source GDPT implementation. As similarity

parameter, DefocusTracker uses Cm, the maximum of

the normalized cross-correlation between two images;

for more details, see Appendix B.

3.1 Calibration sampling and signal-to-noise ratio

In this section we evaluate the effect, on the depth co-

ordinate determination, of the number of calibration

images and sub-image interpolation along with the in-

fluence of image noise. More specifically, we analyze

Dataset I (Fig. 8(a) in Appendix A) where particle im-

ages do not overlap; thus all the particles are detected,

i.e., N ′p = Np.

To isolate the different effects, we first analyze im-

ages with no noise, i.e. σI = 0. The results are shown in

Fig. 4(a), where we plot the local depth coordinate un-

certainty σδz(z) as a function of z along with a selection

of the corresponding particle image shapes. The results

are shown when using Ncal = 15, 50, or 500 calibration

images with (points) and without (open circles) the use

of sub-image interpolation. It may be noted that the

defocused particle images have a sharp ring shape be-

low the focal position (low z) and blurred Gaussian-like

1 The datasets can be downloaded through
https://defocustracking.com/.

https://defocustracking.com/
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Fig. 5 GDPT uncertainties as
a function of particle image den-
sity and overlapping particle im-
ages [Dataset II, Fig. 8(b)]. (a)
The local depth coordinate un-
certainty σδz(z), (c) the local
in-plane coordinate uncertainty
σδx,y(z), and (e) the local rela-
tive number of measured parti-
cles per image φδ(z) as a func-
tion of the depth coordinate
z for particle image densities
NS = 0.05 (squares) and NS =
0.59 (circles). (b,d) The uncer-
tainties σz and σx,y, and (f)
the relative number of measured
particles per image φ (blue col-
ors) and measured particle im-
age density N ′S (orange colors)
as a function of the particle im-
age density NS.

shape above (high z). This is due to the spherical aber-

ration which is present in many optical systems and

included in MicroSIG [24]. Detecting the shape differ-

ences for blurred particle is more difficult, which ex-

plains the larger uncertainty in regions with z/h > 0.6.

Generally, increasing Ncal leads to a decreasing lo-

cal uncertainty σδz , but e.g. for z/h ∼ 0.6, the use of a

sub-image detection scheme can lead to better results

for lower Ncal which is seen by a better performance

for Ncal = 20 (blue lines) than for Ncal = 50 (black

lines) or Ncal = 500 (red lines). The use of a sub-image

interpolation scheme allows for a continuous z determi-

nation and does in general yield lower uncertainties up

to a certain value of Ncal. This is shown in Fig. 4(b),

where we show the depth coordinate uncertainty σz as

a function of Ncal. As Ncal approaches 200, the uncer-

tainty, with and without the use of a sub-image scheme,

converges to the same value.

We now fix the number of images in the calibration

stack to Ncal = 50 and analyze images with increas-

ing noise levels. The results are presented in Fig. 4(c).

Not surprisingly, the local depth coordinate uncertainty

σδz increases with a decreasing SNR. As explained be-

fore, the local uncertainty for larger values of z is larger

due to the blurred Gaussian-like shape of the particle

images. The effect of noise on the local uncertainty nat-

urally propagates into the total uncertainty as seen in

Fig. 4(d). Clearly, as the noise level increases, a larger

Ncal is needed in order to reach a converging uncer-

tainty σz.

Lastly, to explore the reduction of noise through im-

age pre-processing, we now fix the noise level to σI = 50

and apply different median filters to the images. We il-

lustrate this in Fig. 4(e) where we apply a median filter

of dmed × dmed (with dmed equal to 5 or 7) to both the

calibration and the measurement images. The median

filter decreases the impact of noise in the local uncer-

tainty σδz , in some region even as much as one order

of magnitude. Evidently, the filter size has an optimum

between averaging out noise and actual particle image

features — this is seen by the presence of some slightly

lower values of σδz for dmed = 5 than for dmed = 7. This

is confirmed in Fig. 4(f), where the same trend is seen

for the average uncertainty σz.

3.2 Particle image overlap and particle concentration

After investigating the effect of noise and Ncal, we now

analyze the more experimentally-realistic case where

the presence of overlapping particle images is possible.

