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Stereotomy of Vaulted Systems of the École Polytechnique 

Abtract 

This study investigates the contributions made by Gaspard Monge and the students of his School 

to the stereotomy of vaulted systems in France between the eighteenth and nineteenth centuries. The 

complexity of the apparatuses and the generality of the proposed solutions express the extent of the 

contributions that descriptive geometry made to the applications that preceded it. First among these 

stereotomy, which, though in decline from an operational point of view, was considered fundamental 

in the schools that were then being founded. The ellipsoidal vault, the helicoidal apparatus and the 

arrière voussure de Marseille are expressions of the relationship between the operability of 

stereotomy and the theoretical speculations of descriptive geometry, which operates through the 

synthetic language of drawing. These applications make explicit a modus operandi, capable of 

resolving the problems of defining, representing and expressing the geometric properties of figures 

using the synthetic methods of descriptive geometry. 

Introduction 

The stereotomy of vaulted systems is an expression of a large repertoire of forms, widely practiced 

and described in the numerous treatises on stereotomy published from the second half of the sixteenth 

century until the end of the eighteenth century. During the nineteenth century and part of the 

twentieth, stereotomy became an application of descriptive geometry and thus was considered as such 

in the treatises, particularly those written by the students of the Monge School. In the years of the 

Industrial Revolution, the process of transforming stereotomy from an art into a science initiated by 

Amedée François Frèzier reached its conclusion in Gaspard Monge’s descriptive geometry (Salvatore 

2011). It was a structural change for stereotomy. This discipline, which resolved diversely complex 

apparatuses case by case finds, in descriptive geometry, a finality of generalization. Therefore, it was 

transformed from a useful tool aimed at solving practical constructive problems into a speculative 

science operating with the form in terms of maximum generalization. The generalizing character of 

the constructions at the basis of modern stereotomy is a tangible expression of the objectives of 

descriptive geometry (Calvo-López 2011). Theorized by Monge in those years, these objectives 

concern, as is known, the knowledge of the theories of form and their communication by means of 

graphical representation. 

Stereotomy becomes a highly formative tool for those who intend to work with shapes, but 

especially for those who intend to operate with them through the tools of synthetic geometry, namely 

through drawing. Therefore, nineteenth-century stereotomy must be understood as an experimental 

laboratory in which form was treated via a synthetic method in terms of pure scientific speculation. 

It was based on the construction of graphic models founded on an exhaustive knowledge of 

geometrical theories, oriented to the generalization of the solutions. The stereotomic apparatuses that 

are investigated in this present contribution, namely the ellipsoidal vault, the helicoidal apparatus and 

the arrière voussure de Marseille are an expression of this assumption, evidence of which is found 

precisely in the algorithm that leads to their construction in space, explained here through continuous 

digital representation.  

The critical re-reading of these constructions in a digital environment demonstrates a modus 

operandi that identifies in the model – first mentally, then graphically, today digitally – the ideal 

instrument for the study, derivation and validation of the properties of form. The graphic construction 

of these apparatuses is a fundamental operation towards fully understanding their geometric meaning 

through the language of descriptive geometry. Just as the quality of a musical composition is difficult 

to appreciate simply by reading its score, it is likewise difficult to acquire the awareness of a form’s 
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geometrical raison d’etre merely through verbal description: hence just as music must be expressed 

by voices or instruments, so descriptive geometry must be represented through drawing. In this 

regard, digital drawing makes a particularly significant contribution. In fact, if on the one hand it 

facilitates visualization by overcoming the limits of a drawing on a sheet of paper, on the other hand 

it requires a greater geometric awareness, due to the rigor and accuracy needed to operate. 

We believe that the synthetic approach is the element of continuity that links traditional descriptive 

geometry to contemporary descriptive geometry, and that today this approach finds, in the 

mathematical digital representation, new impulse and new lymph. From this point of view, these 

studies on stereotomy are still relevant in terms of content and methodology and should be considered 

a valid contribution for those who intend to work with form using the synthetic method of drawing. 

2. Stereotomy at the Monge School 

The 1794 edition of the Journal de l’Écoles polytechniques presented a synthesis of the lectures 

given by Gaspard Monge at the École, collected into a single work four years later (Monge 1794: 6; 

Hachette 1828: VIII-X). In the introduction to his Traité de Géométrie Descriptive, Jean Nicolas 

Pierre Hachette, who was an adjunct professor in the École at the time, argues that the collection of 

these lessons can be considered the first treatise in which descriptive geometry is treated 

independently of its applications (Hachette 1828: X). 

This observation, which flows between the lines of a rich introduction written by one of Monge’s 

most brilliant disciples, summarizes the innovative extent of the contribution that Monge had given 

to the comprehensive knowledge that, by the end of the eighteenth century, could be considered well 

established.1 

In the years during which Monge taught at the École Royale du Génie de Mézière,2 descriptive 

geometry still did not exist. Nevertheless, its applications are taught, such as, for example, 

perspective, défilement and shadow theory, already practiced in the previous centuries. 

