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Optimization of Generalized S-curve Trajectories
for Residual Vibration Suppression

and Compliance with Kinematic Bounds
Luigi Biagiotti, Claudio Melchiorri

Abstract—This paper proposes a new optimization algorithm
that assures the minimum possible duration of generalized
S-curve trajectories compliant with kinematic limitation s and
capable of suppressing residual vibrations when tracked bya
resonant plant. Thanks to the possibility of generating such kind
of trajectories with a chain of filters, called smoothers, each one
characterized by a single parameter, i.e. the durationTi of its
impulse response, the optimization process aims at minimizing
the order of the trajectory, and accordingly the number of
smoothers in the chain, and leads to rest-to-rest trajectories that,
under the given specifications, cannot be made shorter in time.
Therefore, the structure of the trajectory is not predetermined
but is the outcome of the proposed algorithm together with the
optimal parameters defining it. The effectiveness of the proposed
approach is proven by applying the designed trajectories toan
experimental setup based on a flexible link.

Index Terms—S-curve trajectories, Minimum-time trajectories,
Residual vibrations suppression, Smoothers, Shaping filters.

I. I NTRODUCTION

The development of motion control systems able to plan
fast and accurate trajectories for electromechanical systems,
including automatic machines and robots, is a key factor for
increasing productivity in many industrial fields. Such systems
are designed to pursue different goals, often conflicting, like
e.g. minimize the duration of the generated motions, assurethe
compliance with the kinematic limits imposed by the actuator,
avoid exciting natural vibration modes of the mechanical
structure. Besides these objectives, the additional requirement
of online trajectory generation/modification is often needed.
The solutions are typically based on generalized S-curves,i.e.
motion profiles composed by polynomial functions properly
joined to assure that, besides velocity and acceleration, also
the jerk and even higher derivatives are limited, see [1],
[2] among many others. The main difference among the
various trajectories available in the scientific literature or used
in the industrial practice consists in their different design
philosophies, that can be categorized into three main groups:

• trajectories defined via closed-form expressions [2], [3],
[4];

• trajectories defined via numerical methods [5], [6], [7];
• trajectory obtained as the output of dynamic systems [8],

[9], [10], [11].
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Each of these different methods offers pros and cons in terms
of computational burden, maximum order of the trajectory
and consequently maximum number of constraints that can be
handled, limitations (like e.g. the possibility to plan only rest-
to-rest trajectories or to handle only symmetric constraints,
etc.), online implementation. A quite comprehensive overview
of the features of the different techniques can be found e.g.in
[7]. From the scheme reported in that paper, it comes out that
the optimality, i.e. the minimum duration, is guaranteed only
in case of low-order (2nd and 3rd order) trajectories, while
time-optimality remains an open problem in the general case.
Moreover, most of the methods available in the literature deal
with kinematic constraints, i.e. velocity, acceleration,and jerk
bounds, while additional specifications, like for instancethe
suppression of the residual vibration at a specific frequency,
are often neglected or not addressed explicitly. For instance,
the jerk limitation/minimization, is generally used to avoid the
excitation of resonance frequencies that may affect generic
mechanical systems, ranging from robot manipulators [12],
[13] to industrial machines [14]. An interesting attempt to
mix the compliance with bounds on velocity and acceleration
and an explicit frequency constraint aiming at suppressing
a residual vibration can be found in [15], [16], where the
tuning of the S-curve parameters in the Laplace domain is
proposed, while the usual approach for vibration suppression
is based on filtering techniques (input shapers [17], [18], [19]
or FIR filters [20], [21] among others) of a reference trajectory
already compliant with bounds on velocity, acceleration, etc.
Obviously, this type of method does not allow a global
optimization of the final reference signal with respect to
its duration. A general framework for the design of an S-
curve trajectory generator able to deal with both kinematic
and frequency constraints have been proposed in [22]. This
novel framework is based on the iterated application of basic
elements, calledsmoothers, that are finite impulse response
filters but (initially) defined in the continuous-time domain.
The proposed technique allows dealing with different typesof
constraints from a unitary perspective and, in principle, allows
to considerably reduce the duration of the final trajectory.
However, this optimization problem has been not completely
solved yet. In [23], an algorithm that minimizes the duration
of the trajectory under kinematic constraints is given, but
the integration with the frequency constraints does not lead
to the global optimum since the degrees of freedom, that
characterize the problem, have been not fully exploited (this
point is clarified in Sec. IV). This is instead the main novel
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contribution of the present paper, together with some other
minor results. More into detail, the novel contributions ofthis
work are to:

• clarify the origin of the constraints that must exist among
the parameters of a chain of smoothers composing a tra-
jectory generator subject to kinematic limits to guarantee
the minimum duration of the trajectory;

• translate the design of a minimum duration rest-to-rest
trajectory subject to any number of kinematic bounds into
the solution of an optimization problem;

• merge kinematics and frequency specifications in such
a way that the minimum complexity of the generator
(in terms of the number of smoothers) and accordingly
the minimum order of the output trajectory is always
obtained;

• provide a MATLAB tool that computes the parameters of
the optimal S-shaped trajectory and builds a SIMULINK
block for the generation of the trajectory and its deriva-
tives (in [24] the link to download this tool is reported).

Interesting enough, with this work a new trajectory design and
optimization paradigm is proposed: while the most of planners
available in the literature have a fixed structure, e.g. based on a
parametric expression of the trajectory, and the free parameters
are chosen using a nonlinear optimization procedure to comply
with the given constraints [25], [26], according to a philosophy
that can be defined top-down, in our approach the perspective
can be defined bottom-up since each specification is translated
in an element of the trajectory planner and then all these
basic bricks are combined together in an optimal manner. The
result of this design method is the shortest S-shaped trajectory
compliant with all the specifications. Moreover, in most cases,
this trajectory is the signal of the shortest duration, considering
also signals obtained with other techniques, like e.g. input
shaping. For this reason, although the proposed method leads
to a trajectory planner that can be used online by providing to
the chain of filters the desired target point, it also represents
an efficient way for designing optimal trajectories for offline
applications.