In particular we use the noise-less (σI = 0) Dataset II

(Fig. 8(b)) to assess the GDPT uncertainties as a func-

tion of increasing particle concentration while keeping

the number of calibration images fixed (Ncal = 50). We

consider here particle image densities up to NS = 0.59,
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Fig. 6 GDPT uncertainties as
a function of variations in
image background intensities
[Dataset III, Fig. 8(c)]. (a) The
local depth-coordinate uncer-
tainty σδz(z) and (c) the local rel-
ative number of measured parti-
cles per image φδ(z) as a func-
tion of the depth coordinate z
for an applied linear background
intensity gradient α = 0 (blue
lines), α = 5 (red colors), and
α = 10 (yellow colors). (b) The
depth-coordinate uncertainty σz
and (d) the relative number of
measured particles per image φ
as a function of α.

corresponding to 0.001 particles per pixels. As the par-

ticle concentration increases, the number of overlap-

ping particle images increases concurrently. This leads

to lower similarities Cm between target particle im-

ages and calibration images, which furthermore leads to

larger errors in the determination of the z-coordinates.

By setting a higher threshold on the accepted values of

Cm, poorly-determined z-coordinates can be removed

to increase the determination accuracy but with the

cost of lowering the number of measured particles N ′p.

In Figs. 5(a), 5(c), and 5(e), we show the local un-

certainties σδz and σδx,y, and the local relative number of

measured particles φδ for two particle image densities

of NS = 0.05 (squares) and NS = 0.59 (circles), re-
spectively. As NS is increased from 0.05 to 0.59, the

local errors σδz and σδx,y are consistently increasing,

while the local relative number of measured particles

φδ is consistently decreasing. As the threshold on Cm

is increased, both σδz , σ
δ
x,y, and φδ are decreasing as

expected. The same trend is confirmed in Figs. 5(b),

5(d), and 5(f), where the uncertainties σz and σx,y, and

the relative number of measured particles φ are com-

puted as a function of the particle image density NS and

Cm = 0.5, 0.8, and 0.9, respectively. In addition, we see

in Fig. 5(f) that as NS increases, the measured par-

ticle image density N ′S (orange colors) reaches a peak,

e.g., for NS ≈ 0.24 when Cm = 0.9. In fact, as the parti-

cle concentration is increased, the number of particles in

the image increases but so does the number of outliers

or not-detectable particle images due to the increased

number of overlapping particle images that cannot be

processed. This can be seen as a critical value, denoted

here as N∗S , that sets the maximum particle image den-

sity that can be used with those settings.

3.3 Variations in image intensity

Experimental measurement images are prone to vari-

ations in image light intensity, for example, if the im-

age illumination is inhomogeneous over the image plane

or if the illumination amplitude changes over time.

This can eventually affect the accuracy of defocusing-

based particle detection, but depends on the type of

image intensity variation and applied detection algo-

rithm. In this section, we assess the GDPT measure-

ment uncertainties when analyzing measurement im-

ages with an applied linear light intensity gradient of in-

creasing steepness. More specifically, we use Dataset III

(Fig. 8(c)), which is based on the images in Dataset II

for NS = 0.30 and to which an intensity gradient α has
been applied.

Figures 6(a) and 6(c) show the local depth coordi-

nate uncertainty σδz(z) and the local relative number of

measured particles φδ(z). For small α, the changes are

small as expected from the fact that the normalized

cross-correlation is insensitive to changes in intensity

level. However, as α increases, the intensity gradient be-

comes comparable to the intensities of the particle im-

age features. This affects the uncertainty and the num-

ber of measured particles specially in regions where the

SNR is low (outside the green area in Fig. 6(a) and (c)).

Overall, the effect of intensity gradient is small in the

region with large SNR, as shown in Fig. 6(b) and (d).

Note also the previously discussed connection between

the uncertainty and number of measured particles, e.g.,

without considering the latter, one would erroneously

observe in Fig. 6(b) a better performance for α = 10

than for α = 5.



10 Rune Barnkob, Massimiliano Rossi

0 0.5 1

0

0.1

0.2

0.3

0 0.5 1

0

0.01

0.02
Fig. 7 Example of uncertainty assess-
ment in experimental GDPT measure-
ment of a Poiseuille flow in a mi-
crofluidic channel of rectangular cross-
section of 380 µm × 100 µm. Through
the ansatz of zero cross-sectional ve-
locity, we can estimate the local mea-
surement uncertainties (a) σδx,y of the

in-plane coordinates and (b) σδz of the
depth coordinate.