Among these, stereotomy stands out as having assumed a prominent role at the school (Sakarovitch 

1998: 220-227). Widely practiced until the first half of the eighteenth century, because of the 

numerous works in cut stone done mostly in the field of fortifications, this discipline began to decline 

in the last years of the Ancient régime, mainly due to the progressive abandonment of stone from the 

construction world. Although the operational needs that nourished these studies were lacking, 

stereotomy had been one of the privileged teachings at the École de Mézière from the very beginning. 

Chastillion, one of the founders of the school, who was convinced of the pedagogical and educational 

value of this discipline, attributed to it the merit of teaching how to visualize forms in space.3 This 

heuristic value of stereotomy is expressed in art. 9 of the statutes of the École de Mézière, presumably 

drafted by Chastillion himself, and even more clearly expressed in his essay entitled Traité des 

ombres dans le dessin géométral4: 

                                                 
1
 For further information on Gaspard Monge’s role in descriptive geometry, see Vito Cardone’s studies (Cardone 2017). 

2
 The École du Génie de Mézière was founded in 1748; Monge taught stereotomy here from 1760. This School was 

followed in the coming years by the École Normale and the École Polytechnique, founded in 1794. 

3
 About the teaching at the École Royale du Génie de Mézière, see Sakarovitch (1995: 208-210).  

4
 This treatise (mémoire) was published by Theodore Olivier in Applications de géométrie descriptive aux ombres, à la 

perspective, à la gnomonique et aux engranages. In the first two notes Olivier specifies that this mémoire is part of a 

manuscripts collection of the library of the École d'application de l'artillierie et du Génie de Metz. This comes from the 

ancient École du Génie which was transferred from Mezière to Metz in 1793. Olivier hypothesizes that this essay, 

anonymous, was wrote between 1775 and 1780 for the education of the young officers of the Génie (Olivier 1847: 5-24). 
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On n’a rien trouvé de plus propre pour leur [les ingégneurs] procurer cette connaissance 

parfaite du dessin que leur faire suivre des cours de coupe des pierres et de bois; … 

Indipéndamment des avantages qui résultent de cette étude, relativement aux 

constructions dont les officiers du génie ont la direction, on conçoit facilement que, quand 

on fait développer toutes les faces et connaître tous les angles plans ou solides d’une 

pierre quelconque employée dans une voûte, une trompe, etc., ou d’une pièce de 

charpente employée dans un comble, un dôme, un escalier, etc. … que, quand on sait bien 

former la répresentation de toutes ces choses pour les faire entendre aux autres, on est 

état de les représenter comme si elles étaient déjà exécutées, et d’en combiner les 

différentes constructions pour les rendre autant parfaites qu’elles pouvent l’être (Olivier 

1747: 6).5  

 

Stereotomy, in fact, dealt with the entirety of the problems that affected, in a transversal way, all 

the other applications practiced until that time, which converged towards a well-defined and shared 

idea of the representation of space. These problems were solved, in the Mézière school, through 

overturning operations and auxiliary planes in double orthogonal projection, according to a code 

already consolidated and used in stereotomic practice. 

To understand the scenario of those years we must imagine the mosaic tiles of a puzzle, separate, 

but ready to be assembled. The combination of these tiles resolved the two fundamental problems of 

representation at that time, which would be translated by Monge into the two fundamental objectives 

of descriptive geometry, namely: the synthetic control of the properties of shape and its representation 

in the plane through drawing (Monge 1798: 5). Before the theorization of descriptive geometry, these 

objectives were satisfied in stereotomic practice and, for this reason, its teaching was held in high 

esteem (Sakarovitch 2005). Moreover, the stereotomic procedures employed representation in plan 

and elevation, required to describe the objective characteristics of represented forms. Therefore, it is 

not surprising that, in the years of the Industrial Revolution, during which the engineering schools in 

question were founded in France (i.e., École de Mézière, the École Normale and the École 

Polytechnique) there was a need to relaunch these forms of representation. The goal was to find a 

synthetic, efficient and shared language of the communication of shape, oriented towards the 

industrial manufacture of the product, a language that found unequivocal definition in Monge’s new 

descriptive geometry.6  

                                                 
According to Bruno Belhoste this essey, antecedent to 1764, must be attributed to Chastillon (Belhoste 1990: 11; 

Sakarovitch 1998: 85). 

5
 There was nothing more clean for their [engineers] to provide this perfect knowledge of drawing than to have them take 

courses in stone and wood cutting; … regardless of the advantages which result from this study, relative to the 

constructions under the control of the engineering officers, it is easy to understand that, when we develop all the faces 

and know all the plane or solid angles of any stone used in a vault, trompe, etc., or of a frame used in an attic, a dome, a 

staircase, etc. … that, when we know how to form the representation of all these things to make them understand to others, 

we are able to represent them as if they were already executed, and to combine the different constructions to make them 

as perfect as they can be (translation by the authors). 

6
 The École du Génie de Mézières, together with the École des Ponts et Chaussées, was active until 1803. In the early 

years of the Republic, which followed the French Revolution, the École Normale was established, where Monge taught 

for four years. In 1794 the École Polytechnique, first called the École centrale des travaux publiques, was founded, and it 

gradually replaced the first two. In the Polytechnique, the teaching of descriptive geometry appeared for the first time. 

