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Abstract

We consider a statistical inverse learning problem, where the task is to estimate a
function f based on noisy point evaluations of Af , where A is a linear operator. The
function Af is evaluated at i.i.d. random design points un, n = 1, ..., N generated by
an unknown general probability distribution. We consider Tikhonov regularization with
general convex and p-homogeneous penalty functionals and derive concentration rates of
the regularized solution to the ground truth measured in the symmetric Bregman distance
induced by the penalty functional. We derive concrete rates for Besov norm penalties and
numerically demonstrate the correspondence with the observed rates in the context of
X-ray tomography.

Keywords: Variational regularization; statistical learning; error estimates; Bregman dis-
tances; computed tomography.

AMS Subject Classification: 62G08, 62G20, 65J22, 68Q32.

1 Introduction

Inverse problems study how indirect observational data can be processed into information
about objects of interest in a robust manner. The literature of inverse problems often adopts
the perspective that the observational process can be designed or controlled to a sufficient
degree. However, for many large-scale inverse problems in modern science and engineering
massive data sets arise from poorly controllable experimental conditions. Such problems
are closely connected to statistical learning setting, where the objective is to approximate a
function g : U → V through a set of pairs (un, vn)

N
n=1 drawn from an unknown probability

measure on U × V .
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The framework, where observational data is limited to a finite set of random and noisy
point evaluations of the output, has also a tradition in inverse problems [25, 4]. In particular,
statistical inverse learning problems have recently gained attention and we give an overview
below. Our interest lies in deriving convergence rates, for general regularization schemes, of
the expected reconstruction error, namely, the distance (in a suitable metric) between the
solutions of the inverse problem and the regularized one. In this regard, the state of the art
was recently improved by Blanchard and Mücke [5], who derive minimax optimal convergence
rates for the general spectral regularization approach in Hilbert spaces under certain classes
of sampling measure.

This paper aims at blending inverse learning theory together with recent developments
in convex regularization techniques in the context of inverse problems [3, 8]. Although there
is a body of work studying methods such as Lasso and generalized approaches in learning
theory (see, e.g., [17]), to the best our knowledge, general convex regularization has not been
considered before for inverse statistical learning problems. Here, we focus on variational
regularization schemes utilizing p-homogeneous penalties, in particular, focusing on the case
1 < p ≤ 2, and derive a framework for establishing convergence rates in expected symmetric
Bregman distance. Our work is aligned with the common assumption in learning theory that
the design measure, i.e., the probability distribution generating the evaluation points (un)

N
n=1,

is unknown.
Let us consider a linear inverse problem

g = Af, (1)

where A : X → Y is a bounded linear operator between a separable Banach space X and
a Hilbert space Y . Furthermore, we assume that Y is a function space from a compact
subset U ⊂ Rd to a Hilbert space V . We observe noisy point evaluations of g at given points
{ui}Ni=1 ⊂ U according to

gδi = g†(ui) + δϵi (2)

for i = 1, ..., N , where ϵi are i.i.d. and have suitable distribution. Moreover, the noiseless
observation g† = Af † corresponds to our ground truth f † ∈ X. In the following we study
properties of a regularized solutions f δα,N defined via the variational problem

f δα,N := argmin
f∈X

{
1

2N

N∑
i=1

∥∥∥(Af)(ui)− gδi

∥∥∥2
V
+ αR(f)

}
, (3)

where R : X → R ∪ {∞} is a convex functional satisfying certain technical properties listed
below (see Assumption 2.2).

Our main contributions in the case of a p-homogeneous R for 1 < p ≤ 2 are as follows:

• In Theorem 4.3 we derive an upper bound to the reconstruction error, i.e., the distance
between f δα,N and f † measured in the symmetric Bregman distance induced by R. This
upper bound is composed of terms that generalize the approximation and sample error
terms observed in the spectral regularization setting in Hilbert spaces.

• In addition to the standard framework usually developed for a fixed noise level δ, we
discuss an interesting regime where the noise level is small compared to the number
of design points, i.e., δ ≃ N−ρ, ρ > 1. Such a setup requires modified estimates and

2



the corresponding analysis is developed in parallel to the standard framework. We
conjecture that such alternative estimates can improve the standard estimates under
specific sampling schemes discussed in Remark 4.12.

• We derive convergence rates for a penalty R(f) = 1
p ∥f∥

p
X under suitable assumptions

in the standard framework in Theorem 4.10 and for the small noise regime in Theorem
4.11. In terms of optimality, we compare our rates with the minimax-optimal rates in the
Hilbert space setting for p = 2 obtained in [5]. Restricted to Hilbert spaces and classical
Tikhonov regularization scheme, our method yields convergence rates that coincide with
[5] only under restrictive assumptions. However, the underlying discrepancy between
[5] and our approach is highlighted, and we propose a modification to the method that
can provide improved rates.

• As an application of our theory, we prove a concrete convergence rate for the above
case when X is a Besov space Bs

pp(Rd) in Section 5.1. Moreover, in Section 5.2 we
discuss how to derive convergence rates if a continuous embedding of the Banach space
X to some Hilbert space X0 is available. If the embedding has suitable approximation
properties, this approach can provide useful convergence rates.

• We study the classical inverse problem of X-ray tomography [24] under random sampling
of the imaging angles and using Besov space penalties. We demonstrate that the Radon
transform has suitable spectral properties making our work aligned with the optimal
rates in the p = 2 setup. Moreover, we observe the convergence rates predicted by our
results in numerical simulations also for 1 < p ≤ 2.

We emphasize that we do not prove minimax-optimality of our results and, in particular,
no lower bounds are derived. However, we point out that similar techniques can lead to
minimax-optimal rates in inverse problems when considered against suitable source conditions
[35, 6].

Our methodology has close connections to the reproducing kernel methods, which is a
popular field with a vast body of literature. Let us note that connections of kernel regression
methods to regularization theory were first studied in [13, 34, 20] and the line of research
has since become widely popular. Early work on upper rates of convergence in a reproducing
kernel Hilbert space was carried out by Smale and Cucker in [11], where they utilized a
covering number technique. After the initial success, there has been a long line of subsequent
work [34, 29, 30, 2, 36, 9] providing convergence rates comparable to [5]. Let us also point
out that there is an avenue of research [22, 32] considering penalties of type R(f) = 1

p ∥f∥
p
X .

Notice that the notion of convergence in the usual learning context and the inverse problem
setting is different and are not directly comparable: in learning theory the convergence rates
are derived in L2(µ) norm, where µ is the unknown sampling measure generating data points.
However, since the solution and data space, i.e. X and Y , differ for the inverse problem, it is
natural to consider modes of convergence in X. For a related discussion and brief overview
on relevant convergence rate literature, see [23].

In terms of inverse learning problems, we mention that Tikhonov regularization of non-
linear inverse problems is considered in [27] and adaptive parameter choice rules are studied
in [21]. Moreover, for distributed learning of inverse problems, see [16] and references therein.

This paper is organized as follows. In Section 2 we provide preliminaries of the mathe-
matical setting and assumptions in our work. Our assumptions on the sampling setup are
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closely aligned with previous literature such as [5]. In Section 3 we derive general bounds
on the symmetric Bregman distance between f δα,N and f †. In Section 4 we develop these

bounds further in the case R(f) = 1
p ∥f∥

p
X , which enables the use of Lemma 4.1 - a key

ingredient of the convergence analysis. Section 5.1 discusses the Besov space regularization
and derives concetration bounds. Numerical simulations of random angle X-ray tomography
are presented in Section 6: the Radon transform is introduced in Section 6.1 and discretized
formulation is specified in Section 6.2. In Section 6.4 we provide the numerical experiments
related to the convergence rates.

2 Preliminaries

Let us briefly define some notation. For two functions f, g : X → R, we write f ≲ g if there
exists a universal constant C > 0 such that f(x) ≤ Cg(x) for all x ∈ X. Similarly, we write
f ≃ g if it holds that g ≲ f ≲ g. Below, C > 0 will denote a generic constant unless otherwise
specified in the context.

2.1 Sampling operator

Consider Y = L2(U ;V ), the Bochner space of functions defined on U and taking values in
the Hilbert space V , where U ⊂ Rd is compact, i.e., the functions g : U → V such that∫

U
∥g(u)∥2V du <∞.

Here, we assume that the range of the operator A is contained in Z = C(U ;V ), the space of
continuous functions on U taking values on V , equipped with the supremum norm

∥g∥Z = ∥g∥∞ := max
u∈U

∥g(u)∥V .

Moreover, we assume that A : X → Z is a bounded linear operator, so that point evaluations
of g† in equation (2) are well-defined. Notice that since U is compact, Z ⊂ Y , and with a
slight abuse of notation we identify the functions in Z also as elements of Y .

Following previous work [9, 5], for any u ∈ U we define the sampled operator Au ∈ L(X,V )
as

Auf = (Af)(u).

We make the following Assumption:

Assumption 2.1. Assume that ∥A∥X→Z ≤ 1, where ∥A∥X→Z is the norm of A as an operator
from X to Z.

Thanks this Assumption, it also holds that for all u ∈ U and f ∈ X,

∥Auf∥V ≤ ∥f∥X .

Moreover, by the continuity of A on Z, we also have that the mapping u 7→ (Af)(u) is
measurable for all f ∈ X. Notice that assuming ∥A∥X→Z ≤ 1 is not restrictive; for larger
values of the norm one can renormalize the problem in the spirit of [9, 5]. For every u ∈ U ,
we can interpret the operator Au : X → V as a composition Au = SuA, where

Su : Z → V s.t. Su(g) = g(u), g ∈ Z

4



is referred to as the sampling operator, and clearly satisfies ∥Su∥Z→V ≤ 1 for all u ∈ U .
Next we consider sampling at multiple design points {ui}Ni=1 ⊂ U . Let us introduce

the following notation for the product spaces UN = ⊕N
i=1U with the usual topology and

VN = ⊕N
i=1V with the inner product

⟨v, ṽ⟩VN
=

1

N

N∑
j=1

⟨vj , ṽj⟩V ,

where v = (vj)
N
j=1, ṽ = (ṽj)

N
j=1 ∈ VN . The multiple sampling operator Au ∈ L(Z, VN ) is

defined by
Auf = (Auif)

N
i=1 ∈ VN

for u = {ui}Ni=1, and can be equivalently understood as the composition Au = SuA, where

Su : Z → VN s.t. Su(g) = (g(ui))
N
i=1, g ∈ Z.

Notice carefully that

A∗
uv =

1

N

N∑
i=1

A∗
ui
vi for any v = (vi)

N
i=1 ∈ VN .