The paper is organized as follows. In Sec. II the problem
of the generation of S-curve trajectories employingrectangu-
lar smoothers is summarized. In Sec. III the procedure for
designing a trajectory planner that produces minimum-time
trajectories under kinematic limits is presented, and thenin
Sec. IV, the optimization procedure is further extended to take
into account frequency constraints imposed by the suppression
of residual vibrations. Experimental tests reported in Sec. V
shows the effectiveness of the proposed approach. Concluding
remarks are provided in the last section.

II. GENERATION OFS-CURVE TRAJECTORIES VIA

DYNAMIC FILTERS

According to their standard definition, S-curve trajectories
of order n are trajectories composed of2n − 1 polynomial
segments properly joined to assure the continuity of the
derivative up to the ordern−1. In [22] it has been shown that
such a kind of trajectory can be generated by filtering a step
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Fig. 1. Cascade ofn filters for the generation of multi-segment trajectories
qn(t) of classCn−1 and all the derivativesq(i)n (t), i = 1, . . . , n.

input with a cascade ofn dynamic filters, calledrectangular
smoothers, characterized by the transfer function

Mi(s) =
1

Ti

1− e−sTi

s
(1)

where the parameterTi is a time length that determines
the (finite) duration of the impulse response of each filter.
Accordingly, the total duration of the trajectory producedby
a step input isTtot =

∑n

k=1 Tk. In Fig. 1, the structure of the
trajectory planner is shown. The inputu(t) is defined as

u(t) = qin + qfin · h(t)

whereh(t) denotes the unit step function, whileqin andqfin
are initial and final position, respectively. Note that, besides
the position signal, the cascade of filters also provides the
derivatives of this signal that in many practical applications
are necessary, e.g. for computing a feedforward control action.
Moreover, it is worth noting that in modern motion control sys-
tems the generation of the trajectory at discrete-time instants
can be obtained by simply considering in the scheme of Fig. 1
the discrete-time counterpart of (1), i.e.

Mi(z) =
1

Ni

1− z−Ni

1− z−1

=
1

Ni

(

1 + z−1 + z−2 + · · ·+ z−(Ni−1)
)

.

whereNi = ceil(Ti/Ts), being Ts the sampling time. The
output of the trajectory planner is a symmetric S-shaped
trajectory, that as well-known is composed of three different
phases: acceleration, cruising at a constant velocity, decelera-
tion. Acceleration and deceleration segments are composedof
three different phases with a positive, null, and negative jerk.
Each of the non-null jerk segments may be composed of three
phases and so on, depending on the order of the trajectory. The
duration of each phase is determined by the parametersTi of
the filters as shown in Fig. 2 where the profiles of a4-th order
trajectory are shown. In particular, each “impulse” composing
a given derivative profile has a duration equal to

∑n

k=i Tk

wherei denotes the order of the considered derivative.

A. Kinematic constraints handling

A noteworthy property of the trajectory planner illustrated
in Fig. 1 is the possibility of imposing bounds on the tra-
jectory derivatives by properly selecting the parametersTi
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Fig. 2. Motion profiles of a4-th order trajectory generated by a cascade of
4 rectangular smoothers.

of each smoother. In particular, by consideringn symmetric
constraints, i.e.̂q(i)min = −q̂

(i)
max i = 1, . . . , n, it is possible to

assure that

− q̂(i)max ≤ q(i)(t) ≤ q̂(i)max (2)

if a cascade ofn smoothers is adopted and their parameters
Ti are chosen as

Ti =
q̂
(i−1)
max

q̂
(i)
max

, i = 1, . . . , n (3)

where q̂(0)max denotes the magnitude of required displacement
or of the maximum displacement in case of generation
of multiple trajectories, i.e.̂q(0)max = maxi |qfin,i − qin,i|
being qin,i and qfin,i the start and the end position of
the i-th trajectory segment composing the motion profile.
For more details see [22], where the origin of (3) is explained.

B. Residual vibration suppression

The generation of a trajectory via smoothing filters allows
to tackle the problem of the vibrations that the motion may
cause in a resonant system, without the need for further actions
like, for instance, the use of input shapers, which are a rather
standard filtering technique for residual vibration suppression,
see [17], [18], [19].
From a theoretical point of view, a rectangular smoother like
(1) inserted in the trajectory planner of Fig. 2 leads to the
complete suppression of the residual vibration caused by an
undamped (δ = 0) resonant mode at frequencŷω, that may
affect a mechanical system, if and only if the parameterTi of
this smoother is a multiple of the period of this oscillation,
i.e.

Ti = k
2π

ω̂
, k = 1, 2, . . . . (4)
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Fig. 3. Percentage Residual Vibration (PRV)/Frequency response of rectangu-
lar smoothersMk

i (s), k = 1, 2, 3 as a function of the normalized frequency
ω/ωi (a) and magnification in the neighborhood of the first zero (b).

The proof is straightforward if the frequency response of the
smoother is considered:

Mi(jω) =
1

Ti

1− ejωTi

jω
= e−j

ωTi
2

sin
(

ωTi

2

)

ωTi

2

. (5)

As shown in Fig. 3, the magnitude of the frequency response

|Mi(jω)| =

∣

∣
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∣
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,

where sinc(x) = sin(πx)
πx

denotes the normalized sinc function
andωi =

2π
Ti

, is null for ω = kωi, k = 1, 2 . . . . It is possible
to prove that, except for the constant factor100, the frequency
response of a generic filter coincides with the Percentage
Residual Vibration1 (PRV), which is defined as the ratio of
the vibration with input filter to that without filter and is used
to measure the capability of the filter to reduce the residual
vibration as a function of the actual resonance frequencyω of
the plant [27].

