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Abstract
Many tasks in real life scenarios can be naturally formulated as nonconvex optimiza-
tion problems. Unfortunately, to date, the iterative numerical methods to find even only
the local minima of these nonconvex cost functions are extremely slow and strongly
affected by the initialization chosen.We devise a predictor–corrector strategy that effi-
ciently computes locally optimal solutions to these problems. An initialization-free
convex minimization allows to predict a global good preliminary candidate, which is
then corrected by solving a parameter-free nonconvex minimization. A simple algo-
rithm, such as alternating direction method of multipliers works surprisingly well
in producing good solutions. This strategy is applied to the challenging problem of
decomposing a 1D signal into semantically distinct components mathematically iden-
tified by smooth, piecewise-constant, oscillatory structured and unstructured (noise)
parts.
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1 Introduction

Many applications, including signal and image processing, wireless communications
and machine learning, involve the solution of nonconvex and nonsmooth optimization
problems. Despite their strong applicability, they are computationally challenging to
solve due to the presence of multiple local stationary points that are not necessarily
global optima, from the perspective of the mathematical model, and due to sensitivity
to initialization, low efficiency, and critical convergence, from the algorithmic point
of view.

In this work, we address the following generic nonconvex parametric optimization
problem

x∗ ∈ arg min
x∈RN

{J (x; a, γ1, γ2, . . .) := γ1J1(x; a)

+γ2J2(x) + γ3J3(x) + · · · + JM (x)} , (1)

where the cost function J is parameterized by a set of parameters γ1, γ2, . . . , which
balance the action of M different energy terms. The function J is defined by the sum
of a nonconvex parametric termJ1(x; a), whichmakesJ (x; a, γ1, γ2, . . .) eventually
nonconvex, and other convex smooth energy terms J2(x),J3(x), . . . ,JM (x).
Widely used nonconvex terms, employed for their sparsity-inducing properties, belong
to the class of parameterized penalty functions φ(x; a), a ∈ R+, characterized by a
lower-bounded second derivative infx∈R++ φ′′(x; a) = −a. In such a way the degree
of nonconvexity can be tuned: setting a = 0 ensuresJ1(x; a) to be convex, nonconvex
fora > 0.We refer to [25] for popular examples of (sparsity-promoting) parameterized
nonconvex penalty functions.

A class of popular methods developed for tackling these nonconvex optimization
of eventually non-smooth functions is centered around the convex relaxation idea,
which approximates the nonconvex and nonsmooth problem by a sequence of tractable
convex subproblems. For the resulting convex subproblems, one then applies convex
analytic tools and algorithms to compute the minimizer.

The basic approach in this direction consists in convexifying the objective function.
Natural choices are the convex envelope (or biconjugate) for the objective function
and convex hull for the constraint set (see, e.g., [18]), which together provide the
tightest convex approximation of the original problem but might be computation-
ally intractable. The more sophisticated and versatile version, referred to as “Convex
NonConvex” (CNC) strategy [25], involves the construction and then optimization of
convex functionals containing (a general class of) parameterized nonconvex sparsity-
inducing separable and non-separable penalties. Not all nonconvex functionals can be
convexified using CNC strategies because they lack a sufficiently convex component.

From an algorithmic perspective, “Graduated NonConvexity” (GNC) algorithms,
term coined by Blake and Zisserman in [2], solve a well-constructed sequence of non-
convex problems of increasing complexity to gradually approach the target solution
[31]. Along this algorithmic line of research we also mention the Majorization-
Minimization (MM) algorithm, which works by iteratively optimizing a sequence
of easy- to-optimize surrogate functions that bound the objective [19]. Two of the
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most successful instances of MM algorithms are Expectation–Maximization (EM)
[14] and the Concave–Convex Procedure (CCP) [39]. Another related line of research
concerns the Difference-of-Convex (DC) programming [36], which can be shown to
reduce to CCP under certain conditions.

These techniques have proved useful to a number of computer vision and learning
problems [19, 31]. However, despite their widespread success, they may be very tricky
to deploy in general and present a number of drawbacks in practice, someofwhich have
motivated our work. A tractable convex surrogate may be hard to find, or suboptimal
in performance and expensive in computation, and finding a good initialization poses
significant practical challenges. With generic traditional, typical iterative methods at
best only guarantee to converge to a critical point that might be even a saddle point
and their efficiency could be seriously compromised.

The proposed numerical approach for solving (1) is inspired by the Predictor–
Corrector (PC)method [4], designed to integrate ordinary differential equations,which
use a suitable combination of an explicit and an implicit technique to improve the
approximation accuracy while obtaining better convergence characteristics. Applying
the PC strategy in the context of solving a nonconvex nonsmooth optimization problem
formulated as in (1), the task of the predictor is carried out by a convex optimizer, used
to predict a good approximation of the solution. The corrector, a nonconvex optimizer,
is applied to improve the approximation obtained by the convex method.

A fast convexPredictor generates preliminary candidate points in the solution search
space, which further allow for an automatic parameter selection for the Corrector. The
initial approximation is close enough to the optimal solution to clearly facilitate and
accelerate the process of solving the minimization problem by a limited number of
iterations of a nonconvex Corrector.

For our purposes model (1) will assume the role of Predictor by setting a = 0, and
Corrector for any positive a value.

The variational model (1) relies on different penalty terms in order to capture the
different components of the data. While the resulting multipenalty approach has in
principle a greater potential for accurate reconstructions than single-penaltymodels, its
practical performance relies heavily on a good choice of the multiple parameters. The
PC optimization strategy aims at overcoming the downsides of empirical parameter
selection rules by an automatic context-aware choice of the parameter values.

Many signal/image processing problems are formulated as nonconvex variational
models of the type (1) that contain a parameterized nonconvex penalty φ(x; a); exam-
ples include spike deconvolution [28], image segmentation and restoration [6, 21, 37],
image decomposition [34], image inpainting [32], signal and image denoising [7, 24].
The commonly used numerical optimization strategies for solving such nonconvex
models range from DC programming, when the nonconvex term can be decomposed
as the difference of two convex functions, CNC strategy, when the sufficient convexity
of the other convex terms is guaranteed, to GNC method, which redefines the non-
convex term in each iteration to obtain a gradually sparser solution. Due to lacks of
efficient solvers, the broad applications of GNC have been limited.

In this work, the PC optimization strategy is applied to the nonconvex optimization
formulation used to solve the challenging problem of decomposing a 1D signal into
semantically distinct components. This problem is based on the hypothesis that an

123



Journal of Optimization Theory and Applications (2024) 202:1286–1325 1289

observed signal f ∈ R
N can be represented mathematically as a mixture of three

components:

f = c + s + o, (2)

where c ∈ R
N is the “cartoon” approximation of f represented as a piecewise-constant

(sparse-derivative) function, s ∈ R
N is a smooth low-oscillating function, and o ∈ R

N

contains zero-mean high-oscillations of the signal, which can include additive white
noise, as well as meaningful oscillatory components.

We propose a nonconvex variational decomposition model, which encodes qualita-
tive features of signals into variational energies in conjunction with advanced models
in sparse optimization. The three-terms variational model is analysed in terms of con-
vexity, coercivity and existence/uniqueness of solutions in Sect. 4; it is then efficiently
optimized using the Predictor–Corrector algorithmic framework (presented in Sect. 3),
which incorporates an automatic multi-parameter selection based on cross-correlation
principle, (described in Sect. 6). For both optimization stages the numerical optimiza-
tion relies on an alternating direction method of multipliers (ADMM) approach (see
Sect. 5).Numerical results (presented inSect. 8)will showexcellent performance of the
proposed PC-optimizer when applied to the signal decomposition of synthetically gen-
erated signal examples, with respect to state-of-the-art variational 1D-decomposition
models.

The main contributions of this paper are summarized as follows:

– a general algorithmic framework based on Predictor–Corrector strategy is intro-
duced to tackle the minimization of nonsmooth nonconvex optimization problems
in the form (1);

– a novel variational model for the ternary decomposition of 1D signals into cartoon,
smooth and oscillatory components.We further devise a post-processing optimiza-
tion stage able to separate oscillatory components from noise in a corrupted signal;

– an ADMM-based minimization algorithm which, thanks to a suitable variable
splitting, and an adaptive step-size update, allows for a very efficient computation
of the model solution with convergence guaranteed;

– a simple grid strategy for an effective, automatic selection of all the parameters of
the Predictor and Corrector models for the decomposition task. In particular, this
is achieved based on a novel Multi-Parameter Cross Correlation Principle.

2 RelatedWorks on Signal Decomposition

Many application fields use time-frequency analysis and signal decomposition as a
fundamental tool for quantitative and technical analysis. The first approaches to signal
decomposition focused on frequency content and signal priors. In their seminal work,
Huang et al. [20] introduced Empirical Mode Decomposition (EMD), an algorith-
mic method to detect and decompose a nonstationary nonlinear signal into principal
“modes”—a signal with mostly compact supported Fourier spectrum. Among the
more recent derivatives we mention IF [26], FIF and ALIF [10], as well as standard
methods such as (Short Time) Fourier Transform and Wavelet-based methods such
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as the synchrosqueezing in [13]. A fully variational model, named Variational Mode
Decomposition (VMD), has been introduced in [15] to decompose an input signal into
compact-support and band-limited modes in the spectral domain.

As an alternative, Morphological Component Analysis (MCA) is a time-domain
analysis that deals with morphological diversity instead of frequency or scale infor-
mation, taking into account the shape of the signal [38]. In [5] Cai et al. proposed a
sparsity-enhanced signal decompositionmethod usingMCAandwavelet transform by
using the generalized minimax-concave penalty to improve the signal decomposition
performance of the L1-norm regularized MCA. These methods are based on the abil-
ity to represent signal components as sparse combinations of atoms of predetermined
dictionaries. In this direction, Meyers and Boyd in [30] introduce a general optimiza-
tion framework for the 1D-decomposition in multiple classes. Although extremely
flexible and effective, the proposed framework requires the intervention of an analyst
with a preliminary knowledge of the mathematical characteristics of the signal to be
extracted and of how many components are being sought.

Our variational proposal aligns with the class of MCA-based decomposition
methods, elaborating semantically distinct components that can be mathematically
identified as smooth-, cartoon-, oscillatory- structured, and unstructured (noise) parts.
Since a unique component aggregates all the oscillatory parts of the signal, the method
stands as a useful pre-processing to the time-frequency analysis.

The proposed variational model improves the nonconvex decomposition model
(stage I) introduced in [8]. From the model point of view, firstly, the oscillatory com-
ponent is captured by the G-norm penalty rather than its L2-norm approximation in
the negative Sobolev spaceH−1. Secondly, a fourth quadratic fidelity term is present
in model [8] to impose soft constraints on the decomposition, whereas in this proposal
the fidelity is hardly imposed. Moreover, the Predictor–Corrector proposal overcomes
the problem of sensitivity to initialization, while being fully automatic, thus avoiding
the critical multi-parameter selection in the model.