Moreover, in the following it is convenient to introduce the following notation for the normal
sampling operator Bu := A∗

uAu ∈ L(X,X∗), where X∗ is the continuous dual of X.
In the following, we will consider the design points {ui}Ni=1 as a random sample drawn

from a probability distribution µ. Thus, let µ be a probability measure on U and define
the corresponding weighted space Yµ = L2(U, µ;V ) as a Hilbert space induced by the inner
product

⟨g1, g2⟩Yµ :=

∫
U
⟨g1(u), g2(u)⟩V µ(du).

Clearly, Z ⊂ C(U ;V ) ⊂ Yµ and we denote

Aµ = ιA : X → Yµ,

where ι : Z → Yµ is the canonical injection map. As a simple example, one can consider a
uniform distribution on a bounded domain U . Obviously, in such a case, the inner products
of Yµ and Y coincide up to a constant.

2.2 Problem setting

For the ground truth f † ∈ X we define a noise-free observations gN by

gN := Auf
†, (4)

and the noisy observation gδ
N as

gδ
N := Auf

† + δϵN , (5)

where δ > 0 is the noise level, ϵN = (ϵiN )Ni=1 ∈ VN is a random variable such that ϵiN ∼ ϵ
i.i.d. where ϵ is independent of µ, zero-mean and ∥ϵ∥V is sub-Gaussian. We briefly recall (see
also [33, Definition 2.5.6]) that a real-valued random variable ξ is called sub-Gaussian if

P(|ξ| ≥ t) ≤ 2 exp(−Kt2) ∀t > 0
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for some constant K > 0. The sub-Gaussian norm of such variables is defined as follows:

∥ξ∥sG = inf

{
c ≥ 0

∣∣ E exp

(
ξ2

c2

)
≤ 2

}
.

Therefore, we require that ∥∥∥∥ϵ∥V ∥∥∥
sG

=M <∞ (6)

It is always possible to assume that M = 1, by rescaling ϵ to ϵ/M and δ to δM . Notice
that here δ > 0 plays the role of standard deviation. To build intuition, we point out that a
normally distributed ϵ in V = R with standard deviation σ satisfies (6) with M = Cσ, being
C an absolute constant (see [33, Example 2.5.8]).

In the following we consider regularized solutions f δα,N to problems (4) and (5) given by

f δα,N ∈ argmin
f∈X

Jδ
α,N (f) := argmin

f∈X

{
1

2

∥∥∥Auf − gδ
N

∥∥∥2
VN

+ αR(f)

}
. (7)

A regularized solution for the noise-free data is denoted by fα,N . Below we introduce a set
of Assumptions to guarantee its existence, together with some additional properties. Notice
that we do not require the minimizers of such problems to be unique at this stage.

Assumption 2.2. There exists a topology τ on X, with respect to which the sampling
operator Su is lower semicontinuous. The convex functional R : X → R ∪ {∞} satisfies the
following four condition:

(R1) the functional R is lower semicontinuous in the topology τ ;

(R2) the sublevel sets Mr = {R ≤ r} are sequentially compact in the topology τ ;

(R3) the convex conjugate R⋆ is finite on a ball in X∗ centered at zero;

(R4) R(−f) = R(f) for all f ∈ X.

The results contained in the next Section are set in a deterministic framework. However,
in the following we consider more specific functionals R that ensure uniqueness of f δα,N and
comment on the measurability of the learning method. Notice that the symmetry condition
(R4) is not necessary, but is employed to make the results more accessible.

3 Bounds on the Bregman distance

The optimality criterion associated with (7) is given by

A∗
u(Auf

δ
α,N − gδ

N ) + αrδα,N = 0 (8)

for rδα,N ∈ ∂R(f δα,N ), where ∂R denotes the subdifferential:

∂R(f) = {r ∈ X∗ | R(f)−R(f̃) ≤ ⟨r, f − f̃⟩X∗×X for all f̃ ∈ X}.

Moreover, for rf ∈ ∂R(f) and rf̃ ∈ ∂R(f̃) we define the symmetric Bregman distance between

f and f̃ as
D

rf ,rf̃
R (f, f̃) = ⟨rf − rf̃ , f − f̃⟩X∗×X .

When the subdifferential elements rf ∈ ∂R(f) are unique, we will drop the dependence on the
subgradients in the notation of the symmetric Bregman distance and write simply DR(f, f̃).

6



Proposition 3.1 (A-priori estimates). Let R satisfy the Assumption 2.2. Then the functional
Jδ
α,N has a minimizer. Any minimizer f δα,N ∈ X of Jδ

α,N satisfies

R(f δα,N ) ≤ R(f †) +
δ2

2α
∥ϵN∥2VN

. (9)

In addition, if R is p-homogeneous with p > 1 we have for some constant C > 0 that

R(f δα,N ) ≤ C

(
R(f †) +

(
δ

α

) p
p−1

R⋆(A∗
uϵN )

)
. (10)

Proof. Consider the sublevel set M = {f ∈ X | Jδ
α,N (f) ≤ Jδ

α,N (f †)}. Now, any f ∈ M
satisfies

αR(f) ≤ Jδ
α,N (f †)− 1

2

∥∥∥Auf − gδ
N

∥∥∥2
VN

=
δ2

2
∥ϵN∥2VN

+ αR(f †)− 1

2

∥∥∥Au(f − f †)− δϵN

∥∥∥2
VN

. (11)

This immediately leads to estimate (9), discarding the non-positive term on the right-hand
side. In order to get (10), we first expand (11) as follows:

αR(f) ≤ αR(f †)− 1

2

∥∥∥Au(f − f †)
∥∥∥2
VN

− ⟨Au(f − f †), δϵN ⟩Vn .

Then, by the generalized Fenchel–Young’s inequality we get

⟨Au(f − f †), δϵN ⟩VN
= ⟨f − f †, δA∗

uϵN ⟩VN

≤ R
(
βα

1
p (f − f †)

)
+R⋆

(
δ

βα
1
p

A∗
uϵN

)

≤ Cβpα
(
R(f) +R(f †)

)
+

δ
p

p−1

β
p

p−1α
1

p−1

R⋆(A∗
uϵN ), (12)

where β > 0 is an arbitrary constant and the triangle inequality for R follows due to convexity,
(R4) in Assumption 2.2 and homogeneity with some constant C > 0 depending on p. Applying
inequality (12) to the second to last expression in (11) and setting βp = 1

2C yields the a priori
estimate (10) after a division by α.

The existence of the minimizer follows by standard arguments. Assume that {fj}∞j=1 ⊂M

is a minimizing sequence of Jδ
α,N . Since R(fj) ≤ 1

αJ
δ
α,N (fj) ≤ 1

αJ
δ
α,N (f †) for each j, the

sequence is contained in a suitable subset of R, hence by (R2) in Assumption 2.2 we can
extract a τ -converging subsequence fjk → f̃ ∈ X. Finally, Assumption 2.2 ensures that both
the terms in Jδ

α,N are sequentially lower continuous in the topology τ , whence f̃ is a minimizer

of Jδ
α,N .

Proposition 3.2. Suppose Assumption 2.2 is satisfied. Then any regularized solution f δα,N
given by (7) satisfies

D
rδα,N ,r†

R (f δα,N , f
†) ≤ inf

w̄∈VN

(
R⋆
(
(Γ−1

1 )∗(r† −A∗
uw̄)

)
+
α

2
∥w̄∥2VN

)
+R(Γ1(f

† − f δα,N ))

+
1

α

(
R⋆
(
δ(Γ−1

2 )∗A∗
uϵN

)
+R

(
Γ2(f

† − f δα,N )
))

, (13)
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where rδα,N ∈ ∂R(f δα,N ), r† ∈ ∂R(f †) and Γ1,Γ2 : X → X are arbitrary linear invertible
operators.

Proof. Let us apply the data-generating distribution of gδ
N given in (5) to the optimality

criterion (8) and substract r† on both sides to obtain

Bu(f
δ
α,N − f †) + α(rδα,N − r†) = −αr† + δA∗

uϵN .

Now taking dual pairing with f δα,N − f † on both sides yields

∥∥∥Au(f
δ
α,N − f †)

∥∥∥2
VN

+ αD
rδα,N ,r†

R (f δα,N , f
†)

= α⟨r†, f † − f δα,N ⟩X∗×X + δ⟨A∗
uϵN , f

δ
α,N − f †⟩X∗×X (14)

Applying both standard Young’s and Fenchel–Young’s inequalities to the first term on the
right hand side now yields, for any w̄ ∈ VN

α⟨r†, f † − f δα,N ⟩X∗×X

= α⟨(Γ−1
1 )∗(r† −A∗

uw̄),Γ1(f
† − f δα,N )⟩X∗×X + α⟨w̄, Au(f

† − f δα,N )⟩VN

≤ αR⋆
(
(Γ−1

1 )∗(r† −A∗
uw̄)

)
+ αR(Γ1(f

† − f δα,N )) +
α2

2
∥w̄∥2VN

+
1

2

∥∥∥Au(f
δ
α,N − f †)

∥∥∥2
VN

,

where we introduced an arbitrary invertible linear operator Γ1 : X → X. Similarly, the
second term on the right hand side of (14) can be bounded by

δ⟨A∗
uϵN , f

† − f δα,N ⟩X∗×X = δ⟨(Γ−1
2 )∗A∗

uϵN ,Γ2(f
δ
α,N − f †)⟩X∗×X

≤ R⋆((δΓ−1
2 )∗A∗

uϵN ) +R(Γ2(f
† − f δα,N )) (15)

Now dividing by α on both sides yields the claim.

An alternative bound for the Bregman distance between f δα,N and f † is provided in the
following result.

Proposition 3.3. Suppose Assumption 2.2 is satisfied. Then any regularized solution f δα,N
given by (7) satisfies

D
rδα,N ,r†

R (f δα,N , f
†)

≤ inf
w̄∈VN

(
R⋆
(
(Γ−1)∗(r† −A∗

uw̄)
)
+
α

2
∥w̄∥2VN

)
+R(Γ(f † − f δα,N )) +

δ2

2α
∥ϵN∥2VN

, (16)

where rδα,N ∈ ∂R(f δα,N ), r† ∈ ∂R(f †) and Γ : X → X is an arbitrary invertible linear operator.

Proof. The proof is identical to the previous Proposition. However, we apply the bound

δ⟨A∗
uϵN , f

† − f δα,N ⟩X∗×X ≤ δ2

2
∥ϵN∥2VN

+
1

2

∥∥∥Au(f
δ
α,N − f †)

∥∥∥2
VN

. (17)

instead of (15).
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Remark 3.4. Let us note that in what follows the Propositions 3.2 and 3.3 yield different
convergence rates. This will result in two different error bounds, which are reported in The-
orem 4.6 and Theorem 4.9 for the case p = 2 and in Theorem 4.10 and Theorem 4.11 for
the case 1 < p < 2. At this stage, this can be seen by observing the variance terms appearing
in the above propositions, which are 1

αR
⋆(δ(Γ−1

2 )∗A∗
uϵN ) and δ2

2α ∥ϵN∥2VN
, respectively. The

expectation of the former decays w.r.t. N , whereas the expectation of the latter is independent
of N . Therefore, for a fixed noise level δ one cannot expect convergence with the bounds de-
veloped based on Proposition 3.3. On the other hand, the rest of the terms of the upper bound
(generalized approximation error) are rather similar in both propositions, which will imply
different balancing properties for the estimate and therefore different convergence regimes.