Monge taught there for a short time, entrusting Hachette with responsibility for teaching this new science in 1795 

(Sakarovitch 1998: 220-227). 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



In synthesis, Monge’s great merit consists in having approached the question in terms of maximum 

abstraction, conferring to a ‘geometrical descriptive’ practice used in those years the dignity of 

science. He was responsible for the rationalization of the graphic processes of representation in plan 

and elevation, little theorized but widely practiced over several centuries.7 In particular, his school 

was responsible for the elaboration of the theory of surfaces as we know it today, resolved through a 

synthetic method.  

Théodore Olivier clarifies this idea in the introduction to his Cours de Géométrie descriptive 

written in 1843, arguing that descriptive geometry must be considered both as an art and a science. 

Olivier writes: 

Pendant longtemp et depuis très-longtemps, l’art des projections était connu des 

stéréometres, et ainsi des appareilleurs pour la coupe des pierres et de charpentiers; mais 

c’est vraiment depuis Monge que la géométrie descriptive a été reconnue être une 

science, et c’est aux travaux de Monge qu’on le doit; car c’est lui qui le premier a 

démontré que, dans ce que l’on appelait l’art des projections, résidait réellement une 

méthode scientifique qui permettait de rechercher et de démontrer certaines vérités 

géométriques, et ainsi toutes celles relatives à la forme de l’espace figuré (Olivier 1843: 

VI).8 

Monge was among the main founders of the École Polytecnique. Here he taught Géometrie 

déscriptive and the Analyse appliquée à la géometrie (Descriptive Geometry and Analysis Applied 

to Geometry). He held the synthetic language of geometry in as high esteem as algebra, and was 

strongly convinced of the effectiveness of studying them together, an idea that permeates all of his 

work (Loria 1921: 108-109).9 In this regard, Olivier reports Monge’s words: 

Si je refaisais mon ouvrage, qui a pour titre L’analyse appliquées à la géométrie, … 

j’écrirais en deux colonnes: dans la première je donnerais les démonstrations par 

l’analyse; dans la seconde, je donnerais les démonstrations par la géométrie descriptive, 

en d’autre terms, par la méthode des projections; et l’on serait peut-être … en lisant cet 

ouvrege, de voir que l’avantage serait presque toujours du côté de la seconde colonne, 

pour la clarté du raisonnement, la simplicité de la démonstration, et la facilité de 

l’application des théorèmes trouvés aux divers travaux des ingegneurs (Olivier 1843: 

VI).10 

In this process of the scientification of the art of projections, stereotomy became part of descriptive 

geometry, and its applications, considered pedagogically instructive, continued to be taught. They 

                                                 
7
 The first printed treatise on stereotomy was by Philibert de l’Orme in 1567. This work testifies to a wise use of the 

representation in plan and elevation. However, evidence of the use of this method can be seen in the previously published 

treatises on perspective, first of all that written by Piero della Francesca at the end of the fifteenth century. 

8
 From a long time and for a very long time, the art of projection was known to stereometers, and thus to stone-cutters 

and carpenters; but it is really since Monge that descriptive geometry has been recognized as a science, and it is to Monge's 

works that we owe it; because it was he who first demonstrated that, in what was called the art of projections, really 

resided a scientific method which made it possible to seek and demonstrate certain geometric truths, and thus all those 

relating to the form of figurative space (translation by the authors). 

9
 Loria says that, starting from Monge, physical models made with ropes, wood or metal, were used to illustrate the most 

complex geometric figures (Loria 1921: 122). 

10
 If I redid my work, which has the title Analysis applied to geometry, ... I would write in two columns: in the first I 

would give the demonstrations by analysis; in the second, I would give the demonstrations by descriptive geometry, in 

other words, by the method of projections; and you would see perhaps... by reading this opening, that the advantage would 

almost always be on the side of the second column, for the clarity of the reasoning, the simplicity of the demonstration, 

and the ease of application of the theorems found in the various works of the engineers (translation by the authors). 
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would contribute to enrich the pages of the treatises on geometry up to the first decades of the 

twentieth century. The subjects treated are the classic ones of the stereotomic repertoire, namely 

vaults and stairs.11 Just as occurs traditionally, spherical domes, ellipsoidal vaults, bias vaults, 

trompes, etc., recur among the vaulted systems, as can be seen in the consistent production of 

descriptive geometry and stereotomy treatises written by the students of the Monge School such as 

Jean Nicolas Pierre Hachette, Charles-François-Antoine Leroy, Jean-Paul Douliot, Joseph Adhemar, 

and Emile Le Jeune, to name just a few. 

Among the numerous cases treated, some are particularly significant (Rabasa 2011: 719-725). 

These are apparatuses capable of resolving and generalizing particularly difficult conditions through 

scientific theories derived from what was then the new descriptive geometry. 

3. The Ellipsoidal vault and the Lines of Curvature  

The goal of stereotomy is the design of the apparatus, namely the definition of the most convenient 

way to break down a work into a set of ashlars. The choice of the morphology of the apparatus derives 

from different issues of a static or aesthetic order, but also from practical considerations related to the 

execution and cost of the work. 