Therefore, it is straightforward to conclude that, in nominal
conditions, the residual vibration atω̂ is completely suppressed
if and only if ω̂ = kωi, i.e.

ω̂ = k
2π

Ti

⇐⇒ Ti = k
2π

ω̂
, k = 1, 2, . . .

Obviously, the capability of the filter of effectively suppressing
the vibration relies on the correct evaluation ofω̂. When the
natural frequencyω of the plant differs from the nominal
valueω̂ the capability of reducing the oscillation progressively
lowers as the estimation error grows in magnitude and con-
sequently the PRV increases, see Fig. 3. From this figure, it
is possible to notice that this problem can be alleviated by
considering more than one smoother for a specific frequency
ω̂, reducing in this way the magnitude of the frequency
response of the multiple smoothers aroundω̂ and accordingly
the related PRV, see Fig. 3(b). For instance, by assuming
ωi = ω̂ and considering an error of+10% in the estimation
of the resonant frequencŷω (the actual frequency isω = 1.1ω̂
and thereforeω/ωi = 1.1), with a single smoother the PRV is
8.9%. This means that the application of the smoother reduces
the vibration atω by 91.1%. If two smoothers are considered
the PRV becomes0.8%, while with a third smoother the PRV

1V%(ω) = 100 |H(jω)|, whereV%(ω) denotes the PRV andH(s) is the
transfer function of the filter.
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is 0.1%, with a reduction of99.2% and 99.9% respectively.
Finally, it is worth mentioning that ifδ 6= 0 the so-called
exponential smoothers, that have been proposed in [28], should
be considered instead of rectangular smoothers to assure a
complete vibration suppression. However, it is possible to
prove that if δ ≤ 0.01 the PVR caused by the assumption
δ = 0, and accordingly by the use of rectangular smoothers,
is smaller than1%. In general, the application of rectangular
smothers, designed in accordance with (4), can effectively
reduce the vibrations caused in poorly damped plants.

III. O PTIMIZATION OF THE TRAJECTORY DURATION

UNDER KINEMATIC CONSTRAINTS

The condition (3) alone does not guarantee the minimum
duration of the trajectory but only the compliance with the
given kinematic constraints. To assure the time-optimality of
the motion profile generated by the chain of smoothers the
parametersTi found with (3) must comply with the further
conditions

Ti ≥
n
∑

k=i+1

Tk, i = 1, . . . , n− 1. (6)

These inequalities guarantee that all the kinematic boundsare
reached by the derivatives of the computed trajectory. This
means that there exists at least2 an interval in which|q(i)(t)| =
q̂
(i)
max and q(i+1)(t) = q(i+2)(t) = · · · = q(n)(t) = 0 for i =
1, . . . , n−1. For instance, in Fig. 2 this phase is highlighted in
the velocity and acceleration profiles where it is denoted with
symbol II. The duration of this interval for a generic derivative
of order i can be computed as the difference between the
duration of the impulses composing this derivative and twice
the duration of the impulses composing the derivative of order
i+ 1, i.e.

dII,i =

n
∑

k=i

Tk − 2

n
∑

k=i+1

Tk. (7)

Therefore, it is sufficient to impose thatdII,i ≥ 0, i =
1, . . . , n−1 to deduce the inequalities (6). If all the parameters
Ti meets (6) the S-shaped trajectory is optimal in time since,
as shown in Fig. 2, at each timet at least a derivative is
equal to the given bounds and (apparently) it is not possible
to further reduce its duration without violating one of these
limits. However, when the order of the trajectory is higher
than 3, a new phenomenon appears that, in some cases, may
lead to a reduction of the overall duration of the motion. If
dII,i = 0 the i-th derivative reaches the related limit, but
only for a period of duration zero. In this case, the profile
of the (i + 2)-th derivative goes to zero from a given value
and then again to this value, while the(i + 3)-th derivative
is characterized by two consecutive impulses with the same
shape but opposite sign. The Figure 4 shows this situation
when a4-th order trajectory is considered and

dII,1 = 0 ⇐⇒ T1 = T2 + T3 + T4 (8)

2Because of the symmetry of the motion profiles there exist2i−1 segments
that meet the condition.
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Fig. 4. Motion profiles of a4-th order trajectory generated by a cascade of
4 rectangular smoothers withdII,i = 0 ⇐⇒ T1 = T2 + T3 + T4 (a) and
with T1 = T2 + T3 (b).

The velocity does not maintain a constant value but the
acceleration phase is immediately followed by the deceleration
phase. In this case, the jerk goes to zero fromq

(3)
min and then

it comes again toq(3)min. Therefore, it is possible to reduce
the duration of the trajectory by overlapping acceleration
and deceleration phases so that the jerk remains constant.
Accordingly, the duration of the velocity profile, that coincides
with the duration of the overall trajectory, must equal twice
the duration of the acceleration period minus the duration of
a snap impulse, i.e.

4
∑

k=1

Tk = 2

4
∑

k=2

Tk − T4.

Note that this relation can be reduced to

T1 = T2 + T3. (9)

In this case, the value ofT1 does not meet the original
condition (6). However, as shown in Fig. 4(b), the trajectory
is still compliant with the initial bounds. By comparing the
motion profiles obtained under the same limits it is possible
to appreciate the effects caused by the computation of the
parameterT1 according to (9) instead of (8): the trajectory
reaches the same limits except for the velocity, whose peak
value decreases, and the total duration decreases as well. This
suggests that the original condition (6) among parametersTi

can be relaxed by assuming a limit duration of the impulses
composing thei-th derivative profile equal to the double of
the duration of the impulses of the(i+1)-th derivative minus
the length of the impulses of the derivative of orderi+3, i.e.

n
∑

k=i

Tk ≥ 2

n
∑

k=i+1

Tk −

n
∑

k=i+3

Tk.