3 Predictor–Corrector Algorithmic Framework for Signal
Decomposition

Given a nonconvex optimization problem in the form (1) the proposed general PC algo-
rithmic framework is sketched in Algorithm 1. The role of the Estimate_param()
procedure is to estimate the optimal values for the multi-parameters that characterize
the cost function J . This task is performed by the minimization of a context-aware
function E(γ1, γ2, . . .) : RM−1 → Rwhich represents properties of the specific appli-
cation context. For the signal decomposition problem considered in this work, we will
introduce a specific criterion E in Section 6, based on a cross-correlation principle.
Another quite popular and effective criterion which might be plugged into the pro-
posed general PC-optimizer framework when applied to many different signal/image
processing problems is the so-called whiteness principle [22, 23].

The convex minimization problem is then uniquely solved by the Predictor()
optimizer with fixed parameters γ̂1, γ̂2, .., previously evaluated by the
Estimate_param() procedure in step [a]. The global minimizer ŷ plays the
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role of starting point for the iterative procedure used for solving the noncon-
vex Corrector() minimization. The multi-parameter estimation (Estimate_
param()) performed in step [c] applies a natural correction to the multi-parameters
used in the Predictor(), and also estimates the parameter a which imposes opti-
mal nonconvexity degree. The convergence to a local (and, possibly, global) minimizer
of the original optimization problem (1) with the parameters a, γ1, γ2, . . . selected is
therefore favored and accelerated by having a good initialization.

Algorithm 1 PC-optimizer
[a] (γ̂1, γ̂2, . . .) ← Estimate_param(J , E)
[b] (ŷ) ← Predictor(J (x; a = 0, γ̂1, γ̂2,..))
[c] (a,̂γ̂ 1,̂γ̂ 2, . . .) ← Estimate_param(J , E)
[d] (y) ← Corrector(J (ŷ; a,̂γ̂ 1,̂γ̂ 2,..))

It arises naturally the comparison with the GNC, introduced in [2], that follows an
outer iterative process to compute a solution to the nonconvex problemby starting from
its convex surrogate and gradually changing a (i.e., gradually increasing the amount of
nonconvexity of a parametric nonconvex penalty) until the original nonconvex function
is recovered. The solution obtained at each outer iteration is used as the initial guess for
the subsequent iteration. The proposed PC-optimizer shares the simple idea that, when
solving anonconvexoptimizationproblemwith parameterizeddegree of nonconvexity,
in order to reduce the problem of local minimizers, it is advantagious to estimate a
good initial guess for the iterative optimization algorithm by solving a convex (PC-
optimizer) or a sequence of less nonconvex (GNC) surrogate problems. However, the
PC-approach improves this idea with a framework for the fully automatic estimation
of all the free parameters of the optimized cost function, including the parameter a
controlling the degree of nonconvexity of the model. As a result, unlike the GNC
approach, our efficient proposal can be seamlessly used for practical applications
where the automatic parameter selection is a must.

In the following we apply the PC optimizer to the nonconvex optimization prob-
lem formulated for the decomposition of a 1D signal into semantically homogeneous
components. We point out that the applicability of the PC optimizer is not limited to
the considered decomposition setup. Other important applications in variational signal
and image processing can be easily treated.

We estimate the signal components cartoon c, smooth s, and oscillatory o of a given
sampled signal f ∈ R

N by solving the following optimization problem

{̂c, ŝ, ô} ∈ arg min
c,s,o∈RN

{

γ1

N
∑

i=1

φ (|(Dc)i |2; a) + γ2

2
‖Hs‖22 + ‖o‖G

}

, (3)

subject to : c + s + o = f ,
N
∑

i=1

ci = 0, (4)
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Fig. 1 The parametrized penalty function φ(t; a) used for different values of a

with penalty function φ defined in (5), G-norm defined in (6), and D,H ∈ R
N×N

finite difference matrices discretizing the first- and second-order derivatives. The role
of the constraint on the sum of the entries of the cartoon component c is to restrict the
solution space, as will be detailed in Sect. 4.

Definition 3.1 (minimax concave penalty function) The minimax concave (MC)
penalty function φ : R → R+ with parameter a ∈ R+ is defined by

φ(t; a) =
⎧

⎨

⎩

−a

2
t2 + |t | if |t | ∈ [0, 1/a] ,

1

2a
if |t | ∈ ]1/a,+∞[ ,

for a ∈ R++,

φ(t; 0) = lim
a↘0

φ(t; a) = |t | , (5)

and is illustrated in Fig. 1
We recall the Meyer’s G-space—introduced in [29] in the 2-dimensional domain,

which is the dual of BV-space, and contains distributions f that can be written as
f = ∂1g1 +∂2g2 = −∂∗

1 g1 −∂∗
2 g2, for g1, g2 ∈ L∞(R2). The G-norm ‖ f ‖G is small

for highly oscillating components characterized by zero-mean. We now restrict the
G-space to the discrete 1-dimensional domain containing uniformly spaced samples
of a bounded function f , denoted by the vector o ∈ R

N and endowed with the G-norm
defined as

‖o‖G := inf
{

‖g‖∞
∣

∣ o = −DTg, g ∈ R
N
}

, (6)

where ‖g‖∞ := maxi |gi |, D ∈ R
N×N denotes the first-order linear differential

operator, and DT its transpose. Therefore, by penalizing ‖o‖G we aim to capture
the higher-frequency oscillatory parts of the signal characterized by zero-mean.
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Both Predictor and Corrector optimizers will be applied to solve the same
optimization problem (3)–(4); by setting a = 0 the Predictor solves a convex
minimization problem, whereas for a > 0 the Corrector solves a nonconvex
minimization problem.

TheEstimate_param() procedure uses theADMM-based algorithmdescribed
in Sect. 5 to approximatively solve problem (3)–(4) for a grid [γ

1
, γ 1] × [γ

2
, γ 2] of

Np logarithmically equispaced different values of the parameters γ1 and γ2. This
requires to solve Np instances of the decomposition problem and then apply an ad hoc
criterium E to select the optimal parameter set according to the specific application
the PC framework is aimed to solve. For signal decomposition problems we propose
to minimize a cross-correlation function, introduced in Sect. 6, which measures the
separability among the different components.

The coarse grid used in step [a] inAlgorithm1will cover a sufficiently large feasible
region, while in step [c] the refined grid will be localized near the best estimated values
γ̂1, γ̂2 computed in step [a]; this results in a correction of the parameters around the
values obtained for the convex Predictor solver.

4 Model Reformulation and Analysis

In this section, first we reformulate the decomposition model (3)–(4) into a suit-
able equivalent one with associated minimization problem of reduced dimensionality
(dimension 2N instead of 3N ). Then, we analyze the model in terms of convexity,
coercivity and existence/uniqueness of solutions.

By making use of the definition (6) of the G-norm of the oscillatory component
o = DTg and replacing s = f − c − o = f − c −DTg, problem (3)–(4) can be quite
easily reformulated in the following equivalent form of reduced dimensionality:

{ ĉ, ĝ } ∈ arg min
c,g ∈RN

{

˜J (c, g; a, γ1, γ2) := J (c, g; a, γ1, γ2) + ιC(c)
}

, (7)

with function J and (linear) constraint set C defined by

J (c, g; a, γ1, γ2) = γ1

N
∑

i=1

φ
(∣

∣(Dc)i
∣

∣ ; a)+ γ2

2
‖H(c + DTg − f )‖22 + ‖g‖∞,(8)

C =
{

c ∈ R
N :

N
∑

i=1

ci = 0

}

, (9)

and with estimated oscillatory and smooth components given by

ô = DT ĝ, ŝ = f − ô − ĉ. (10)

Some of the reported results (or their proof) can depend on the discretization choices
for the first- and second-order differential matrices D and H in (8). However, analo-
gous results could be obtained in a similar manner for other discretization schemes.

123



1294 Journal of Optimization Theory and Applications (2024) 202:1286–1325

Here, we adopt unscaled forward finite difference discretizations for the first-order
derivatives and unscaled centered finite difference discretizations for the second-order
derivatives. More formally, depending on the particular boundary conditions (BC)
adopted among the periodic (P), reflective (R) and anti-reflective (A) ones, the six
matrices DP,DR,DA,HP,HR,HA ∈ R

N×N are explicitly given by

DP =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1 1
−1 1

. . .
. . .

−1 1
1 0 . . . 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, HP =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−2 1 1
1 −2 1

. . .
. . .

1 −2 1
1 0 . . . 1 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

DR =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1 1
−1 1

. . .
. . .

−1 1
0 0 . . . 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, HR =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1 1
1 −2 1

. . .
. . .

1 −2 1
1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

DA =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1 1
−1 1

. . .
. . .

−1 1
−1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, HA =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 . . . 0 0
1 −2 1

. . .
. . .

1 −2 1
0 0 . . . 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(11)

In the subsequent analyses, we will consider all three types of boundary condi-
tions, as they all are of practical interest for signal processing and, as we will see,
involve differences in the theoretical analysis of the decomposition model considered.
Specifically, it is well-known that the null spaces of the matrices are given by:

null (DBC) = span (1N ) ∀ BC ∈ {P,R,A} ,

null (HP) = null (HR) = span (1N ) , null (HA) = span (1N , lN ) ,

where vector lN is defined by

lN := (− (N − 1)/2, −(N − 1)/2 + 1, , . . . , (N − 1)/2 − 1, (N − 1)/2
)

,(12)

so that it holds true that

1TN lN = 0, DA lN = 1N , ∀ N ∈ N . (13)

Moreover, it is immediate to verify that, for any vector g ∈ R
N , we have

N
∑

i=1

oi =
N
∑

i=1

(

DT
BCg

)

i
= 1TN

(

DT
BCg

)
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= (DBC1N )T g = 0 ∀ BC ∈ {P,R,A} , (14)

which proves that the oscillatory component ô estimated by our discrete decomposition
model—see (10)—always has the desired theoretical property of being zero-mean.

In the following Proposition 4.1 we analyze the cost function J in (8) and prove
that it admits an infinity of global minimizers. Then, in Proposition 4.2 and Corollary
4.1 we outline the (desirable) effects of imposing, while minimizing J , a suitable
class of linear constraints, of which the one considered in our model (9) is a specific
instance. The proofs are postponed to the Appendix and, to simplify notations, we
introduce the total optimization variable x := (

c, g
)T ∈ R

2N .

Proposition 4.1 For any f ∈ R
N and any γ1, γ2 ∈ R++, a ∈ R+, the function J in

(8) is proper, continuous and bounded from below by zero. Moreover,

(1) J is constant along straight lines in its domain R
2N of direction defined by the

vector

d := ( 1N ; 0N ) , (15)

hence J is non-coercive in x.
(2) for a = 0, J is convex in x.
(3) for a > 0, J is convex in g but nonconvex in x.
(4) in spite of its non-coercivity, J admits an infinity of global minimizers for any

a ≥ 0.