The principles of stereotomic design are explained in several treatises dedicated to the art of stone-

cutting and can be summarized in a few key points. These points concern in particular the dihedral 

angles formed by contiguous faces of the same ashlar, which should not be overly acute in order not 

to be susceptible to breakage. But they also concerned the correct execution of the joining surfaces, 

which had to be accurately performed to allow contiguous ashlars to optimally adhere and evenly 

distribute the thrusts throughout the entire surface, not merely in some points. For this exigency of 

accuracy, flat surfaces were favored, then developable ones, and finally ruled surfaces. Developable 

surfaces, like ruled surfaces, could be reproduced on site through straight rulers; the developable 

surfaces in particular could be developed on the plane and reproduced in cardboard or metal models 

(the panneaux) to be unrolled on site to check their correct execution. Generations of geometers have 

provided various contributions aimed at satisfying these indications by optimizing the apparatuses 

and their manufacturing processes. Monge is the author of one of the most significant theoretical 

contributions in this regard. In fact, he was responsible for the theorization of the lines of curvature 

of a surface, lines that, according to Monge himself, would have solved the designing problems of 

the ashlars as a whole. 

Lines of curvature belong to a surface and cover it without gaps. They have the property of having 

the direction of the main curvatures of the surface at each point and, therefore, are constantly 

orthogonal to each other. Imagine a point on a surface and the normal leading to the surface at that 

point. This normal is a straight line supporting a sheaf of planes which section the surface according 

to a system of curves. Each of these curves will have, at the point, a different curvature value. Among 

the infinite curves of section, two will have the maximum and minimum curvature value and will be 

called main curvatures. The tangents to these two curves in the contact point indicate the main 

directions of curvature which are orthogonal to each other, as had already been demonstrated by Euler 

in the second half of the eighteenth century (Fig. 1) (Euler 1767: 119-143).12  

                                                 
11

 The repertoire of the subjects studied is generally referable to that published by Jean Baptiste de la Rue in his Traité 

de la coupe des pierres of 1728, a particularly substantial manual work. The numerous cases described in the treatise 

were quite well known at the time, because they were proposed as exercises in the stereotomy courses of the École de 

Mézière. 

12
 The main curvatures will be taken up by Gauss for the theorization of the “Gaussian curvature” (product of the main 

curvatures) currently used today in mathematical NURBS modellers. The curvature at an individual point of a surface 
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Fig. 1 The principal lines of curvature of an ellipsoid 

The possibility of building a network of orthogonal curves on a surface hinted at the possibility of 

solving, in terms of maximum generalization, most of the problems posed by the design of the ashlars. 

Monge synthesizes these problems in his lectures on descriptive geometry (Monge 1795; Monge 

1798: 120-127), exhorting accuracy in the execution of the surfaces, both those of facing and joining, 

hoping for their mutual perpendicularity and, consequently, that of the respective edges, urging 

operation with developable joining surfaces. Finally, he hopes that the edges of the segments can lead 

to the character of the surface to which they belong. 

The lines of curvature could satisfy all these conditions. In fact, they allowed the construction of 

orthogonal edges and permitted operating with developable joining surfaces, since the set of the 

normals to a line of curvature constitutes a developable surface, which is orthogonal to the same 

surface constructed on the second family of lines of curvature (Fig. 2). 

Fig. 2 The developable surfaces normal to the ellipsoid surface 

Hachette and later Adhemar recount that graphic constructions for the tracing of these lines had 

not been elaborated at the time, but that the problem was marginal, since they were unknowingly 

already used in the stereotomy of stone, because of a natural instinct in the construction of the 

appareillage. In the cones and cylinders used, for example, for barrel vaults and trompes, the 

generatrixes and sections normal to the internal axis to these surfaces are precisely the lines of 

curvature in question; likewise, in surfaces of revolution, such lines correspond to the network of 

meridians and parallels of the surface (Hachette 1822: 289-290; Adhemar 1856: 365). The problem 

therefore concerned some particular cases, such as that of the ellipsoidal vault, with which Monge 

deals for the first time in a paper published in 1795 in the II cahier of the Journal de l’Ecole 

Polytechnique (Monge 1795: 145-165) (Fig. 3). 

Fig. 3 Monge’s graphical construction of the ellipsoidal apparatus 

The construction of the lines of curvature of an ellipsoid was not a trivial question for the time, 

especially if resolved with a synthetic method, namely through drawing. The lines of curvature of an 

ellipsoid are skew curves symmetrical with respect to the principal planes of the surface. Monge 

observed that these curves are projected on the main planes of the surface according to second-degree 

curves: an ellipse for the family that follows the maximum curvature directions, a hyperbola for the 

family that follows the minimum curvature directions. Because of the aforementioned symmetry, the 

curves of the two families share the center and the main axes and both tend to two significant points 

that lie on the common focal axis without ever reaching them. The normals on the plane of the 

principal axes of these conics, conducted from these two points, meet the surface of the ellipsoid at 

four notable points, which Monge named “umbilicuses”.13 In order to represent the ellipses and the 

hyperbola in plan and elevation in question an auxiliary ellipse and hyperbola are used, having the 

same center of the two conical series that must be built. To represent these auxiliary conics it is 

necessary to determine their axes OP and OR. For this purpose, the foci F1, F2, F3 of the ellipse, 

principal sections of the ellipsoid, are built. For the construction of the first axis, the lengths OF2′ = 