This relationship can be simplified as

Ti ≥ Ti+1 + Ti+2, i = 1, . . . , n− 1. (10)

where it is assumedTn+1 = 0. Moreover, it can be rewritten
in a compact form as

AT ≤ 0n (11)
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where T = [T1, T2, . . . , Tn]
T denotes the vector obtained

by collecting the parameters of all the filters composing the
trajectory generator,

A =

















−1 1 1 0 · · · 0

0 −1 1 1 · · · 0

...
. . .

...
0 · · · 0 −1 1 1

0 · · · 0 −1 1

0 · · · 0 0 −1

















and0n is a vector composed ofn zeros.
If the values computed with (3) meet the conditions (10),
or equivalently (11), the compliance of the trajectory with
the given bounds and its minimum duration are assured and,
therefore, these values can be directly used in the planner
without further actions. Conversely, if the initial valuesof
parametersTi do not meet (10), they must be modified, and
the vectorT⋆ containing the optimal values can be found by
solving anonlinear optimization problem, i.e.

T
⋆ = argmin

T

n
∑

k=1

Tk (12)

aiming at minimizing the total duration of the motion, subject
to the linear constraint (11) and to the nonlinear constraints

q̂(n)max

n
∏

k=1

Tk = q̂(0)max (13)

q̂(n)max

n
∏

k=i+1

Tk ≤ q̂(i)max, i = 1, . . . , n− 1. (14)

Conditions (13) and (14) assures the given kinematic bounds
are never exceeded by the trajectory derivatives. They are
derived from (3), that in the case of modifications of the
constantsTi (supposed complaint with (11)) relates these new
values with the peak valuesq(i)max actually reached by the
trajectory derivatives, i.e.

Ti =
q
(i−1)
max

q
(i)
max

⇔ q(i)maxTi = q(i−1)
max , i = 1, . . . , n (15)

By iterating (15) the relation

q(i)max = q(n)max

n
∏

k=i+1

Tk (16)

is readily deduced. Finally, by imposing
{

q
(i)
max = q̂

(i)
max for i = 0, n

q
(i)
max ≤ q̂

(i)
max otherwise

(17)

in (16) the conditions (14) descend. Note that the actual value
q
(0)
max does not depend on the parametersTi but only on the

magnitude of the input step, having the filters a unitary static
gain. Therefore, its value can be selected by imposing that
the input reference is composed by step functions having a
maximum magnitudêq(0)max. For what concerns the derivative
of ordern, in an optimal multi-segment trajectory it is com-
posed of constant segments, whose magnitude must be always
equal to the maximum allowed value, i.e.q

(n)
max = q̂

(n)
max.

The solution to the optimization problem (12) is extremely
efficient. By applying the interior-point method for nonlinear
optimization which is available in Matlab, via thefmincon
function, the problem on a standard laptop equipped with an
Intel Core i7-7700HQ CPU can be solved in less than one
second. For instance, by considering constraints with a random
distribution in the range[10−2, 102], the average time for com-
puting a solution in105 tests is0.1023 s forn = 4 and0.1606 s
for n = 5. Unfortunately, the convergency of the algorithm
to the global minimum is not guaranteed. For instance, for
n = 4 the optimal solution is found in98.26% of cases, while
for n = 5 the right solution is obtained in97.15% of cases.
For this reason, even if the constrained optimization problem
is of fundamental importance for understanding the process
that leads to the minimization of the duration of trajectories
subject to kinematic constraints, the recursive solution that
we proposed in [23] can be preferred for applications. Note
that in principle both the approaches should provide the same
final result, i.e. the value of the parametersTi that implies the
minimum duration of the motion, but the latter method assures
that this result is always found.

IV. OPTIMIZATION OF MULTI -SEGMENT POLYNOMIAL

TRAJECTORIES WITH KINEMATIC CONSTRAINTS AND

VIBRATION SUPPRESSION CAPABILITIES

In this section, frequency constraints due to the suppression
of residual vibrations are also considered in the optimization
problem.
Suppose that a motion application requires:

• the compliance with kinematic constraints on the firstn
derivatives;

• the cancellation of residual vibrations due tom oscillating
modes, possibly with multiple smoothers to increase the
insensitivity to estimation errors (or variations) of the
resonance frequency (the multiplicity of each smoother
is ni).

In principle, a trajectory planner able to deal with the
above specifications is characterized by an order/number of
smoothers equal to

ntot = n+

m
∑

i=1

ni (18)

being ni is the number of smoothers used to suppress the
residual vibration at a specific frequency. Consequently, the
duration of the rest-to-rest trajectory produced by the planner
is

Ttot =
n
∑

i=1

Ti +
m
∑

i=1

ni
∑

j=1

Tω̂i,j (19)

where the parametersTi are computed according to (3) while
Tω̂i,j are obtained from the corresponding frequencyω̂i, i =
1, . . . ,m by using (4), i.e.

Tω̂i,j = kjTω̂i
, kj = 1, 2, . . . (20)

being

Tω̂i
=

2π

ω̂i

(21)
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input : the vectorsT = [Ti], i = 1, . . . , n and
T ω = [Tω̂i

], i = 1, . . . ,mtot

output: the vectorT ⋆ containing the parameters of the
optimal trajectory generator

for j ← 1 to min(n,mtot) do
k = ceil(T /Tω̂j

)
find l such thatkl ∈ k minimizes (klTω̂j

− Tl)
addklTω̂j

to T
⋆

eliminateTl from T

end
add toT ⋆ the remaining elements ofT or T ω

Algorithm 1: Algorithms for parameters optimization.

the period of the oscillation caused by the mode atω̂i. A
superficial analysis would lead to the conclusion that the
minimization of the total trajectory duration can be achieved
by minimizing each termTi or Tω̂i,j . In particular, in (20)
the valuekj = 1 would be chosen since it corresponds to the
shortest duration of every parameterTω̂i,j (= Tω̂i

). This is
exactly what has been done in our previous publication [23],
where the additional consideration on the kinematic limitations
imposed by the filters for vibrations suppression has been
exploited to reduce the total number of required filters
with respect to the initial valuentot. However, the devised
procedure leads to a suboptimal result (in terms of number
of smoothers and duration of the trajectory) that strongly
depends on the specific input data (kinematic constraints
and resonant frequencies). In many cases, the numberntot

of smoothers remains unchanged and accordingly, the total
duration remainsTtot computed according to (19).

