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Abstract
We consider stochastic problems in which both the objective function and the feasible
set are affected by uncertainty. We address these problems using a K -adaptability
approach, in which K solutions for a given problem are computed before the uncer-
tainty dissolves and afterwards the best of them can be chosen for the realized scenario.
We analyze the complexity of the resulting problem from a theoretical viewpoint,
showing that, even in case the deterministic problem can be solved in polynomial time,
deciding if a feasible solution exists isNP-hard for discrete probability distributions.
Besides that, we prove that an approximation factor for the underlying problem can be
carried over to our problem. Finally, we present exact approaches including a branch-
and-price algorithm. An extensive computational analysis compares the performances
of the proposed algorithms on a large set of randomly generated instances.

Keywords Stochastic programming · K -adaptability · Exact algorithms ·
Branch-and-price · Computational experiments

Mathematics Subject Classification 90C15 Stochastic programming · 90C27
Combinatorial optimization · 90C57 Branch-and-bound

1 Introduction

One of the most relevant assumptions in mathematical programming is that the exact
value of the input data is fixed and known in advance. However, there is a large variety
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of real applications in which this is not the case, and some parameters used in the
model are just estimates of real parameters and/or are subject to some uncertainty.
In this case, an optimal solution according to the nominal values of the parameters
can be suboptimal (or even infeasible) according to the actual parameters. From a
practical viewpoint, it is thus extremely important to take these aspects into account
when real-world applications are considered.

Two main approaches have been proposed in the literature to deal with uncertainty,
namely robust optimization and stochastic optimization.

Robust optimization [1,2,5,15] assumes full knowledge about the domain of
uncertainty parameters in all “reasonable” realizations of the data. Classic robust opti-
mization defines the solution under the worst case scenario for uncertainty, imposing
hard constraints to reduce the feasible set and to forbid solutions that become infeasible
under certain realizations of the data. The computational tractability of the resulting
model depends on the complexity of the underlying nominal problem and on the prop-
erties of the uncertain domain. Robust models typically produce solutions that are
too conservative in terms of cost compared to non-robust solutions. For this reason,
less conservative robust models have been proposed in the literature, either fixing in
advance the maximum worsening of the solution value [8,14], or relaxing somehow
the level of protection against uncertainty and allowing for possible recovery of the
solution [10]. As shown in [4], the solution produced by a robust optimization model
can be arbitrarily bad in terms of cost compared to the optimal expected cost of the
associated stochastic problem.

Stochastic optimization [6,13] is mainly used when some information about the
probabilistic distribution of effective data is available. According to this paradigm, the
solution is obtained solving an auxiliary optimization problem that includes additional
variables modeling uncertainty, and penalizes feasible solutions that are most likely
to become infeasible. Computing exactly the expected value of a stochastic program
is computationally hard in general, and most of the solution approaches are based on
heuristic algorithms. In some applications, chance constraints are used to impose the
solution to be feasible with a given probability [12]. Unfortunately, in real applications
the number of scenarios to be considered is very large, producing very large models
that are extremely hard to solve in practice. In addition, feasibility of the solution in
the actual scenario cannot be guaranteed, and the approach may be combined with the
definition of some recourse actions.

Indeed, in many applications there is a number of “wait-and-see” decisions that
have to be taken after the actual realization of uncertainty. In these models, that are
usually denoted as two-stage, there are some strategic decisions that have to be taken
in advance, and some operational decisions that are used to recover the quality or the
feasibility of the solution. The K -adaptability approach, firstly introduced in [3], is
a variant of two-stage optimization in which the user pre-selects a finite set of (say)
K solutions and chooses the best of these solutions at a second stage, when the exact
nature of uncertainty materializes. This is extremely useful for those situations in
which uncertainty is modeled by considering a finite number of scenarios, the actual
scenariomaterializes a short time before decisions have to be taken, and the hardness of
the problem prevents to compute a “reasonable” solution from scratch. This paradigm
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can be used on any optimization problem. In the remainder of the paper, we call the
inner optimization problem the underlying problem.

As an example, consider a routing problem in which a fleet of vehicles has to be
used to serve a given set of customers, whose demand (or timewindows) is known only
a few minutes before service starts. In this case, using an optimal solution computed
according to nominal values of the parameters may be impractical, as this solution
may be very bad in terms of cost or even infeasible. At the same time, computing a
high-quality solution in a very short timemay be extremely hard from a computational
viewpoint. On the other hand, choosing a solution among K precomputed solutions
can be done in a reasonably small time and improves the objective value compared to
the classical stochastic approach, in which only one solution is precomputed. Another
relevant application for a K -adaptability approach is disaster management, where the
decision maker has to prepare escape plans for an evacuation that have to be trained
in advance [9]. It is clear that only training a small number of such plans is realistic.
In other cases, the alternative solutions may have to be prepared physically, e.g., by
establishing links in a network, so that computing and implementing a solution after the
scenario materialized is again not possible, and only a small set of candidate solutions
can be considered.

Comparedwith classical two-stageoptimization, another advantageof K -adaptability
is that it allows the user to take under control the flexibility that is used to face with
different scenarios of the problem. This may be crucial in many applications, e.g.,
school bus routing and home care services for elderly persons. In these contexts, it is
preferable to limit the number of different agents that provide service to each customer
in different days. This is an immediate byproduct of the K -adaptability approach, as
each day the actual solution is taken from the set of the K different precomputed
solutions. Changing the value of parameter K allows the decision maker to implement
different policies. Small values of K correspond to a conservative policy in which the
actual solution has a small variability. On the other hand, the larger the value of K the
larger the variability of the solution and, consequently, the better the solution fits with
the actual scenario.