4 The p-homogeneous regularizer and convergence rates

From here on, we assume that the space X is a 2−convex and p−smooth Banach space, with
1 < p ≤ 2 (see Definitions 2.32-2.33 in [28]). Notice that, by Theorem 2.50 in [28], this also
ensures that X is reflexive, and by Remark 2.38 in [28] the norm ∥·∥X is Fréchet differentiable.
Then, we consider the p-homogenous regularizer

R(f) =
1

p
∥f∥pX . (18)

This definition entails several properties of the regularizer:

• Firstly, such an R satisfies Assumption 2.2 choosing τ to be the weak topology of X.
In particular, condition (R2) is guaranteed by the Banach-Alaoglu Theorem via the
reflexivity of X.

• Secondly, the differentiability of ∥ · ∥X and the fact that p > 1 ensure that ∂R is single-
valued, and therefore, in the following, we drop the related notation from the Bregman
distance.

• Finally, the 2-convexity of X ensures that X is also strictly convex (see Theorem 2.50 in
[28]), which finally implies, since p > 1, the R is also a stricly convex functional; hence,
the regularized solution f δα,N of (7) is unique.

In addition, the mapping

(f, (ui, g
δ
i )

N
i=1) 7→

1

2

∥∥∥Auf − gδ
N

∥∥∥2
VN

+ αR(f)

is continuous and the measurability of (u, ϵN ) 7→ f δα,N with respect to the universal completion

of the product σ-algebra of (U × V )N follows by Aumann’s measurable selection principle
(analogous to [31, Lemma 6.23]). In particular, following the Definition [31, Definition 6.2]
the introduced learning method is measurable.

4.1 General bounds

We start by introducing the following notations. Let us abbreviate

Eβ,u(w̄; r
†) := R⋆

(
r† −A∗

uw̄
)
+
β

2
∥w̄∥2VN

.

9



and, denoting by r† the only element of ∂R(f †), set

R(β,u; f †) = inf
w̄∈VN

Eβ,u(w̄; r
†).

As we will observe, the decay of the term R w.r.t. N and β will be instrumental in deriving the
convergence rate of the reconstruction error as R relates to the underlying source condition
regaring the ground truth and the mapping properties of Aµ. In this Section we work under a
general assumption on the decay, see e.g. inequality (35). In Section 5.1 we specify standard
source conditions under which the decay can be bounded in the case of Besov penalties
(Proposition 5.4). Next, we develop Propositions 3.2 and 3.3 further by combining them with
a priori bounds and the following technical Lemma that applies to p-homogeneous functionals.

Lemma 4.1. Suppose R is of the form (18) and let f, f̃ ∈ X. It follows that for p = 2 we
have

R(f − f̃) =
1

2
DR(f, f̃)

and for 1 < p < 2 it holds that

γpR(f − f̃) ≤ C
(
1− p

2

)
γ

2p
2−p max

{
R(f), R(f̃)

}
+
p

2
DR(f, f̃),

for some C > 0 depending on p with any γ > 0.

Proof. The case p = 2 is trivial. For 1 < p < 2 consider the Xu–Roach inequality II [28, Thm.
2.40(b)] in X that yields

DR(f, f̃) ≥ Cmax
{
∥f∥X ,

∥∥∥f̃∥∥∥
X

}p−2 ∥∥∥f − f̃
∥∥∥2
X

= Cpmax
{
∥f∥X ,

∥∥∥f̃∥∥∥
X

}p−2
R(f − f̃)

2
p ,

and, therefore,

R(f − f̃) ≤ C

p
γ

p2

2 max
{
∥f∥X ,

∥∥∥f̃∥∥∥
X

} p(2−p)
2 · γ−

p2

2 DR(f, f̃)
p
2

for any γ > 0. Next, applying Young’s inequality to the right-hand side with Hölder conjugates(
2

2−p ,
2
p

)
yields

R(f − f̃) ≤
(
1− p

2

)(C
p

) 2
2−p

γ
p2

2−p max
{
∥f∥X ,

∥∥∥f̃∥∥∥
X

}p
+
p

2
γ−pDR(f, f̃).

Finally, multiplying both sides by γp and using the fact that

max
{
∥f∥X ,

∥∥∥f̃∥∥∥
X

}p
≤ max

{
∥f∥pX ,

∥∥∥f̃∥∥∥p
X

}
= pmax

{
R(f), R(f̃)

}
,

we obtain the claim.

Now we are ready to establish more concrete bounds based on Propositions 3.2 and 3.3.
Let us first consider the quadratic case p = 2.

Theorem 4.2. Suppose that Assumption 2.2 holds and R is of the form (18) with p = 2.
Then the regularized solution f δα,N given by (7) satisfies

DR(f
δ
α,N , f

†) ≤ min

{
4R
(α
2
, N ; f †

)
+

2δ2

α2
∥A∗

uϵN∥2X∗ , 2R
(
α,N ; f †

)
+
δ2

α
∥ϵN∥2VN

}
. (19)

10



Proof. In the statement of Proposition 3.2, consider Γ1 = γ1I and Γ2 = γ2I. By the homo-
geneity of R, and applying the first estimate in Lemma 4.1, we have that(

1− γ21
2

− γ22
2α

)
DR(f

δ
α,N , f

†) ≤ γ−2
1 R(αγ21 , N ; r) +

δ2

2αγ22
∥A∗

uϵN∥2X∗

Now setting γ21 =
γ2
2
α = 1

2 yields

1

2
DR(f

δ
α,N , f

†) ≤ 2R
(α
2
, N ; f †

)
+
δ2

α2
∥A∗

uϵN∥2X∗ .

Similarly, starting from the statement of Proposition 3.3, setting Γ = γI, via Lemma 4.1 we
have (

1− γ2

2

)
DR(f

δ
α,N , f

†) ≤ γ−2R(αγ2, N ; f †) +
δ2

2α
∥ϵN∥2VN

Setting γ2 = 1 yields the second part of the claim. This completes the proof.

Theorem 4.3. Suppose that Assumption 2.2 holds and R is of the form (18) with 1 < p < 2.
Then the regularized solution f δα,N given by (7) satisfies the following two inequalities:

(i) It holds that

DR(f
δ
α,N , f

†)

≤ C̃p

[
γ−q
1 R(αγq1 ,u; f

†) +H(α, δ, γ1, γ2)R
⋆(A∗

uϵN ) +

(
γp1 +

γp2
α

) 2
2−p

R(f †)

]
(20)

for arbitrary γ1, γ2 > 0, where C̃p > 0 is a constant dependent on p,

H(α, δ, γ1, γ2) =
δq

αγq2
+

(
γp1 +

γp2
α

) 2
2−p
(
δ

α

)q

. (21)

(ii) We have

DR(f
δ
α,N , f

†) ≤ Cp

(
γ−qR(αγq,u; f †) +

δ2

α

(
1 + γ

2p
2−p

)
∥ϵN∥2VN

+ γ
2p
2−pR(f †)

)
(22)

for arbitrary γ > 0, where Cp > 0 is a constant dependent on p and (p, q) are Hölder
conjugates.

Proof. Consider the first claim. By choosing Γ1 = γ1I and Γ2 = γ2I in Proposition 3.2, we
get

DR(f
δ
α,N , f

†) ≤ γ−q
1 R(αγq1 ,u; f

†) +
δq

αγq2
R⋆(A∗

uϵN ) +

(
γp1 +

γp2
α

)
R(f † − f δα,N ).

Next, by applying Lemma 4.1 to the last term, with γ =
(
γp1 +

γp
2
α

) 1
p
, we get

DR(f
δ
α,N , f

†) ≤γ−q
1 R(αγq1 ,u; f

†) +
δq

αγq2
R⋆(A∗

uϵN ) +
p

2
DR(f

δ
α,N , f

†)

+ C
(
1− p

2

)(
γp1 +

γp2
α

) 2
2−p

max{R(f δα,N ), R(f †)}.

11



In the last term on the right-hand side, we bound the maximum of the two quantities with
their sum, and we use the second claim of Proposition 3.1 to get

(
1− p

2

)
DR(f

δ
α,N , f

†) ≤γ−q
1 R(αγq1 ,u; f

†) +

[
δq

αγq2
+ C

(
1− p

2

)(
γp1 +

γp2
α

) 2
2−p
(
δ

α

)q
]
R⋆(A∗

uϵN )

+ C
(
1− p

2

)(
γp1 +

γp2
α

) 2
2−p

R(f †).

For the second inequality we deduce similarly applying Lemma 4.1 and the first a priori
bound in Proposition 3.1 to Proposition 3.3 that(

1− p

2

)
DR(f

δ
α,N , f

†)

≤ γ−qR(αγq,u; f †) +
δ2

2α
∥ϵN∥2VN

+ C
(
1− p

2

)
γ

2p
2−p max{R(f δα,N ), R(f †)}

≤ γ−qR(αγq,u; f †) +
δ2

2α

(
1 + C

(
1− p

2

)
γ

2p
2−p

)
∥ϵN∥2VN

+ C
(
1− p

2

)
γ

2p
2−pR(f †),

which yields inequality (22) after dividing by 1− p
2 . This completes the proof.

4.2 The case p = 2 in Hilbert spaces

In this Section we compare our technique developed above and the convergence rates it implies
to the optimal convergence rates known in the case when X is a Hilbert space and p = 2
(observe that a Hilbert space is always 2−convex and 2−smooth, see e.g. Example 2.46 in
[28]). Although optimal rates are known for general spectral regularization schemes [5], our
key message below can be demonstrated by considering classical Tikhonov regularization

R(f) =
1

2
∥f∥2X . (23)

We note that this setting implies that if r ∈ ∂R(f), then r = f . Moreover, recall that
X∗ = X.

Lemma 4.4. Suppose X is an Hilbert space and R satisfies (23). Then we have

R(β,u; f †) =
β

2

∥∥∥(Bu + βI)−
1
2 f †
∥∥∥2
X
.

Proof. Recall that

R(β,u; f †) = inf
w̄∈VN

(
1

2

∥∥∥f † −A∗
uw̄
∥∥∥2
X
+
β

2
∥w̄∥2VN

)
.