Proposition 4.2 Let J be the function in (8). Then, for any f ∈ R
N and any γ1, γ2 ∈

R++, a ∈ R+, any constrained optimization problem of the form

{̂c, ĝ} ∈ arg min
c,g ∈ RN

{

˜J (c, g; a, γ1, γ2) := J (c, g; a, γ1, γ2) + ιHv
(c, g)

}

, (16)

with Hv ⊂ R
2N defined by

Hv :=
{

x ∈ R
2N : vT x = 0 with v ∈ R

2N : vT d = 0
}

, (17)

is equivalent to its unconstrained counterpart in terms of minimum cost function value,
but the dimensionality of the space of equivalent global minimizers is reduced by 1.

Corollary 4.1 Let ˜J be the function in (16), with J in (8) and Hv in (17). Then,

(1) for a = 0, ˜J is coercive in x for BC ∈ {P,R,A}.
(2) for a > 0, ˜J is coercive in x for BC ∈ {P,R}.

In our framework the convex predictor is a key ingredient for the success of the
overall PC optimizer. This motivated us to investigate more deeply, in the following
Lemma 4.1 and Proposition 4.3 (whose proofs are postponed to the Appendix), the
(constrained) predictor model in terms of existence/uniqueness of solutions.
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Lemma 4.1 Let Hv be the class of hyperplanar constraint sets defined in (17) with
v = (v1, v2)

T ∈ R
2N ,v1, v2 ∈ R

N , and let QBC ∈ R
N×2N be the matrix given by

QBC := [HBC, HBCD
T
BC ] = HBC [ IN , DT

BC ] , BC ∈ {P,R,A}, (18)

with DBC,HBC ∈ R
N×N the first- and second-order finite difference matrices defined

in (11), depending on the boundary conditions BC. Then, it holds true that

NBC := null(QBC) ∩ Hv = range (MBC) , (19)

with matrixMBC defined by

MBC =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[−DT
BC + 1

vTd
1N

(

vT1 D
T
BC − vT2

)

IN

]

, for BC ∈ {P,R},
[−DT

BC + 1
vTd

1N
(

vT1 D
T
BC − vT2

) (

lN − (

vT1 lN
)

1N
)

IN 0N

]

, for BC = A,

(20)

and with

rBC := rank(MBC) =
{

N , for BC ∈ {P,R},
N + 1, for BC = A.

(21)

Proposition 4.3 Let J be the function in (8) andHv the class of hyperplanar feasible
sets defined in (17). Then, in case a = 0, for any f ∈ R

N and any γ1, γ2 ∈ R++,
the constrained optimization problem in (16) is convex and admits a m-dimensional
convex compact set of solutions x̂ = (̂c, ĝ)T ∈ M ⊂ Hv ⊂ R

2N . In particular, if the
solution set M is not a singleton (m > 0), then it must belong to a m-dimensional
affine subspace parallel to the linear subspaceNBC in (19), hence the dimensionality
of M satisfies m ≤ rBC with rBC given in (21).

Remark 4.1 Under the assumption that M is either a singleton (m = 0) or full-
dimensional (m = 2N − 1), then the constrained optimization problem in (16) with
a = 0 admits a unique solution. This comes from adapting the proof in [1] to our
original model (3)–(4).

Remark 4.2 We remark that the constraint set
∑

i ci = 0 used in our decomposition
model (7)–(10) can be seen as a particular hyperplane of the class Hv defined in (17),
obtained for v = d. Hence, our model exhibits all properties stated in Proposition 4.2,
Corollary 4.1, Proposition 4.3 and Remark 4.1. However, our special choice in (9) will
allow to enforce the constraint in a very efficient (if not immediate) manner within
one of the ADMM minimization subproblems.

5 ADMM-Based Numerical Solution

In this section, we illustrate an ADMM-based numerical solver for the proposed sig-
nal decomposition model (7)–(10), which is shared—with a single difference which
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will be adequately highlighted—by both the (convex) Predictor and the (nonconvex)
Corrector steps in the PC optimizer. We chose ADMM as the optimization algorithm
for different reasons. First, ADMM is known to be able to provide, at least in the
convex optimization case, “medium-quality” solutions in fast time. This is of crucial
importance for our (convex) Predictor phase, where we aim at computing efficiently
a sufficiently good-quality predicted initial guess for the (nonconvex) Corrector step.
Then, thanks to suitable preliminary variable splitting choices—which will be made
explicit in Sect. 5.1—the two-blocks ADMM schemes that we apply to the solu-
tion of the Predictor and Corrector models have both guaranteed convergence. In
particular, in the convex Predictor case, we can also apply the very effective iteration-
adaptive step-size rule quite recently proposed in [27], which makes the achievement
of medium-quality solutions even faster, independently of the two model parame-
ters γ1, γ2. Moreover, in the nonconvex Corrector case, we are able to demonstrate
convergence of our ADMM scheme based on the recent results reported in [35].

In Sect. 5.1 we describe in detail the proposed two-blocks ADMM iterative solver,
then in Sect. 5.2 we discuss about its convergence both in the convex (with adaptive
step-size rule) and in the nonconvex case.

5.1 ADMM-Based Iterative Solver

To solve theminimization problem (7)–(9) bymeans of a standard two-blocks ADMM
approach [3], first we introduce the auxiliary variable z ∈ R

2N defined by

z = x, with z :=
(

z1
z2

)

, x :=
(

c
g

)

, z1, z2, c, g ∈ R
N . (22)

Problem (7)–(9) can thus be equivalently reformulated as

{̂x, ẑ} ∈ arg min
x,z ∈R2N

{ F(x) + G(z) } , subject to x − z = 02N , (23)

where functions F,G : RN → R+ are defined by

F(x) = γ2

2
‖Qx − H f ‖22, G(z) = γ1

N
∑

i=1

φ
(∣

∣(Dz1)i
∣

∣ ; a)+ ιC(z1) + ‖z2‖∞,(24)

with matrix Q given in (18).
The augmented Lagrangian function associated to problem (23) reads as

Lβ(x, z, λ) = F(x) + G(z) + 〈λ, x − z〉 + β

2
‖x − z‖22, (25)

where λ ∈ R
2N is the vector of Lagrange multipliers associated to the system of linear

constraints x − z = 02N and β ∈ R++ is the ADMM penalty parameter.

123



1298 Journal of Optimization Theory and Applications (2024) 202:1286–1325

Given the previously computed (or initialized for k = 0) vectors x (k), z(k), λ(k), the
k-th iteration of the proposed ADMM-based iterative scheme reads as follows:

z(k+1) ∈ arg min
z∈R2N

Lβ

(

x (k), z, λ(k)
)

, (26)

x (k+1) = arg min
x∈R2N

Lβ

(

x, z(k+1), λ(k)
)

, (27)

λ(k+1) = λ(k) + β
(

x (k+1) − z(k+1)
)

. (28)

The subproblem for x (k+1) in (27) reads as follows

x (k+1) = arg min
x∈R2N

{

γ2

2
‖Qx − H f ‖22 + 〈λ(k), x − z(k+1)〉 + β

2
‖x − z(k+1)‖22

}

.(29)

The first-order optimality conditions for (29) read

(

C
︷ ︸︸ ︷

QTQ + β

γ2
I2N

)

x = QTH f + β

γ2

(

z(k+1) − 1

β
λ(k)

)

. (30)

The coefficient matrix C ∈ R
2N×2N of linear system (30) is clearly symmetric and

positive definite, hence the updated vector x (k+1) in (27) is given by the unique solution
of (30). Moreover, C is very sparse, having only 19 diagonals containing non-zero
elements, independently of its order 2N—that is, of the size N of the decomposed
signals, with N ≥ 6—and of the boundary conditionsBC ∈ {P,R,A} assumed.Hence
it is computationally convenient to compute the sparse Cholesky factorization once
and for all at the beginning and then solve two triangular systems at each ADMM
iterations.

The subproblem for z(k+1) takes the following form:

z(k+1) ∈ arg min
z∈R2N

{

G(z) + β

2

∥

∥

∥z − q(k+1)
∥

∥

∥

2

2

}

, q(k+1) = x (k) + 1

β
λ(k) . (31)

Since the cost function in (31) is separable in z1, z2—see the definition of variable z
in (22) and of function G in (24)—by introducing λ

(k)
1 , λ

(k)
2 ∈ R

N such that λ(k) =
(λ

(k)
1 , λ

(k)
2 )T , problem (31) is equivalent to solve the following two subproblems:

z(k+1)
1 ∈ arg min

z1∈RN

{

1

2

∥

∥

∥z1 − q(k+1)
1

∥

∥

∥

2

2
+ γ1

β

N
∑

i=1

φ
(∣

∣(Dz1)i
∣

∣ ; a)+ ιC(z1)

}

, (32)

z(k+1)
2 = arg min

z2∈RN

{

1

2

∥

∥

∥z2 − q(k+1)
2

∥

∥

∥

2

2
+ 1

β
‖z2‖∞

}

, (33)

where q(k+1)
1 = c(k) + 1

β
λ

(k)
1 and q(k+1)

2 = g(k) + 1
β
λ

(k)
2 .
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Subproblem (33) is solved by first noting that z(k+1)
2 in (33) is given by the (unique)

value of the proximity operator of proper lsc convex function 1
β
‖ · ‖∞ at q(k+1)

2 and
then applying the Moreau decomposition to this operator, which leads to

z(k+1)
2 = prox 1

β
‖·‖∞

(

q(k+1)
2

)

= q(k+1)
2 − proj‖·‖1≤ 1

β

(

q(k+1)
2

)

, (34)

where projS(v) denotes the Euclidean projection of vector v onto the set S. Hence,
based on [12], the updating problem in (34) admits a closed form efficient solution.

Finally, subproblem (32) is efficiently solved based on the results reported in the
following Proposition 5.1. We remark that this is the unique subproblem where a
difference between the convex (a = 0) and the nonconvex (a > 0) cases arises.

Proposition 5.1 Let φ be the penalty function defined in (5) and C the constraint set
in (9). Then, for any γ1, β ∈ R++, any a ∈ R+ and any vector q(k+1)

1 ∈ R
N , the

solution(s) of the constrained minimization problem in (32) is given by

z(k+1)
1 ∈ arg min

z1∈RN

{

γ1

β

N
∑

i=1

φ
(∣

∣(Dz1)i
∣

∣ ; a)+ 1

2

∥

∥

∥z1 − q̃ (k+1)
1

∥

∥

∥

2

2

}

,

with q̃ (k+1)
1 = q(k+1)

1 − 1

N

N
∑

i=1

(

q(k+1)
1

)

i
.

