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Abstract Nine popular clustering methods are applied to 42 real data sets.
The aim is to give a detailed characterisation of the methods by means of sev-
eral cluster validation indexes that measure various individual aspects of the
resulting clusters such as small within-cluster distances, separation of clusters,
closeness to a Gaussian distribution etc. as introduced in [29]. 30 of the data
sets come with a “true” clustering. On these data sets the similarity of the
clusterings from the nine methods to the “true” clusterings is explored. Fur-
thermore, a mixed effects regression relates the observable individual aspects
of the clusters to the similarity with the “true” clusterings, which in real clus-
tering problems is unobservable. The study gives new insight not only into the
ability of the methods to discover “true” clusterings, but also into properties
of clusterings that can be expected from the methods, which is crucial for the
choice of a method in a real situation without a given “true” clustering.

Keywords Cluster benchmarking · internal cluster validation · external
cluster validation · mixed effects model

1 Introduction

This work compares cluster analysis methods empirically on 42 real data sets.
30 of these data sets come with a given “true” classification. The principal aim
is to explore how different clustering methods produce solutions with different
data analytic characteristics, which can help a user choosing an appropriate
method for the research question of interest. This does not require the knowl-
edge of a “true” clustering. The performance of the methods regarding recovery
of the “truth” is reported, but is not the main focus.

C. Hennig
Dipartimento di Scienze Statistiche “Paolo Fortunati”
Universitá di Bologna
E-mail: christian.hennig@unibo.it
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Cluster analysis plays a central role in modern data analysis and is ap-
plied in almost every field where data arise, be it finance, marketing, genetics,
medicine, psychology, archaeology, social and political science, chemistry, en-
gineering, or machine learning. Cluster analysis can have well-defined research
aims such as species delimitation in biology, or be applied in a rather ex-
ploratory manner to learn about potentially informative structure in a data
set, for example when clustering the districts of a city. New cluster analysis
methods are regularly developed, often for new data formats, but also to fix
apparent defects of already existing methods. One reason for this is that clus-
ter analysis is difficult, and all methods, or at least those with which enough
experience has been collected, are known to “fail” in certain, even fairly reg-
ular and non-pathological, situations, where “failing” is often taken to mean
that a certain pre-specified “true” clustering in data is not recovered.

A key problem with clustering is that there is no unique and generally
accepted definition of what constitutes a cluster. This is not an accident, but
rather part of the nature of the clustering problem. In real applications there
can be different requirements for a good clustering, and different clusterings
can qualify as “true” on the same data set. For example, crabs can be classified
according to species, or as male or female; paintings can be classified according
to style of the painter or according to the motif; a data set of customers of a
company may not show any clusters that are clearly separated from each other,
but may be very heterogeneous, and the company may be interested in having
homogeneous subgroups of customers in order to better target their campaigns,
but the data set may allow for different groupings of similar quality; in many
situations with given “true” classes, such as companies that go bankrupt in
a given period vs. those that do not, there is no guarantee that these “true”
classes correspond to patterns in the data that can be found at all. One could
even argue that in a data set that comes with a supposedly “true” grouping
a clustering that does not coincide with that grouping is of more scientific
interest than reproducing what is already known.

Rather than being generally better or worse, different cluster analysis meth-
ods can be seen as each coming with their own implicit definition of what a
cluster is, and when cluster analysis is to be applied, the researchers have
to decide which cluster concepts are appropriate for the application at hand.
Cluster analysis can have various aims, and these aims can be in conflict with
each other. For example, clusters that are well separated by clear density gaps
may involve quite large within-cluster distances, which may be tolerable in
some applications but unacceptable in others. Clusters that can be well rep-
resented by cluster centroids may be different from those that correspond to
separable Gaussian distributions with potentially different covariance matri-
ces, which in some applications are interpreted as meaningfully different data
subsets. See [3,43,27,26] for the underlying philosophy of clustering.

The starting point of this work is the collection of cluster validation indexes
presented in [29]. These are indexes defined in order to provide a multivari-
ate characterisation of a clustering, individually measuring aspects such as
between-cluster separation, within-cluster homogeneity, or representation of
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the overall dissimilarity structure by the clustering. They are applied here in
order to give general information about how the characteristics of clusterings
depend on the clustering method.

Many cluster validation indexes have been proposed in the literature, often
in order to pick an optimal clustering in a given situation, e.g., by comparing
different numbers of clusters, see [24] for an overview. Most of them (such
as the Average Silhouette Width, [38]) attempt to assess the quality of a
clustering overall by defining a compromise of various aspects, particularly
within-cluster homogeneity and between-cluster separation. Following [29] and
[5], the present work deviates from this approach by keeping different aspects
separate in order to inform the user in a more detailed way what a given
clustering achieves.

A number of benchmark studies for cluster analysis have already been
published. Most of them focus on evaluating the quality of clusterings by com-
paring them to given “true” clusterings. This has been done for artificially gen-
erated data (e.g., [50,15,60,56,55]; see [52] for an overview of earlier work), for
real data, mostly focusing on specific application areas or types of data (e.g.,
[59,40,13,42]), or a mixed collection of real and artificial data, sometimes
generating artificial data from models closely derived from a real application
(e.g., [49,45,18,10,36]). An exception is [34], where different clustering meth-
ods were mapped according to the similarity of their clusterings on various
data sets (something similar is done here, see Section 3.1). [7] contrasted re-
covery of a “true” classification in artificial data sets with the requirement of
having homogeneous clusters. [51] ran a study to compare different internal
validation indexes according to their ability to correlate with the similarity be-
tween a clustering of the data produced by a clustering method and a “true”
clustering, which has some connection to Section 3.3 here.

All of these studies attempt to provide a neutral comparison of clustering
methods, which is to be distinguished from the large number of studies, using
real and artificial data, that have been carried out by method developers in
order to demonstrate that their newly proposed method compares favourably
with existing methods. Due to selection effects, the results of such work, al-
though of some value in their own right, cannot be taken as objective indicators
of the quality of methods ([14,28]). The study presented here is meant to be
neutral; I have not been involved in the development of any of the compared
methods, and have no specific interest to portray any of them as particularly
good or bad. No selections have been made depending on results ([12]); the 42
data sets from which results are reported are all that were involved.

A different line of work focuses on elaborating characteristics of different
clustering methods theoretically, see [35,22,39,1,3,2,17].