The minimizing element on the right hand side naturally satisfies

w̄inf = (AuA
∗
u + βI)−1Auf

†

12



Next, we have that

2Eβ,N (w̄inf, f
†) =

∥∥∥f † −A∗
uw̄inf

∥∥∥2
X
+ β ∥w̄inf∥2VN

=
∥∥∥f †∥∥∥2

X
− 2⟨f †, A∗

uw̄inf⟩+ ⟨(AuA
∗
u + βI)w̄inf, w̄inf⟩

=
∥∥∥f †∥∥∥2

X
− ⟨f †, A∗

uw̄inf⟩

= ⟨f †,
(
I −A∗

u(AuA
∗
u + βI)−1Au

)
f †⟩

= ⟨f †,
(
I − (βI +Bu)

−1Bu

)
f †⟩

= β⟨f †, (βI +Bu)
−1f †⟩.

This yields the result.

The previous Lemma enables us to prove sharp concentration results for the R term based
on techniques developed in previous inverse learning theory literature. Towards this end, let
us introduce so-called effective dimension which is defined by

N (α) = Tr
[
(Bµ + α)−1Bµ

]
(24)

in the Hilbert space setting. Moreover, the source condition is typically characterized by
restricting the ground truth to the subset

Ω̂(s, L) = {f ∈ X | f = Bs
µw, ∥w∥X ≤ L} ⊂ X.

Later on, we will focus to a more specific set

Ω̃(L) = {f ∈ X | f = A∗
µw̃, ∥w̃∥Yµ

≤ L, w̃ = ι(w), w ∈ Z} ⊂ X. (25)

Now we are ready to prove the following result.

Proposition 4.5. Let us define

BN (β) := 1 +

(
2

Nβ
+

√
N (β)

Nβ

)2

(26)

for any β > 0 and N ∈ N. We assume that f † ∈ Ω̂(s, L) for s ≤ 1
2 . It follows that

ER(β,u; f †) ≤ CL2β2sBN (β)2s (27)

for some constant C > 0 independent of β,N and L. Also, if f † ∈ Ω̃(L), it holds that

ER(β,u; f †) ≤ CL2

(
β +

1

N

)
(28)

for some C > 0 with any β > 0.
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Proof. By Lemma 4.4 we have that, for any γ ∈ (0, 1], with probability larger than 1− η

R(β,u; f †) =
β

2

∥∥∥(βI +Bu)
− 1

2Bs
µw
∥∥∥2
X

≤ β

2

∥∥∥(βI +Bu)
s− 1

2

∥∥∥2 ∥∥(βI +Bu)
−sBs

µ

∥∥2 L2

≤ β

2

∥∥∥(βI +Bu)
s− 1

2

∥∥∥2 ∥∥(βI +Bu)
−1(βI +Bµ)(βI +Bµ)

−1Bµ

∥∥2s L2

≤ β

2
L2
∥∥∥(βI +Bu)

s− 1
2

∥∥∥2 ∥∥(βI +Bu)
−1(βI +Bµ)

∥∥2s
≤ β

2
L2
∥∥∥(I + β−1Bu)

s− 1
2

∥∥∥2 β2s−1BN (β)2s log4s
(
2

η

)
≤ 1

2
L2β2sBN (β)2s log4s

(
2

η

)
,

where we used that ∥(Bµ + βI)−1Bµ∥ ≤ 1 and we applied Propositions A.2 and A.4. Now
the claim follows by Lemma A.3.

For the purpose of the second claim, let us recall the point evaluation operator Su : Z →
VN such that

Suf = (f(un))
N
n=1 ∈ VN , (29)

which allows us to write Au = SuA. The term R can be bounded by setting w̄ = Suw̃, which
yields

R(β,u; f †) ≤
∥∥(A∗

µ −A∗
uSu)w̃

∥∥2
X
+
β

2
∥Suw̃∥2VN

.

We first observe that

E ∥Suw∥2VN
=

1

N

N∑
n=1

E ∥w(un)∥2V =
1

N

N∑
n=1

∥w∥2Yµ
= ∥w∥2Yµ

. (30)

Moreover, since the design points are independent, we have

E
∥∥(A∗

µ −A∗
uSu)w̃

∥∥2
X

=
1

N
E
∥∥(A∗

µ −A∗
uSu)w̃

∥∥2
X

≤ C

N
∥w̃∥2Yµ

,

where the last inequality follows due to Assumption 2.1 and the argument in (30).

By applying Propositions 4.5 and the fact that E ∥A∗
uϵN∥2X < C/N as A∗

u ∈ L(VN , X∗)
to Theorem 4.2 we deduce the convergence rate of the expected error. Notice that Theorem
4.2 proposes two alternative bounds, which will lead to two different estimates: the outcome
of the first one will be denoted as standard bound, whereas the outcome of the second one
as an alternative bound. Further comments on the comparison between them is provided in
Remark 4.12. For the next result, we assume that the effective dimension N (α), defined in

(24), can be expressed as N (α) = α− 1
b for b > 1.

Theorem 4.6 (Standard estimate). i) Let f † ∈ Ω̂ (s, L), 0 < s ≤ 1
2 . Assume that δ > 0 is

a constant (independent of N). Then, we have

E
∥∥∥f δα,N − f †

∥∥∥2
X

≲ L2

(
δ2

L2N

) 2s
2s+2

for α ≃
(

δ2

L2N

) 1
2s+2

. (31)
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ii) Let f † ∈ Ω̃(L). Suppose that, as N → ∞, it holds δ2

N → 0 and Nδ → ∞, then the
rate (31) holds, whereas when Nδ is bounded the optimal rate is N−1 and is achieved by
α ≃ N−1.

Proof. To prove the first statement, we consider the expected value of the first term in (19)
and plug in equation (27), getting

E
∥∥∥f δα,N − f †

∥∥∥2
X

≲ L2α2sBN (α)2s +
δ2

α2N

≲ L2α2s

(
1 +

1

Nα1+ 1
b

+
1

N2α2

)2s

+
δ2

α2N
.

In order for the right-hand side to vanish, we need to require that α→ 0 and α2N → ∞, i.e.,
N = o(α−2). As a consequence,

E
∥∥∥f δα,N − f †

∥∥∥2
X

≲ L2α2s + L2N−2sα− 2s
b + L2N−4sα−2s + δ2N−1α−2

= L2α2s +N−1α−2
(
L2N1−2sα2− 2s

b + L2N1−4sα2−2s + δ2
)

≲ L2α2s +
δ2

Nα2
.

In the last step, we have used that N1−2sα2− 2s
b = o

(
α−2+4sα2− 2s

b

)
= o

(
α2s(2− 1

b
)
)

which

vanishes if b > 1
2 , and that N1−4sα2−2s = o

(
α−2+8sα2−2s

)
= o(α6s), which also vanishes.

The optimal choice of α is the one that balances the two remaining terms, hence leading to
(31).

For the second estimate, we use instead the bound (27) due to the different source condi-
tion, leading to

E
∥∥∥f δα,N − f †

∥∥∥2
X

≲ L2α+
L2

N
+

δ2

α2N
≲ α

(
L2 +

L2

αN
+

δ2

α3N

)
.

In order to ensure convergence, δ need not to be fixed, but still we need to require δ2

N → 0.
The optimal choice of α is the one ensuring that the third term in the last summation is
bounded and asymptotically equivalent to L2 (hence concluding what is reported in (31)),
provided that the second term is vanishing, i.e.,

1/N

(δ2/N)
1
3

→ 0 ⇒ 1

δN
→ 0

If this is not the case (i.e., when δN is bounded), the optimal α is the one balancing the
second term, namely, α ≃ 1

N .

We remark that, in the limit case s = 1
2 , the achieved convergence rate in the presence of

fixed noise level δ is of the order N−1/3. Notice that we could extend also the first statement
in order to treat the case of non-fixed noise level δ. Nevertheless, for the purpose of this work,
statement i) is mainly intended to compare the results carried out via the presented technique
with the optimal estimates of the statistical learning literature, in which δ is typically a
constant.
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On the contrary, in statement ii) we admit the possibility for δ to vary as N → ∞, which
is more common from an inverse problems perspective. To get a more clear interpretation of

such statement, suppose that δ ≃ N−β: then, (31) shows that the convergence rate is N− 2β+1
3

when −1/2 < β ≤ 1 (so, even if the noise is mildly growing), whereas if the noise decay is
faster (β > 1) the convergence rate gets saturated at N−1.

Remark 4.7. The result in Theorem 4.6 is comparable to the rates derived in [5], where it

is proven that the weak or strong minimax optimal rate for

√
E
∥∥∥f δα,N − f †

∥∥∥2
X

is given by

L

(
δ2

L2N

) s

2s+1+1
b

for b > 1 under certain assumptions on the design measure µ that imply N (α) ≤ Cα− 1
b , i.e.,

our assumption regarding the effective dimension. Our setup yields asymptotically the same
rate only in the limit b = 1.

Let us briefly explain why such discrepancy emerges: in the Hilbert space setup, the error
term can be explicitly solved by

f † − f δα,N = f † − (Bu + α)−1A∗
ug

δ
N

= f † − (Bu + α)−1(Buf
† + δA∗

uϵN )

= α(Bu + α)−1f † − δ(Bu + α)−1A∗
uϵN

=: Eappr + Esample, (32)

where terms Eappr and Esample are called the approximation and sample error, respectively.
The result in [5] is developed by applying the triangle inequality to identity (32) and esti-

mating ∥Eappr∥ and ∥Esample∥ separately. First, the norm of the approximation error bound
shown in [5] essentially coincides with Proposition 4.5 (the difference being the applicable
qualification regime of the regularization scheme, which is more limited here). Second, the
sample error bound given in [5] is inherently sharper; [5, Prop. 5.8] yields a rate of order

N (α)/αN = 1/α1+ 1
bN compared to

1

α2
E ∥A∗

uϵN∥2X ≤ C

α2N
.

Remark 4.8 (Is it possible to obtain optimal rates?). As noted in the previous remark our
approach developed above can yield suboptimal convergence rates. This feature can be traced
back to the choice of utilizing operators Γ1 = γ1I and Γ2 = γ2I when applying Proposition
3.2 in Section 4. Instead, we can set

Γ2 = (Bu + α)
1
2 (33)

and obtain a variance (corresponding to a square of the sample error) term

1

α
R⋆(δ(Γ−1

2 )∗A∗
uϵN ) =

δ2

α

∥∥∥(Bu + α)−
1
2A∗

uϵN

∥∥∥2
X

on the right hand side of the standard bound in Theorem 4.2. With this modification the
analysis of the sample error is aligned with [5] and we can apply [5, Prop. 5.2] in order to
obtain

1

α2
E ∥A∗

uϵN∥2X ≤ 1

α1+ 1
bN

.
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Unfortunately, the choice of Γ2 in (33) implies that we cannot apply Lemma 4.1 in order
to prove Theorem 4.3 and we end up with an extra term

1

α
R(Γ2(f

† − f δα,N )) =
1

α

∥∥∥(Bu + α)
1
2 (f † − f δα,N )

∥∥∥2
X

on the right hand side of the fixed-noise error upper bound in (19).
Note that while this extra term is unsatisfactory, in principle, by applying identity (32)

and the triangle inequality followed by the technique utilized in [5] one could hope to achieve
optimal rates. Clearly, such an argument provides limited insight but demonstrates that the
approach could be further developed towards optimality of the rates. It remains part of future
work to consider implications of general operators Γ1 and Γ2 in an arbitrary p-homogeneous
case.