Finally, as recently observed in [16], K -adaptability appears to be coherent with
human decision-making, which tends to forecast a limited number of alternative solu-
tions and to apply one of them, instead of computing an optimal solution for each
realization of the data. Indeed, changing decisions too frequently may be confusing
to the final user, who can refuse the proposed solution.

In this paper we consider an underlying optimization problem of the form

min ξ T x
s.t. x ∈ X ⊆ R

n,
(1)

in which uncertainty depends on the realization of a random variable ω ∈ � and may
affect both the objective function ξ(ω) and the feasible region X(ω). The objective is
to determine at most K solutions x1, x2, . . . , xK to the underlying problem (1) such
that the expected value of the best of these solutions is a minimum. In the reminder of
the paper, a set of K solutions to the underlying problem will be denoted by XK and
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will be called a set of solutions. Thus, the resulting problem is

min E

(
min{ξ(ω)T x : x ∈ XK ∩ X(ω)}

)

s.t. |XK | ≤ K .

(2)

We assume that uncertainty is described by discrete variables, i.e., it can be mod-
eled by defining a number (say) � of scenarios. Each scenario j ( j = 1, . . . , �) has
associated a probability p j > 0, an objective function ξ j ∈ R

n , and a feasible set
X j = {x ∈ R

n : A j x ≤ b j }, which we assume to be bounded. Possible restrictions on
the integrality of the variables are included in the definition of the feasible set X j . Thus,

the subproblem associated with scenario j can be rewritten as min{ξ j T x : x ∈ X j },
and problem (2) can be reformulated as

min
�∑

j=1

p j min{ξ j T x : x ∈ XK ∩ X j }

s.t. |XK | ≤ K .

To simplify the notation, we incorporate the probabilities into the objective function
vectors, i.e., we consider the following problem

min
�∑

j=1

min{ξ j T x : x ∈ XK ∩ X j }

s.t. |XK | ≤ K .

(3)

We denote the resulting problem by Discrete Constrained Min-E-Min problem
(DCmEm). We say that an instance of (DCmEm) is feasible when there exists a set of
solutions XK such that, for each scenario j , XK ∩ X j �= ∅.

Recently, a special case of problem (3) in which uncertainty affects the objective
function only has been addressed in [7]. For this special case, that will be denoted
as (mEm) in the following, the authors studied the computational complexity, gave
approximation results, and introduced mathematical formulations and algorithms. A
similar context was considered in [16], where the relation between classical two-
stage optimization and the min-max-min version of K -adaptability was considered.
In addition, a branch-and-bound approach for the optimal solution of the problem was
introduced, establishing conditions for its asymptotic and finite time convergence.

Contributions The first main contribution of this paper is an investigation of the
complexity of Problem (DCmEm). We show that deciding whether an instance of
(DCmEm) is feasible isNP-hard, even if K ≥ 2 is fixed and the underlying problem
can be solved in polynomial time. In case K is part of the input, we prove that the
same result holds even if all the coefficients of the constraints defining the feasible
region are binary and |X j | is a polynomial in the input size for every scenario j .
The second major contribution is the development of mathematical models and sound
exact approaches (including a branch-and-price algorithm) for (DCmEm). The third
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contribution is a computational evaluation of the performances of the proposed algo-
rithms on a large benchmark of randomly generated instances, obtained by considering
underlying problems with different levels of complexity.

OutlineThe rest of this paper is organized as follows. In the next section, we investigate
the complexity for checking feasibility of (DCmEm) in terms of NP-hardness and
fixed-parameter tractability. In Sect. 3, we describe a compact formulation and two
different Set Partitioningmodels for describing (DCmEm). All other exact approaches
including the branch-and-price algorithm are presented in Sect. 4. In Sect. 5 we show
how using approximation algorithms for solving the underlying problem affects the
solution quality of (DCmEm). The different exact algorithms for solving (DCmEm)
are then analyzed in an extensive computational study, that is presented in Sect. 6.
Section 7 concludes the paper.

2 Complexity results

In [7], the authors showed that the (mEm) is NP-hard. In addition they proved that
this problem is not in APX if K is part of the input, and the same holds for K ≥ 3
if K is not part of the input. Besides, they showed that the problem is W[2]-hard for
parameter K and W[1]-hard for parameter n − K . Trivially, all these results apply to
(DCmEm) as well.

In the next section, we consider the (DCmEm), where uncertainty affects the prob-
lem constraints as well, and discuss the complexity of deciding whether an instance
of (DCmEm) is feasible (i.e., there exists a set of at most K solutions to the underly-
ing problem with non-empty intersection with the feasible region of each scenario).
Finally, Sect. 2.2 introduces a subproblem that will be used in our algorithms and
analyzes its complexity.

2.1 Uncertain coefficients in the constraints

Hardness results trivially follow when the underlying problem is hard. Hence, we
consider the general casewhere the underlying problem is solvable in polynomial time.
The proofs in this section may use binary variables to define the underlying problems,
but all these problems remain solvable in polynomial time for each scenario.