(35)

Moreover, for any q(k+1)
1 ∈ R

N , if the following condition is satisfied,

0 ≤ a ≤ β

4γ1
, (36)

then the cost function in (35) is strongly convex, hence (35) admits a unique solution
which for a = 0 can be calculated exactly in finite time [11], while for a > 0 can
be obtained as the limit point of the following, convergent forward-backward splitting
(FBS) iterative algorithm initialized by θ(0):

θ( j+1/2) = aDT
(

Dθ( j) − soft1/a
(

Dθ( j)
))

, (37)

θ( j+1) = arg min
θ∈RN

{

γ1

β
‖Dθ‖1 + 1

2

∥

∥

∥

∥

θ −
(

q̃(k+1)
1 + γ1

β
θ( j+1/2)

)∥

∥

∥

∥

2

2

}

. (38)

The proof of (35) is immediate, whereas a detailed demonstration of (36)–(38) is
given in [33]. We recall that, in the forward step (37), the soft threshold function
softT : R → R with threshold parameter T ≥ 0 is defined as

softT (t) =
{

0 |t | ≤ T ,

(|t | − T ) sign(t) |t | ≥ T .
(39)
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We observe that, when a = 0 (which is our Predictor case), subproblem (35)
reduces to a standard 1-dimensional TV-	2 denoising problem which, as stated in
Proposition 5.1, can be solved exactly in finite-time by means of the very efficient
approach proposed in [11]. When a > 0 (which is our Corrector case), the iterative
FBS algorithm in (37)–(38) is initialized by θ(0) = z(k)1 , the solution of the same
subproblem obtained at the previous ADMM iteration. This represents a good initial
guess and, thus, accelerates convergence. Iterations of the FBS algorithm are stopped
as soon as the iterates relative change defined by ‖θ( j+1) − θ( j)‖2 / ‖θ( j)‖2 drops
below a threshold. In particular, the threshold is decreased along the (outer) ADMM
iterations until it reaches the (very low) value 10−16. This guarantees that, after a
reasonable number of ADMM iterations, the z1 subproblem is solved (almost) exactly
also in the case a > 0.

5.2 Convergence Remarks

Performance of the two-blocks ADMM algorithm crucially depends on the choice of
the dual step-size β. More precisely, in the convex setting under standard assumptions
on the two cost functions F(x), G(z) and on the linear constraint Ax + Bz = b, the
step-size β affects only the speed of convergence in the nonconvex setting, β can also
affect convergence of the iterative scheme. Proving convergence of the two-blocks
ADMM in the nonconvex case under general assumptions is still an open issue.

For what regards the proposed ADMM scheme applied to the convex Predictor
model, we follow the results in [27]. More precisely, in (28) we use an iteration-
adaptive step-size βk which, according to the proposal in [27], is updated at each
ADMM iteration after (28) as follows:

βk+1 = (1 − ωk)βk + ωkproj[βm ,βM ]

(

‖λ(k+1)‖2
‖z(k+1)‖2

)

, ωk ∈ (0, 1), (40)

with 0 < βm < βM < ∞, and ωk ∈ (0, 1] a summable “conservation sequence”
with ω0 = 1. As a consequence, the sequence {λk} generated by the ADMM scheme
using the dual step-size updating rule in (40) weakly converges to a solution of the
dual problem, then the ADMM convergence is guaranteed, as outlined in [27]. These
conditions are guaranteed by explicitly adding constraints to the stepsize. As already
observed in [27] applying the proposed step-size rule improves the convergence rate.
This leads to a more efficient Estimate_param() procedure which relies on a
large grid for the multi-parameter search of the convex Predictor.

Next, the convergence of two-blocks ADMMscheme for a > 0 (nonconvex case) is
guaranteed by [Theorem 5.6, Theorem 5.8 [35]], that are summarized in the following
theorem:

Theorem 5.1 Consider the following linearly constrained, two-blocks separable min-
imization problem

min
(x,z)∈Rm×Rn

{ F(x) + G(z) } , subject to Ax + Bz = b, (41)
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with F : Rm → R, G : Rn → R := R ∪ +∞, A ∈ R
p×m, B ∈ R

p×n, b ∈ R
p, and

assume that:

1 Functions F and G are both proper and lower semi-continuous (lsc).
2 Matrix A is onto (has full row rank).
3 Function ϕF : Rp → R defined by ϕF (s) := inf

x∈Rm
{F(x) | Ax = s} ∈ C1,1(Rp)

is LϕF -smooth, hence σϕF -hypoconvex with |σϕF | ≤ LϕF .
4 Function ϕG : R

p → R defined by ϕG(s) := inf
z∈Rn

{G(z) | Bz = s} is lower

semi-continuous.
5 Problem (41) has a solution: arg min  = ∅, where

(x, z) := F(x) + G(z) + ιAx+Bz=b(x, z).

Then, by considering a sequence {x (k), z(k), λ(k)}k∈N generated by a two-block ADMM
scheme starting from any initial guess {x (0), z(0), λ(0)} with β > LϕF , the following
hold:

(i) (subsequential convergence) all the cluster points {x∗, z∗, λ∗} of sequence
{x (k), z(k), λ(k)}k∈N satisfy the KKT conditions of problem (41) and attain the
same finite cost function value F(x∗) + G(z∗), this being the limit of the scalar
sequence {Lβ(x (k), z(k), λ(k) }k∈N;

(ii) (boundedness) the sequence {Ax (k), Bz(k), λ(k)}k∈N is bounded provided that
the cost function  is level bounded. If, additionally, F ∈ C1,1(Rm), then the
sequence {x (k), z(k), λ(k)}k∈N is bounded.

(iii) (global convercence) if  is level bounded and F and G are semialgebraic,
sequence {Ax (k), Bz(k), λ(k)}k∈N is convergent.

Corollary 5.1 Consider the minimization problem in (23) with F,G defined in (24).
Then, the ADMM scheme (27)–(28) has guaranteed global convergence for BC ∈
{P,R} and (at least) subsequential convergence for BC = A.

Proof It’s immediate to verify that assumptions 1− 5 of Theorem 5.1 are satisfied. In
fact, F,G defined in (24) are proper and continuous hence lsc; minimization problem
(23) can be reformulated as problem (41) with A = I2N , B = −I2N and b = 02N
and thus A = I2N is surjective, ϕF = F and ϕG = G. Hence, since F is a quadratic
convex function and G is lsc, ϕF is C1,1(Rp) and LF − smooth and ϕG is lsc.
Finally, problem (23) is equivalent to problem (7)–(9) that admits a solution, as outlined
in Proposition 4.2. Consequently, the subsequential convergence of ADMM scheme
(27)–(28) is guaranteed for all boundary conditions BC = {P,R,A}. To prove global
convergence, we need to verify that  is level bounded and F,G are semialgebraic.
The level-boundedness of function  holds true only for BC ∈ {P,R}, as outlined
in statement 2) of Corollary 4.1, where function ˜J defined in (16) is proven to be
coercive and, hence, level bounded yielding level-boundedness of function . The
semialgebraicity of F and G is satisfied. In fact, F is a quadratic function while G is
the sum of three semialgebraic functions: a polyhedral norm, the indicator function of
a system of linear constraints and a piecewise quadratic function. Hence, the global
convergence is guaranteed for BC ∈ {P,R}.
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In conclusion, the overall PC-Optimizer in Algorithm 1 performing a two-block
ADMMoptimization for convex predictor and a two-blockADMMfor nonconvex cor-
rector has guaranteed global convergence for BC ∈ {P,R} and (at least) subsequential
convergence for BC = A.

6 Multi-parameter Selection

Core of the estimation procedureEstimate_param() is themulti-parameter selec-
tion for the optimal balance of the energy terms in the cost function J which will
be formulated as a minimization problem based on the cross-correlation criterium
between estimated components. This allows to select the parameters γ by imposing
the minimal cross-correlation between the components thus yielding the maximum
dissimilarity between them.
To this aim, let us recall the definition of sample normalized cross-correlation ρ(x, y)
between two non-zero signals in vector form x, y ∈ R

N defined on� := {0, . . . , N−
1}. The vector-valued function ρ : RN × R

N → R
N is defined as

ρ(x, y) = {ρl(x, y)}l∈� , ρl(x, y) = 1

‖x‖2‖y‖2
∑

i∈�

xi yi+l , l ∈ �, (42)

where the yi+l value in (42) depends of the boundary conditions considered, and
ρl(x, y) ∈ [−1, 1] for all lags l. We introduce the following non-negative scale-
independent scalar measure of correlation C : RN × R

N → R+ between the signals
x and y:

C(x, y) := ‖ρ(x, y)‖∞ . (43)

We propose an extension of the Cross Correlation Principle proposed in [16] named
Multi-Parameter Cross Correlation Principle (MPCCP). The extension is based on
the idea that the correlation between signals involves the correlation between the
derivatives (considering at least the first and the second) of the signals themselves.
Specifically, the multi-parameter cross-correlation scalar measure C : R2++ → R+
reads as

C(γ1, γ2) = C
(

ĉ(γ1,γ2), ô(γ1,γ2)

) + C
(

ŝ(γ1,γ2), ô(γ1,γ2)

)+ C
(

ĉ(γ1,γ2), ŝ(γ1,γ2)
)

+C
(

Dĉ(γ1,γ2),Dô(γ1,γ2)

) + C
(

D̂s(γ1,γ2),Dô(γ1,γ2)

)+ C
(

Dĉ(γ1,γ2), D̂s(γ1,γ2)
)

+C
(

Hĉ(γ1,γ2),Hô(γ1,γ2)

) + C
(

Ĥs(γ1,γ2),Hô(γ1,γ2)

)

+C
(

Hĉ(γ1,γ2), Ĥs(γ1,γ2)
)

, (44)

with ĉ(γ1,γ2), ŝ(γ1,γ2) and ô(γ1,γ2) the (γ1, γ2)-dependent solution components of the
minimization problem (3)–(4),with the cross-correlation scalarmeasureC(·, ·) defined
in (43).
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Then the MPCCP applied in Estimate_param() in Algorithm 1 is formulated
as follows:

Select (γ1, γ2) = (γ̂1, γ̂2), such that {γ̂1, γ̂2} ∈ arg min
γ1,γ2 ∈R++

C(γ1, γ2). (45)

The cost function C(γ1, γ2) to be minimized in (44)–(45) can be evaluated for any
given pair (γ1, γ2) of a grid [γ

1
, γ 1]×[γ

2
, γ 2]. However, as it does not have an explicit

form, the minimizer is computed by a simple grid-search strategy which, however, is
sufficient to make the Estimate_param() procedure fully automatic.

In order to make the limits of the parameter grid independent on the range of the
signal f a typical pre-processing—common practice when performing some type of
analysis on a signal f—is to rescale or normalize the signal magnitude. However,
it is not always obvious that this leads to an equivalent variational model. Under
appropriate simple parameter adjustments the following results show that this holds
for the proposed variational decomposition model.