By considering the second estimate proposed in (19), we can derive an alternative bound
for the error. The slightly modified source condition enables the use of a stronger estimate
in Proposition 4.5. However, as we will see, the obtained rate is weaker than in Theorem 4.2,
which is discussed below.

Proposition 4.9 (Alternative estimate). Let f † ∈ Ω̃(L). Suppose that, as N → ∞, it holds
δ → 0 and Nδ → ∞, then

E
∥∥∥f δα,N − f †

∥∥∥2
X

≲ Lδ for α ≃ δ

L
; (34)

whereas if Nδ is bounded the optimal rate is N−1 and is achieved by α ≃ N−1.

Proof. Applying inequality (28) to the second estimate in (19) we obtain

E
∥∥∥f δα,N − f †

∥∥∥2
X

≲ L2

(
α+

1

N

)
+
δ2

α
≲ α

(
L2 +

L2

αN
+
δ2

α2

)
.

As in the proof of Theorem 4.6, the optimal rate is obtained by selecting α so that the third
term in the summation is bounded and asymptotically equivalent to L2, i.e., α ≃ δ

L , provided
that the second one is vanishing ( 1

Nδ → 0); otherwise, saturation occurs on the rate N−1.

We immediately notice that the obtained rate is weaker than Theorem 4.2. This can be
seen by an application of Young’s inequality(

δ2

N

) 1
3

≲ δ +
1

N
≤ max

{
δ,

1

N

}
,

where Hölder conjugates 3/2 and 3 were applied. What we observe is that the saturation
point 1/N in both convergence rates is due to the Monte Carlo-type estimate in Proposition
4.5. If a faster concentration bound of type

ER(β,u; f †) ≤ CL2

(
β +

1

Nρ

)
for ρ > 1 could be derived, it can be seen that the alternative scheme is preferable in small
noise regime such that δ ≲ N−ρ. This motivates us to consider a general concentration bound
for R in the p-homogeneous case in the next Section.
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4.3 Convergence rates for 1 < p ≤ 2

In this Subsection we derive general convergence rate results for the p-homogeneous case in
equation (18) with 1 < p ≤ 2. We develop the results under assumptions on the concentration
of expectations of the random terms appearing in upper bounds of Theorem 4.3 that generalize
the usual bias and variance terms. Such conditions are then proved for specific cases in later
Sections.

Theorem 4.10 (p-homogeneous case, standard estimate). Consider the p-homogeneous reg-
ularization functional defined in (18) applied to the direct problem introduced in equations (1)
and (2). Suppose that Assumptions 2.1 and 2.2 are satisfied and that R(f †) ≤ L. Moreover,
we assume that there exists a constant Q > 0 such that

ER(β,u; f †) ≤ D1β +D2N
−Q (35)

and
ER⋆(A∗

uϵN ) ≤ D3N
− q

2 (36)

for some fixed values D1, D2, D3 > 0. Suppose that, as N → ∞, it holds δ2

N → 0 and

δN
3Q
q
− 1

2 → ∞: then

EDR(f
δ
α,N , f

†) ≲

(
D2

1D
2
q

3 L
q−2
q

) 1
3
(
δ2

N

) 1
3

for α ≃

D 2
q

3 L
q−2
q

D1

 1
3 (

δ2

N

) 1
3

; (37)

whereas if δN
3Q
q
− 1

2 is bounded the optimal rate is N
− 2Q

q and is achieved by α ≃ N
− 2Q

q .

Proof. Let us first estimate(
γp1 +

γp2
α

) 2
2−p

≤ Cp

(
γ

2p
2−p

1 + γ
2p
2−p

2 α
− 2

2−p

)
which together with bounds (35) and (36) yields for the inequality (20) that

EDR(f
δ
α,N , f

†) ≤ C

(
D1α+ Z1γ

−q
1 + Z2γ

2p
2−p

1 + Z3γ
−q
2 + Z4γ

2p
2−p

2

)
, (38)

where

Z1 = D2N
−Q,

Z2 = D3δ
qα−qN− q

2 + L,

Z3 = D3δ
qα−1N− q

2 and

Z4 = α
− 2

2−p

(
D3δ

qα−qN− q
2 + L

)
.

In order to optimize γ1 and γ2, we record the following calculation: a function φ(γ) =

aγ−q + bγ
2p
2−p is minimized at γ∗ =

(
a
b

)p̃
, where p̃ = (2−p)(p−1)

p2
. At the minimizer the function

φ obtains value

φ(γ∗) = 2b
(a
b

) 2(p−1)
p

= 2a
2
q b

2
p
−1
. (39)
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The optimal choices of γ1, γ2 > 0 in inequality (38) is given by

γ1 =

(
Z1

Z2

)p̃

and γ2 =

(
Z3

Z4

)p̃

.

This yields a bound

EDR(f
δ
α,N , f

†) ≤ C

(
D1α+ Z1

(
Z1

Z2

) −q
2p
2−p+q

+ Z3

(
Z3

Z4

) −q
2p
2−p+q

)

= C

(
D1α+ Z

2
q

1 Z
2
p
−1

2 + Z
2
q

3 Z
2
p
−1

4

)
.

Substituting the expressions of Z1, Z2, Z3, Z4, by direct computations we get

EDR(f
δ
α,N , f

†) ≲ D1α+D
2
q

3 L
q−2
q (δα−1N−1/2)2 +D

2
q

2 L
q−2
q N

− 2Q
q

+D3(δα
−1N−1/2)q +D

2
q

2D
q−2
q

3 (δα−1N−1/2)q−2N
− 2Q

q ,

from which we deduce that it is necessary that (δα−1N−1/2) → 0, and therefore we need to
require δN−1/2 → 0. Moreover, since q > 2, we can neglect the faster terms and get

EDR(f
δ
α,N , f

†) ≲ D1α+D
2
q

3 L
q−2
q (δα−1N−1/2)2 +D

2
q

2 L
q−2
q N

− 2Q
q

≲ α

(
D1 +D

2
q

3 L
q−2
q
δ2/N

α3
+D

2
q

2 L
q−2
q
N

− 2Q
q

α

)
.

The optimal rate is obtained by selecting α so that the second term in the summation is
bounded and asymptotically equivalent to D1 (which results in the choice described in (37)),
provided that the third term is vanishing, i.e.,

N
− 2Q

q

α
→ 0 ⇒ N

− 2Q
q

(δ2/N)
1
3

→ 0 ⇒ 1

δ
2
3N

2Q
q
− 1

3

→ 0,

that is equivalent to requiring δN
3Q
q
− 1

2 → ∞. If instead such term is bounded, the third term

dominates and the convergence rate cannot get better than N
− 2Q

q , in accordance with the

parameter choice α ≃ N
− 2Q

q .

Theorem 4.11 (p-homogeneous case, alternative estimate). Consider the p-homogeneous
regularization functional defined in (18) applied to the direct problem introduced in equations
(1) and (2). Let Assumptions 2.2 and 2.1 be satisfied and R(f †) ≤ L. Moreover, assume that
the inequality (35) holds for some Q,D1, D2 > 0. Suppose that, as N → ∞, it holds δ → 0

and δN
2Q
q → ∞: then

EDR(f
δ
α,N , f

†) ≲ D
1
2
1 δ for α ≃ D

− 1
2

1 δ; (40)

whereas if δN
2Q
q is bounded the optimal rate is N

− 2Q
q and is achieved by α ≃ N

− 2Q
q .

19



Proof. We have

EDR(f
δ
α,N , f

†) ≲ D1α+D2N
−Qγ−q +

δ2

α
+ γ

2p
2−pL.

It follows from the calculation in equation (39) that

EDR(f
δ
α,N , f

†) ≲ D1α+
δ2

α
+ 2D

2
q

2N
− 2Q

q L
2
p
−1 ≲ α

(
D1 +

δ2

α2
+D

2
q

2 L
q−2
q
N

− 2Q
q

α

)
,

from which we proceed analogously as in the proof of Theorem 4.10.

Remark 4.12. Let us compare the standard and alternative estimates, which read as(
δ2

N

) 1
3

+N
− 2Q

q vs. max
{
δ,N

− 2Q
q

}
.

The term N−2Q/q sets the fastest possible rate and in the typical case (see Section 5.1 for
the Besov case) we find Q = q

2 , leading to 1/N , as in the case p = 2. In such a regime the
alternative estimate does not yield an improvement, only −2Q/q < −1 would yield a rate
δ ≃ N−ρ, ρ > 1 for which the alternative estimates are better. In the Hilbert case this would
need an improvement of Proposition 4.5, from whose proof we see that this is based on the
general choice w = Suw̃ (being Su the evaluation operator defined as in (29)). A potential
improvement is possible only using a more optimal choice of w taking into account specific
properties of the operator A∗ or a more structured randomness taking again depending on A∗

(similar to the proof of Theorem 2.1 in [7]). This consideration is outside the focus of this
paper, but opens interesting questions for further studies about the optimal balance between
approximation and sample errors in problems, where the observational noise is substantially
smaller than the inverse of a feasible number of design points.

5 Strategies for obtaining concentration rates

In this Section, we prove a concrete convergence rate for the special case when X is a Besov
space Bs

pp(Rd) and discuss how to derive convergence rates if a continuous embedding of the
Banach space X to some Hilbert space X0 is available.

5.1 Hoeffding’s inequality applied to Besov regularizers

Let X = Bs
pp(Ω) := Bs

p(Ω) be a Besov space [35], being Ω ⊂ Rd a bounded Lipschitz domain.
Recall that these are 2−convex and p−smooth, see Example 2.47 in [28]. Consider the
following regularization functional, based on the equivalent norm of Besov spaces (see [35]):

R(f) =
1

p
∥f∥pBs

p
:=

1

p

∞∑
λ=1

cλ,p,s,d|⟨f, ψλ⟩|p, (41)

for some 1 < p < 2, where

cλ,p,s,d = 2|λ|d
(
p( s

d
+ 1

2
)−1
)
. (42)

Here, ψλ : Rd → R, with λ = 1, ...,∞, are suitably regular functions that form an orthonormal
wavelet basis for L2(Ω) with global indexing λ. The notation |λ| is used to denote the scale
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of the wavelet basis associated with the index λ (see [12]). Notice that when s = d
(
1
p − 1

2

)
the Besov norm (41) reduces to the ℓp-norm of the wavelet coefficients. It is easily seen (e.g.,
in [28]) that the convex conjugate of R satisfies

R⋆(g) =
1

q
∥g∥q

B−s
q
,

where p and q are Hölder conjugates. Clearly, Assumption 2.2 is satisfied by this choice and
R is p-homogeneous.