Theorem 1 Deciding whether an instance of (DCmEm) is feasible is W[2]-hard
parameterized by K if K is part of the input, even if all the coefficients are binary and
|X j | is a polynomial in the input size for every scenario j .

Proof We prove the statement by reduction of the W[2]-hard problem Set Cover [11]:
given a positive integer K , a set U = {u1, u2, . . .} of items, and a collection S =
{s1, s2, . . .} of subsets ofU , the Set Cover problem asks if there exists a sub-collection
of S with cardinality at most K , so that every item is at least in one of the subsets. The
Set Cover is known to be W[2]-hard parameterized by K .
We will show that, given an instance of Set Cover, we can define an instance of
(DCmEm) that is feasible if and only if the Set Cover instance has a positive answer.
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For the reduction, we define a (DCmEm) instancewith n := |S| variables and � := |U |
scenarios. For each scenario j , we define a polynomial-time solvable problem where
the feasible set X j is the set of base vectors ofRn that satisfy a single constraint of the

form a j T x ≥ b, where b := 1 and the coefficient of each variable xh (h = 1, . . . , n)
is defined as:

a j
h :=

{
1 if u j ∈ sh,

0 otherwise.

Finally, we set K := K , and therefore we have a parameterized reduction.
The set of solutions of (DCmEm) XK induces the Set Cover as follows: if the h-th
base vector belongs to XK , then item set sh belongs to the Set Cover solution. With
this definition, it holds that the j-th item is included in at least one subset if and only
if there exists a selected subset sh such that u j ∈ sh ; this means that the associated

coefficient a j
h is 1, i.e., the h-th solution is feasible for scenario j . Hence we have a

Set Cover if and only if, for every scenario j , at least one solution in XK is feasible. 	


We now discuss a similar result for the case of fixed K .

Theorem 2 Deciding whether an instance of (DCmEm) is feasible is NP-hard if
K = 2 is not part of the input.

Proof We showNP-hardness by reduction from the decision variant of theMaximum
Cut Problem. Let G = (V , E) be an undirected graph, and let W ⊆ V be a subset
the vertex set. The induced cut is the set of edges that have exactly one endpoint in
W , i.e., δ(W ) = {(vi , v j ) ∈ E : vi ∈ W , v j /∈ W }. Given a positive integer q, the
Maximum Cut Problem asks whether there exists a subset W such that |δ(W )| ≥ q.
Given a graph G = (V , E), we define a (DCmEm) instance with n := 2|V | vari-
ables and � := 2|V | scenarios. In all scenarios, we define a polynomial-time solvable
problem where we impose that

xh ∈ {0, 1} h = 1, . . . , |V |,

i.e., the first |V | variables are constrained to be binary and

xh ≥ ε, h = |V | + 1, . . . , 2|V |,

where ε = 1
|V |+1 . In addition, scenarios are partitioned into two classes having the

same cardinality |V |. Each scenario j in the first class ( j = 1, . . . , |V |) is characterized
by two additional constraints

|V |∑
h=1

a j
h xh = x|V |+ j , and

|V |∑
h=1

x|V |+h ≥ q,
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where the coefficients a j are defined as follows

a j
h :=

⎧⎪⎨
⎪⎩

δ(v j ) if h = j,

−1 if (vh, v j ) ∈ E,

0 otherwise,

and δ(v j ) = |{(vi , v j ) ∈ E}| denotes the degree of a given vertex v j ∈ V .
Finally, each scenario j in the second class is characterized by a single constraint

x|V |+ j = ε.

Assume that (DCmEm) has a feasible solution X2 = {x1, x2}, i.e., for each scenario
either x1 or x2 is feasible (or both).
We first observe that, for each j = 1, . . . , |V |, the j-th scenario in the first class and
the j-th scenario in the second class cannot be covered by the same solution. Indeed,
while the first constraint of the former scenario sets variable x|V |+ j to an integer value,
in the latter scenario the same variable must take a fractional value. Thus, no scenario
may have that both x1 and x2 are feasible, and each scenario is covered by exactly
one solution. Let S ⊆ {1, . . . , |V |} be the set of indices of the scenarios in the first
class for which x1 is feasible, and let j ∈ S be one of these scenarios. Therefore, we
must have x1j = 1 since otherwise

∑|V |
h=1 a

j
h x

1
h ≤ 0 which is not compatible with the

domain of variable x|V |+ j .
Using the previous observation, x2 is not feasible for scenario j . Thus, in case

x2j = 1, we can define a new solution having x2j = 0 since this operation does not

affect the feasibility of x2 for scenarios in which this solution is feasible. Hence, in
the first solution, variable x|V |+ j takes a value equal to the number of neighbors of
vertex v j whose associated scenario is not in S. Finally, observe that x1 is feasible in
all scenarios in the second class that are not in S, i.e., x1|V |+h = ε for all h /∈ S. Given

the second constraint of each scenario in S, solution x1 must satisfy∑
h∈S

x1|V |+h ≥ q (4)

as the total contribution of the remaining x1|V |+h variables for h /∈ S is smaller than 1.
Condition (4) implies that the cut induced by vertex set W = {v j : j ∈ S} has size at
least equal to q.
Conversely, assume now that we have a subsetW of vertices whose associated cut has
size q (or more), and define the following set of solutions X2 = {x1, x2}: for each
vertex v j ∈ W we set