4 Uncertainty assessment on experimental

images

The fundamental uncertainty assessment presented in

this work is only perfectly-applicable to synthetic im-

ages. When moving to experimental images, the true

values are obviously unknown and additional factors

can bias the measurement result. In this section, we

briefly discuss the most relevant sources of bias error

that should be taken into account and provide guide-

lines about how to estimate the uncertainty on experi-

mental images.

4.1 Refractive index

A common way to obtain the calibration stack experi-

mentally is to use one particle at a fixed position (e.g.

stuck to a wall) and to move the objective lens at dif-

ferent depth positions. The reference z coordinates are

obtained from the reading of the scanning device. Dur-

ing the measurement, however, the situation is reversed:

The objective lens is fixed and the particles move. This

has consequences if the immersion medium of the lens is
different from the medium where the particles are dis-

persed, and a correction coefficient must be multiplied

to the measured z. In most applications, this coefficient

is equal to the ratio between the refractive index coef-

ficient of the fluid (typically water) and the one of the

immersion medium of the lens (typically air) [29].

4.2 Aberrations

In real applications, the particle image function Ic is not

the same across in-plane positions due to optical aber-

rations. The more straightforward way to address this

problem would be to take multiple calibration stacks for

different in-plane positions; however, this approach is

difficult to implement. First, the size of the calibration

stack would increase considerably and so the time nec-

essary for the calibration (a particle must be scanned

in different positions). Second, higher complexity and

computational costs would be needed to navigate the

different calibration stacks and an interpolation scheme

must be implemented to cover the entire area of the

sensor (only a discrete set of in-plane positions can be

taken). Future implementations of the GDPT method

using neural network might be able to tackle this task.

In many practically applications, however, the aber-

rations are weak and a single calibration stack (typically

obtained in the center of the image) can be used in the

whole image area [4, 22, 28]. Additional bias errors due

to field curvature or perspective errors can be corrected

using a reference experiment, for instance, using a fixed

array of tracer particles on a flat plane perpendicular to

the optical axis and scan it at different depth positions.

In microfluidics applications, where microscope ob-

jectives are used, the perspective error is typically neg-

ligible, but the field curvature can give errors of few mi-

crons [7], which might be relevant at those scales. If the

measurements are performed on a straight microchan-

nel, one practical way to correct this bias is by a direct

measurement of a Poiseuille flow inside the duct. In this

case, we know that the streamlines in such flow must

be straight lines, and we can use this information to

determine and correct the field curvature.

4.3 Uncertainty estimation

To estimate the measurement uncertainty of an exper-

imental GDPT setup, we can use Eqs. (8) and (9), but

we need to estimate the unknown true values. A practi-

cal approach can be to measure particle displacements

in flows having zero velocity in one direction. We can

estimate then the displacement uncertainty, consider-

ing 0 as the true value. Modeling the error as normally

distributed, the positioning uncertainty will be equal to

the displacement error divided by
√

2. Of course, par-

ticular care should be taken with reducing as much as

possible the bias errors and eliminating false positive

with an appropriate outlier rejection scheme. Together

with the uncertainty, it is important to indicate the

depth h of the measurement volume. When it is pos-

sible to estimate NS, for instance, if the experimental

particle concentration is known, the relative number of
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Table 2 Summary of the performance on Dataset I (first
row) and II (second and third rows) using DefocusTracker,
with median filter set to dmed = 5.

Cm Ncal σI N∗S σx,y (px) σz/h φ
0.5 50 50 - 0.152 0.014 1
0.5 50 - 0.545 0.436 0.021 0.330
0.9 50 - 0.248 0.213 0.013 0.353

measured particles φ can be calculated; otherwise, N ′S
should be indicated.

We give an example of the uncertainty estimation

on experimental measurements in Fig. 7 using data

from Ref. 3. The data contain GDPT measurements

of a Poiseuille flow in a microchannel with a rectan-

gular cross-section of 380 µm × 100 µm. The flow is

directed along the x direction and the uncertainty was

estimated along the perpendicular directions y and z,

i.e., the directions of zero flow velocity. For a N ′S = 0.03

(very few overlapping particles) and across a height of

h = 100 µm, we obtained uncertainties σx,y = 0.08 px

and σz/h = 0.01, in good agreement with the values

obtained in the analysis of the synthetic images.