As in Section 2.1, we consider Y = L2(U ;V ), and Z = C(U ;V ), equipped with the
supremum norm. We assume the following source condition.

Assumption 5.1. Let us define

ΩR(L) := {f ∈ X | R(f) ≤ L}

and
Ωµ(L) := {f ∈ X | r = ∂R(f) = A∗

µw for ∥w∥Z ≤ L}

The ground truth f † ∈ X satisfies a classical source condition if

f † ∈ ΩR(L1) ∩ Ωµ(L2) (43)

for some 0 < L1, L2 <∞.

In order to prove verify the assumptions of Theorem 4.10, we rely on concentration es-
timates for bounded random variables and for sub-Gaussian ones, and in particular to the
Hoeffding’s inequality, which can be stated as follows.

Proposition 5.2 (Hoeffding’s inequality, [19]). (1) Let ξ1, ..., ξn be zero-mean independent
random variables bounded on the interval [a, b] containing zero. It holds that

P

(∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

n(b− a)2

)
.

(2) Let ξ1, ..., ξn be zero-mean independent sub-Gaussian random variables. It holds that

P

(∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2∑n

i=1 ∥ξi∥
2
sG

)
,

where c > 0 is an absolute constant.

Let us further make the following technical Assumption.

Assumption 5.3. The wavelet basis satisfies

∞∑
λ=1

cλ,q,−s,d ∥Aψλ∥q∞ <∞,

where cλ,q,−s,d is defined according to (42).
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This requirement can be fulfilled by imposing a sufficiently strong decay of the coefficients
cλ,q,−s,d, or by some regularity assumptions on the operator A. For example, in Section 6.1
we show that it holds true for a particular example of a kernel operator A, associated with a
sufficiently smooth kernel.

Proposition 5.4. Under the Assumptions 5.1 and 5.3 it follows that

ER(β,u; f †) ≤ Cq,s,dL
q
2N

− q
2 + L2

2β

for

Cq,s,d = Cq

∞∑
λ=1

cλ,q,−s,d ∥Aψλ∥q∞ , (44)

where Cq > 0 depends on q.

Proof. Utilizing the source condition r† = A∗
µw for some w ∈ Z such that ∥w∥Z ≤ L2, we

have

2R(β,u; f †) ≤ 1

q

∥∥(A∗
µ −A∗

uSu)w
∥∥q
B−s

q
+ β ∥Suw∥2VN

.

The expectation of the second term coincides with β ∥w∥2Yµ
and can be bounded by βL2

2 due
to the continuous embedding of Z to Yµ. For the first term, we can write

⟨(A∗
µ −A∗

uSu)w,ψλ⟩ =
1

N

N∑
n=1

⟨(A∗
µ −A∗

un
Sun)w,ψλ⟩ =:

1

N

N∑
n=1

ξλn,

where we have set

ξλn = ⟨(A∗
µ −A∗

un
Sun)w,ψλ⟩ = ⟨w,Aµψλ⟩Yµ − ⟨w(un), (Aψλ)(un)⟩V

It follows that random variables ξλn are zero-mean and also i.i.d. since the design points un are
assumed to be i.i.d.. Furthermore, due to Assumption 2.1 and by applying Cauchy–Schwarz
inequality we have that

⟨w(u), (Aψλ)(u)⟩V ≤ ∥w∥∞ ∥Aψλ∥∞
for any u ∈ U . Therefore, for each λ the random variables ξλn, i = n, ..., N , are bounded
uniformly according to

⟨w,Aψλ⟩Yµ − L2 ∥Aψλ∥∞ ≤ ξλi ≤ ⟨w,Aψλ⟩Yµ + L2 ∥Aψλ∥∞ .

Now, by applying the first Hoeffding’s inequality it follows that

ER⋆((A∗
µ −A∗

uSu)w) =

∞∑
λ=1

cλ,q,−s,dN
−qE

∣∣∣∣∣
N∑

n=1

ξλn

∣∣∣∣∣
q

=
∞∑
λ=1

cλ,q,−s,dN
−q

∫ ∞

0
tq−1P

(∣∣∣∣∣
N∑

n=1

ξλn

∣∣∣∣∣ > t

)
dt

≤ 2

∞∑
λ=1

cλ,q,−s,dN
−q

∫ ∞

0
tq−1 exp

(
− t2

2NL2
2 ∥Aψλ∥2∞

)
dt

= 2
∞∑
λ=1

cλ,q,−s,dN
− q

2Lq
2 ∥Aψλ∥q∞

∫ ∞

0
sq−1 exp

(
−1

2
s2
)
ds

= Cq,s,dL2N
− q

2 ,
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where we applied a change of variables. Above, cλ,q,−s,d is defined according to (42) and the
constant Cq,s,d is given by (44) and is bounded due to Assumption 5.3. Above, Cq > 0 is only
dependent on q.

Proposition 5.5. Under the above Assumptions, it follows that

ER⋆(A∗
uϵN ) ≤ C̃q,s,dN

−q/2,

where the constant is given by

C̃q,s,d = C̃q

∞∑
λ=1

cλ,q,−s,d ∥Aψλ∥q∞ (45)

and C̃q is only dependent on q.

Proof. Similar to the previous proposition, we write

⟨A∗
uϵN , ψλ⟩ =

1

N

N∑
n=1

⟨ϵnN , Aunψλ⟩V =:
1

N

N∑
n=1

ξ̃λn.

The random variables ξ̃λn= ⟨ϵnN , Aunψλ⟩V are independent and zero-mean, since ϵnN is zero-
mean and independent of un. Moreover, by Assumption 2.1 and by (6) it follows that each
ξ̃λn is also sub-Gaussian: indeed,

∥∥∥ξ̃λn∥∥∥
sG

= inf

{
t > 0

∣∣ E exp

(
(ξ̃λn)

2

t2

)
≤ 2

}

≤ inf

{
t > 0

∣∣ E exp

(
∥Aunψλ∥2V ∥ϵnN∥2V

t2

)
≤ 2

}
= ∥Aunψλ∥V inf

{
t̃ > 0

∣∣ E exp

(
∥ϵnN∥2V
t̃2

)
≤ 2

}
≤ ∥Aψλ∥∞

∥∥∥∥ϵnN∥V
∥∥∥
sG
.

As a consequence, by applying the second Hoeffding’s inequality we obtain

ER⋆(A∗
uϵN ) =

∞∑
λ=1

cλ,q,−s,dN
−qE

∣∣∣∣∣
N∑

n=1

ξ̃λn

∣∣∣∣∣
q

=
∞∑
λ=1

cλ,q,−s,dN
−q

∫ ∞

0
tq−1P

(∣∣∣∣∣
N∑

n=1

ξ̃λn

∣∣∣∣∣ > t

)
dt

≤ 2

∞∑
λ=1

cλ,q,−s,dN
−q

∫ ∞

0
tq−1 exp

(
− Ct2

N ∥Aψλ∥2∞

)
dt

≤ 2
∞∑
λ=1

cλ,q,−s,dC
− q

2N− q
2 ∥Aψλ∥q∞

∫ ∞

0
sq−1 exp

(
−1

2
s2
)
ds

= C̃q,s,dN
− q

2 ,
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where the constant C combines the effect of the absolute constant in Proposition 5.2 and the
uniform bound on ∥ϵnN∥sG. Moreover, the constant C̃q,s,d is given by (45) and is finite due to
Assumption 5.3.

By applying Propositions 5.4 and 5.5 to Theorem 4.3 we obtain the following result.

Corollary 5.6. Consider the Besov regularizer of (41) applied to the direct problem intro-
duced in equations (1) and (2). Suppose Assumptions 2.1, 5.1 and 5.3 hold.

(1) Standard estimate: if δ2

N → 0 and Nδ → ∞,

EDR(f
δ
α,N , f

†) ≲ L
2−p
3p

1 L
4
3
2

(
δ2

N

) 1
3

for α ≃ L
2−p
3p

1 L
− 2

3
2

(
δ2

N

) 1
3

; (46)

if instead Nδ is bounded, the optimal rate is N−1, associated with the choice α ≃ N−1.

(2) Alternative estimate: if δ → 0 and Nδ → ∞,

EDR(f
δ
α,N , f

†) ≲ L2δ for α ≃ L−1
2 δ; (47)

if instead Nδ is bounded, the optimal rate is N−1, associated with the choice α ≃ N−1.

Proof. Reflecting the results of Propositions 5.4 and 5.5 according to the notation of Theorems
4.10 and 4.11, we have

Q =
q

2
, D1 = L2

2, D2 = Cq,s,dL
q
2, D3 = C̃q,s,d and L = L1.

Substituting such terms in the statements of Theorems 4.10 and 4.11 and without tracking
the constants depending only on p, s, d, which immediately yields the claim.

5.2 Utilizing Hilbert space embeddings

Let us consider how Hilbert space embeddings of X can be utilized in deriving convergence
rates for the symmetric Bregman distance. Suppose that the Banach space X can be embed-
ded continuously to some Hilbert space X0 and ∥f∥X0

≤ ∥f∥X for all f ∈ X0. Due to the
embedding property we also have that

R⋆(g) ≤ 1

q
∥g∥qX0

. (48)

Below, we identify elements of X and X0 in X∗ through the following dependency

X ⊂ X0 = X∗
0 ⊂ X∗.

If the embedding is suitably tight, we can derive useful convergence rates as demonstrated in
the following results.

Proposition 5.7. Suppose r† = Bs
µw ∈ X0 for some s ∈ (0, 12). We have

R(β,u; f †) ≤ Ĉp,sβ
rs ∥w∥rX0

+
1

q

∥∥(Bs
µ −Bs

u)w)
∥∥q
X0
,

where the constant Ĉp,s depends on p and s and

r =
p

p− 1 + s(2− p)
. (49)
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Proof. The Fenchel dual of Eβ,N is given by

Fβ(v;u, f
†) =

1

2β
∥Auv∥2VN

− ⟨r†, v⟩X∗×X +R(v)

and, therefore, the Fenchel duality Theorem yields

R(β,u; f †) = − inf
v∈X

Fα(v;u, f
†).