x1j := 1, x1|V |+ j :=
|V |∑
h=1

a j
h x

1
h , x2j := 0, x2|V |+ j := ε

while for each vertex v j /∈ W we have

x1j := 0, x1|V |+ j := ε, x2j := 1, x2|V |+ j :=
|V |∑
h=1

a j
h x

2
h ,
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where the a j
h coefficients are the same as in the first part of the proof. First of all

observe that each variable x|V |+ j associated with a vertex v j ∈ W has, in the first
solution, a value equal to the number of edges that connect v j to vertices outside W .
We now prove that every scenario admits a feasible solution in X2. Let j (say) be a
scenario in the first class such that v j ∈ W . By construction, solution x1 satisfies the
first constraint of the scenario. In addition, for each vertex vh ∈ W , variable x1|V |+h
gives the number of edges that connect vertex vh to vertices in the other side of the
partition; finally, for vertices vh /∈ W , the associated variable is set to a positive value.
Thus, we have

2|V |∑
h=|V |+1

x1h =
|V |∑
h=1

x1|V |+h ≥
|V |∑
h=1

vh∈W

x1|V |+h ≥ q

where the last inequality derives from the value of the cut induced by W . The case
with v j /∈ W is analogous, using solution x2.
Finally, it is easy to see that solution x2 (resp. x1) is feasible for each scenario j of
the second set such that v j /∈ W (resp. v j ∈ W ).

Figure 1 gives an example of the construction, and presents aMaximumCut instance
with positive answer and the associated scenarios (domain of the variables are omitted).

	


v2

v1 v3

v4

Scenario 1:

2x1 − x3 − x4 = x5

x5 + x6 + x7 + x8 ≥ 4

Scenario 2:

2x2 − x3 − x4 = x6

x5 + x6 + x7 + x8 ≥ 4

Scenario 3:

−x1 − x2 + 3x3 − x4 = x7

x5 + x6 + x7 + x8 ≥ 4

Scenario 4:

−x1 − x2 − x3 + 3x4 = x8

x5 + x6 + x7 + x8 ≥ 4

Scenario 5:

x5 = ε

Scenario 6:

x6 = ε

Scenario 7:

x7 = ε

Scenario 8:

x8 = εThe first 4 elements of
solution x1 define W ,
consisting of vertices
v1 and v2.
W = {v1, v2} induces
an optimal cut with
value q = 4.

x1 = (1, 1, 0, 0, 2, 2, ε, ε)T and x2 = (0, 0, 1, 1, ε, ε, 2, 2)T is
a feasible solution for (DCmEm) because x1 is feasible in
scenarios 1,2,7 and 8 and x2 in the others.

Fig. 1 Example of the construction of the proof of Theorem 2

123



K -adaptability in stochastic optimization 575

Theorem 3 Deciding whether an instance of (DCmEm) is feasible is NP-hard if
K ≥ 3 is not part of the input.

Proof For K ≥ 3, we show NP-hardness by reduction from the Vertex Coloring
Problem. A K -vertex coloring of a graph G = (V , E) is an assignment of K different
colors to all vertices in V such that no edge in E connects two vertices with the same
color. Vertices that receive the same color are called a color class. It is easy to see that
each color class is a stable set and that the problem remains NP-hard even when a
vertex is allowed to belong to more than one color class.
Given a graph G = (V , E) and an integer K , we define a (DCmEm) instance with
n := |V | binary variables and � := |V | scenarios. For each scenario j , we define a

polynomial-time solvable problem with a single constraint of the form a j T x ≤ b, and
the coefficient of each variable h is given by

a j
h :=

⎧⎪⎨
⎪⎩

−1 if h = j,

1 if (v j , vh) ∈ E,

0 otherwise.

Finally, we set b := −1 and define K := K .
A set of solutions XK induces the color classes for Vertex Coloring as follows: for
each solution xi ∈ XK , all vertices that correspond to variables that are taken in the
solution belong to the i-th color class. This solution satisfies the coloring constraint as
scenario constraints forbid any two neighbors to be taken in the same solution. Finally,
feasibility of each scenario in at least one solution implies that every vertex belongs
to a color class.
Conversely, given a Vertex Coloring solution, we can define a set of solutions XK as
follows: each solution xi includes all variables that are associated to vertices belonging
to the i-th color class. Remember that each color class corresponds to a stable set. Thus,
a feasible solution for the j-th scenario is induced by the color class including vertex
j , as by definition this color class cannot include any neighbor of j . Since all vertices
receive a color, then all scenarios are satisfied by at least one solution.

	


2.2 The completion problem

The Completion problem is a variant of the (DCmEm) arising when K (say) solutions
have been fixed and are part of the input. The objective is then to determine the
remaining K f := K − K free solutions. We denote by XK the set of fixed solutions
and by XK f the set of free solutions. The completion problem can be formulated as
follows

min
�∑

j=1

min{ξ T x : x ∈ (XK ∪ XK f ) ∩ X j }

s.t. |XK f | ≤ K f .

The completion problem appears as a subproblem in a solution approach based on
column generation (see Sect. 4.2.1). We now discuss its complexity.
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Theorem 4 The completion problem is NP-hard and W[2]-hard if 2 ≤ K f < �.