Conversely, to always obtain the optimal trajectory, i.e. of
minimal duration, it is necessary to use in (4) the degree of
freedom offered byk. In this manner, for a given resonant
frequencyωi it is possible to substitute one of the parameters
Ti, used for assuring the compliance with a kinematic bound,
with the parameterTω̂i,j that better approximates this value
from above. This procedure is made possible by the fact
that vibration suppression at a specific frequency requiresa
parameter equal to or multiple of a prescribed value, while the
compliance with the kinematic bounds is always guaranteed if
parametersTi are larger in magnitude than the values initially
computed with (3). This latter consideration is clear if the
relationship

q(i)max =
q̂
(0)
max

i
∏

k=1

Tk

, i = 1, . . . , n (22)

obtained from (15) is considered since it shows that an increase
of anyTk may produce only a reduction of the derivatives peak
values. Remember that̂q(0)max is a constant value related to the
amplitude of the input signal.

The procedure for the optimization of the trajectory gener-
ator parameters is reported in the Algorithm 1. The kinematic
constraints are handled according to the procedure outlined

in Sec. III and the vectorT = [Ti], i = 1, . . . , n is built.
For any resonant frequencŷωi, the fundamental timeTω̂i

defined in (21) is firstly computed. Then, these parameters
are all collected in the vectorT ω with the desired degree of
multiplicity ni. For instance, if the suppression of the vibration
at ω̂j with a double filter is required, the vectorT ω contains
two times the elementTω̂j

and so on. Therefore, the total
number of elements inT ω is mtot =

∑m

i=1 ni.
According to the proposed method, for any element of the
vectorT ω, related e.g. to the frequencŷωj , the new elements
of T ⋆

T ⋆
l = kl Tω̂j

(23)

is found that on the one side guarantees the suppression of
the residual vibration at̂ωj, being proportional toTω̂j

, and on
the other hand approximates an element ofT . In particular,
among all the components ofT the one that minimizes the
residual time

∆Ti = ki Tω̂j
− Ti, with ki = ceil

(

Ti

Tω̂j

)

(24)

is selected. Suppose that the corresponding index isl. Note that
the function ceil(·) rounds its argument to the nearest integer
towards infinity, thereforekl Tω̂j

≥ Tl. The value ofkl is used
in (23), whileTl is eliminated fromT .
This operation is repeated until all the elements ofT ω have
been considered or vectorT is empty. At the end of the
procedure, residual elements ofT ω or T are simply added
to T

⋆.
It is worth noting that for any pair of components ofT andT ω

only one element is added toT ⋆. Accordingly, only one filter
is sufficient to meet both the constraints and the overall number
of smoothers for satisfying all the specifications becomes

n⋆
tot = max{n, mtot} (25)

which is certainly smaller than the initial numberntot reported
in (18). Concerning the duration of the trajectory, the delay
Tω̂j

+ Ti caused by a pair of smoothers is replaced byki Tω̂j

with a consequent time reduction equal to

(Tω̂j
+ Ti)− ki Tω̂j

= Tω̂j
−∆Ti

where∆Ti is defined in (24). Since, according to this defini-
tion, the following bounds hold:

0 ≤ ∆Ti < Tω̂j
(26)

the reduction of the trajectory duration due to the fulfilment of
two different specifications with a unique smoother is always
strictly positive. In other words, the devised procedure always
allows saving time. The minimization of∆Ti has the purpose
to maximize the reduction of the trajectory duration with
respect to the one generated by the trivial cascade ofntot

smoothers, i.e. one for each specification. From a different
perspective, the quantity

∆Ttot =

n⋆
tot
∑

i=1

∆Ti,

where ∆Ti is defined in (24) fori ≤ n and ∆Ti = Tω̂i

otherwise, represents the total increment of the duration with
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Fig. 5. Profiles of position, velocity and acceleration of produced by the
trajectory planner that assures the compliance with the kinematic constraints
(27) (a), a third order filter taking into account also the suppression vibration
at ω̂1 (b), the trajectory planner optimized as in [23] (c), and thetrajectory
planner optimized according the new procedure (d).
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Fig. 6. Frequency response of the filters generating the trajectory profiles in
Fig. 5.

respect to the minimum-time trajectory defined by taking
into account only then kinematic constraints. Accordingly
the minimization of∆Ti aims at minimizing the effects of
residual vibrations suppression specifications with respect to
the trajectory initially optimized only on the basis of kinematic
constraints.

A. A numerical example

In order to exemplify how the proposed method works
a simple numerical case is considered. In this example, the
following specifications have been assumed:

q̂(0)max = 0.06 m, q̂(1)max = 0.1 m/s, q̂(2)max = 1 m/s2. (27)

Accordingly, the parameters of the two smoothers for the
generation of the minimum-time trajectory compliant with
the given constraints computed according to the technique
illustrated in Sec. III, areT1 = 0.6 s, T2 = 0.1 s (Ttot = 0.7
s). The related motion profiles are shown in Fig. 5(a). If now
the suppression of the residual vibration atω̂1 = 20 rad/s
is required, the trajectory generator can be modified with the
insertion of an additional smoother characterized by

Tω̂1
=

2π

20
= 0.3142 s.