Lemma 6.1 LetJ be the cost function defined in (8) and let f̃ := α f , with α ∈ R++.
Then, for any c, g, f ∈ R

N , any γ1, γ2 ∈ R++ and any a ∈ R+, it holds true that

J (c, g; f , γ1, γ2, a) = 1

α
J (c̃, g̃; f̃ , γ̃1, γ̃2, ã), (46)

with c̃ := αc, g̃ := αg, γ̃1 = γ1, γ̃2 = γ2
α

, ã = a
α

.

Proof First, it can be easily shown that the φ penalty function in (5) satisfies

φ(κt; a) = κ φ(t; κa) ∀ a ∈ R+, ∀ κ ∈ R++ . (47)

In fact, for a = 0, the proof is immediate. For a ∈ R++, we have

φ(κt; a) =

⎧

⎪

⎨

⎪

⎩

−aκ2

2
t2 + κ|t | if κ|t | ∈ [0, 1/a] ,

1

2a
if κ|t | ∈ ]1/a,+∞[ ,

= κ

⎧

⎪

⎨

⎪

⎩

−κa

2
t2 + |t | if |t | ∈ [0, 1/(κa)] ,

1

2(κa)
if |t | ∈ ]1/(κa),+∞[ ,

= κ φ (t; κa) .

Then, we have that

J (c, g; f , γ1, γ2, a) = γ1

N
∑

i=1

φ

(

1

α

∣

∣(D (αc))i
∣

∣ ; a
)

+γ2

2

∥

∥

∥

∥

1

α
H(αc + DT (αg) − α f )

∥

∥

∥

∥

2

2
+
∥

∥

∥

∥

(αg)

α

∥

∥

∥

∥∞

= γ1

N
∑

i=1

φ

(

1

α

∣

∣(Dc̃)i
∣

∣ ; a
)

+ γ2

2α2

∥

∥

∥H
(

c̃ + DT g̃ − f̃
)∥

∥

∥

2

2
+ 1

α
‖g̃‖∞
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= γ1

α

N
∑

i=1

φ
(

∣

∣(Dc̃)i
∣

∣ ; a
α

)
)

+ (γ2/α)

2α

∥

∥

∥H
(

c̃ + DT g̃ − f̃
)∥

∥

∥

2

2
+ 1

α
‖g̃‖∞

= 1

α

[

γ1

N
∑

i=1

φ
(∣

∣(Dc̃)i
∣

∣ ; ã)+ γ̃2

2

∥

∥

∥H
(

c̃ + DT g̃ − f̃
)∥

∥

∥

2

2
+ ‖g̃‖∞

]

= 1

α
J
(

c̃, g̃; f̃ , γ̃1, γ̃2, ã
)

.

��

7 Denoising of the Oscillatory Term

In this section, we present an original post-processing extension of the three com-
ponents signal decomposition model (3)–(4) in order to deal with the case of noisy
signals. Indeed, the noise can be viewed as a very highly oscillatory function (this
means that noise is in G-space). Therefore the PC-algorithm incorporates the noise
in the oscillatory component (o) and does not discriminate between the structured
high-frequency components (t) and the additive noise (n): o = t + n.

In order to tackle signals perturbed by realizations of white noise, we introduce the
sample normalized auto-correlation of a signal, the vector-valued function ϕ : RN →
R

N , with scalar components ϕl(x) = ρl(x, x) ∈ [−1, 1], with the normalized cross-
correlation ρl(x, x) defined in (42). Motivated by the properties of the asymptotic
distribution of ϕl of a white random process at any nonzero lag l [17], the white noise
component n is constrained to belong to the parametric set Wα , referred to as the
normalized whiteness set with confidence α ∈ R++ called the whiteness parameter,
and defined as

Wα := {

n ∈ R
N : |ϕl(n)| ≤ wα, ∀ l = 1, . . . , N − 1

}

= {

n ∈ R
N : −wα n

T n ≤ nT Tl n ≤ wα n
T n, ∀ l = 1, . . . , N − 1

}

, (48)

where, for each nonzero lag l, ϕl(n) can be rewritten as the scalar product between n
and Tln, where Tl ∈ R

N×N are permutation matrices associated with the following
cyclic permutations

σl(ni ) = ni+l modulo N , for i ∈ �. (49)

Therefore, Tl maps an input vector n ∈ R
N to

(Tl n)i = ni+l i = 0, . . . , N − 1. (50)

A natural choice forwα , whichmeasures the accuracy of belonging to thewhiteness
setWα , follows by the results of the asymptotic distribution of the sample normalised
auto- correlation ϕ(n) (see [17]), and reads as

wα = α√
N

. (51)
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In order to further decompose o into separate components t and n and effectively
obtain denoised components, we propose the following variational model based on
the whiteness-based approach:

{̂t, n̂} ∈ arg min
t, n ∈R

N

{

1

2
‖Dt‖22 + ıWα

(n)

}

, subject to : t + n = o, (52)

wherewedenotedby ıWα
the indicator functionof thewhiteness setWα defined in (48),

which imposes that the component n resembles as much as possible the underlying
additive noise in terms of whiteness.

An approximate solution of (52) is obtained by means of a two-block ADMM
approach. We introduce one auxiliary variable r = o − t , the associated vector of
Lagrange multipliers λr ∈ R

N and the ADMM penalty parameter βr ∈ R++. Starting
from

(

t (0), r (0), λ
(0)
r

)

, the resulting iterative scheme reads as follows:

t (k+1) ∈ arg min
t∈RN

1

2
‖Dt‖22 + βr

2

∥

∥

∥

∥

∥

t −
(

o − r (k) + λ
(k)
r

βr

)∥

∥

∥

∥

∥

2

2

, (53)

r (k+1) ∈ arg min
r∈RN

βr

2

∥

∥

∥

∥

∥

r −
(

o − t (k) + λ
(k)
r

βr

)∥

∥

∥

∥

∥

2

2

, (54)

s.t. −wαr
T r ≤ rT Tlr ≤ wαr

T r , l = 1, . . . , N − 1, (55)

λ(k+1)
r = λ(k)

r + βr

(

r (k+1) −
(

o − t (k+1)
))

. (56)

The solution of t-subproblem is calculated solving the symmetric positive definite
linear system (57) resulting from imposing the first-order optimality conditions:

(

DTD + βr I
)

t = o − r (k) + λ
(k)
r

βr
. (57)

Subproblem (54) is a quadratically constrained quadratic program solved via the
function fmincon() performing constrained nonlinear multivariable optimization,
included in the Matlab optimization package. ��

8 Numerical Results

In this section, we validate the performance of the proposed PC-optimizer frame-
work employed for the signal decomposition task. In detail, the results of Algorithm
1 are illustrated in Sect. 8.1, and comparisons with other state-of-the-art variational
decomposition algorithms are given in Sect. 8.2.We finally propose in Sect. 8.3 a more
realistic setup where the composed signal f is a mix of four components, including
both white additive Gaussian noise and high oscillations.

The experimental setup for Algorithm 1 is described in the following.
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TheEstimate_param() procedure - step [a], Algorithm 1 - evaluatesJ (x; a =
0, γ1, γ2) on a coarse parameter grid [γ

1
= 10−3, γ 1 = 103] × [γ

2
= 10−4, γ 2 =

104] for a total of Np = 100 values. The ADMM-based algorithm for each pair
(γ1, γ2) is stopped as soon as either 3000 iterations are reached or the relative change
defined as

δ(x (k)) = ‖x (k) − x (k−1)‖2
‖x (k−1)‖2 , (58)

drops below 10−9. Then the estimate of the parameters (γ̂1, γ̂2) is obtained by solving
the minimization problem (45).

The Predictor(J (x; a = 0, γ̂1, γ̂2)) solves (7) by the ADMM-based approach
up to 5000 iterations.

The Estimate_param() procedure - step [c], Algorithm 1 - evaluates
J (y; a, γ1, γ2) on a refined parameter grid [γ

1
= γ̂1, γ 1 = 200γ̂1] × [γ

2
=

γ̂2/200, γ 2 = 200γ̂2] for a total of Np = 2500 values. For each pair (γ1, γ2) in
the grid, the ADMM-based algorithm is stopped as soon as either 10,000 iterations
are reached or the relative change δ(x (k)) drops below 10−9. The parameter a is esti-
mated as the minimum discontinuity jump in the cartoon component ĉ of the signal
result from the Predictor step, i.e.

a = 1/ min
|Dĉ|=0

(|Dĉ|). (59)

The value for the parameter β must satisfy condition (36) and thus is set to be β =
5(4aγ1). Then the estimate of the parameters (̂γ̂ 1,̂γ̂ 2) is obtained by solving the
minimization problem (45).

Finally, theCorrector(J (ŷ; a,̂γ̂ 1,̂γ̂ 2) solves (7) by theADMM-based approach
up to 10,000 iterations.

The quantitative evaluation of the decomposition results is provided by means of
joint signal-to-noise ratio (SNR) over component vector variable y = (c; s; o), defined
as

SNR(y) = 10 log10

(

‖yGT − mean(yGT )‖22
‖yGT − y‖22

)

, (60)

with yGT being the reference ground truth component vector.

8.1 Performance of the PC-Optimizer

The performance of the proposed PC-optimizer outlined in Algorithm 1 is here evalu-
ated by two synthetic 1D signal data f1 ∈ R

1024 and f2 ∈ R
512 illustrated in the first

row of Figs. 2 and 3, respectively. The composed signals consist of piece-wise constant
cGT , smooth sGT and oscillatory oGT components reported in the first and the second
rows of Figs. 2, 3. We notice that the component oGT of f1 represents white Gaussian
noise, whereas oGT of f2 contains structured oscillations. For the decomposition of
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both signals f1 and f2, we run the PC-optimizer in Algorithm 1. Results are reported
from the third row of Fig. 2, and 3, column-wise: (left) step [a] and step [b], (right)
step [c] and step [d].

For the composed signal f1 in Fig. 2 the MPCCP values C(γ1, γ2) evaluated in the
parameter grid [γ

1
, γ 1] × [γ

2
, γ 2] are shown as a false-colored map in Fig. 2, third

row. Estimate_param() selects a minimum at (γ̂1, γ̂2) = (0.0562, 1), attaining
C(γ̂1, γ̂2) = −1.1572, marked as • in themapC(γ1, γ2). To illustrate quantitative per-
formance of the proposed PC-optimizer alongside C(γ1, γ2), we report the associated
SNR grid, with max(SN R(y)) marked by �. As expected, the yellow valley-shaped
region of small C(γ1, γ2) values, indicating good component separation, corresponds
to the area of maximum SNR values. The signal components “c”,“s” and “o” obtained
by applying Predictor(J (x; a = 0, γ̂1, γ̂2)) are reported in red from the fifth to
the seventh row of Fig. 2, superimposed on the corresponding black-colored ground
truth signals. Figure2, right panel, illustrates the MPCCP map produced by step [c]
Estimate_param(). The minimum min(C(γ1, γ2)) = −1.1782 is attained at
(̂γ̂ 1,̂γ̂ 2) = (0.3615, 13.7830), marked as •. Finally, the decomposition results of the
Corrector(J (ŷ, a = 54.6448,̂γ̂ 1,̂γ̂ 2)) are reported in the last three rows of the
right panel, attaining SN R(y) = 23.6896.