Proof It is easy to see that an instance of (DCmEm) with parameter K can be modeled
as an instance of the completion problem with parameter K f = K and K = 1, using a
dummy solution that is infeasible (or high-costly) for all scenarios. The result follows
from the complexity of (DCmEm). 	


More interesting is what happens for K f = 1: in this case the completion problem
turns out to be NP-hard if at least one solution is fixed, though (DCmEm) is not.

Theorem 5 The completion problem isNP-hard even if K f = K = 1, the uncertainty
affects the objective function only and X = {0, 1}n.
Proof We prove the statement by reduction from Maximum Cut Problem.

Given a graph G = (V , E), we define an instance of the completion problem
with K = K f = 1 as follows. There are n := |V | binary variables and � := 2|E |
scenarios, all with no explicit constraints, i.e., X j := {0, 1}n ( j = 1, . . . , �). For each
edge e = (u, v) ∈ E , there are two scenarios numbered as e and |E | + e. For the
former, the objective function coefficients for the variables are

ξ eh :=

⎧⎪⎨
⎪⎩

−1 if h = u,

2 if h = v,

0 otherwise,

while for the latter the objective function is defined as follows

ξ
|E |+e
h :=

⎧⎪⎨
⎪⎩

2 if h = u,

−1 if h = v,

0 otherwise.

The underlying problem associated with each scenario is solvable in polynomial time
by inspection. Finally, the fixed solution is a vector of zeros, hence, it has a zero cost
for every scenario.

We now show that there exists a subset W ⊆ V of vertices whose induced cut has
size q or more if and only if there exists a solution for the completion problem with
value of −q or less.
Assume that G has a cut with value q, i.e., there exists a subset W of vertices such
that |{e = (u, v) ∈ E : u ∈ W , v /∈ W }| ≥ q. Define a solution for the completion
problem by setting x1h = 1 if h ∈ W and 0 otherwise. Since the number of edges with
exactly one endpoint in W is at least q, there are at least q scenarios for which this
solution has a value −1. For all the remaining scenarios there exists a solution with
zero value, hence the value of the completion problem is at least −q.
Conversely, assume now that a solution of the completion problem exists with value
−q. Define setW that includes all the vertices associated with variables that take value
1 in the free solution. As the completion problem has value −q, there are q scenarios
whose value is −1. Every such scenario is associated with an edge that must have
exactly one endpoint inW (otherwise, it would have a positive cost), hence the thesis.
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3 Mathematical models

Before discussing mathematical formulations that can be used to model (DCmEm),
observe that there are relevant situations in which uncertainty affects the feasible set
at an interdiction level. This special case arises, e.g., when the underlying problem is
shortest path or spanning tree and uncertainty affects the availability of some edges in
some scenarios. In this case, one can change the objective function of each scenario to
strongly penalize the use of forbidden edges, thus reducing the problem to an (mEm),
and allowing its solution through the algorithms for the unconstrained case.

3.1 Compact formulation

We now present a quadratic programming formulation, derived from a similar model
in [7], that involves a polynomial number of variables and constraints. From now on,
we will say that a scenario j is covered by the i-th solution if solution i is feasible
for scenario j and it is selected, among those that are feasible, for that scenario. For
each solution i and scenario j , let yi j be a binary variable taking value 1 if and only
if scenario j is covered by solution i . The model reads

min
�∑

j=1

ξ jT

(
K∑
i=1

yi j x
i

)
(5)

s.t.
K∑
i=1

yi j = 1 j = 1, . . . , � (6)

yi j = 1 ⇒ xi ∈ X j i = 1, . . . , K ; j = 1, . . . , � (7)

yi j ∈ {0, 1} i = 1, . . . , K ; j = 1, . . . , �. (8)

Constraints (6) impose that each scenario is covered by exactly one solution, whose
cost is taken into account in the objective function (5). Domain constraints for the y
variables are imposed by (8). Constraints (7) guarantee that each scenario is covered
by a solution that is feasible for that scenario. We now discuss possible methods for
handling this kind of constraints when using a general-purposeMILP solver. Denoting
by n the number of variables in the underlying problem, and assuming that the feasible
set of each scenario j is defined as X j = {x ∈ R

n : a jT
r x ≥ b j

r ; r = 1, . . . ,m}, i.e.,
it is characterized bym linear constraints, the first option is to apply linearization, and
to replace (7) by

a jT
r xi + Mj,r (1 − yi j ) ≥ b j

r i = 1, . . . , K ; j = 1, . . . , �; r = 1, . . . ,m

where Mj,r := b j
r − minx∈X j {a jT

r x}.
A second option is to exploit the availability of state-of-the-art MILP solvers to use

the so-called indicator constraints, which are a modelling tool to express disjunctive
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conditions. We can then replace constraints (7) by

yi j = 1 ⇒ a jT
r xi ≥ b j

r i = 1, . . . , K ; j = 1, . . . , �; r = 1, . . . ,m.

Preliminary computational experiments showed that, on our benchmark, the two
approaches were comparable, though the former was more robust from a numer-
ical viewpoint, and was adopted in subsequent experiments. Finally, observe
that the objective function contains bilinear terms too. Each such term can
be handled by introducing an additional variable and a bilinear constraint, to
be linearized in a similar way. In this case, however, we experienced better
performances by letting the solver to determine the best way to handle non-
linearities.