Due to the embedding property and our Assumption on r†, we have a lower bound

Fβ(v;u, f
†) =

1

2β

∥∥∥∥B 1
2
u v

∥∥∥∥2
X0

− ⟨w,Bs
uv⟩X0 − ⟨(Bs

µ −Bs
u)w, v⟩X∗×X +R(v)

≥ 1

2β

∥∥∥∥B 1
2
u v

∥∥∥∥2
X0

− ∥w∥X0
∥Bs

uv∥X0
− cpR

⋆((Bs
µ −Bs

u)w) +
1

2p
∥v∥pX0

,

where we applied the generalized Young’s inequality. Interpolation of the norms yields

∥Bs
uv∥X0

≤
∥∥∥∥B 1

2
u v

∥∥∥∥2s
X0

∥v∥1−2s
X0

and by Young’s inequality we obtain

∥w∥X0

∥∥∥∥B 1
2
u v

∥∥∥∥2s
X0

∥v∥1−2s
X0

≤ 1

2β

∥∥∥∥B 1
2
u v

∥∥∥∥2
X0

+
1

2p
∥v∥pX0

+ Ĉp,sβ
rs ∥w∥rX0

,

where the constant Ĉp,s depends on p and s, and r is defined by (49). In conclusion, we obtain

Fβ(v;u, f
†) ≥ −Ĉp,sβ

rs ∥w∥rX0
− cpR

⋆((Bs
µ −Bs

u)w)

which yields the claim.

Since we also have

R⋆(A∗
uϵN ) ≤ 1

q
∥A∗

uϵN∥qX0
,

it follows that we can bound DR(f
δ
α,N , f

†) in cases (i) and (ii) of Theorem 4.3 involving

the random terms
∥∥Bs

µ −Bs
u

∥∥q
L(X0)

and ∥A∗
uϵN∥qX0

. Therefore, if the spectral properties of

Bu are well-understood on X0, Propositions 5.2 and 5.5 in [5] yield probabilistic bounds on
the symmetric Bregman distance, when Theorem 4.3 and, in particular, the concentration
Assumption in inequality (35) is generalized for arbitrary power of β. This generalization is
technical and outside of the scope of this paper.

6 Random angle X-ray tomography

As an application of our theory, we study the case when the operator A is the semidiscrete
Radon transform and we perform random sampling of the imaging angles.
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6.1 Semidiscrete Radon transform

Before introducing the semidiscrete Radon transform, we start by recalling the classical defi-
nition of Radon transform R:

Rf(θ, s) =
∫
R
f(sθ + tθ⊥)dt θ ∈ S1, s ∈ R.

When considering the operator R acting on a function f ∈ X = {g ∈ L2(Ω) : supp(g) ⊂ Ω},
with Ω ⊂ R2 bounded, then Rf (the so-called sinogram) belongs to the space L2([0, 2π) ×
(−s̄, s̄)) for a suitable s̄ > 0 depending on Ω. We aim at defining the sampling operator
as a function associating an angle θ ∈ U = [0, 2π) to the sinogram related to that direction,
namely, R(θ) = R(θ, ·) ∈ L2(−s̄, s̄). Unfortunately, the sinogram space L2([0, 2π)×(−s̄, s̄)) ∼=
L2(U ;L2(−s̄, s̄)) does not show sufficient regularity to perform pointwise evaluations with
respect to the angles.

One way to overcome this difficulty is to rely on a semidiscrete version of the Radon
transform. In particular, we set the variable s in a discrete space, which corresponds to
modeling the X-ray attenuation measurements performed with a finite-accuracy detector,
consisting of Ndtc cells. To this end, we introduce a uniform partition {I1, . . . , INdtc

} of the
interval (−s̄, s̄), where we denote by sj the midpoint of each interval Ij and take a continuous

positive function ρ of compact support within (−1, 1) such that
∫ 1
−1 ρ = 1. The semidiscrete

Radon transform is a function A : X → L2([0, 2π);RNdtc) such that, for any f ∈ X and
θ ∈ [0, 2π), each component of the vector Af(θ) ∈ RNdtc can be written as

[(Af)(θ)]j =

∫
Ij

Rf(θ, s)ρ
(
s− sj
|Ij |

)
ds =

∫
Ij

∫
R
f(sθ + tθ⊥)ρ

(
s− sj
|Ij |

)
dtds. (50)

Notice carefully that, according to the formalism of Section 2, X = {f ∈ L2(Ω) : supp(f) ⊂
Ω}, Y = L2(U ;V ), U = S1 ∼= [0, 2π) and V = RNdtc .

We observe that each component of Af(θ) is a suitable average of Rf(θ, s) in a subinterval
Ij . By the change of variables x = sθ + tθ⊥ in equation (50) we observe that

[(Af)(θ)]j =

∫
R2

f(x)ρj(x, θ)dx,

being ρj(x, θ) = ρ
(
x·θ−sj
|Ij |

)
. As a consequence, from the continuity of ρ we can deduce that

for any f ∈ X each component of Af(θ) is a continuous function of θ, hence we can consider
A : X → Z being Z = C(U ;V ) and the sampled operator Aθ : X → V is well defined for
every θ ∈ U . Moreover, the following bound holds uniformly in θ:

∥Aθf∥2V = ∥Af(θ)∥2V =

Ndtc∑
j=1

∣∣∣∣∫
Ω
f(x)ρj(x, θ)dx

∣∣∣∣2 ≤ Ndtc|Ω| ∥f∥2L2(Ω) ∥ρ∥
2
∞ ,

and therefore we conclude that A is a bounded operator from L2(Ω) to Z. We now verify
that the semidiscrete Radon transform satisfies Assumption 5.3 for any choice of wavelet basis
{ψλ} and sufficiently regular Besov space Bs

p.

Proposition 6.1. Let Ω ⊂ Rd and X = Bs
p(Ω), with 1 < p ≤ 2 and s such that s

d ≥ 1
p − 1

2 .

Let {ψλ} be an orthonormal basis of L2(Ω). Then, the semidiscrete Radon transform satisfies
Assumption 5.3.
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Proof. Since, by hypothesis, q ≥ 2 and cλ,q,−s,d ≤ 1, it is enough to prove that

∞∑
λ=1

∥Aψλ∥2∞ <∞.

By Sobolev embedding, for any f ∈ L2(Ω),

∥Af∥2∞ = ∥Af∥2
C((0,2π);RNdtc )

≤ CS∥Af∥2H1((0,2π);RNdtc )
= CS

Ndtc∑
j=1

∥hj∥2H1(0,2π),

being hj(θ) =
∫
Ω f(x)ρj(x, θ)dx. Denoting by ⟨·, ·⟩ the scalar product in L2(Ω) have that

∥hj∥2H1(0,2π) =

∫ 2π

0
⟨f, ρj(·, θ)⟩2dθ +

∫ 2π

0
⟨f,∇θρj(·, θ)⟩2dθ.

Therefore, by Parseval’s identity,

∞∑
λ=1

∥Aψλ∥2∞ ≤ CS

∞∑
λ=1

Ndtc∑
j=1

(∫ 2π

0
⟨ρj(·, θ), ψλ⟩2dθ +

∫ 2π

0
⟨∇θρj(·, θ), ψλ⟩2dθ

)

= CS

Ndtc∑
j=1

∫ 2π

0

( ∞∑
λ=1

⟨ρj(·, θ), ψλ⟩2 +
∞∑
λ=1

⟨∇θρj(·, θ), ψλ⟩2
)

= CS

Ndtc∑
j=1

∫ 2π

0

(
∥ρj(·, θ)∥2L2 + ∥∇θρj(·, θ)∥2L2

)
≤ C(Ω, ∥ρ∥C1 , {|Ij |}, Ndtc).

6.2 Discretization

In order to perform numerical simulation, we now introduce a fully discretized version of the
sampled Radon transform. To this end, we replace the functional space X with RNpxl and
consider the following discrete model:

gδ
N = g†

N + δϵN = Aθf
† + δϵN (51)

where f † ∈ RNpxl denotes the (unknown) discrete and vectorized image, Aθ ∈ RNdtcN×Npxl

represents the sampled version of the Radon operator corresponding to the N randomly
sampled angles θ, g†

N ∈ RNdtcN is the subsampled sinogram and ϵN ∈ RNdtcN is the noise. In
the implementation, we consider a normal distribution for the noise vector, ϵ ∼ N (0, INdtcN ),
where INdtcN is the identity matrix in RNdtcN×NdtcN . A practical example is depicted in
Figure 1.

The numerical experiments are conducted in the presence of the following regularization
term:

R(f) =
1

p
∥Wf∥pp (52)

where 1 < p ≤ 2 and W ∈ RNpxl×Npxl is an orthogonal matrix. Notice that this expression
allows to consider two scenarios of interest:
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(a) (b) (c)

Figure 1: (a) Fully sampled sinogram. (b) Randomly subsampled sinogram with N = 18
projection angles. (c) Randomly subsampled sinogram with N = 81 projection angles. In
each case, the random angles are sampled using Matlab’s rand, and therefore are identically
distributed and independent.

i) if p = 2 and W = INpxl
, the identity matrix in RNpxl×Npxl , then (52) reduces to the

standard Tikhonov regularization, analyzed in Subsection 4.2;

ii) if 1 < p < 2 and W is the matrix representation of an orthonormal wavelet transform,
then (52) represents a Besov norm. In particular, according to (41), R(f) is equivalent

to the Bs
p(Ω) norm, provided that s = d

(
1
p − 1

2

)
.

Finally, the discrete counterpart of (3) reads as:

f δ
α,N = argmin

f∈RNpxl

{
1

2N

∥∥∥Aθf − gδ
N

∥∥∥2
2
+ αR(f)

}
. (53)

6.3 Proximal gradient descent algorithm

To solve the minimization problem (53), we use a proximal gradient descent (PGD) algorithm,
adapting the forward-backward algorithm reported in [10, Algorithm 10.3]. In particular, by
denoting Φ(f) = 1

p ∥f∥
p
p, the (k+1)-th iteration of PGD for the minimization of (53) is given

by:

f (k+1) = WTproxτkαΦ

(
W
(
f (k) − τk

N
AT

θ (Aθf
(k) − gδ

N )
))

(54)

where

proxατΦ(x) = argmin
z∈RNpxl

{
1

2
∥x− z∥22 + ατΦ(z)

}
(55)

is the proximal operator of Φ and τk is a suitable step length, which we update according to
the Barzilai-Borwein rule [1].