Section 2 explains the design of the study, i.e., the clustering methods, the
data sets, and the validation indexes. Section 3 presents the results, starting
with the characterisation of the methods in terms of the internal indexes, then
results regarding the recovery of the “true” clusters, and ultimately connecting
“true” cluster recovery with the characteristics of the clustering solutions using
a mixed effects regression model. A discussion concludes the paper.
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2 Study design

For the study design, recommendations for benchmark studies as given, e.g., in
[12,61] have been taken into account. One important issue is a definition of the
scope of the study. There is an enormous amount of clustering methods, and
clustering is applied to data of very different formats. It is not even remotely
possible to cover everything that could potentially be of interest. Therefore
the present study constrains its scope in the following way:

– Only clustering methods for 2 ≤ p-dimensional Euclidean data that can be
treated as continuous are used. Methods that work with dissimilarities are
run using the Euclidean distance.

– Accordingly, data sets contain numerical variables only. Some data sets
include discrete variables, which are treated as admissible for the study if
they carry numerical information and take at least three different values
(variables taking a small number of values, particularly three or four, are
very rare in the study).

– The number of clusters is always treated as fixed. Only methods that allow
to fix the number of clusters are used; methods to estimate the number of
clusters are not involved. For data sets with a given “true” clustering, the
corresponding number of clusters was taken. For data sets without such
information, a number of clusters was chosen subjectively considering data
visualisation and, where possible, subject matter information.

– The included clustering methods were required to have an R-implementation
that can be used in a default way without additional tuning in order to
allow for a comparison that is not influenced by different tuning flexibilities.

– No statistical structure (such as time series or regression clustering) is taken
into account, and neither is any automatic dimension reduction involved as
part of any method. All data is treated as plain p-dimensional Euclidean.

– Methods are only admissible for the study if they always produce crisp
partitions. Every observation always is classified (also in the given “true”
clusterings) to belong to one and only one cluster.

2.1 Clustering methods

The involved clustering methods are all well established and widely used, as far
as my knowledge goes. They represent the major classes of clustering meth-
ods listed in [31] with the exception of density-based clustering, which was
excluded because standard density-based methods such as DBSCAN ([20]) do
not accept the number of clusters as input and often do not produce parti-
tions. Another popular method that was not involved was Ward’s method, as
this is based on the same objective function as K-means and can be seen as
just another technique to optimise this function locally ([21]). On the other
hand, including mixtures of t- and skew t-distributions means that mixture
model-based clustering is strongly represented. The motivation for this is that
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the other included methods are not meant to fit distributional shapes includ-
ing outliers and skewness, which may be widespread in practice; alternatives
would be methods that have the ability to not include observations classified
as outliers in any cluster, but this is beyond the scope of the present study.
Here are the included methods.

K-means as implemented in the R-function kmeans using the algorithm by
[25].

Partitioning Around Medoids (clara) ([38]) as implemented in the R-function
claraCBI (therefore abbreviated “clara” in the results) in R-package fpc

([30]), which calls function pam in R-package cluster ([44]) using (un-
squared) Euclidean distances.

Gaussian mixture model (mclust) fitted by Maximum Likelihood using the
EM-algorithm, where the best of various covariance matrix models is cho-
sen by the Bayesian Information Criterion (BIC) ([23]) as implemented in
the R-function mclustBIC in R-package mclust ([57]).

Mixture of skew t-distributions (emskewt) fitted by Maximum Likelihood us-
ing the EM-algorithm ([41]), including fully flexible estimation of the de-
grees of freedom and the shape matrix, as implemented in the function
EmSkew with parameter distr="mst" in the R-package EMMIXskew ([62]).

Mixture of t-distributions (teigen) fitted by Maximum Likelihood using the
EM-algorithm ([46]), where the best of various covariance matrix models
is chosen by the BIC ([8]) as implemented in the R-function teigen in
R-package teigen ([9]).

Single linkage hierarchical clustering as implemented in the R-function hclust

and the dendrogram cut at the required number of clusters to produce a
partition, as is done also for the other hierarchical methods. See [21] for an
explanation and historical references for all involved hierarchical methods.

Average linkage hierarchical clustering as implemented in the R-function hclust.
Complete linkage hierarchical clustering as implemented in the R-function hclust.
Spectral clustering ([53]) as implemented in the R-function specc in R-package

kernlab ([37]).

The functions were mostly run using the default settings. In some cases, e.g.,
hclust, parameters had to be provided in order to determine which exact
method was used. Some amendments were required. In particular, all methods
were run in such a way that they would always deliver a valid partition as a
result. See Supplementary material S1 for more computational detail.

2.2 Data sets

The data sets used in this study are a convenience sample, collected from
mostly well known benchmark data sets in widespread use together with some
data sets that I have come across in my work. 21 data sets are from the UCI
repository ([19]), further ones are from Kaggle, www.openml.org, example data
sets of R-packages, open data accompanying books and research papers, and
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Table 1 Numbers of observations for the 42 data sets.

Observations Number of data sets
n ≤ 100 5
100 < n ≤ 200 6
200 < n ≤ 300 8
300 < n ≤ 500 5
500 ≤ n < 1000 7
1000 ≤ n < 2000 6
n > 2000 5

some were collected by myself or provided to me by collaborators and advisory
clients with permission to use them. Details about the data sets are given in
Supplementary material S2.

There were some criteria on top of those stated above according to which
data sets have been selected, which define the scope of the study. There was a
target number of collecting at least 30 data sets with and at least 10 data sets
without given “true” classes; ultimately there are 30 data sets with and 12 data
sets without true classes. The aim was to cover a large range of application
areas, although due to the availability of data sets, this has not been perfectly
achieved. 17 of the data sets come from the related areas of biology, genetics,
medicine, and chemistry. Eight are from the social sciences, two from finance,
eight can be classified as engineering including typical pattern recognition
tasks, the remaining seven data sets come from miscellaneous areas.

As some of the clustering methods cannot handle data with a smaller num-
ber of observations n than the number of variables p within clusters, all data
sets have p substantially smaller than n. The calibration of validation indexes
requires repeated computations based on n×n distance matrices (see Section
2.3), for this reason the biggest data set has n = 4601, and generally data
sets with n < 3000 were preferred. The maximum p is 72. p = 1 is excluded,
as it could not be handled by two methods. The maximum number of “true”
clusters K is 100. Data sets without missing values were preferred, but some
data sets with a very small number of missing values were admitted. In these
cases mean imputation was used. Tables 1, 2, and 3 show the distributions of
n, p, and K, respectively, over the data sets.