3.2 Set partitioning formulations

We now introduce two novel formulations for (DCmEm). Both formulations are pure
0–1 linear programs and involve an exponential number of variables.

Assignment Formulation We derive the first formulation by working in the space
of solutions. Let us denote by Q = ∪ j X j the set of all solutions that are
feasible for at least one scenario. With a small abuse of notation, for each
solution p ∈ Q, we also denote by p the index of the solution in set Q.
For each solution p ∈ Q, let us introduce a binary variable σp, taking value
1 if solution p is among the K chosen solutions, and 0 otherwise. In addi-
tion, for each solution p and scenario j , let ρ j p be a binary variable taking
value 1 if and only if scenario j is assigned to solution p. Finally, let r jp be
the cost of solution p in scenario j ; r jp and variable ρ j p are set to zero if
p /∈ X j (the variable is simply not defined in a practical implementation of the
model).

Given the choice of the decision variables, we will refer to this model as the Assign-
ment Formulation (AF). The model is as follows

min
�∑

j=1

∑
p∈Q

r jp ρ j p

s.t.
∑
p∈Q

ρ j p = 1 j = 1, . . . , �

σp ≥ ρ j p j = 1, . . . , �; p ∈ Q∑
p∈Q

σp ≤ K

ρ j p = 0 j = 1, . . . , �; p /∈ X j

σp ∈ {0, 1} p ∈ Q
ρ j p ∈ {0, 1} j = 1, . . . , �; p ∈ Q.

(AF)
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The first set of constraints ensures that every scenario is covered by exactly one
solution, while the second and third sets of constraints ensure that at most K solutions
are used.

Observe that this model could involve an infinite number of variables, in case
Q contains an infinite number of solutions, as it happens if the underlying problem
includes continuous variables. In this case, we can restrict Q to contain only “relevant”
solutions, i.e., all the extreme points of each set obtained as intersection of the feasible
sets of any collection of scenarios. Being the number of scenarios finite and each
scenario bounded, the number of such intersections is finite and each such intersection
defines a bounded polyhedral region. Thus, the overall number of extreme points is
finite, though possibly exponential with respect to the input size.

Subsets Formulation To define the second model, that we call Subsets Formulation
(SF), let F be the family of all feasible subsets of the scenarios, i.e., all subsets of
scenarios for which the intersection of the associated feasible regions is non-empty.
Each subset S ∈ F can be described by an �-dimensional binary vector z whose j-th
component is equal to 1 if scenario j ∈ S, and 0 otherwise. Given a subset S ∈ F , the
associated cost c(S) is defined by

c(S) := min
∑
j∈S

ξ jT x

s.t. x ∈ X j j ∈ S.

(9)

In the remainder, we will assume that an oracle is available for solving subproblem
(9). In addition, the solution x(S) returned by the oracle will be denoted as the solution
induced by S.

For each feasible subset of scenarios St ∈ F , denote by ct := c(St ) the cost of the
induced solution, and introduce a binary variable ϑt : if ϑt takes value 1, all scenarios
in subset St are covered by the same solution. Then, we obtain the following model

min
|F |∑
t=1

ct ϑt

s.t.
|F |∑
t=1

z jt ϑt = 1 j = 1, . . . , �

|F |∑
t=1

ϑt ≤ K

ϑt ∈ {0, 1} t = 1, . . . , |F |.

(SF)

The model requires to select at most K subsets, so that each scenario belongs to a
selected subset. By associating the i-th selected subset to solution xi , we obtain a set
of solutions for (DCmEm), whose cost is given by the sum of the costs of the selected
subsets.

Formulations (SF) and (AF) require enumeration of all the feasible subsets of sce-
narios and of all feasible solutions for every scenario, respectively. Enumeration can be
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performed implicitly bymeans of column generation techniques, as it will be described
in Sect. 4.2.1.We conclude this section by showing that the two set partitioningmodels
have the same tightness in terms of continuous relaxation.

Theorem 6 Formulations (AF) and (SF) are equivalent in terms of continuous relax-
ation.

Proof In the following we will denote by (AF)c and (SF)c the continuous relaxations
of formulations (AF) and (SF), respectively. To prove the statement we show that,
given an optimal solution of (SF)c, there exists a feasible solution of (AF)c with the
same value, and vice versa. 	


Given an optimal solution ϑ of (SF)c, the corresponding solution for (AF)c is
defined as follows:

1. for each p ∈ Q do

σp := 0;
for j := 1 to � do ρ j p := 0;

endfor

2. for each St ∈ F such that ϑt > 0 do

let p be the solution induced by subset St ;
σp := σp + ϑt ;
for j := 1 to � do ρ j p := ρ j p + z jt ϑt

endfor

Step 1 initializes an empty solution, while the second step defines the correct value
for the σ and ρ variables. In this step, only subsets St that are actually selected in
solutionϑ are taken into account. For each such subset, the associated induced solution
p is considered, i.e., an optimal solution of subproblem (9). Every positive value ϑt

is used to increase the value of a single σ variable, hence K ≥ ∑|F |
t=1 ϑt = ∑

p∈Q σp.
Similarly, for each scenario j , each variable ρ j p is increased by ϑt when considering a
subset St that (i) is selected; (ii) includes scenario j ∈ St (i.e., z jt = 1); and (iii) induces

solution p. It follows that 1 = ∑|F |
t=1 z jt ϑt = ∑

p∈Q ρ j p, hence solution (σ, ρ) is
feasible to (AF)c. Finally, consider a selected subset St , which contributes with a cost
ctϑt to the objective function of (SF)c. Let p be the associated induced solution and
note that, by definition, we have ct = ∑

j∈St r jp. Increasing by ϑt each variable ρ j p

( j ∈ St ) produces a cost increase equal to
∑

j∈St r jp ϑt = ϑt
∑

j∈St r jp = ct ϑt in
the objective function of (AF)c. Hence, the two solutions have the same cost.