The resulting profiles are reported in Fig. 5(b): the order ofthe
trajectory increases of one and accordingly the acceleration
becomes a continuous signal but, on the other hand, the
maximum value the acceleration is considerably smaller than
the desired bound and the duration of the trajectory becomes
much longer (Ttot = 1.0142 s, +44.89%). As highlighted in
Fig. 6(a)-(b), the frequency response of the initial second-order
trajectory generator is modified by the additional smoother
so that its magnitude becomes zeros atω̂1. A similar result
is achieved with the approach previously proposed in [23],
that simply replacesT2 with Tω̂1

. By comparing Figures 6(b)
and (c) it is evident that although the trajectory generatoris
composed of two smoothers its frequency response is very
similar to the one of the third-order filter (with a zero located
exactly in ω̂1). The total duration, however, is reduced as
shown in Fig. 5(c). Note that in this caseTtot = 0.9142 s, i.e.
30.60% more than the original trajectory. Finally, considering
the optimal method presented in this section the parameters
T1 of the original trajectory is replaced by2Tω̂1

. In this
manner, the motion profiles are slightly modified with respect
to the ones generated by the initial filter and do not reach
the kinematic bounds, see Fig. 5(c), but the magnitude of
the frequency response becomes null atω̂1 and therefore
the residual vibration suppression is assured. The increase
of the trajectory duration is modest, beingTtot = 0.7283 s
(∆Ttot = 0.0283 s, +4.04%).
Interestingly enough, since the number of kinematic con-
straints isn = 2, while the frequency specifications aremtot =
1, it is possible to improve the insensitivity of the trajectory
generator in vibration suppression without increasing itsorder
by simply considering two frequency constraints atω̂1. In
this case,T ⋆

1 = 0.6283 s andT ⋆
2 = 0.3142 s. With these

parameters, the frequency response of the trajectory generator
assumes the shape reported in Fig. 7(a), from which it is clear
that the reduction of the vibrations around the frequencyω̂1

is strongly improved in term of sensitivity with respect to
estimation errors/variations of̂ω1. Note that, in the ideal case,
the produced second-order trajectory is able to suppress the
residual vibration at̂ω1 even if the jerk is boundless.
Finally, if the plant is characterized by a second mode of vibra-
tion at ω̂2 = 25 rad/s, the devised procedure can effectively
reduce the vibrations of both the modes by collocating two
zeros atω̂1 and ω̂2 respectively, see Fig. 7(b). In this case,
the trajectory planner is composed by two smoothers with
T ⋆
1 = 2Tω̂1

= 0.6283 s andT ⋆
2 = Tω̂2

= 0.2513 s.
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(a) (b)

Fig. 7. Frequency response of a trajectory planner designedaccording to
the proposed procedure when a second-order vibration suppression atω̂1 is
required (a) and when two different modes of vibrating must be suppressed
(b). In the plot (a) the frequency response of the planner is compared with
the frequency response obtained with a single frequency (thin dashed line),
which is reported in Fig. 6(d).

B. Remarks on the time-optimality of the trajectory

The S-shaped trajectory obtained consideringn kinematic
constraints and a single resonant frequencyω̂1, possibly with
a multiplicity higher than one, is time-optimal since it is gen-
erated with the minimum number of filters and each of these
filters is characterized by the minimum value of the parameter
T ⋆
i (= Ti+∆Ti) that allows meeting the constraints. Note that

in this case, even if the minimization of∆Ti is performed for
each element ofT ω, considered in the given sequence, and it
is not the result of a global optimization process that takesinto
account all the terms, the global minimum of∆Ttot will be
found since all the components ofT ω are equal (being related
to the same frequency). When several resonant frequencies are
considered the ordered minimization of∆Ti, may not lead to
the global minimum of∆Ttot. However, since the values in
T ω are considered in descending order (that is for ascending
magnitude of the frequencieŝωj), the increments∆Ti related
to the valueŝωj , which as shown in (26) is limited byTω̂j

,
tend to be smaller and smaller, and accordingly the difference
between a possibly suboptimal value of∆Ttot and the optimal
one is certainly very small.
Provided that the trajectory obtained with the proposed method
is the shortest one among all the possible S-shaped trajectories
that meet the given specifications (at least for a single resonant
frequency), the last question that arises concerns whetherthe
proposed approach produces the optimal solution among all
the possible motion profiles or it is possible to find alternative
solutions that lead to shorter motions. The suppression of
residual vibrations is generally treated as a filtering problem.
In particular, input shapers are usually considered [17], [18],
[19]. Within this broad family, Zero Vibration (ZV) input
shapers involve the smallest additional delay and guarantee the
compliance of the output signal with the constraints originally
met by the input trajectory. If for a given resonance frequency
ω̂1 a ZV input shaper is considered, the additional delay with
respect to the minimum time trajectory taking into account
only kinematic constraints isTzv = π

ω̂1

, i.e. half of the
maximum theoretical additional duration∆Ti produced by a
smoother. However,∆Ti is not fixed but is a stochastic value
that depends on the constraints and has a uniform distribution
over the interval[0, 2π

ω̂1

). Therefore, for a generici = 1, . . . n
the probability that the proposed method outperforms input
shaping is

P(∆Ti ≤ Tzv) = 0.5.

PC + I/O board

servo controller

current

control

motor

position

control

current

control

linear motor

motor slider 

flexible

beam

strain gauge

strain gauge

monitoring

qm

Fig. 8. Experimental setup based on a flexible link.

Since the algorithm selects the element that minimizes∆Ti,
the probability that the increase in duration does not exceed
Tzv becomes

P

(

n
⋃

i=1

(∆Ti ≤ Tzv)

)

= 1− 0.5n (28)

wheren is the number of kinematic constraints. Accordingly,
for a second-order trajectory the probability of obtaininga
shorter duration with the proposed method taking into account
a single critical frequency is 0.75, while for a third-order
trajectory is 0.875. When several (or multiple) frequency
constraints are considered, formula (28) is not valid anymore,
but in any case, this probability is never smaller than 0.5.
We can finally conclude that the proposed methods generally
outperforms all existing solutions.