The variables were scaled to mean 0 and variance 1 before clustering, except
for data sets in which the variables have compatible units of measurement
and there seems to be a subject matter justification to make their impact for
clustering proportional to the standard deviation. See Supplementary material
S2 for details on the preprocessing for some data sets.

An issue with the representativity of these data sets for real clustering
problems is that the availability of “true” clusterings constitutes a difference
to the real unsupervised problems to which clustering is usually applied. This
is an issue with almost all collections of data sets for benchmarking cluster-
ing algorithms. In particular, several such data sets have been constructed in
order to have all clusters represented by the same number of observations.
This is the case for eight of the 30 data sets with “true” clusterings used here
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Table 2 Numbers of variables for the 42 data sets

Variables Number of data sets
p = 2 2
p = 4 5
p = 5 5
6 ≤ p ≤ 8 6
9 ≤ p ≤ 11 11
12 ≤ p ≤ 20 6
21 ≤ p ≤ 50 4
p > 50 3

Table 3 Numbers of clusters for the 30 data sets with given “true” clusterings, and for the
12 data sets without “true” clusterings, as chosen by the author.

Number of clusters With “true” clustering Without “true” clustering
k = 2 8 1
k = 3 3 3
k = 4 3 1
k = 5 2 6
6 ≤ k ≤ 7 5 1
8 ≤ k ≤ 11 6 0
k > 11 3 0

(seven of these have exactly equal cluster sizes). This is not possible for unsu-
pervised problems in practice. Such data sets will favour methods that tend
to produce clusters of about equal sizes. Furthermore, there is no guarantee
that the “true” clusterings correspond to data subsets that can be clearly dis-
tinguished, for example by separation. The “clusterability” of some of them
may be questioned ([4]), but this is arguably anyway often the case with real
clustering applications.

2.3 Internal validation indexes

Internal validation indexes are used here with the aim of measuring various
aspects of a clustering that can be seen as desirable, depending on the spe-
cific application. It is then investigated to what extent the different clustering
methods work well according to these aspects. [26] lists and discusses a number
of aspects that can be relevant. [29] and [5] formalised many of these aspects,
partly using already existing indexes, partly introducing new ones. Here the
indexes used in the present study are listed. For more background and dis-
cussion, including possible alternatives, see [29] and [5]. The indexes attempt
to formalise clustering aspects in a direct intuitive manner, without making
reference to specific models (unless it is of interest whether data look like gen-
erated by a particular probability model, see below). The indexes as defined
here do not allow comparison between or aggregation over different data sets.
In order to do this, they need to be calibrated, which is treated in Section 2.4.

The data set is denoted asD = {x1, . . . , xn}. Here the observations x1, . . . , xn
are assumed to be ∈ Rp, and d(x, y) is the Euclidean distance between x and
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y, although the indexes can be applied to more general types of data and dis-
tances. A clustering is a set C = {C1, . . . , CK} with Cj ⊆ D, j = 1, . . . ,K.
For j = 1, . . . ,K, nj = |Cj | is the number of objects in Cj . Assume C to be a

partition, e.g., j 6= k ⇒ Cj ∩ Ck = ∅ and
⋃K
j=1 Cj = D. Let γ : {1, . . . , n} 7→

{1, . . . ,K} be the assignment function, i.e., γ(i) = j ⇔ xi ∈ Cj .
Average within-cluster distances (avewithin; aw; [5]). This index measures ho-

mogeneity in the sense of small distances within clusters. Smaller values
are better.

Iavewithin(C) =
1

n

K∑
k=1

1

nk − 1

∑
xi 6=xj∈Ck

d(xi, xj).

Representation of cluster members by centroids. In some applications cluster
centroids are used in order to represent the clustered objects, and an impor-
tant aim is that this representation is good for all cluster members. This is
directly formalised by the objective functions of K-means (sum of squared
distances from the cluster mean) and Partitioning Around Medoids (sum
of distances from the cluster medoid). Both of these criteria have been
used as internal validation indexes in the present study, however results
are not presented, because over all results both of these turn out to have
a correlation of larger than 0.95 with Iavewithin, so Iavewithin can be taken
to measure this clustering aspect as well.

Maximum diameter (maxdiameter; md). In some applications there may be
a stricter requirement that large distances within clusters cannot be tol-
erated, rather than having only the distance average small. This can be
formalised by

Imaxdiameter(C) = max
C∈C;xi,xj∈C

d(xi, xj).

Smaller values are better.
Widest within-cluster gap (widestgap; wg; [29]). Another interpretation of clus-

ter homogeneity is that there should not be different parts of the same
cluster that are separated from each other. This can be formalised by

Iwidestgap(C) = max
C∈C,D,E: C=D∪E

min
x∈D,y∈E

d(x, y).

Smaller values are better.
Separation index (sindex; si; [29]). This index measures whether clusters are

separated in the sense that the closest distances between clusters are large.
For every object xi ∈ Ck, i = 1, . . . , n, k ∈ 1, . . . ,K, let dk:i = minxj /∈Ck

d(xi, xj).
Let dk:(1) ≤ . . . ≤ dk:(nk) be the values of dk:i for xi ∈ Ck ordered from
the smallest to the largest, and let [pnk] be the largest integer ≤ pnk. p is
a parameter tuning what proportion of observations counts as close to the
border of a cluster with another. Here, p = 0.1. Then,

Isindex(C; p) =
1∑K

k=1[pnk]

K∑
k=1

[pnk]∑
i=1

dk:(i).
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Larger values are better.
Analogously to the maximum diameter, the minimum separation, i.e., the
minimum distance between any two clusters may also be of interest. In the
present study, this has a correlation of 0.93 with Isindex, and results for
the minimum separation are omitted for reasons of redundancy.

Pearson-version of Hubert’s Γ (pearsongamma; pg; [33]). This index measures
to what extent the clustering corresponds or represents the distance struc-
ture in the data. Let d = vec ([d(xi, xj)]i<j) be the vector of pairwise dis-
tances. Let c = vec ([cij ]i<j), where cij = 1(γ(i) 6= γ(j)), and 1(•) denotes
the indicator function, be a vector of clustering induced dissimilarities.
With r denoting the sample Pearson correlation,

IPearsonΓ (C) = r(d, c).

Larger values are better. This is one version of a family of indexes intro-
duced in [33], sometimes referred to as “Hubert’s Γ”.