Assume now that (σ, ρ) is an optimal solution for (AF)c. The following procedure
defines a solution ϑ for (SF)c:

1. for each St ∈ F do ϑt := 0;
2. for each p ∈ Q do

for j := 1 to � do ρ̄ j p := ρ j p;
while there exists a j ∈ {1, . . . , �} such that ρ̄ j p > 0 do

123



K -adaptability in stochastic optimization 581

let St = { j : ρ̄ j p > 0}, and ρmin := min j∈St {ρ̄ j p};
ϑt := ϑt + ρmin;
for each j ∈ St do ρ̄ j p := ρ̄ j p − ρmin

endwhile

endfor

At each iteration of the for loop, we consider a solution p and possibly define a
number of different sets St . By optimality of (σ, ρ), for each such set St , p is an
optimal solution for the associated problem (9), and ct is the sum of the costs of
solution p in the scenarios in St . Thus, (AF)c and (SF)c have the same solution value.
By construction, for each p ∈ Q, we have

∑
t :p optimal for St

ϑt = σp = max
j∈{1,...,�} ρ j p,

which makes the sum of all the ϑt at most K . In addition, for each scenario j , we have∑
t : j∈St ϑt = ∑

p∈Q ρ j p = 1. Hence, solution ϑ is feasible for (SF)c.

4 Exact algorithms

Solving the set partitioning formulations of Sect. 3.2 requires to enumerate all solutions
and all possible subsets of scenarios, respectively, which is possible only for instances
with small size. In this section we describe two alternative exact methods for solving
instances that cannot be attacked by the direct application of an MILP solver.

4.1 Enumeration of partitions

The first exact method is an extension of an approach introduced in [7] for the (mEm).
This algorithm is proven to be an oracle-polynomial time algorithm if � − K is fixed,
i.e., it provides a positive complexity result in this special case of (DCmEm). The
proposed enumerative approach is based on the following consideration: let P be a
partition of the scenarios in K subsets S1, S2, . . . , SK . Then, an optimal solution for
(DCmEm) can be determined by computing K solutions, the i-th induced by subset Si
according to (9). The K solutions induced by the subsets constitute a set of solutions
for (DCmEm); with an abuse of notation, we denote this set as the solution induced
by P .

Using this observation, one can design an exact algorithm that defines all possible
partitions of scenarios into K subsets and, for each partition P , computes the induced
solution. It is easy to see that, to avoid symmetric partitions and empty subsets (which
are unnecessary to define an optimal solution), it is enough to consider “only” S�,K

partitions, where S�,K is the Sterling number of the second kind.
This algorithm has twomain pitfalls. First, the number of partitions to be considered

can be very large, in particular when � − K is large. In addition, the determination of
the solution induced by a subset of scenarios requires to solve a problem that does not

123



582 E. Malaguti et al.

have the same structure as the deterministic underlying problem, and may be much
more challenging than the latter from a computational viewpoint. For example, if
the underlying problem is a knapsack problem, then the problem to be solved is a
multidimensional knapsack problem, in which different knapsack constraints (one for
every scenario) have to be considered.

4.2 Branch-and-price algorithm

In this section we present an exact algorithm based on the first set partitioning for-
mulation introduced in Sect. 3.2, which is more convenient for generating columns
than the second one. Section 4.2.2 describes a branch-and-price scheme that uses, at
each node, the algorithm described in the next section for computing a lower bound
by solving the LP relaxation of the model.

4.2.1 Column generation

By dropping the binary requirements, the domain of the variables of model (SF) can
be replaced by ϑt ≥ 0 (t = 1, . . . , |F |), and hence the dual of the resulting model is:

max
∑�

j=1 λ j + K μ

s.t.
∑�

j=1 z jtλ j+ μ ≤ ct t = 1, . . . , |F |
μ ≤ 0,

where λ j ( j = 1, . . . , �) and μ are the dual variables associated with the constraints
of (SF)c.

Column generation defines a restricted master problem, in which a subset of the
ϑt variables is used, and solves this continuous problem to optimality. Let λ∗

j ( j =
1, . . . , �) and μ∗ be an optimal dual solution to the restricted master problem. Then,
column generation asks for a variable (column) that has a negative reduced cost, i.e.,
whose associated dual constraint is violated. For a given subset S of scenarios, the
associated dual constraint is violated if

∑
j∈S

λ∗
j + μ∗ > c(S)

where c(S) = ∑
j∈S ξ j T x(S) is the cost of the induced solution. This solution must

satisfy all constraints of the scenarios in the subset. The problem of determining
the subset S (if any) whose associated dual constraint is maximally violated can be
formulated by introducing, for each scenario j , a binary variable π j taking value 1
if and only if scenario j belongs to subset S. The reduced cost c̄(S) of this subset is
given by the optimal solution of the following problem

c̄(S) = min
∑�

j=1(ξ
j T x − λ∗

j ) π j − μ∗
s.t. π j = 1 ⇒ x ∈ X j j = 1, . . . , �

π j ∈ {0, 1} j = 1, . . . , �.
(10)
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If the optimal solution of the model has a negative value, then the subset of scenarios
S = { j : π j = 1} corresponds to a variable with negative reduced cost and should be
added on-the-fly to the current restricted master.