OF2 and OF1′ = OF1 are considered, then the straight line AF2′ and the parallel F1′P are constructed, 

thus determining the length of the first axis. To establish that of the second axis, the length OF’3 = 

                                                 
can be of three types: positive, negative and zero. This property makes it possible to classify surfaces into different types: 

surfaces with negative curvature (such as ruled surfaces); surfaces with positive curvature (such as the ellipsoid); surfaces 

with zero curvature (such as developable surfaces); finally surfaces with mixed curvature (such as the torus). 

13
 The umbilicuses are remarkable points of a surface where the main curvatures are indeterminate. A surface composed 

entirely of umbilicuses is the sphere; in every point of this surface the main curvatures are indeterminate. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



OF3 is considered, then the straight line BF3′ and finally the parallel F1R. Once the auxiliary conics 

are known, any point H is constructed on the auxiliary hyperbola and the coordinates are given on 

the vault axes. These coordinates provide the length of the two half-axes of the ellipse, which in the 

first projection represents the first series of lines of curvature. In the same way, the coordinates of a 

point L on the auxiliary ellipse are constructed to obtain the half-axes of a hyperbola projection of 

the second curvature. The construction of the lines of curvature in elevation works in the same way. 

We observe that lines of curvature that project in the first projection according to an ellipse appear as 

hyperbolas in the second projection and vice versa (Fig. 3). Bringing this construction to a definition 

of a stereotomic apparatus, it is necessary to define in advance, in plan and elevation, a division into 

ashlars, and then draw the lines of curvature in correspondence with these partitions. 

The construction, laborious but particularly interesting, became recurrent in the descriptive 

geometry and stereotomy treatises that followed, such as those of Hachette, Leroy and Adhemar. 

Innovative contributions are instead due to Jacques Binet, who demonstrated how the lines of 

curvature of a second-degree surface derive from the intersection of the given surface with a pair of 

quadrics of a different type, confocal to this one, and how these three surfaces are perpendicular to 

each other. The question was generalized a few years later by Charles Dupin, who showed how the 

surfaces of a tri-orthogonal family are sectioned according to their lines of curvature. Confocal 

quadrics are surfaces that enjoy this property, and are in particular a generic ellipsoid, a one-sheeted 

elliptical hyperboloid, and a two-sheeted elliptical hyperboloid (Hilbert and Cohn-Vossen 1972: 28-

36, 238-251). The use of confocal quadrics allows a rigorous representation of the lines of curvature 

of an ellipsoid, today accurately reproducible through continuous digital representation (Fallavollita 

and Salvatore 2012: 65-71) (Fig. 4). 

Fig. 4 The confocal quadric surfaces 

The theory of lines of curvature applied to the case of an ellipsoid remained a speculative exercise 

rather than an operating practice throughout the nineteenth century.14 Monge’s strong belief in the 

universal character with which these remarkable classes of lines would solve stereotomy problems 

underwent a crisis in the face of specific practical problems that arose around the middle of the 

nineteenth century relating in particular to the construction of bias vaults. 

4. The Helicoidal Apparatus 

In the tradition of stereotomy, the question of bias vaults has always been particularly thorny.15 At 

the beginning of the nineteenth century this once again became very topical, becoming one of the rare 

stereotomy applications practiced at the time. With the spread of railway lines throughout the 

territory, the problem of crossing became central, as Adhemar recounts in his Traité de la coupe des 

Pierres of 1840. Since sudden changes in track direction were not possible, the crossing of roads or 

canals was solved by designing bias bridges, consisting of barrel vaults formed of quadric, round or 

elliptical cylinders. The case of bias bridges is particularly interesting because it poses certain 

problems that Monge’s theory of lines of curvature could not resolve. In the case of cylinders, in fact, 

the lines of curvature are generatixes and straight sections of the surface (perpendicular to the internal 

main axis). If the vault presents a strong obliquity, these lines cannot be used as joint edges, because 

the head ashlars would present strongly acute angles and would not be contrasted at the sides, where 

                                                 
14

 Monge imagined creating the vault of the halls hosting the legislative assemblies as an application of the theory of lines 

of curvature on the surface of an ellipsoid, in iron and glass (Monge 1795: 162-163). 

15
 The theme of bias vaults recurs in all stereotomy treatises from de l’Orme onwards. Desargues would make it the 

subject of a dedicated treatment in his Brouillon projet dedicated to stonecutting. 
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force is greater. This would produce vacuum thrusts, which must necessarily be avoided to prevent 

collapse. 