5 Conclusions

We have identified the fundamental elements charac-

terizing a GDPT measurement; these are the num-

ber of images in the calibration stack Ncal, the image

signal-to-noise ratio SNR, the particle image density

NS, and the function chosen to evaluate the similar-

ities between calibration and target images. For the

evaluation of GDPT measurements, we presented an

assessment scheme encompassing the measured coor-

dinate uncertainties, the relative number of measured

particles, and the depth of the measurement volume.

For a practical implementation of the presented as-

sessment scheme, we created a group of freely-available

synthetic image datasets and we used them to study

the performance of the GDPT software DefocusTracker.

The fundamental findings of the study are: (i) There is

an optimal number of images in the calibration stack,

including more images will not reduce the measurement

uncertainties, (ii) the presence of overlapping particle

images increases significantly the uncertainty; using a

stricter criterion to accept valid measured particles can

help to improve the accuracy but at the expense of the

number of measured particles, and (iii) for each setting,

one can extrapolate a critical particle image density be-

yond which the number of measured particle decreases.

The most relevant quantitative results of the study are

summarized in Table 2.

We provided guidelines to assess the uncertainty

of GDPT measurements in experimental cases where

bias errors can be present and in contrary to syn-

thetic images, the true values are not accessible. Bias

errors occur because of discrepancies between calibra-

tion and target images induced by optical aberrations.

This should be taken into account, e.g. by implement-

ing multiple calibration stacks for strong aberrations, or

by implementing reference experiments for weak aber-

rations where one single calibration stack can still be

used. To estimate experimental uncertainties, one needs

to estimate the true values. This is possible for instance

by looking at a velocity flow fields with null velocity in

one measurement direction.

In conclusion, this work provides the tools for a more

aware use of GDPT and is an important step toward the

further development of the method in terms of accuracy,

efficiency, and processing speed. Next steps include the

expansion of the datasets to temporal-coherent data,

non-monodisperse particles, and experimental data, for

instance including biological cells for use of GDPT in

biomedical sciences.

Acknowledgements This work was supported by the Eu-
ropean Union’s Horizon 2020 Research and Innovation Pro-
gramme under the Marie Sklodowska-Curie Grant No. 713683
(COFUNDfellowsDTU).

A Datasets for standardized evaluation of

GDPT methods

In this section, we introduce a group of three datasets and
corresponding calibration images for evaluating the perfor-
mance of a GDPT implementation as a function of differ-
ent signal-to-noise ratio SNR, particle image density NS, and
background intensity gradients. The datasets do not include
the effect of field curvature or image aberrations. The datasets
are meant to act as a reference set for the scientific commu-
nity and are freely available2.

The datasets are based on synthetic images created us-
ing MicroSIG, which is a Synthetic Image Generator (SIG)
using ray tracing and a simplified spherical lens model to
obtain realistic defocused or astigmatic particle images [24].
MicroSIG is open source and can be downloaded at git-
lab.com/defocustracking. In this work, we consider bright,
monodisperse particles of diameter dp, which is the most com-
mon case in velocimetry applications. All datasets share the
same basic MicroSIG settings in terms of particle diameter
(dp = 2 µm), objective lens (magnification M = 10×, numer-
ical aperture NA = 0.3, focal length f = 350 µm), and sensor
settings (pixel size of 6.5 µm, I0 = 500 counts). The settings
have been chosen since they simulate experimental conditions
that are representative for a large number of applications in
microfluidics. The simulated measurement depth h = 86 µm
is kept the same for all datasets.

2 The datasets can be downloaded through
https://defocustracking.com/.

https://gitlab.com/defocustracking
https://gitlab.com/defocustracking
https://defocustracking.com/
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Fig. 8 Overview of the three synthetically-created datasets used to test and evaluate the performance of GDPT. (a) Dataset
I contains measurement images of particles with random x, y, and z positions but fixed within a grid in x and y. The dataset
contains groups of measurement images of various noise levels σI , here illustrated via the insets (red rectangles) showing the
images for σI = 0 and 50, and for σI = 50 when a median filter dmed = 5 has been applied. (b) Dataset II contains groups of
measurement images of randomly distributed particles for different particle image density NS, here illustrated via the insets
(red rectangles) showing the images for NS = 0.20, 0.40, and 0.59. (c) Dataset III contains groups of the measurement images
for various added linear light-intensity gradients α, see Eq. (13). The measurement images are taken from Dataset II for
NS = 0.30.