Density mode index (dmode; dm). An intuitive idea of a cluster is that it is
associated with a density mode, and that the density goes down toward
the cluster border. This is formalised by the dmode index. It is based on
a simple kernel density estimator h that assigns a density value h(x) to
every observation. Let qd,p be the p-quantile of the vector of dissimilarities
d, e.g., for p = 0.1, the 10% smallest dissimilarities are ≤ qd,0,1. Define the
kernel and density as

κ(d) =

(
1− 1

qd,p
d

)
1(d ≤ qd,p), h(x) =

n∑
i=1

κ(d(x, xi)).

The following algorithm constructs a sequence of neighbouring observations
from the mode in such a way that the density should always go down, and
penalties are incurred if the density goes up. It also constructs a set T
that collects information about high dissimilarities between high density
observations used below. Idensdec collects the penalties.
Initialisation Id1 = 0, T = ∅. For j = 1, . . . ,K:
Step 1 Sj = {x}, where x = arg max

y∈Cj

h(y).

Step 2 Let Rj = Cj \ Sj . If Rj = ∅: j = j + 1, if j ≤ K go to Step 1, if
j +K = 1 then go to Step 5. Otherwise:

Step 3 Find (x, y) = arg min
(z1,z2):z1∈Rj ,z2∈Sj

d(z1, z2). Sj = Sj ∪ {x}, T = T ∪

{maxz∈Rj
h(z)d(x, y)}.

Step 4 If h(x) > h(y) : Id1 = Id1 + (h(x)− h(y))2, back to Step 2.

Step 5 Idensdec(C) =
√

Id1
n .

It is possible that there is a large gap between two observations with high
density, which does not incur penalties in Idensdec if there are no low-density
observations in between. This can be picked up by

Ihighdgap(C) = maxT.
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These two indexes, which are both better for smaller values, were defined
in [29], but they can be seen as contributing to the measurement of the
same aspect, with Ihighdgap just adding information missed by Idensdec. An
aggregate version, which is used here, can be defined as

Idmode(C) = 0.75I∗densdec(C) + 0.25I∗highdgap(C),

where I∗densdec and I∗highdgap are suitably calibrated versions of Idensdec,
Ihighdgap, respectively, see Section 2.4. The weights 0.75 and 0.25 in the
definition of Idmode can be interpreted as the relative impact of the two
sub-indexes.

Cluster boundaries cutting through density valleys (denscut; dc; [29]). A com-
plementary aspect of the idea that clusters are associated with high density
regions is that cluster boundaries should run through density valleys rather
than density mountains. The denscut-index penalises a high contribution
of points from different clusters to the density values in a cluster (measured
by ho below).

For xi, i = 1, . . . , n : ho(xi) =

n∑
k=1

κ(d(xi, xk))1(γ(k) 6= γ(i)).

A penalty is incurred if for observations with a large density h(x) there is
a large contribution ho(x) to that density from other clusters:

Idenscut(C) =
1

n

K∑
j=1

∑
x∈Cj

h(x)ho(x).

Smaller values are better.
Entropy (en; [58]). In many applications very small clusters are not very use-

ful, and cluster sizes should optimally be close to uniform. This is measured
by the well known entropy:

Ientropy(C) = −
K∑
k=1

nk
n

log(
nk
n

).

Large values are good.
Gaussianity of clusters (kdnorm; nor; [16]). Due to the Central Limit Theo-

rem and a widespread belief that the Gaussian distribution approximates
many real random processes, it may be of interest in its own right to have
clusters that are approximately Gaussian. The index Ikdnorm is defined,
following [16], as the Kolmogorov distance between the empirical distri-
bution of within-cluster Mahalanobis distances to the cluster means, and
a χ2

p-distribution, which is the distribution of Mahalanobis distances in
perfectly Gaussian clusters.
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Coefficient of variation of distances to within-cluster neighbours (cvnnd; cvn;
[29]). Another within-cluster distributional shape of potential interest is
uniformity, where clusters are characterised by a uniform within-cluster
density level. This can be characterised by the coefficient of variation (CV)
of the dissimilarities to the kth nearest within-cluster neighbour dkw(x)
(k = 2 is used here). Define for j = 1, . . . , k, assuming nj > k:

m(Cj ; k) =
1

nj

∑
x∈Cj

dkw(x), CV(Cj) =

√
1

nj−1
∑
x∈Cj

(dkw(x)−m(Cj ; k))2

m(Cj ; k)
.

Using this,

Icvdens(C) =

∑K
j=1 njCV(Cj)1(nj > k)∑K

j=1 nj1(nj > k)
.

Smaller values are better.
Average Silhouette Width (asw; [38]). This is a popular internal validation

index that deviates somewhat from the philosophy behind the collection
of indexes presented here, because it attempts to balance two aspects of
cluster quality, namely homogeneity and separation. It has been included
in the study anyway, because it also uses an intuitive direct formalisation
of clustering characteristics of interest.

2.4 Calibrating the indexes

For aggregating the indexes introduced in Section 2.3 over different data sets
and to compare the performance of a clustering method over the indexes in
order to characterise it, it is necessary to calibrate the values of the indexes, so
that they become comparable. This is done as in [29,5]. The idea is to generate
a large number m of random clusterings CR1, . . . , CRm on the data. Denote the
clusterings of the q = 9 methods from Section 2.1 by C1, . . . , Cq. For a given
data set D and index I, first change I to −I in case that smaller values are
better according to the original definition of I, so that for all calibrated indexes
larger values are better. Then use these clusterings to standardise I:

m(I,D) =
1

m+ q

(
m∑
i=1

I(CRi) +

q∑
i=1

I(Ci)

)
,

s2(I,D) =
1

m+ q − 1

(
m∑
i=1

[I(CRi)−m(I,D)]
2

+

q∑
i=1

[I(Ci)−m(I,D)]
2

)
,

I∗(Ci) =
I(Ci)−m(I,D)

s(I,D)
, i = 1, . . . , q.

I∗ is therefore scaled so that its values can be interpreted as expressing
the quality (larger is better) compared to what the collection of clusterings
CR1, . . . , CRm, C1, . . . , Cq achieves on the same data set. The approach depends
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on the definition of the random clusterings. These should generate enough ran-
dom variation in order to work as a tool for calibration, but they also need to
be reasonable as clusterings, because if all random clusterings are several stan-
dard deviations away from the clusterings provided by the standard clustering
methods, the exact distance may not be very meaningful.

Four different algorithms are used for generating the random clusterings,
for details see [5]. For clusterings with K clusters, these are:

Random K-centroids: Draw K observations from D. Assign every observation
to the nearest centroid.