In a similar way, in Fig. 3 the decomposition results obtained by applying the PC-
optimizer on the synthetic signal f2 are illustrated. The left panel in Fig. 3 reports
the MPCCP map obtained in step [a] Estimate_param(). The minimum value
C(γ̂1, γ̂2) = −0.9179 is obtained at (γ̂1, γ̂2) = (0.0316, 0.4642), and is marked as •
in the reported mapC(γ1, γ2). From the fifth to the seventh row of Fig. 3, we report the
signal components “c”,“s” and “o” achieved by thePredictor(J (x; a = 0, γ̂1, γ̂2))
in red, superimposed on the corresponding black-colored ground truth signals. In the
right panel of Fig. 3 we report the results of step [c], namely Estimate_param()
which foundmin(C(γ1, γ2)) = −1.0193 at (̂γ̂ 1,̂γ̂ 2) = (0.6141, 3.4760), and step [d],
Corrector(J (ŷ; a = 38.46,̂γ̂ 1,̂γ̂ 2)) whose resulting decomposition y is reported
in red in the remainder of the column attening SN R(y) = 21.7992.

Regions characterized by small values of C(γ1, γ2) again matches regions with
high SN R values, thus confirming the goodness of the MPCCP criterium applied to
discriminate between components.

8.2 Comparison with Other Signal Decompositionmethods

In this section, we validate and explore the potential of the proposed variational
optimization model (3)–(4) solved by the PC-optimizer strategy by comparing the
decomposition results obtained with other state-of-the-art methods. In particular we
selected JOT [8] via its public implementation [9], MB variational approach [30],
which is available to public at https://github.com/cvxgrp/signal-decomposition, and
GNC, via a custom implementation.

At this aim, we generated synthetic 1D signals f3 ∈ R
400 and f4 ∈ R

500 reported
together with their components in the upper panels of Figs. 4 and 5, respectively. The
model parameters required in all the three algorithms have been tuned to obtain the best
achievable decomposition y. In case of MB method, we selected piecewise-constant,
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Fig. 2 Synthetic data f1 and its signal components cGT , sGT , oGT (upper part); decomposition results by
the PC-optimizer Algorithm: results of the steps a–c and d (lower part)
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Fig. 3 Synthetic data f2 and its signal components cGT , sGT , oGT (upper part); decomposition results by
the PC-optimizer Algorithm: results of the steps a–c and d (lower part)
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smooth and L2 residual classes to model each component. In the lower panels of
Figs. 4 and 5, we report column-wise in red the decomposition result y = {c, s, o} of
the PC-optimizer, JOT, MB and GNC decompositions, respectively, overlaying with
the black-colored ground truth components.

Results of the decomposition of signal f3 into “c”,“s” and “o” components are
illustrated in Fig. 4, lower panel. The resulting SNR values attained are SN R(yPC ) =
32.42, SN R(yJOT ) = 26.27, SN R(yMB) = 26.36, SN R(yGNC ) = 18.47. By a
visual inspection we observe that the smooth component “s” is recovered best by
the PC-optimizer, while a small interchange of magnitudes between “c” and “o” is
present. This is observed also in the components obtained by JOT, MB methods, but
in a more pronounced way, probably due to the use of a soft constraint (data fidelity
term) in the variational models. MB uses the residual from fidelity term to capture
the last component “o” of the decomposition, while JOT model contains a dedicated
term for the oscillatory component and uses the fidelity term as a soft constraint for
f = c + s + o.
In case of the signal f4, its distinctiveness from signal f3 lies in the c compo-

nent, which is binary piece-wise constant. This synthetic signal has been generated
by the random generator outlined in [Sec. 2.9] [30] to reproduce a similar example
showcased by the authors [Fig. 2.1] [30]. To follow their example, we have selected
the boolean, smooth and L2 residual classes for the decomposition. The authors of
JOT model [8] presented a constrained version of the model for binary components as
well, therefore, we adapted the Corrector(J (ŷ; a,̂γ̂ 1,̂γ̂ 2)) procedure to include
a boolean constraint. The decomposition results for signal f4 are reported column-
wise in Fig. 5, lower panel. The resulting joint SNR values are SN R(yPC ) = 28.95,
SN R(yJOT ) = 28.73, SN R(yMB) = 20.81, SN R(yGNC ) = 16.32. From a qual-
itative inspection of the results, due to the relative closeness between the proposed
variational model (3)–(4) and the one presented in JOT approach, the results are quite
alike. The PC-optimizer generated artifacts in the last samples of the c component,
while JOT results lack in recovery of the s component. The MB method misidentified
a few noise oscillations as part of boolean discontinuities in “c”. As a benefit of the
doubt this may have been caused by the parameter selection, however, using aG-norm
type regularization for capturing highly oscillating signals such asGaussian noise have
been proven advantageous over the L2 residual. The low-quality recovery of the “c”
component achieved by applying the GNC algorithm for the decomposition of both f3
and f4 is due to the lack of a criterium over the increasing of the parameter a, which
affects the concavity of the model.

For what concern the execution times of the compared methods, we should say
that the numerical methods vary in few aspects, that influence directly the execution
times. Moreover, we used a non-optimizedMATLAB implementation of the methods.
Experimentally the average time for the solution of the decomposition model by the
proposed PC-Optimizer and the comparedmethods [8] and [30], takes up to 10–20s for
a signal of length up to N=1024, GNC is computationally more expensive. Finally, the
proposed PC-Optimizer could be implemented totally in parallel and thus the timings
can be further reduced.
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Fig. 4 Synthetic data f3 and its signal components cGT , sGT , oGT (upper part) and comparison of
signal f3 decomposition results into c, s, o components (lower part). From left to right: PC-Optimzer
SN R(yPC ) = 32.42, JOT method SN R(yJ OT ) = 26.27, MB method SN R(yMB ) = 26.36 and GNC
algorithm SN R(yGNC ) = 18.47

Fig. 5 Synthetic data f4 and its signal components cGT , sGT , oGT (upper part) comparison of sig-
nal f4 decomposition results into c, s, o components (lower part). From left to right: PC-Optimizer
SN R(yPC ) = 28.95, JOT method SN R(yJ OT ) = 28.73, MB method SN R(yMB ) = 20.81 and GNC
algorithm SN R(yGNC ) = 16.32
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8.3 Quaternary Decomposition f = c+ s+ n+ t

In the previous examples, illustrated in Sect. 8.1 and Sect. 8.2, the synthetically
generated signals were free of additional corruption component and thus could be
decomposed cleanly into oscillating part, trend (piece-wise smooth) and cartoon com-
ponents. For an arbitrary real signal this assumption frequently fails, as the signal may
be corrupted by additive noise which is naturally captured by the oscillatory com-
ponent. In order to deal with the decomposition of perturbed signals, we propose a
post-processing optimization strategy, details of which are provided in Sect. 7, with
the aim to split the oscillatory component o = t + n, result of the PC-optimizer, into
high-frequency oscillations t and additive white noise n. The latter can be a realiza-
tion of different types among uniform (AWUN), Gaussian (AWGN) and Laplacian
(AWLN) noise distributions.

By the way of illustration, we perform the decomposition of a synthetic sig-
nal f5, shown in Fig. 6, upper part, together with the ground truth components:
cGT , sGT , tGT , synthetically corrupted by white Gaussian noise nGT ∈ N (0, σ ),
with standard deviation σ = 0.15. As reported in the middle part of Fig. 6,
both Predictor(J (x), γ̂1, γ̂2)—left panel—and Corrector(J (ŷ),̂γ̂ 1,̂γ̂ 2)—
right panel—result in one oscillatory component o = t + n which incorporate the
noise. Each resulting component is red-colored, while the ground truth components
are black-colored. The noise is finally isolated by solving the decomposition problem
(52); in the lower part of Fig. 6 the two separated components t and n are shown.

In addition to the decomposition results of the signal f5 we report the empir-
ical convergence behaviour of the PC-optimizer algorithm. In Fig. 7 we give
empirical evidence on the convergence of the sequence generated by the iterative
Predictor(J (x, a = 0, γ̂1, γ̂2)) in solid red and Corrector(J (ŷ, a,̂γ̂ 1,̂γ̂ 2)) in
dashed blue. In particular, the plots report the decreasing of the objective function J
(left), the relative errors err (GT )

k (middle), and the increasing of SNR values (right)
along the first 5000 ADMM k iterations. The plots confirm the fast convergence of
both the optimization stages of the PC-optimizer for the decomposition of signal f5;
quite similar results are obtained for the other tested signals.

Finally, to further motivate the benefit of the proposed Predictor–Corrector strategy,
we compared the results of applying the Corrector(·) alone, starting the ADMM
iterations with different initial guesses. In particular, in Fig. 8, each column represents
a different initialization to Corrector(·) from left to right: x (0) is the result of the
Predictor(·), x (0) is the zero vector, x (0) = (c(0), g(0)) = (0N , f ), x (0) is a zero-
mean random vector with Gaussian distribution of standard deviation equal to the
one of the ground truth components c, σc = 0.0202, and g, σg = 0.0248. Each row
represents theSNRvalues for a parameter grid [γ

1
, γ 1]×[γ

2
, γ 2] after 1000 (first row)

and 60,000 (second row) ADMM iterations, the maximum SNR value max(SN R(x))
is marked by �. As expected, different initial guesses for the Corrector(·) lead
to different local minimizers. Initializing the Corrector(·) with the result ŷ from
the Predictor(·) leads to a more efficient convergence into an attraction basin of a
better quality minimizer.
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Fig. 6 Synthetic data f5 and its signal components cGT , sGT , tGT , nGT (upper part) and its decomposition
results: PC-optimizer (middle part) and denoiser (bottom part)
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Fig. 7 Empirical convergence of the ADMM algorithm applied for solving Predictor(·) and
Corrector(·) models for the decomposition of signal f5. From left to right: plot of the J as func-
tion of the number of iterations k, relative error change on the ADMM solution (see (58)), SNR values (see
(60)) over the component vector y = (c; s; o)

max(SNR) = 23.92 20.11 16.87 9.95

max(SNR) = 28.21 24.43 22.85 12.90

(c(0), g(0)) = ŷ

Predictor

(c(0), g(0)) = (0N , 0N ) (c(0), g(0)) = (0N , f)
(c(0), g(0)) ∼

(N(0, σ2
c ), N(0, σ2

g))

Fig. 8 SNR grid values for the decomposition of signal f5 using the Corrector(·) alone with different
initial guesses; from top to bottom after 1000 and 60,000 ADMM iterations. Each column represents a
different initialization to Corrector(·) (reported in the last row). The maximum achieved SNR value is
reported and marked by � in the grid

9 Conclusions

We proposed the PC-optimizer framework, a two stage algorithmic approach inspired
by the Predictor–Corrector strategy to efficiently address the challengingminimization
of a multi-parameter functional with a nonconvex parametric penalty. This minimiza-
tion problem is quite common in signal/image processing applications to enforce
sparsity in the space of solutions or in its transforms. The two main challenges that the
PC-optimizer faces are the computation of optimal multi-parameters of the functional,
and the choice of a good initial guess that can allow a fast algorithmic convergence to
a good local minimizer. The benefits of the PC-optimizer have been highlighted for
the solution of a decomposition variational model aimed at the ternary decomposition
of 1D signals into cartoon, smooth and oscillatory components. A model analysis
is provided and we presented an ADMM-based algorithm for the minimization of
both Predictor and Corrector stages which allows to guarantee the convergence of
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the entire PC-optimizer framework. Numerical experiments have been carried out and
the reported results strongly indicate that the PC-optimizer applied to the solution of
the variational decomposition model is able to achieve excellent performance while
remaining in a nonconvex regime. This paves the way for a facilitated solution of an
entire class of nonconvex optimization problems.