V. EXPERIMENTAL VALIDATION OF THE OPTIMIZATION

PROCEDURE OF TRAJECTORIES WITH KINEMATIC AND

FREQUENCY CONSTRAINTS

To validate the proposed method the same experimental
setup as in [23] has been used. As shown in Fig. 8, the test-bed
is based on a thin stainless steel flexible link directly connected
to the slider of a linear motor. The side of the link connected
to the motor is instrumented with a strain gauge that detects
the local deformation of the beam. The link was originally part
of the Rotary Flexible Link setup by Quanser® [29]. Note that
this setup is a typical test bed for residual vibration suppression
[30], [31], but is has been also considered as a paradigmatic
example of mechanical systems characterized by structural
flexibilities that cause the so-calledpost-actuator modes [14]
and which are quite common in the industrial practice.
The bending deformation of the link subject to the lateral
acceleration̈qm of the motor, and detected by the strain gauge,
is characterized by two modes located atω̂1 ≈ 20.18 rad/s
andω̂2 ≈ 127.5 rad/s, respectively. For more details about the
system model refer to [23]. The damping coefficient of the first
mode isδ = 0.0043, and therefore the filters can be designed
with the assumptionδ ≈ 0 that, as discussed in Sec. II-B,
should assure a very low level of the residual vibration. To
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quantify the level of vibrations, the output voltageVw(t) of the
strain gauge, which is proportional to the bending deformation,
is directly used.
The goal of the experiments is to impose on the motor a
prescribed motion minimizing the oscillations of the beam.
In other terms, the tip of the link must follow the motor/base
position as close as possible, in particular when the motion
stops. This aim and even the (lumped-parameter) model of the
system is very similar to that of a generic industrial positioning
system where the load is driven by the actuator through a
mechanical transmission affected by some elasticity, see [14].
Additionally, to cope with the physical limitations of the
actuator the kinematic bounds (and the displacement) reported
in (27), which have been already considered in [23], have
been used. Then, to highlight the advantages of the proposed
optimization technique, different approaches for the suppres-
sion of residual vibrations, based on smoothers and/or input
shapers, have been compared with the minimum-time trajec-
tory. Obviously, all the methods taken into account guarantee
the compliance of the final motion profile with the initial
kinematic constraints. In particular, Figure 9 shows the voltage
signalVw(t) consequent to the application of the trajectories
obtained with the following methods:

(a) Cascade of two smoothers that generates the minimum-
time trajectory compliant with the given constraints. The
parameters of the smoothers, computed in Sec. IV-A, are
T1 = 0.6 s andT2 = 0.1 s (Ttot = 0.7 s).

(b) Trajectory generator obtained with the approach here
proposed by considering a first-order reduction of the
vibration at ωr1. The order of the generator remains
2, while the parameters becomeT1 = 2Tω̂1

= 0.6227
s, being Tω̂1

= 2π
ω̂1

= 0.3114 s, and T2 = 0.1 s
(Ttot = 0.7227 s).

(c) Trajectory generator defined in (a) followed by a ZV input
shaper withTzv = π

ω̂1

= 0.1557 s (Ttot = 0.8557 s).
(d) Cascade of smoothers optimized according to the proce-

dure proposed in [23] that leads to valuesT1 = 0.6 s and
T2 = Tω̂1

= 0.3114 s (Ttot = 0.9114 s).
(e) Trajectory generator obtained with the approach here

proposed by considering a second-order reduction of
the vibration atω̂1. The parameters of the cascade of
smoothers areT1 = 2Tω̂1

= 0.6227 s andT2 = Tω̂1
=

0.3114 s (Ttot = 0.9341 s).
(f) Trajectory produced by the generator defined in (a) fil-

tered by an additional smoother for vibration suppression
with T3 = Tω̂1

= 0.3114 s (Ttot = 1.0142 s).
(g) Trajectory generator obtained with the approach here

proposed by considering a third-order reduction of the
vibration at ω̂1. The smoothers in the chain are three
with parametersT1 = 2Tω̂1

= 0.6227 s andT2 = T3 =
Tω̂1

= 0.3114 s (Ttot = 1.2454 s).

Note that, even if with a little difference in the frequency value
ω̂1, the cases (a)-(b)-(d)-(f) have been already analyzed in the
numerical example of Sec. IV-A, where the corresponding
motion profiles are shown. The trajectory obtained with
the planner (f) is a standard third-order S-curve optimized
for vibration suppression at the specific frequencyω̂1. This
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Fig. 9. Strain gauge output signalsVw(t), and related spectrum|Vw(jω)|,
produced by different motion profiles applied to the flexiblelink: trapezoidal
velocity trajectory compliant with kinematic constraintson velocity and
acceleration (a), same trajectory optimized for residual vibration suppression
according to the method here proposed (b), initial trapezoidal trajectory
filtered by a ZV input shaper (c), trajectory optimized for residual vibration
suppression according to the method proposed in [23] (d), trajectory optimized
for residual vibration suppression with a second- and a third-order smoother
(e) and (g) respectively and initial trajectory, compliantwith the kinematic
limits, filtered by an additional smoother for vibrations suppression (f).