The solution that greatly resolves the issue is the helicoidal apparatus, developed in England, 

where the problem was quite present.16 In France, the helicoidal apparatus was treated by Adhemar, 

who published it in his treatise, together with other notably interesting solutions given by Hachette 

some years earlier, relating in particular to small crossings, such as road passages under railway 

sections (Adhemar 1856: 404-407). Hachette offers two especially interesting solutions. The first 

resolves the apparatus by using an elliptical cylindrical vault sectioned according to circumferences 

on the face arch. In the case in question, the beds of the ashlars are flat surfaces that belong to the 

planes passing through the normal to the wall that must be crossed. In this apparatus, the joint edges 

of the vault are elliptical arches and the face arch ashlars have a slight obliquity, which accentuates 

as the depth of the passage to be crossed increases (Fig. 5). The second solution to which Adhemar’s 

text refers once again covers a small bias passage. In this case the surface of the vault is a ruled one, 

namely a cylindroid, which belongs to the two semi-circular face arches, and to the normal of the 

wall that must be crossed. This particular type of vault presents an imperfection at the key, a sort of 

deformation, which makes it unusable from a practical point of view, limiting its interest to 

pedagogical exercises (Fig. 5). 

Fig. 5 Models of the apparatuses for small crossing by Adhemar’s treatise 

The question of bias bridges, as mentioned above, is in general resolved by a helicoidal apparatus. 

This apparatus makes it possible to have equal internal ashlars, maintaining their orthogonality on the 

fronts, thus obtaining a more uniform distribution of loads. In this case, the joint edges of the ashlars 

belong to two systems of helices, having the same pitch and axis, coinciding with the axis of the 

cylindrical intrados surface. The joining surfaces are straight ruled helicoids with director plane, 

therefore orthogonal to the surface of the cylinder, belonging to the aforementioned helices (Fig. 6). 

The extrados surface of the vault is another cylinder, which also has the same axis as the first. The 

internal ashlars have four lateral faces formed by straight helicoids and two cylindrical intrados and 

extrados faces. Their joint edges are helices, except for the four orthogonal to the intrados, which are 

instead straight lines. The helicoidal faces, thus formed, are minimal surfaces with respect to the 

edges that delimit them. We recall, in fact, that the right helicoid is the only minimum surface 

consisting of straight lines (excluding the plane). The ashlars thus obtained, except those on the face 

and those connecting to the pier, can be moved with a helical movement in the longitudinal or 

transverse direction, overlapping the contiguous ashlars without waste. 

Fig. 6 The helicoidal surfaces of junction 

The solution found generalized the question in such a way that the apparatus had widespread 

diffusion and was present in descriptive geometry treatises in the years to come. The reproduction of 

the graphical procedure for the construction of the following apparatus is taken from the treatise 

written by Gino Fano in 1935, demonstrating the didactic value that, even in those years, was 

attributed to this type of construction (Fano 1935: 448-461). 

The construction of the apparatus, in plan, avails itself of the properties of the developable surfaces 

that allow us to operate on the plan development of the surface. In the case in question, the intrados 

surface is a round cylinder and therefore, in its development, the front lines, oblique with respect to 

                                                 
16

 On the question of bias vaults and England’s contributions to the solution of solving the problem, see (Sakarovitch 

1995). 
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the axis, became sinusoids. Figure 7 shows the impost parallelogram of the skew vault. The obliquity 

angle of the vault is given, on the first projection plane, because by the axis of the vault and the 

segment that represents the first projection of the front arch. The planes in front, being generic flat 

sections of a round cylinder, are ellipses that project themselves as circumferences on the second 

projection plane. Therefore, the intrados surface develops in the plane according to a quadrilateral 

formed by two straight and parallel sides (AD and BC) and by two sinusoids. Once the development 

is complete, the number of the ashlars of the arch in front is established. The developed joint edges 

are straight lines passing through these partitions and perpendicular to the AB chords, while the 

discontinuous joint edges are parallel to the AB chords. In order for the ashlars to exactly divide the 

surface, the continuous joint edge coming out of A must pass through a division point of the CD 

chord. This means that the two systems of lines will not be perfectly perpendicular but the ashlars 

will still be equal to each other. For this purpose, a straight line perpendicular to CD from point A is 

detached. This straight line intersects the CD chord at a point A1. A point among those of the partition 

of the CD chord, particularly close to A1, is chosen, such as point 4 in the figure. The continuous joint 

edges will be parallel to the A4 straight line. Although this passage introduces an approximation in 

the construction, it allows us to keep the continuous junction helices as perpendicular as possible to 

the arches in front. The discontinuous joint edges will be parallel to the CD chord and must pass 

through points G, H and I, intersection of the continuous joint edges with the impost edges AD and 

BC. Once the intrados drawing is obtained, it will be sufficient to envelop it on the surface in order 

to obtain the objective joint edges. 

Fig. 7 The helicoidal apparatus and its net 

The construction leads to the definition of three different types of ashlars: the internal ashlars, 

equal to each other; the head ashlars that have the visible front face flat; the impost bearings that rest 

on the piers. The internal ashlars, as already mentioned, are composed of helicoidal junction surfaces 

and cylindrical intrados and extrados surfaces. The head ashlars differ from the internal ones only for 

the flat front of facing. Finally, the impost ones, which are different from each other, are welded to 

the bearings, to ensure at the same time a consistent housing with the masonry, but especially to avoid 

the formation of an acute angle to the impost of the vault (Fig. 08).17 

Fig. 8 The three different ashlars 

5. The Arrière Voussure de Marseille 

The arrière voussure de Marseille is the last case we present. This, perhaps more than the others, 

makes evident the contributions of descriptive geometric theories to the solution of operational 

problems of stereotomy. 