Appendix

Proof of Proposition 4.1

Proof It comes immediately from definitions of the cost function J in (8) and of the
penalty function φ in (5) that J is proper, continuous and bounded below by zero in
(c, g)T , for any f ∈ R

N , γ1, γ2 ∈ R++, a ∈ R+. Then, proving that J is constant
along straight lines of direction defined by the vector d in (15)—which clearly implies
non-coercivity of J—is straightforward. In fact, after noting that such a line bundle
can be defined parametrically as (c; g) + t d = (c + t 1N ; g), with t ∈ R, we have

J (c + t 1N , g; a, γ1, γ2) = γ1

N
∑

i=1

φ
(∣

∣(Dc +���t D1N )i
∣

∣ ; a)+ γ2

2
‖H(c + DTg − f ) +���tH1N ‖22

+ ‖g‖∞ = J (c, g; a, γ1, γ2) ∀(c; g) ∈ R
2N , ∀ t ∈ R , (61)

where we used the fact that constant vectors belong to the null spaces of both D and H,
for any boundary conditions—see (12). This implies that, if there exists a minimizer
(̂c, ĝ)T ∈ R

2N of J (this will be proved later), the straight line (̂c; ĝ) + t d, t ∈ R,

contains an infinity of minimizers equivalent to (̂c; ĝ) in terms of function value.
For what concerns convexity, first we note that when a = 0 the function J in (8)

is given by the sum of three convex functions (in fact, the first term in J becomes the
standard, discrete TV semi-norm of c), henceJ is convex in x . For a > 0, the first term
in J is nonconvex, hence we start analyzing convexity of J separately with respect
to the optimization variables c and g. To this aim, we introduce the two functions

Jg(g; a, γ1, γ2) := J (c̄, g; a, γ1, γ2) = γ2

2

∥

∥

∥HDTg − v̄1

∥

∥

∥

2

2
+ ‖g‖∞ + v̄2, (62)

Jc(c; a, γ1, γ2) := J (c, ḡ; a, γ1, γ2) = γ2

2
‖Hc − w̄1‖22

+γ1

N
∑

i=1

φ (|(Dc)i | ; a) + w̄2 , (63)

where c̄ ∈ R
N in (62) and ḡ ∈ R

N in (63) are any two fixed values of variables c and
g, respectively, and where v̄1 ∈ R

N , v̄2 ∈ R+ in (62) are constants with respect to g
whereas w̄1 ∈ R

N , w̄2 ∈ R+ in (63) are constants with respect to c. Function Jg in
(62) is clearly convex and coercive in g, as it is the sum of a constant and two non-
negative convex functions, the latter (‖g‖∞) being coercive. However, it is not strictly
convex asmatrix HDT has not full rank. Then, in order to prove that functionJc in (63)
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is not convex in c—which clearly implies that the total function J in (8) is nonconvex
in x—we consider its restriction to a line in its domain c(t) = t z̄, t ∈ R, with generic
direction z̄ ∈ R

N . After some simple algebraic manipulations, the restriction reads

Jc(c(t); a, γ1, γ2) = γ2

2

N
∑

i=1

(

p̄i t − w̄1,i
)2

+γ1

N
∑

i=1

φ (|q̄i | |t |; a) , p̄ = Hz̄, q̄ = Dz̄. (64)

If anti-reflective BC are adopted for D and H, taking z̄ = lN yields p̄ = 0N and
q̄ = 0N—see (12)—hence the restriction in (64) reduces to the sum of a constant and
a nonconvex function of t . It follows that, for anti-reflective BC, the total function J
in (8) is nonconvex in x for any f ∈ R

N and any γ1, γ2, a ∈ R++. In case of periodic
or reflective BC, for the same direction z̄ = lN we have p̄, q̄ = 0N , so the restriction
in (64) is the sum of a quadratic convex function and a nonconvex function of t . This
implies that there exist values of parameters γ1, γ2, a yielding nonconvexity of the
restriction and, hence, of the total J .

We finally prove that, in spite of its non-coercivity and possible nonconvexity, J
in (8) indeed admits (an infinity of) global minimizers for any f ∈ R

N and any
γ1, γ2 ∈ R++, a ∈ R+. As J is continuous and bounded below by zero, we proceed
as follows. First, we detect all the possible paths of non-coercivity forJ , namely paths
towards infinity in the domain R2N of J along which the value of J does not tend to
+∞. Then, we compute all the possible limit values ofJ along these paths and, finally,
we prove that these or lower values are attained at (finite) domain points x ∈ R

2N . This
implies that, even if a global infimizer exists at infinity, then a corresponding—i.e.,
characterized by the same function value—global minimizer exists as well.

Paths of non-coercivity. Function J in (8) is clearly coercive in g due to the coer-
civity in g of the last term ‖g‖∞. It follows that possible paths of non-coercivity forJ
must be sought by keeping g bounded, that is, letting only ‖c‖2 approach +∞. Then,
the sum of the first and second terms of J in (8),

γ1

N
∑

i=1

φ
(∣

∣(Dc)i
∣

∣ ; a)+ γ2

2

∥

∥

∥Hc − H
(

f − DTg
)∥

∥

∥

2

2
, (65)

is always non-coercive in c, but the paths of non-coercivity in c depend both on the
value of parameter a and on the BC adopted for linear operators D and H. The paths of
non-coercivity in c for the quadratic term in (65) are clearly only those approaching at
infinity a direction parallel to null(H) which, we recall, contains constant vectors for
periodic and reflective BC, constant and linear (i.e., affine) vectors for anti-reflective
BC—see (12). Then, due to the properties of function φ in (5), the first term in (65)
is bounded from below (by zero) and, for a > 0, also from above (by γ1N < +∞).
Hence, for a > 0 the term does not affect the coercivity of function J . For a = 0,
the first term reduces to the standard, discrete TV semi-norm of c, which is coercive
except clearly along paths approaching at infinity a direction parallel to null(D), the
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set of constant vectors. It follows from all the previous considerations that the paths
of non-coercivity in x = (c, g)T for the total function J in (8) are those approaching
at infinity a direction parallel to the linear subspace S ⊂R

2N given by

S =

⎧

⎪

⎨

⎪

⎩

span
(

d
)

for a = 0, BC ∈ {P,R,A},
span

(

d
)

for a > 0, BC ∈ {P,R},
span

(

d, (lN ; 0N )
)

for a > 0, BC = A,

(66)

with vector d = (1N , 0N )T introduced in (15).
Limit values.We note that in the first two cases of (66) the paths of non-coercivity

for J are only those with asymptotic direction given by vector d, along which J is
constant. It clearly follows that any limit value achieved by J at infinity along these
paths is also achieved for some finite x = (c, g)T ∈ R

2N . Then, in order to compute
the limit values of J along its paths of non-coercivity for the last case in (66)—which
corresponds to a > 0 and anti-reflective BC for D and H - it suffices to analyze the
behaviour at infinity of the restrictions J (c̄,ḡ) of J to the family of parameterized
affine subspaces S(c̄,ḡ) ⊂ R

2N , with parameter (c̄; ḡ) ∈ R
2N , of the form

S(c̄,ḡ) = (c̄; ḡ) + S, (67)

with S defined in (66). Based on (66)–(67) and on the definition of J in (8), using
that D1N = H1N = 0N for any BC, and dropping (for shortness of notation) the
dependence of J and its restrictions J (c̄,ḡ) on the parameters a, γ1, γ2, after simple
manipulations the restrictions read

J (c̄,ḡ) (t1, t2) = J (c̄ + t11N + t2 lN , ḡ)

=

G (c̄,ḡ)(t2)
︷ ︸︸ ︷

γ1

N
∑

i=1

φ
(∣

∣(D (c̄ + t2 lN ))i
∣

∣ ; a)

+ γ2

2

∥

∥

∥H
(

c̄ + DT ḡ − f
)∥

∥

∥

2

2
+ ‖ḡ‖∞

︸ ︷︷ ︸

G
(c̄,ḡ)

, (t1, t2) ∈ R
2, (68)

where the latter term G
(c̄,ḡ) ∈ R+ depends on (c̄, ḡ) but not on (t1, t2). Hence, the

behaviour ofJ (c̄,ḡ) (t1, t2) at infinity—i.e., for ‖(t1; t2)‖2 → ∞—depends mainly on
the former term G (c̄,ḡ)(t2) which, in its turn, only depends on t2. It comes from the
definition of matrix D for anti-reflective BC—matrix DA in (11) - and of vector lN
that D lN = 1N , hence

∣

∣(D (c̄ + t2 lN ))i
∣

∣ = ∣

∣(Dc̄)i + t2
∣

∣ ∀ i = 1, . . . , N . (69)
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Taking the limit for ‖(t1; t2)‖2 tending to+∞, with a little abuse of notation (the limit
does not formally exist), we have

lim‖(t1;t2)‖2→∞
∣

∣(Dc̄)i + t2
∣

∣ =
{ +∞ if |t2| → +∞,
∣

∣(Dc̄)i + t̄2
∣

∣ < +∞ if |t1| → +∞, t2 → t̄2 ∈R,
(70)

i = 1, . . . , N . Based on (68)–(70) and on property limt→+∞ φ(t; a)= 1
2a for a > 0,

we can thus write

lim‖(t1;t2)‖2→∞J (c̄,ḡ) (t1, t2) =
{

L (c̄,ḡ)
1 if |t2| → +∞,

L (c̄,ḡ)
2 if |t1| → +∞, t2 → t̄2 ∈R,

(71)

with limit values L (c̄,ḡ)
1 , L (c̄,ḡ)

2 ∈ R+ given by

L (c̄,ḡ)
1 = γ1

N

2a
+ G

(c̄,ḡ)
, L (c̄,ḡ)

2 = γ1

N
∑

i=1

φ
(∣

∣(Dc̄)i+ t̄2
∣

∣ ; a) + G
(c̄,ḡ)

.(72)

After noting that L (c̄,ḡ)
2 ≤ L (c̄,ḡ)