type of planner obtained by simply gathering the smoothers
related to the different specifications (bounds on velocity,
acceleration and vibration suppression), without a real
integration/optimization, corresponds to the initial approach
proposed in [22]. Note that this solution also coincides with
the trajectory proposed in [21], where FIR filter is applied to
a trapezoidal velocity, defined analytically.
The goal of this experimental activity is to measure the actual
capability of the considered profiles in reducing the residual
vibrations. For this reason, the signalVw(t), which is affected
by a high level of noise, has been analyzed in the frequency
domain, by applying a Fast Fourier Transform (FFT) to the
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Ttot [s] ∆Ttot% V [mV] ∆V%
(a) 0.7 0.00 39.6 0.00
(b) 0.7227 +3.24 10.1 -74.49
(c) 0.8557 +22.24 6.2 -84.34
(d) 0.9114 +30.20 5.05 -87.24
(e) 0.9341 +33.44 4.81 -87.85
(f) 1.0142 +44.88 3.82 -90.35
(g) 1.2454 +77.91 3.7 -90.65

TABLE I
OVERALL DURATION Ttot OF THE DIFFERENT TRAJECTORIES

CONSIDERED IN THE EXPERIMENTAL TESTS AND RELATED RESIDUAL

VIBRATION LEVEL V : ABSOLUTE VALUES AND PERCENTAGE VARIATIONS

WITH RESPECT TO THE MINIMUM-TIME TRAJECTORY UNDER KINEMATIC
CONSTRAINTS.
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Fig. 10. Residual vibration level as a function of the trajectory duration of
the different trajectories considered in the experimentaltests. The point (h) in
the map represents a standard S-curve trajectory not optimized for vibration
suppression but compliant with the given kinematic limits.

samples ofVw(t) measured after the reference motion stops.
The spectra|Vw(jω)| caused by the trajectories considered in
the comparison are shown in Fig. 9 next to the corresponding
profile (in the same figure the frequency spectrum of the
trajectory generator is reported with a black dashed line).
Note that this type of analysis allows to evaluate even small
differences in signals that in some cases are very similar,
see e.g the cases (c)-(f). All the spectra exhibit a peak value
at the frequencŷω1, whose magnitudeV represents a good
estimation of the residual vibration level. The contribution of
the second mode at̂ω2 is practically not appreciable, because
of the low-pass characteristic of all the trajectory generators
based on smoothers.

The results of the experiments are summarized in Tab. I
while a pictorial representation is reported in Figure 10,
which contains a map of the pairs trajectory duration-vibration
level (Ttot − V ) for all the considered motion profiles. It is
clear that the trajectory generator designed with the proposed
approach - case (b) - provides the shortest trajectory able to
effectively reduce the residual vibration. With a very modest
increase of the duration with respect to the optimal trajectory
under the kinematic constraints (+3.24%) the new motion
profile drastically reduces the level of vibration (−74.49%).
As mentioned in previous sections, by increasing the order
of insensitivity at the critical frequencŷω1, i.e. the number
of smoothers with null frequency response at this value, it

is possible to further enhance the capability of lowering the
level of the vibrations at the price of longer durations, see
cases (e) and (g). Alternative approaches like the application
of a ZV input shaper to the original trajectory - case (c)
- or the optimization proposed in [23] - case (d) - lead to
intermediate results in terms of duration and vibration level
even if it is worth highlighting that the introduced delays
are definitely higher than the approach proposed in this paper
while the gain in terms of vibration amplitude is very little.
The third-order S-curve trajectory (f) behaves similarly,since
it causes a notable reduction of the vibration amplitude butat
the price of a very large additional delay. It is worth noticing
that such a kind of curve, even if characterized by a limited
jerk, is not able to suppress residual vibrations when it is not
properly designed: the point (h) in the map is obtained by
considering the trajectory (a) filtered by an additional smoother
with T3 = Tω̂1

/2. In this case, the duration is the same
obtained with the ZV input shaper (c) but the magnitude of
the residual vibration is much larger, even if the trajectory has
a limited jerk.
The points reported on the map with blue color, representing
the trajectories optimized for vibration suppression, canbe
effectively approximated using a rectangular hyperbola, that
provides general hints on the problem of vibrations reduction:
the vibration level is inversely proportional to the duration of
the imposed motion, however, the level of vibrations rapidly
tends to an asymptotic value. Note that this value is not zero
since, besides an estimation error on the value ofω̂1, the plant
is characterized by nonlinear phenomena. Clearly, the casethat
optimizes both the criteria (duration and vibration magnitude)
corresponds to the closest point to the origin, which is the
trajectory (b) obtained with the procedure proposed here.
The use of several smoothers for increasing the insensitivity
to a specific resonant mode may be not useful since it implies
a notable increase in the duration with marginal improvements
on the vibration level. The experiments prove that the limita-
tion of the jerk is neither sufficient nor necessary to achieve
vibration suppression, but a proper design of the trajectory
generator can lead to very good results even in case of a
second-order trajectory. In general, the best trade-off between
trajectory duration and capability of reducing vibrationsis
obtained when the insensitivity of the trajectory planner is
equal to the number of kinematic constraints, minimizing in
this way the final order of the planned trajectory.

VI. CONCLUSIONS

In this paper, a novel procedure for the design of an S-
shaped trajectory planner able to deal with kinematic con-
straints and vibration suppression issues is proposed. The
method is based on a combination of filters, that in the litera-
ture are well-known with the name ofrectangular smoothers,
and consists of an algorithm that, starting from the desired
specifications, provides the number and the parameters values
of these filters that guarantee the minimum duration of the gen-
erated motion profile. The obtained trajectory is optimal, i.e.
it is not possible to find a different trajectory compliant with
the same constraints which is shorter in time. Additionally, the
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order of the trajectory is not fixeda priori but depends on the
number of specifications and, in principle, can be very high.
Nevertheless, the proposed approach leads to the minimum
possible order. Experiments on a test-bed based on a flexible
link show both the effectiveness of the proposed method and
the very simple and computationally efficient structure of the
planner.
Future work will deal with the problem of adapting the
trajectory generated with the smoothers in order to optimize
the residual vibrations suppression for plants characterized by
varying resonant modes, and more in general, with the problem
of taking into account constraints that can change over time.
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