The arrière voussure is a small vault used especially in architecture, necessary to span door and 

window openings in a wall thickness. This apparatus consists of a barrel vault, the porte droite and a 

second vault, the arriére-voussure, intended to cover the door opening.18 It is an apparatus necessary 

to facilitate the entry of carriages and prevent the wooden doors, which close the opening, from 

striking against the wall.19 The arriére-voussure, which therefore constitutes the last part of the 

passage, is formed by three ruled surfaces placed in tangential continuity between them, whose 

                                                 
17

 For further information on the design of impost bearings, see the studies on ruled surfaces and the stereotomy of stone 

(Fallavollita and Salvatore 2012). 

18
 There are several models of arrière voussure, but this in particular raises a descriptive geometric question that finds its 

scientific rigor in the theory of ruled surfaces.  

19
 For further details on the vault and the related theorems, see (Fallavollita 2008). 
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common lines are two circumferential arches and a horizontal straight line, the axis of the vault. The 

peculiarity of the opening lies in the tangential condition existing between these three ruled surfaces 

that cover the splay of the vault. The geometric explanation is given by Hachette, who dedicates a 

chapter to this apparatus in the appendix of his Traité de géométrie descriptive (1828: 315-318) (Fig. 

9).  

Fig. 9 The construction of the Coupe de Arriere Voussure de Marseille 

In the first surface of the arriére-voussure, the position of the straight generatrix is determined by 

three conditions (Fig. 10): 

- it must belong to the circular arch of the connection groove with the adjacent barrel vault, the 

porte droite; 

- it must belong to the circumference arch that delimits the top of the splay; 

- finally it must belong to the horizontal axis of the vault, orthogonal to the wall surface. 

Fig. 10 The model of the Coupe de Arriere Voussure de Marseille from the treatise of Hachette 

(1828: A.Pl.3) 

The arriére-voussure and the groove have the same joint plane as the porte droite; since the flat 

junction surfaces of the segments of this opening pass through the horizontal axis of the door, these 

cut the intrados surface according to straight lines, the edges of the ashlars that compose the vault. 

Suppose that the top arch of the splay, which serves as a directrix for the straight line generating 

the first surface of the arriére-voussure, is given. This arch, whatever its radius, will be cut from the 

planes that delimit the splay, at two points. The planes passing through these points and the axis of 

the door section the groove circumference in two other points. These four points determine the 

position and length of the limit lines of the first of the three ruled surfaces that compose the arrière 

voussure, the central one. Two additional ruled surfaces cover the remaining space on the sides. These 

admit, as directrix curves, the circumference of the groove and the axis of the vault, but they also lean 

on a third circumference that has a radius equal to that of the groove, placed on the splayed planes of 

the door. The radius of these arches must not be less than that of the door panels, which must be 

accommodated. In order for tangential continuity to exist between the central part of the arrière 

voussure and the lateral wings, these must share the same tangent plane along the contact generatrix. 

Two ruled surfaces that share a generatrix and admit three common tangent planes in three different 

points of same are tangent to each other in all points of the shared generatrix.20  

The solution to this problem of continuity is an application of the properties of the ruled surfaces 

derived by Hachette starting from the Chasles theorem. According to this theorem:  

I piani tangenti a una rigata sghemba nei punti di una generatrice non singolare formano 

un fascio avente per asse questa generatrice, e proiettivo alla punteggiata dei punti di 

contatto.21 (Fano 1935: 355).  

If the surface is a developable one, the tangent plane along a generatrix g will always have the 

same position, in other words, it will be tangential along the whole generatrix of the surface.  

                                                 
20

 The other two tangent planes are along the generatrix line at the points of intersection with the second and third 

directrix. 

21 The tangent planes to a ruled surface at the points of a non-singular generatrix form a sheaf having this generatrix as 

its axis, and projective to the dotted of the contact points (translation by the authors). 
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Chasles theorem led Hachette to discover and define the main properties of ruled surfaces22 

(Hachette 1828: XIII-XIV). Given a generic ruled R, we consider any generatrix g on it. There are an 

infinite number of quadric surfaces tangential to R along the entire generatrix g. Each of them has as 

generatrixes of the opposite system all those straight lines tangential to the R-ruled that rest on g. 

Therefore, any three of these are needed to determine a hyperboloid Q tangent.  

Deux sufaces réglées qui on une droite commune et trois plans tangens communs en trois 

points de cette droite, sont tangents l’une à l’autre dans tous les points de la droite 

commune.23 (Hachette 1828: 96).  

It is therefore possible to also obtain a tangential hyperbolic paraboloid (Fig. 11). To construct this 

paraboloid, three planes are taken tangential to the ruled surface along a generatrix (the horizontal 

line in Fig. 11). These touch the surface at three distinct points. It is sufficient to cut the three tangent 

planes with three planes parallel to a director plane. The straight sections thus identify three 

generatrices parallel to the director plane, which identify a single hyperbolic paraboloid tangent to 

the given ruled surface (a hyperboloid of revolution in the figure). 