The three datasets are shown in Fig. 8. In order to ensure
the same level of statistical significance, all datasets contain ∼
20,000 particles for each set of parameters. The three datasets
are:

– Dataset I. This dataset contains 3 × 60 measurement
images for 3 different noise levels σI . Each measurement
image contains 361 particle images located at random x,
y, and z positions. The x and y coordinates are loosely
constraint on a 19×19 grid to exclude particle image over-
lapping. The dataset is suitable for analyzing the depth
coordinate precision and how it depends on the image
noise level σI , number of calibration images Ncal, and
method parameters such as image filtering and sub-image
approach for the depth coordinate determination.

– Dataset II. This dataset contains 12 subsets of mea-
surement images of particles with randomly distributed
x, y, and z coordinates, thus including particle image
overlapping. Each subset corresponds to a specific par-
ticle image density NS and contains a certain number of
measurement images in order to have an overall number
of 20,000 particles. We start with a subset of 1200 im-
ages at NS = 0.05 and end with a subset of 100 images
at NS = 0.59. This dataset is suitable for analyzing the
relative number of measured particles and depth coordi-
nate uncertainty as a function of increasing particle image
density.

– Dataset III. This dataset contains 10 subsets of 34 mea-
surement images of 600 particles (NS = 0.30) with ran-

domly distributed x, y, and z coordinates. Each subset
has a superimposed linear light-intensity gradient along
the horizontal direction defined as

Ipattern(X,Y ) = αX, (13)

where α is a parameter accounting for the gradient in-
tensity. The impact of α can be better appreciated by
normalizing its value with the mean particle image in-
tensity divided by the characteristic size of the particle
images

α̃ = αA1/2
p /µp. (14)

A value of α̃ = 1 indicates a light-intensity gradient on
the same order of magnitude of the intensity gradient in
the particle images. For this dataset we have α ranging
from 1 to 10, corresponding to α̃ ranging from 0.16 to 1.6.

– Calibration images. The set of calibration images pro-
vides the calibration images for analyzing the Datasets
I–III with GDPT. It contains 3 × 12 calibration image
stacks for 3 different noise levels σI and 12 different num-
bers of calibration images Ncal.

B DefocusTracker

The GDPT implementation used in this work is the Version
1.0 of DefocusTracker, which is a MATLAB implementation
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published under the open-source license and available at defo-
custracking.com. The implementation is based on the normal-
ized cross-correlation for image comparison and a polynomial
scheme for sub-image interpolation. In order to work fast and
robustly, the implementation uses a cross-correlation predic-
tion scheme based on the set of calibration images; for more
details, see Ref. 25. DefocusTracker allows multiple process-
ing iterations using different similarity parameter thresholds
to improve the detection of overlapping particles; however, in
this work we limit ourselves to one iteration and a single simi-
larity parameter threshold. The implementation allows image
noise filter through Gaussian and median filter, though in this
work we utilize only the latter. In addition, DefocusTracker
allows the determination of particle trajectories through a
nearest-neighbor tracking scheme. We do not perform track-
ing of particles across the image frames in this work, but it
is important to mention that using predictive tracking ap-
proaches can increase the performance of particle detection
as well.

In DefocusTracker the similarity parameter between two
images I1 and I2, is defined as the peak maximum of their
normalized cross-correlation function c(u, v). Here u and v
are the in-plane coordinates in correlation space. Following
the seminal paper by Lewis in 1995 [12], the normalized cross-
correlation takes the form

c(u, v) =∑
X,Y [I1(X,Y ) − Ī1] [I2(X − u, Y − v) − Ī2]{∑

X,Y [I1(X,Y ) − Ī1]2 [I2(X − u, Y − v) − Ī2]2
}1/2

, (15)

where Ī1 and Ī2 are the mean image intensities of I1 and
I2, respectively. The correlation function c(u, v) has its peak
maximum Cm at the position of best match between the im-
ages and the amplitude of the peak maximum ranges from
0 to 1, where 1 indicates a perfect match. A key advantage
of the normalized cross-correlation function is that it is ro-
bust against light-intensity fluctuations such as inhomoge-
neous light distribution.
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