Random nearest neighbour: Draw K observations as starting points for the
K clusters. At every stage, of the observations that are not yet clustered,
assign the observation x to the cluster of its nearest already clustered
neighbour, where x is the observation that has the smallest distance to
this neighbour.

Random farthest neighbour: As random nearest neighbour, but x is the ob-
servation that has the smallest distance to the minimum farthest cluster
member.

Random average distances: As random nearest neighbour, but x is the obser-
vation that has the smallest average distance to the closest cluster.

Experience shows that these methods generate a range of clusterings that have
sufficient variation in characteristics and are mostly reasonably close to the
proper clustering methods (as can be seen in [5] as well as from the results
of the present study). Here, 50 random clusterings from each algorithm are
generated, i.e., m = 200. All results in Section 3 are given in terms of calibrated
indexes I∗.

2.5 External validation indexes

“Truth” recovery is measured by external validation indexes that quantify the
similarity between two clusterings on the same data, here the “true” one and
a clustering generated by one of the clustering methods.

The probably most popular external validation index is the Adjusted Rand
Index (ARI; [32]). This index is based on the relative number of pairs of points
that are in the same cluster in both clusterings or in different clusters in both
clusterings, adjusted for the number of clusters and the cluster sizes in such a
way that its expected value under random cluster labels with the same number
and sizes of clusters is 0. The maximum value is 1 for perfect agreement. Values
can be negative, but already a value of 0 can be interpreted as indicating that
the two clusterings have nothing to do with each other.

In some work, the ARI has been criticised, often in the framework of an
axiomatic approach where it can be shown that it violates some axioms taken
to be desirable, e.g., [47,6]. Alternative indexes have been proposed that fulfill
the presented axioms. [47] introduced the Variation of Information (VI), which
is a proper metric between partitions. This means that, as opposed to the ARI,
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smaller values are better. In Section 3, the negative VI is considered so that for
all considered indexes larger values are better. The VI is defined by comparing
the entropies of the two clusterings with the so-called mutual information,
which is based on the entropy of the intersections between two clusters from
the two different clusterings. If the two clusterings are the same, the entropy
of the intersections between clusters is the same as the entropy of the original
clusterings, meaning that the VI is zero, its minimum value.

[6] show their axioms for an index called BCubed first proposed in [11]. This
index is based on observation-wise concepts of precision and recall, i.e., what
percentage of observations in the same cluster are from the same “true” class,
and what percentage of observations in a different cluster is “truly” different.
It takes values between 0 and 1, 1 corresponding to a perfect agreement. See
[48] for further discussion and some more alternatives.

3 Results

Three issues are addressed:

– How can the clusters produced by the methods be characterised in terms
of the external validation indexes?

– How do the methods perform regarding the recovery of the “true” cluster-
ings?

– Can the recovery of the “true” clusterings be related to the internal vali-
dation indexes?

3.1 Characterisation of the methods in terms of the internal indexes

The methods can be characterised by the distribution of values of the cali-
brated internal validation indexes, highlighting the dominating features of the
clusterings that they produce. In order to do this, parallel coordinate plots
will be used that show the full results including how results belonging to the
same data set depend on each other.

I decided against running null hypothesis tests due to issues of multiple
testing and model assumptions; the plots allow a good assessment of to what
extent differences between methods are meaningful, dominated by random
variation, or borderline.

Average within-cluster distances (left side of Figure 1): The two centroid-
based methods K-means and clara achieve the best results. The Gaussian
and t-mixture are about at the same level as spectral clustering; complete
linkage and the mixture of skew t-distributions are worse. Average linkage
is behind these, and single linkage is the worst by some distance.

Maximum diameter (right side of Figure 1): Unsurprisingly, complete linkage
is best; at each step it merges clusters so that the maximum diameter is the
smallest possible, although it is not optimal for every single data set (the
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Fig. 1 Calibrated values of I∗avewithin and I∗maxdiameter. Values belonging to the same
data set are connected by lines. The thick red line gives the average values.
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Fig. 2 Calibrated values of I∗widestgap and I∗sindex. Values belonging to the same data set

are connected by lines. The thick red line gives the average values.

hierarchical scheme will not normally produce a global optimum). Aver-
age linkage is second best, followed by K-means, clara, and single linkage,
which somewhat surprisingly avoids large distances within clusters more
than spectral clustering and the three mixture models. Another potential
surprise is that the Gaussian mixture does not do better than the t-mixture
in this respect; a flexible covariance matrix can occasionally allow for very
large within-cluster distances.

Widest within-cluster gap (left side of Figure 2): The three linkage methods
are best at avoiding large within-cluster gaps, with single linkage in the
first place, which will not join sets between which there is a large gap. The
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Fig. 3 Calibrated values of I∗PearsonΓ and I∗dmode. Values belonging to the same data set
are connected by lines. The thick red line gives the average values.

two centroid-based methods follow, however differences between them, the
three mixture models, and spectral clustering look small compared to the
variance, and dominated by outliers. The skew t-mixture produces very
large within-cluster gaps for a number of data sets. With strong skewness
there can be large distances in a tail of a cluster.

Separation index (right side of Figure 2): Single linkage achieves the best re-
sults here. Its clustering process keep separated subsets in distinct clusters
(often one-point clusters with strongly separated outliers). The two other
linkage methods follow. Complete linkage is sometimes portrayed as to-
tally prioritising within-cluster homogeneity over separation, but in fact
regarding separation it does better than spectral clustering, which is still a
bit better than the centroid-based and the mixture models, between which
differences look insignificant.

Pearson-Γ (left side of Figure 3): The average results for the methods re-
garding the representation of the distance structure by the clustering vary
relatively little compared to the variation over data sets. Average linkage
is overall best, and the skew t-mixture worst, even if the latter has good
results in some data sets. Single linkage does occasionally very well, but
also worse than the others for a number of data sets.

Density mode index (right side of Figure 3): Results here are dominated by
variation between data sets as well. Interestingly, the methods based on
mixtures of unimodal distributions do not do best here, but rather clara
and spectral clustering. Once more the mixture of skew t-distributions does
worst, with outliers in both directions.

Density cutting (left side of Figure 4): Due to its focus on cluster separation,
single linkage is best at avoiding cutting through density mountains. The
skew t- and t-mixture have the strongest tendency to put cluster boundaries
in high density areas, but differences between methods are not large.
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Fig. 4 Calibrated values of I∗denscut and I∗entropy . Values belonging to the same data set
are connected by lines. The thick red line gives the average values.
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Fig. 5 Calibrated values of I∗kdnorm and I∗cvdens. Values belonging to the same data set
are connected by lines. The thick red line gives the average values.