Fig. 11 Two ruled surfaces having a non-singular generatrix in common meet, in general, in no 

more than two points of this generatrix. If they touch in three points of the same generatrix, they 

will be tangent along the entire generatrix. The three tangent planes are identified by the straight 

line in common and by the three straight lines of the paraboloid 

In conclusion, two ruled surfaces having a non-singular generatrix in common meet, in general, at 

no more than two points of this generatrix. If they touch in three points of the same generatrix, they 

will be tangential along the entire generatrix, as happens in the case of the arrière voussure. 

6. Conclusions 

The applications presented in the sections above show the contributions made by descriptive 

geometry, in terms of theoretical generalization, to the solution of stereotomic problems. These 

contributions show, on the one hand, the lively academic speculation of steoreotomy and, on the 

other, its decline as applied art. The proposed cases are examples of a modus operandi that 

investigates shape in space, showing the power of theory through drawing. 

With this in mind, we asked ourselves whether this approach, which permeates the history of 

descriptive geometry up to its apogee, is still valid today. Therefore, we wondered if, beyond the 

interest in the history of this science, these studies are still relevant, considering that, from a purely 

applicative point of view, they were no longer used even in Monge’s time, when stereotomy was a 

discipline aimed at pure academic speculation. This question appears very topical today, since we 

live in a time when descriptive geometry itself entered into crisis following the advent of the 

computer. Despite the efforts of some scholars of the Italian School to revive this science, in the 

international debate descriptive geometry is often considered a dead science. Taught today as a basic 

subject in the early years in some engineering and architecture courses, it seems unable to offer new 

research scenarios. However, we believe that this science is still alive and that the “crisis” arises from 

a misunderstanding that has reduced it, for several years by now, to a set of graphic codes capable of 

transferring a three-dimensional space to the two-dimensional reality of a drawing plane. If this is, 

                                                 
22

 The properties of the ruled surfaces were studied and discovered by Hachette and published in his treatise of 1828. 

Years later, Gino Fano, grouped them under the heading “consequences of the Chasles theorem”, because of the theorem 

that still carries today its name, although it was Hachette who derived its properties (Fano 1935: 355-357). 

23
 Two ruled surfaces which have a common line and three common tangent planes in three points of this line, are tangent 

to each other in all the points of the common line (translation by the authors). 
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and was, the sole purpose of descriptive geometry, then those scholars who decree the death, or at 

least the obsolescence, of this science are right. Instead, if descriptive geometry has as its main 

objective the study of forms, their properties and their spatial relations, as another group of scholars 

are convinced, then this science can acquire renewed vigor today, thanks to digital representation.  

A small demonstration of the fact that digital representation is only a more effective tool than 

pencil and compass is also deduced from these studies on stereotomy. To construct these apparatuses, 

such as the ellipsoidal vault, the helicoidal apparatus or the arrière voussure vault, it is essential to 

have a thorough knowledge of the geometric properties of the represented shapes and be able to 

translate them into spatial constructions. The study and construction of these geometries must utilize 

the synthetic method that allow them to be visualized and, in the virtual world, almost touched. Today, 

it seems simpler to draw an ellipsoidal vault than it was in Monge’s day. This presumed simplicity is 

in part an illusion and lies mostly in the power of digital visualization. It is easier to see and understand 

shapes in space because we can observe them as if they were three-dimensional entities actually 

present. This illusory advantage led us and still leads us to believe that we can easily control and 

understand complex shapes. This is deceptive, since anyone who tries to tackle the apparatuses 

described in these few paragraphs will realize how important and complex it is to fully understand 

their geometrical reasons for being. 
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Captions 

Fig 1) The principal lines of curvature of an ellipsoid 

Fig 2) The developable surfaces normal to the ellipsoid surface 

Fig 3) Monge’s graphical construction of the ellipsoidal apparatus 

Fig 4) The confocal quadric surfaces 

Fig 5) Models of the apparatuses for small crossing from Adhemar’s treatise 

Fig 6) The helicoidal surfaces of junction 

Fig 7) The helicoidal apparatus and its net 

Fig 8) The three different ashlars 

Fig 9) The construction of the Coupe de Arriere Voussure de Marseille 

Fig 10) The model of the Coupe de Arriere Voussure de Marseille from the treatise of Hachette (1828: 
A.Pl.3) 

Fig 11) Two ruled surfaces having a non-singular generatrix in common meet, in general, in no more than 

two points of this generatrix. If they touch in three points of the same generatrix, they will be tangent along 

the entire generatrix. The three tangent planes are identified by the straight line in common and by the 

three straight lines of the paraboloid 

Captions Click here to access/download;Supplementary
Material;Captions.docx

https://www.editorialmanager.com/nenj/download.aspx?id=42810&guid=0fedb661-9587-45f4-ab80-be9277f885e4&scheme=1
https://www.editorialmanager.com/nenj/download.aspx?id=42810&guid=0fedb661-9587-45f4-ab80-be9277f885e4&scheme=1