1 , we complete the proof by demonstrating that, for
any f ∈ R

N , γ1, γ2, a ∈ R++, (c̄, ḡ)T ∈ R
2N and any t̄2 ∈ R, there exists a point

x = (c, g)T ∈ R
2N (not at infinity) such that J (c, g; a, γ1, γ2) ≤ L (c̄,ḡ)

2 . In fact, e.g.,
for

x = (c, g)T = (

c̄ + t̄2lN , ḡ
)T

, (73)

we have that J (c, g; a, γ1, γ2) = L (c̄,ḡ)
2 . ��

Proof of Proposition 4.2

Proof We first recall that any hyperplane Hv defined as in (17) is not parallel to the
vector d in (15) (due to condition vTd = 0), hence it intersects any straight line of
direction d in one and only one point. Since according to Proposition 4.1 the function
J admits at least a line with direction d of equivalent global minimizers, the restriction
of J to any feasible setHv also admits global minimizers which are characterized by
the same (minimum) cost function value. However, the dimensionality of the set of
global minimizers is reduced by 1. ��

Proof of Corollary 4.1

Proof In the proof of Proposition 4.2 we demonstrated that the paths of non-coercivity
in the total optimization variable x = (c, g)T for function J defined in (8) are only
those approaching at infinity a direction parallel to the linear subspace S ∈ R

2N given
in (66), depending on parameter a and on the BC for finite difference operators D
and H. It follows easily that the paths of non-coercivity for J constrained to any
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hyperplanar set Hv defined as in (17) are those with asymptotic direction parallel to
the linear subspace ˜S given by the intersection of S andHv . In formula, we have that

˜S := S ∩ Hv =

⎧

⎪

⎨

⎪

⎩

{02N } for a = 0, BC ∈ {P,R,A},
{02N } for a > 0, BC ∈ {P,R},
span

(

(lN , 0N )T
)

for a > 0, BC = A.

(74)

Note that the above intersection of S withHv which, we recall, contains homogeneous
hyperplanes not parallel to vector d, simply removes d from the spanned directions in
(66). It follows from (74) that J constrained to any setHv is coercive in x = (c, g)T

when a = 0 or when a > 0 and BC ∈ {P,R}, whereas it has the direction (lN , 0N ) of
asymptotic non-coercivity when a > 0 and BC = A. ��

Proof of Lemma 4.1

Proof It follows from definition (18) that

null (QBC) =
{

x = (c, g)T ∈ R
2N : HBC [ IN , DT

BC ] x = 0N
}

=
{

x = (c, g)T ∈ R
2N : c + DT

BC g ∈ null(HBC)
}

. (75)

Hence, by recalling the expressions of null(HBC) in (12), we have:

null
(

QP/R
) =

{

(c, g)T ∈ R
2N : c + DT

P/R g = κ11N , κ1 ∈ R

}

, (76)

null (QA) =
{

(c, g)T ∈ R
2N : c + DT

A g = κ11N + κ2 lN , κ1, κ2 ∈ R

}

.

(77)

Projecting the two null spaces above onto the linear span of v1, adding and subtracting
vT2 g, we have

vT1

(

c + DT
P/R g

)

+ vT2 g − vT2 g = vT1 (κ11N ) , (78)

and

vT1

(

c + DT
A g

)

+ vT2 g − vT2 g = vT1 (κ11N + κ2lN ) . (79)

Hence, intersecting with the constraint setHv defined in (17) (or, equivalently, impos-
ing the constraint vT1 c + vT2 g = 0) yields, respectively,

κ1 = 1

vTd

(

vT1 D
T
P/Rg − vT2 g

)

, (80)
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and

κ1 = 1

vTd

(

vT1 D
T
Ag − vT2 g − κ2(v

T
1 lN )

)

. (81)

Therefore, replacing (80),(81) in (76),(77) respectively, we have

NP/R =
{

(c, g)T ∈ R
2N : c=

(

−DT
P/R + 1

vTd
1N

(

vT1 D
T
P/R − vT2

)

)

g

}

, (82)

NA =
{

(c, g)T ∈ R
2N : c=

(

−DT
A + 1

vTd
1N

(

vT1 D
T
A − vT2

)

)

g + κ hN , κ ∈ R

}

, (83)

with hN := lN − (

vT1 lN
)

1N . Writing g as a linear combination of the canonical basis
vectors of RN ,

g =
N
∑

j=1

α j e
( j)
N , (84)

and then replacing (84) into (82), (83), we have, respectively,

c =
(

−DT
P/R + 1

vTd
1N

(

vT1 D
T
P/R − vT2

)

) N
∑

j=1

α j e
( j)
N

=
N
∑

j=1

α j

(

−D( j)
P/R + 1

vTd

(

D( j)
P/Rv1 − v

( j)
2

)

1TN

)T

, (85)

and

c =
(

−DT
A + 1

vTd
1N

(

vT1 D
T
A − vT2

)

) N
∑

j=1

α j e
( j)
N + κ hN

=
N
∑

j=1

α j

(

−D( j)
A + 1

vTd

(

D( j)
A v1 − v

( j)
2

)

1TN

)T

+ αN+1hN , (86)

where in (86) we set αN+1 = κ .
It follows from (85), (86) that the sets in (82), (83) can be respectively written as

(

c
g

)

=
N
∑

j=1

α j

⎛

⎜

⎝

(

−D( j)
P/R + 1

vTd

(

D( j)
P/Rv1 − v

( j)
2

)

1TN

)T

e( j)
N

⎞

⎟

⎠ , (87)
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and

(

c
g

)

=
N
∑

j=1

α j

⎛

⎜

⎝

(

−D( j)
A + 1

vTd

(

D( j)
A v1 − v

( j)
2

)

1TN

)T

e( j)
N

⎞

⎟

⎠ + αN+1

(

hN

0N

)

. (88)

This demonstrates statement (19)–(20), in particular the expression of matrix MBC.
Finally, it is easy to verify that MBC has full column rank both for BC ∈ {P,R} and
for BC = A, which leads to (21) as MBC has N and N + 1 columns for BC ∈ {P,R}
and BC = A, respectively. ��

Proof of Proposition 4.3

Proof It follows straightforwardly from Proposition 4.1 (when a = 0,J is continuous
and convex), Corollary 4.1 (when a = 0, J is coercive on any feasible set Hv) and
fromconvexity of the feasible setsHv defined in (17), thatwhena = 0 the optimization
problem in (16) is convex and admits am-dimensional convex compact set of solutions
x̂ = (̂c, ĝ)T ∈ M ⊂ Hv ⊂ R

2N . In particular, M has dimension m ≤ (2N − 1), as
it must belong to the (2N − 1)-dimensional hyperplanar feasible set Hv . Moreover,
if M is not a singleton—equivalently, if m > 0 and M is at least a 1-dimensional
compact convex set ofHv , that is a bounded and closed segment—then it must belong
to a m-dimensional affine subset ofHv , otherwise it would be nonconvex.

In order to obtain more information on the set of solutionsM—which, we remark,
corresponds to the set of global minimizers of the convex function ˜J in (16)—in the
following we analyze the restrictions ˜J	 of ˜J to all possible straight lines 	 belonging
to the (2N − 1)-dimensional hyperplanar feasible set Hv and check whether these
restrictions admit a unique global minimizer or, instead, they can admit a closed and
bounded interval of global minimizers. We parametrically define straight lines by

	 ⊂ Hv : x(t) = x̄ + t z̄ =
(

c̄
ḡ

)

+ t

(

z̄c
z̄g

)

=
(

c(t)
g(t)

)

, t ∈ R,

with c̄, ḡ, z̄c, z̄g ∈ R
N : x̄ =

(

c̄
ḡ

)

∈ Hv, z̄ =
(

z̄c
z̄g

)

∈ Hv. (89)

The restrictions read

˜J	(t) := ˜J (c(t), g(t); a = 0, γ1, γ2)

= γ1

N
∑

i=1

∣

∣(Dc(t))i
∣

∣+ γ2

2
‖Q x(t) − H f ‖22 + ‖g(t)‖∞ +�����ιHv

(x(t)), (90)

with matrix Q ∈ R
N×2N defined in (18) and where, for shortness of notation, we drop

both the subscript BC for matrices Q, D, H and other BC-dependent quantities, and
the dependency of restriction ˜J	 on parameters γ1, γ2. Moreover, in (90) we cancel
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the indicator function as it is identically zero for any parametric line x(t) ∈ Hv . After
recalling the definition of set N in (19), introducing the set

N⊥ := (null(QBC))⊥ ∩ Hv , (91)

and indicating with the superscripts ‖ and ⊥ the projections of a vector in R
2N

onto the setsN in (19) andN⊥ in (91), respectively, we can write any line x(t) ∈ Hv

defined as in (89) by the direct sum of two orthogonal lines x‖(t) and x⊥(t), the former
parallel to N , the latter parallel to N⊥. In fact, since according to their definition in
(89) we have that x̄, z̄ ∈ Hv , then x̄ = x̄‖ + x̄⊥ and z̄ = z̄‖ + z̄⊥. Hence, we can write

x(t) =
x‖(t) ∈N ,∀ t
︷ ︸︸ ︷

x̄‖ + t z̄‖ +
x⊥(t) ∈N⊥,∀ t
︷ ︸︸ ︷

x̄⊥ + t z̄⊥ . (92)

By replacing (92) into (90), we have

˜J	(t) = γ1

N
∑

i=1

∣

∣(Dc̄)i + t (Dz̄c)i
∣

∣ + ∥

∥ ḡ + t z̄g
∥

∥∞

+γ2

2

∥

∥

∥

(

Q x̄⊥ − H f
)

+ t
(

Q z̄⊥
)∥

∥

∥

2

2

= γ1

N
∑

i=1

∣

∣ (Dc̄)i + t (Dz̄c)i
∣

∣ + max
i=1,...,N

∣

∣ ḡi + t z̄g,i
∣

∣

+γ2

2

(

t2
∥

∥

∥Q z̄⊥
∥

∥

∥

2

2
+ 2t

(

Q x̄⊥ − H f
)T

Q z̄⊥ +
∥

∥

∥Q x̄⊥ − H f
∥

∥

∥

2

2

)

. (93)

Since by definition of z̄⊥ we have that z̄⊥ = 0N �⇒ Qz̄⊥ = 0N �⇒ ‖Qz̄⊥‖2 = 0,
then if the direction z̄ of the line x(t) has a non-null projection z̄⊥ onto the setN⊥ in
(91), then the associated restriction ̂J	(t) in (93) is strongly convex in t and, hence,
admits a unique global minimizer. This means that the restrictions of ˜J to all lines
x(t) ⊂ Hv not parallel to the setN in (19) can intersect the setM of globalminimizers
of ˜J at most in one point. It follows that, if the setM is not a singleton, then it must
be parallel to N and, hence, its maximum dimension is the dimension r of N given
in (21). ��
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