Entropy (right side of Figure 4): clara yields the highest average entropy fol-
lowed by K-means, but differences between these and the three mixture
models do not seem significant. This runs counter to the idea, sometimes
found in the literature, that K-means favours similar cluster sizes more
than mixtures, or even implicitly assumes them. The other four methods
have a clear tendency to produce less balanced clusters, particularly single
linkage, but also average and complete linkage, and to some lesser extent
spectral clustering.

Gaussianity (left side of Figure 5): Although the Gaussian mixture produces
on average the most Gaussian-looking clusters, as was to be expected,
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Fig. 6 Calibrated values of the ASW. Values belonging to the same data set are connected
by lines. The thick red line gives the average values.

the differences between all nine methods look largely insignificant. The
Gaussian mixture has positive and negative outliers, the skew t-mixture
only negative ones.

CV of distances to within-cluster neighbours (right side of Figure 5): Despite
one lower outlier, the Gaussian mixture tends to produce the largest cvnnd,
i.e., the lowest within-cluster CVs. It probably helps that large variance
clusters can bring together observations that have large distances between
each other and to the rest. clara and the t-mixture produce the lowest
cvnnd values. Differences between the other methods are rather small.

Average silhouette width (left side of Figure 6): Average linkage is a method
that explicitly balances separation and homogeneity, and consequently it
achieves the best ASW values. K-means achieves higher values than com-
plete linkage, but the remaining methods do worse than the linkage meth-
ods. ASW had been originally proposed for use with clara ([38]), but clara
does not produce particularly high ASW values, if better than the mixture
models and spectral clustering.

These results characterise the clustering methods as follows:

kmeans clearly favours within-cluster homogeneity over separation. It does
not favour entropy as strongly as some literature suggests; in this respect
it is in line with clara and the mixture models, ahead of the remaining
methods. It should be noted that entropy is treated here as a potentially
beneficial feature of a clustering, whereas some literature makes it seem
like a defect of kmeans that such solutions are favoured (as far as this in
fact happens).

clara has largely similar characteristics to kmeans. It is slightly worse regard-
ing the representation of the distance structure and the ASW. It is slightly
better regarding clusters with density decrease from the mode. This may
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have to do with the fact that the density goes down faster from the mode
for the multivariate Laplace distribution (where the log-likelihood sums
up unsquared distances) than for the Gaussian distribution (which corre-
sponds to squared distances).

mclust produces clusters with the highest Gaussianity, but only by a rather
insignificant distance. It is best regarding uniformity as measured by cvnnd.
The reason for this is probably its ability to build clusters with large within-
cluster variation collecting observations that have large distances to all
or most other points, whereas other methods either need to isolate such
observations in one-point clusters, or integrate them in clusters with denser
cores. Mixtures of t- and skew t-distributions could in principle also produce
large variance clusters, but the shapes of t- and skew t-distributions allow
to integrate outlying observations more easily with denser regions.
mclust often tolerates large within-cluster distances, whereas its clusters
are not on average better separated than those from K-means. On the other
hand, its cluster sizes are not significantly less well balanced. Its ability to
produce clusters with strongly different within-cluster variance makes it
less suitable regarding Pearson-Γ and the ASW, which treat distances in
the same way in all clusters.

emskewt looks bad on almost all internal indexes. It is not particularly bad re-
garding recovery of the “true” clusters though, see Section 3.2. This means
that the current collection of internal indexes does not capture favourable
characteristics of skewly distributed clusters appropriately; it also means
that emskewt is not an appropriate method for finding clusters with the
characteristics that are formalised by the internal indexes.

teigen has a profile that is by and large very similar to the one of mclust, apart
from being slightly better regarding the maximum diameter, and slightly
worse regarding Gaussianity and uniformity.

single linkage has a very distinct profile. It is best regarding separation, avoid-
ing wide within-cluster gaps, and cluster boundaries through density val-
leys, and worst by some distance regarding within-cluster homogeneity and
entropy. Despite the many positive features of single linkage, in practice
it will often be a bad choice, as within-cluster homogeneity is desirable
in most applications (if together with other features), and disregarding
it completely, as single linkage does, is rarely acceptable. Also the weak-
ness regarding entropy is of practical importance; single linkage tends to
produce one very large and many very small clusters, which is often not
useful.

average linkage has similar strengths and weaknesses as single linkage, but not
as extreme. It is the best method regarding Pearson-Γ and the ASW, both
of which balance homogeneity and separation and measure therefore how
much the clustering is in line with the distance structure.

complete linkage is best regarding the maximum diameter. In most other re-
spects it stands between single and average linkage on one side and the
centroid- and mixture-based methods on the other side.
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spectral is another method that provides a compromise between the rather
separation-oriented single and average linkage on one side and the rather
homogeneity-oriented centroid- and mixture-based methods. Its maximum
cluster diameter is rather high on average. Its mode index value is good if
not clearly different from the one of clara. Its mid-range entropy value may
look attractive in applications in which a considerable degree of imbalance
in the cluster sizes may seem realistic but the tendency of the linkage
methods to produce one-point clusters should be avoided.

The multivariate characterisation of the clustering methods also allows to map
them, using a principal components analysis (PCA). Results of this are shown
in Figure 7. On the left side, PCs are shown using every index value for every
data set as a separate value, i.e., 42*11 variables. The first two PCs carry
30.9% and 16.6% of the variance, respectively. On the right side, the PCA is
performed on 11 variables that give average index values over all data sets.
While this reduces information, it allows to show the indexes as axes in a biplot.
The first two PCs here carry 50.0% and 19.7% of the variance, respectively.
After rotation, the maps are fairly similar. Using the more detailed data set
information, spectral seems much closer to kmeans and clara than to mclust
and teigen, but the apparent similarity to the latter ones using average index
values is an effect of dimension reduction; involving information from the third
PC (not shown), the similarity structure is more similar to that of the plot
using all 42*11 variables. The biplot on the right side shows the opposite
tendencies of separation on one hand and entropy and average within distances
on the other hand when characterising the methods, with indexes such as
maximum diameter, density mode, Pearson-Γ , and the ASW opening another
dimension, rather corresponding to kmeans, average, and complete linkage.
Qualitative conclusions from these maps agree roughly with those in [34],
where more clustering algorithms, but fewer data sets, were involved.