The expression of Φ allows to provide a more explicit formula for the associated proximal
operator. In particular, since for 1 < p ≤ 2 the functional in (55) is differential and convex,
by first-order optimality condition it holds that if z̄ ∈ RNpxl is such that z̄ = proxατΦ(x), then
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z̄ − x + ατ∇Φ(z) = 0. Moreover, ∇Φ(z) = z[p−1], where x[n] denotes the component-wise
signed n-th power:

(x[n])i = sign(xi)|xi|n. (56)

As a result, the optimality condition satisfied by z̄ reads as follows:

z̄i + ατ |z̄i|p−1sign(z̄i)− xi = 0 ∀i = 1, . . . , Npxl, (57)

where all the components are decoupled. Notice that sign(xi) = sign(z̄i), and so the solution
of equation (57) is z̄i = sign(xi)zi where zi is the positive solution of

zi + ατzp−1
i − |xi| = 0. (58)

Therefore, for any choice of p ∈ (1, 2) the proximal z̄ can be efficiently computed by numeri-
cally solving Npxl decoupled equations. Additionally, we remark that for the choice p = 3/2
and p = 4/3 (and, in principle p = 5/4) the solution of equation (58) has an explicit, analytic
expression given by the formula for the solution of the second, third and fourth degree alge-
braic equations, respectively. For this reason, without loss of generality, we implement the
cases p = 3/2 and p = 4/3.

6.4 Numerical Experiments

In the following, we present and discuss our numerical experiments. Computations were
implemented with Matlab R2021a, running on a laptop with 16GB RAM and Apple M1 chip.

The aim is to verify the expected convergence rates proven in Theorem 4.6 for the Tikhonov
case and in Corollary 5.6 for the Besov regularization. We test inequalities (31) and (46) in
the following two scenarios:

• Fixed noise, i.e., δ > 0 constant. Since δN → ∞, we take α ≃ δ2/3N−1/3 and in
particular we choose δ = cδ and α = cα/N

1/3;

• Decreasing noise, e.g., δ ≃ N−1. In this case, the optimal parameter choice is α ≃ N−1:
therefore, we choose δ = cδN

−1 and α = cαN
−1.

The positive constants cδ and cα are specified in the following (see Table 1 and Subsection
6.4.2).

Notice that in the fixed noise regime, the only valid bounds are the standard estimates
(31) and (46), whereas in the decreasing noise regime the alternative estimates (34) and (47)
are also valid, although since δ ≃ N−1 they actually coincide with the standard ones.

6.4.1 Implementing the source condition

All the numerical tests are run on images f † satisfying the source condition (25) in the
Tikhonov case and (43) in the Besov case. In the discrete setting, both (25) and (43) can be
formulated as:

∃ w ∈ RNdtcNθ s.t. WT(Wf †)[p−1] = ATw (59)

where A ∈ RNdtcNθ×Npxl with a fixed Nθ ≫ N is a matrix representing the Radon transform
acting from RNpxl to RNdtcNθ , a sufficiently refined discretization of the space Y of full sino-
grams. As in (56), f [p] is the component-wise signed power. In practice, a generic phantom
of interest f0 does not necessarily satisfy (59). Therefore, in order to guarantee that the
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(a) f0 (b) f † (c) f † − f0

Figure 2: (a) Original phantom. (b) Phantom satisfying the source condition in Assump-
tion 5.1 with p = 3/2. (c) Difference between (a) and (b), with relative error 5%.

test images satisfy (59), we first determine a vector w ∈ RNdtcNθ solution of the regularized
problem

w = argmin
w̃∈RNdtcNθ

{
1

2

∥∥∥ATw̃ −WT(Wf0)
[p−1]

∥∥∥2
2
+ λSC ∥w̃∥22

}
, (60)

for a suitable λSC > 0. Regularization is needed since the inverse problem to determine w as
in (59) is ill-posed. Then, we compute f † = WT(WATw)[1/(p−1)]: as a result, f † satisfies
the source condition associated with w, and

∥∥f † − f0

∥∥
2
is expected to be small. An example

for p = 3/2 is given in Figure 2. Notice that for p = 2 the source condition (59) reduces to

∃ w ∈ RNdtcNθ s.t. f † = ATw. (61)

6.4.2 Numerical setup

We use the Plant phantom, available on GitHub [18] (see also Figure 2(a)). The size of the
phantom is 128 × 128, hence Npxl = 1282. In order to generate a phantom satisfying the
source condition, we follow the strategy proposed in Subsection 6.4.1, employing the operator
A with Nθ = 360. The forward operator and its adjoint are implemented using Matlab’s
radon and iradon routines, with suitable normalization. Reconstructions are computed with
N = 36, 50, 64, . . . , 162 in the interval [0, π). To gain intuition on the subsampling rate
associated with this choice, the endpoints N0 = 36 and N1 = 162 correspond to 10% and
45% of Nθ = 360, which is typically used to provide a sufficiently fine discretization of the
full sinogram. In each scenario, N random angles are sampled using Matlab’s rand (thus
ensuring that the random points are stochastically independent). The Gaussian noise ϵN is
created by the command randn and the constant cδ appearing in the expression of the noise
level δ is chosen depending on the noise scenario:

• Fixed noise (δ = cδ): cδ = 0.01
∥∥Af †∥∥

∞;

• Decreasing noise (δ = cδN
−1): cδ = 0.02N0

∥∥Af †∥∥
∞. Therefore, δ ranges between

0.02 ∥Af∥∞ and 0.02N0/N1 ∥Af∥∞ ≈ 0.005 ∥Af∥∞.

Reconstruction are computed using the PGD algorithm as described in Subsection 6.3. The
regularization parameter α depends on the value of cα which is heuristically determined.
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fixed noise reducing noise

p = 3/2 0.05 0.15
p = 4/3 0.04 0.15
p = 2 0.13 0.16

Table 1: Optimal values for cα.

(a) (b) (c)

Figure 3: Estimates in the fixed noise case. (a) p = 3/2 (b) p = 4/3 (c) p = 2

Optimal values for cα are reported in Table 1. The expected values appearing in Theorem
4.6 and in Corollary 5.6 are approximated by sample averages, computed using 30 random
realizations. This means that, for each number of angles N , the reconstruction is performed
30 times, each time with a different set of N drawn angles and noise vector.

6.4.3 Numerical results

In Figures 4 and 3 we report the value of the expected Bregman distance EDR(f δ
α,N ,f

†)
as a function of N , both in the reducing noise and fixed noise regimes. We compare three
different choices of functional R: p = 3/2 and p = 4/3, associated with the choice of the Haar
wavelet transform W (Besov regularization), and p = 2 with the identity matrix (Tikhonov
regularization). According to Corollary 5.6 and Theorem 4.6, we should expect the same
decay of EDR(f δ

α,N ,f
†), independently of R: as N−1/3 in the fixed noise one, and as N−1 in

the reducing noise scenario. We can see in Figures 3 and 4 that the theoretical behaviour is
numerically verified.

In order to provide a quantitative assessment, we compare the theoretically predicted
decay with the experimental one, which is obtained by computing the best monomial ap-
proximation amono(N) = cNβ of the reported curves. In each plot, the value of the expected
Bregman distance is indicated by a blue solid line and its monomial approximation by a black
dashed line. We observe a good match with the theoretical previsions, as reviewed in Table
2. The results reported in this Section allow to conclude that, in the example of the discrete
Radon transform, the decay of the expected Bregman distance reported in Corollary 5.6 and
Theorem 4.6 is verified. We do not attempt to provide an expression for the constants ap-
pearing in such inequalities. Moreover, we do not aim at comparing the effectiveness of the
three different regularization strategies. For example, it is not worth to compare the values
in Figure 3 (a),(b) and (c) among each other, because the object of the plot, EDR(f δ

α,N ,f
†),

is different in each of them: the Bregman distance clearly depends on R, but also f † subtly
changes with R, according to the proposed strategy to impose the source condition to the
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(a) (b) (c)

Figure 4: Estimates in the decreasing noise case. (a) p = 3/2 (b) p = 4/3 (c) p = 2

scenario theoretical p = 3/2 p = 4/3 p = 2

reducing noise −1 −0.99799 −1.0004 −1.0168
fixed noise −1/3 −0.33631 −0.3153 −0.3289

Table 2: Approximate decay β of the expected Bregman distance.

phantom.

7 Conclusions

In this paper we developed a novel convergence study for a linear problem within the statistical
inverse learning framework. We assume a regularization scheme with a general convex p-
homogeneous penalty functional for p > 1 and derive concentration rates of the regularized
solution to the ground truth measured in the symmetric Bregman distance induced by the
penalty functional. We provide concrete rates for Besov-norm based penalties and observe
these rates numerically, for 1 < p ≤ 2, in the case of X-ray tomography with randomly
sampled imaging angles.

In the usual framework of statistical inverse learning, the noise level δ > 0 is fixed. Here,
we developed estimates also for the asymptotic regime, where the noise is small with respect
to the number of design points, i.e., δ ≃ N−ρ for some ρ > 1. More work is needed to clarify
conditions, where such small noise estimates become preferable to the standard framework.
The identity Q = q/2 in Theorem 4.9 as observed with the Besov penalties in Section 5.1
seems natural to the Monte Carlo type approximation error in learning theory. However, it
is intriguing to understand if and when faster rates with Q > q/2 are possible in the small
noise regime.

Finally, the results presented here produce two immediate questions for future studies:
first, it would be valuable to understand whether optimal convergence rates can be achieved
with the developed framework. Second, arguably the most interesting p-homogenous case
p = 1 is not considered here. Enabling convergence studies for penalties such as the Total
Variation functional is part of future study.
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A Technical Lemmas

Let us record here the technical Lemmas used in Section 4.2. The following concentration
result was first shown in [26, Corollary 1].

Proposition A.1. Let (Z,B,P) be a probability space and ξ a random variable on Z with
values in a real separable Hilbert space H. Assume that there are two positive constants L
and σ such that for any m ≥ 2 we have

E ∥ξ − Eξ∥mH ≤ 1

2
m!σ2Lm−2.

If the sample z1, ..., zN drawn i.i.d. from Z according to P, then, for any 0 < η < 1 we have∥∥∥∥∥∥ 1

N

N∑
j=1

ξ(zj)− Eξ

∥∥∥∥∥∥
H

≤ 2 log(2η−1)

(
L

N
+

σ√
N

)

with probability greater than 1− η.

Proposition A.2 (Cordes inequality [15, 14]). Let T1, T2 be two self-adjoint, positive opera-
tors on a Hilbert space. Then for any s ∈ [0, 1] we have

∥T s
1T

s
2 ∥ ≤ ∥T1T2∥s .

The following two results are the basis for estimating expectation of the quadratic loss in
Section 4.2.

Lemma A.3. Let X be a nonnegative random variable with P
(
X > Z logγ

(
k
η

))
< η for any

η ∈ (0, 1]. It follows that
EX ≤ ZkγΓ(γ).

Proof. The result follows from identity EX =
∫∞
0 P(X > t)dt and changing variables in the

probabilistic bound.

33



Proposition A.4. [16, Prop. 1] For any β > 0 and η ∈ (0, 1] we have∥∥(Bu + βI)−1(Bµ + βI)
∥∥ ≤ CBN (β) log2

(
2

η

)
for some constant C > 0 with probability at least 1− η, where BN is given by

BN (β) = 1 +

(
2

Nβ
+

√
N (β)

Nβ

)2

.
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