3.2 Recovery of “true” clusterings

The quality of the recovery of the “true” clusterings is measured by the ARI,
BCubed, and the VI. Figure 8 shows the ARI-values achieved by the different
clustering methods. On average, there is a clear advantage of the centroid- and
mixture-based methods compared with the linkage methods (single linkage
is clearly the worst), and spectral clustering is in between. Every method
achieves good results on some data sets, but the linkage methods produce
an ARI around zero on many data sets. Differences between kmeans, clara,
mclust, emskewt, and teigen do not seem significant but are clearly dominated
by variation. On some data sets all methods produce very low values, and no
method achieves an ARI larger than 0.5 on more than half of the data sets.
The mean ARI is 0.28, the mean ARI of the best clusterings for every data set
is 0.46. Interpreting these numbers, it has to be kept in mind that the given
“true” clustering does not necessarily qualify as the best clustering of the data
from a data analytic point of view; some of these are neither homogeneous
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Fig. 8 Adjusted Rand Index values by method. Values belonging to the same data set are
connected by lines. The thick red line gives the average values.

nor separated. Furthermore there may be meaningful clusters in the data that
differ from those declared as “truth”. A better recovery does not necessarily
mean that a method delivers the most useful clustering that can be found.
On the other hand, some given “true” clusterings correspond to clearly visible
patterns in the data, and at least some methods manage to find them. Overall,
the variation is quite high.

The picture changes strongly looking at the results regarding BCubed and
particularly VI, see Figure 9. BCubed still shows single linkage as the weakest
method, but otherwise differences look hardly significant, and according to the
VI, the average quality of the methods is almost uniform.
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Fig. 9 BCubed and negative Variation of Information values by method. Values belonging
to the same data set are connected by lines. The thick red line gives the average values.

Clustering methods
Index kmeans clara mclust mskewt teigen single average complete spectral

ARI 3 4 8 5 5 0 3 1 1
BCubed 2 2 7 5 3 4 4 2 1

VI 2 1 6 3 3 11 2 1 1

Table 4 Number of times that a method comes out best according to the three external
indexes.

Table 4 shows how often the different methods come out as the best ac-
cording to the indexes. This portrays mclust as very successful at recovering
the “truth”. Spectral clustering is hardly ever on top, but it has values very
close to the best for a number of data sets. Given that emskewt looks so bad
regarding the internal indexes in Section 3.1, its performance regarding the
external indexes looks surprisingly good. The most striking difference between
the indexes is that single linkage is not the best method for a single data set
with respect to the the ARI, but it is the best for 11 data sets with respect to
the VI. The latter result is not to be interpreted as an endorsement of single
linkage, it rather points to a weakness of the VI (and to a lesser extent the
BCubed) index. This is explored in the following.

Figure 10 shows how the three indexes are related to each other over all
nine clustering methods applied to the 30 data sets with “true” clusterings.
VI and BCubed have a correlation ρ of -0.94, but the ARI is correlated sub-
stantially weaker to both, ρ = 0.75 with BCubed and ρ = −0.57 with VI.
BCubed can therefore be seen as a compromise between the two. In order to
explore what causes the differences between ARI and VI, in Figure 10 it can
be seen that the major issue is that the VI can produce fairly good values
close to zero for some situations in which the ARI is around zero, indicating
unrelated clusterings, or only slightly better. Generally these situations tend
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Table 5 Contingency table of “true” clustering and single linkage clustering for data set
“22 - Wholesale”

Single linkage cluster
Truth 1 2

1 297 1
2 142 0

to occur where one clustering is very imbalanced, mostly with one or more
one-point clusters, whereas the other one (more often the “true” one) is not.
The VI involves cluster-wise percentages of points occurring together in the
same cluster in the other clustering, and therefore assesses one-point clusters
favourably, whereas the random labels model behind ARI indicates that what
happens with the object in a one-point cluster in another (potentially “true”)
clustering is random and therefore not meaningful as long as it appears in a
substantially bigger cluster there.

For example, consider the data set “22 - Wholesale” (see Supplementary
material S2). According to the VI, the single linkage clustering is optimal
(VI= 0.64), but this has an ARI-value of about 0. It is second best according
to BCubed with a value of 0.72. Table 5 shows how this is related to the “true”
clustering. It is clear that any random clustering that fixes one cluster size as 1
will be about equally good. This is a rather extreme case, however most of the
assessment differences between ARI and VI (and to a lesser extent BCubed)
are of a similar kind. This makes the ARI look like the more appropriate index
here.
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Fig. 11 Correlation matrix of internal and external validation indexes

3.3 Relating “true” cluster recovery to the internal indexes

It is of interest whether the internal index values, which are observable in a
real situation, can explain to some extent the performance regarding the “true”
cluster recovery. A tool to assess this is a linear regression with an external
index as response, and the internal indexes as explanatory variables. There is
dependence between the different clusterings on the same data set, and this
can be appropriately handled using a random data set effect.

An important issue is that the internal indexes are correlated, which can
make the interpretation of the regression results difficult. Figure 11 shows the
correlation structure among the internal indexes, ARI and -VI (BCubed is
not taken into account in this section due to the high correlation with VI).
The order of indexes in Figure 11 was determined by a hierarchical clustering
using correlation dissimilarity, however -VI and ARI were put on top due to
their different role in the regression, and the ASW was put at the bottom. The
ASW is not involved in the regression, as it is defined in order to compromise
between homogeneity and separation, which themselves are represented by
other internal indexes. It is involved in Figure 11 because its correlation to
the other indexes may be of interest anyway. One thing that can be seen is
that it is fairly strongly correlated to a number of other indexes, particularly
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Table 6 Mixed-effects regression results regressing ARI, -VI, respectively, on the internal
indexes excluding the ASW.

Response ARI -VI
Indexes Coefficient t p Coefficient t p
Intercept .324 6.91 .000 -1.54 -10.11 .000
avewithin -.019 -1.34 .181 0.03 0.88 .377
maxdiameter -.025 -4.03 .000 0.01 0.64 .520
widestgap .014 2.00 .047 -0.00 -0.21 .814
sindex -.010 -1.65 .101 0.05 3.84 .000
pearsongamma .020 2.43 .016 -0.04 -1.86 .064
dmode .009 0.89 .374 0.05 1.92 .056
denscut .000 0.03 .978 -0.05 -1.80 .074
entropy .088 4.69 .000 0.00 0.01 .990
kdnorm .024 3.51 .001 0.02 1.44 .151
cvnnd -.006 -0.86 .388 -0.01 -0.48 .633
random eff. (data set) .000 .000

maximum diameter, Pearson-Γ , and the separation index, but rather weakly
to the average within-cluster distances meant to formalise homogeneity.

Considerable correlation occurs between the average within-cluster dis-
tances and the entropy. Both of these are the internal indexes with the highest
correlation to the ARI. This is a problem for interpretation because this means
that entropy and homogeneity are confounded when explaining recovery suc-
cess. Furthermore, both, entropy in particular, are strongly negatively cor-
related with separation, which may explain the negative correlation between
separation and the ARI. There is no further high (> 0.2) correlation between
either -VI or ARI and other internal indexes. It is obvious that the ARI is closer
connected to entropy and homogeneity, whereas the -VI is more positively con-
nected to separation. There are a number of further correlations among the
internal indexes; separation, the density mode and cut indexes, Pearson-Γ , the
maximum cluster diameter, and the absence of large within-cluster gaps are
all positively connected. The Gaussianity index and the nearest neighbours
CV are correlated 0.24 to each other; all their other correlations are lower.

Table 6 gives the results of two regression analyses, with ARI and -VI as
responses, with a random data set effect. This has been obtained by the R-
package lme, [54]. p-values are interpreted in an exploratory manner, as they
are not precise. However, the null hypotheses of zero effect of a variable given
all other variables are in the model are of interest here.

The ARI regression has maximum diameter, entropy, and Gaussianity as
highly significant effects; Pearson-Γ is clearly significant at 5%-level. widestgap
is borderline significant, which is potentially not meaningful given the number
of tests.

The interpretation of entropy (which has the clearly largest t-value) is
problematic for two reasons. Firstly, due to correlation, its coefficient may
partly carry information due to avewithin. Secondly, eight data sets have ar-
tificially balanced classes, which may favour entropy among good clusterings.
The regression was re-run excluding those data sets (not shown), yielding by
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and large the same significances including entropy, but its t-value fell to 2.75.
Even in this scenario it cannot be excluded that the collection of data sets
with known “true” clusters favours entropy artificially. Gaussianity seems to
be a valuable predictor for recovery of “true” classes. The maximum diame-
ter has a negative coefficient, meaning that on average and controlled for all
other indexes, a larger (therefore worse) maximum cluster diameter went with
a better “truth” recovery regarding the ARI. It is however clearly correlated
with Pearson-Γ and widestgap, which have positive effects.

Despite a positive relationship between ARI and -VI, the results of the VI-
regression are very different, mainly because -VI can achieve high values for
clusterings with very low entropy even if the “true” clustering is balanced. This
means that there is no bias in favour of entropy by the data set sample; rather
the VI seems biased against entropy by definition, see above. The only clearly
significant index for -VI is the separation index, with a positive coefficient,
which was not significant in the ARI-regression.

Plots of the fitted values of both regressions against their response variable
(not shown) look satisfactorily linear. In principle, the regressions could be
used to predict the ARI or VI for data sets with unknown “truth” from the
observable internal indexes, but this will not work very well, due the strong
data set effect.

Overall these results do not allow clear cut conclusions, due to correlation,
issues with the representativity of the data sets, and the very different patterns
observed for ARI and VI. The character of the “true” clusterings may just be
so diverse that no general statement about which clustering characteristics
allow for good recovery can be made. Preferring the ARI as external index,
the only safely interpretable significance seems to be the one of Gaussianity,
due to its low correlation with other indexes. Separation seems to help in
terms of the VI, but this includes favouring clusterings that separate outliers
as one-point clusters, arguably an issue with the VI.

4 Discussion

The aim of this study is to characterise the clustering methods in terms of
the internal indexes, to learn about the recovery of “true” clusterings, both
regarding the methods, and regarding characteristics that could be connected
to recovery.

Regarding the characterisation of the clustering methods, the right side
of Figure 7 is probably most expressive, locating the clustering methods rela-
tive to the internal indexes. Some indexes do not separate the methods very
strongly. Single linkage stands out as being quite different to most other meth-
ods in many respects, although its weaknesses regard key characteristics that
are normally very important in practice. On the other hand, the centroid-
based methods, the mixture-based methods and spectral clustering have much
in common; one surprising result is that K-means does not favour balanced
cluster sizes particularly strongly, compared to the mixture-based methods.
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Another result is that single and complete linkage are not opposite extremes,
but rather that on most characteristics of single linkage, complete linkage is
closer to single linkage, with average linkage in between, than the centroid-
based and mixture-based methods. This is in line with some theoretical work,
see, e.g., [3]. Gaussian mixture-based clustering stands out more by its good
value regarding uniformity (cvnnd) than regarding Gaussianity of the clusters.

Regarding the recovery of “true” clusterings, there is large variation be-
tween the data sets. According to the ARI and BCubed, the Gaussian mix-
ture is the best for the largest number of data sets. Single Linkage does badly
regarding the ARI. Differences between the other methods are not that pro-
nounced, and all of them did best in some data sets. This includes the skew
t-mixture, which does not look good according to the internal indexes but
better regarding the external indexes. There is currently no index, at least in
the collection used here, that formalises in which sense such a mixture can
yield a good clustering. This is a topic for further work. According to the
VI (and to some extent BCubed), single linkage does much better, but this
rather indicates a problem with the indexes than a good performance of single
linkage.

Explaining the “true” cluster recovery by the internal indexes does not de-
liver very clear results, except that Gaussianity seems to help, which is some-
times achieved by the Gaussian mixture, but only insignificantly more often
than by some other methods. A critical interpretation could be that quality
according to the internal indexes does not really measure what is important for
recovery. On the other hand one could argue that this shows the heterogeneity
of “true” clusterings, and that there is no “one fits it all approach”, neither
for clustering, nor for measuring clustering quality. The given “true” cluster-
ings are of such a nature that their recovery cannot be reliably predicted from
observable cluster characteristics.

Some problems were exposed with the non-representativity of the data
sets, with “true” clusterings, and with the VI (and somewhat less extreme the
BCubed) index. These problems are not exclusive to the present study, and
it can be hoped that these issues are on the radar whenever such benchmark
studies are run. These problems affect analyses involving the “true clusterings”
in particular. There is no reason to believe that the results regarding the
internal validation indexes are biased for these reasons.

Key limitations of the present study are that it focuses on Euclidean dis-
tances, that the number of clusters is treated as fixed and existing methods
to estimate it were not used, and that no dimension reduction methods were
used. Involving these issues in a similar study would be a worthwhile project.
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