The model includes a set of non-linear implications that can be either expressed
by linear constraints using large M coefficients, or formulated as indicator constraints
(see the discussion in Sect. 3.1). In our experiments with a general-purpose solver,
we experienced better performances using the first strategy. In addition, the objective
function involves the product of the x and π variables, where the latter are binary.
Each bilinear term can be replaced by an additional variable whose value is defined
either by an indicator constraint or by linearization with a large M coefficient.

Note that the pricing problem isNP-hard, as shown the following reduction from
the Completion problem (see Sect. 2.2).

Theorem 7 The pricing problem (10) is equivalent to Completion problem with K f =
K̄ = 1.

Proof We can reformulate the objective function of the pricing problem as

min
�∑

j=1

ξ j T xπ j +
�∑

j=1

λ∗
j (1 − π j ) −

�∑
j=1

λ∗
j − μ∗

where the last two terms are constant and do not depend on the variables.
We now show that the pricing problem can be reduced to the Completion problem.

Given an instance of the former, we define an instance of the latter with n+1 variables
and �+1 scenarios. Every scenario j ≤ � gets the feasible set (X j ∪{0}n)×{0, 1}. As
to the objective function, it has a coefficient ξ j

h for each variable xh ( j = 1, . . . , �; h =
1, . . . , n), and a coefficient λ∗

j for variable xn+1. The last scenario has a feasible set

X�+1 = {0, 1}n+1, zero objective function for the first n variables, and a coefficient
equal to M for the last variable. Finally, we set the fixed solution as follows: x̄h = 0
for h = 1, . . . , n and x̄n+1 = 1.
Consider a scenario j covered by the fixed solution: the contribution to the objective
value is λ∗

j if j ≤ �, andM otherwise. Let x be the free solution determined solving the

Completion problem with K f = K̄ = 1. For a sufficiently large value of M , the free
solution must have xn+1 = 0, i.e., the solution covers the last scenario with zero cost.

For the remaining scenarios j ∈ {1, . . . , �}, the free solution has a cost ξ j T x , i.e.,

each scenario j will be covered by the free solution x if x ∈ X j and ξ j T x < λ∗
j holds,

and by the fixed solution otherwise. In other words, the scenarios that are covered by
the free solution determine the set S that corresponds to the optimal solution of the
pricing problem.

Now we want to reduce the Completion problem to the pricing problem. To this

aim, given a fixed solution x̄ , we set λ∗
j = ξ j T x̄ for each scenario j , and use the same

set of scenarios in both problems. It is easy to see that the objective functions of the
two problems are equivalent to each other and solution x f is equivalent to x . 	


As the pricing problem is in general NP-hard, it makes sense to solve it using
a heuristic algorithm, resorting to an exact method only in case the former failed in
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Algorithm Heur Pricing

Sample at random p1 subsets of scenarios S1, . . . , Sp1
for q = 1 to p1 do

compute an approximate reduced cost l̄(Sq);
endfor
sort the subsets by non-decreasing l̄(S) values;
for q = 1 to p2 do

if l̄(Sq) < 0 then
compute the reduced cost c̄(Sq);
if c̄(Sq) < 0 then add a new variable to the restricted master

endif
endfor
return

Fig. 2 Heuristic algorithm for pricing

producing a variable with negative reduced cost. Our heuristic algorithm for pricing,
described in Fig. 2, takes in input two integer parameters p1 and p2. In our imple-
mentation, we used p1 = 5000 and p2 = 500, as this setting produced good results in
our preliminary tests. The algorithm randomly selects p1 subsets of scenarios (chosen
with equal probability) and checks whether one of them corresponds to a column with
negative reduced cost. As already observed, evaluating the reduced cost of a subset
S requires to compute the solution induced by S, which can be time consuming in
practice. For this reason, the following heuristic rule is used to reduce the number of
subsets that are evaluated: for each candidate subset, we determine an approximated
reduced cost, and compute the real reduced cost for the most promising p2 subsets

only. The reduced cost of a subset S is given by −μ∗ − ∑
j∈S λ∗

j + ∑
j∈S ξ j T x(S),

where x(S) is the solution induced by S. Hence, an approximate algorithm for deter-
mining this solution produces an approximate value for the reduced cost as well. The
design of the specific algorithm used to compute an approximate induced solution
depends on the underlying problem.

As a further improvement to the pricing step, note that the reduced cost of a column
(variable) consists of a linear term depending on the dual variables plus the costs
of the induced solution. Computing the second part can be very time consuming
depending on the underlying problem, whereas the first part can be computed with
limited computational effort. Observe that only the first part of the reduced costs
changes through the column generation process. Therefore, by creating a hash table
with sets of scenarios as keys and the corresponding induced solution and cost as
values, one can compute “for free" the reduced cost of a column involving a subset of
the scenarios that occurred before.

Every time an induced solution is computed and not added to the master (as it
does not have a negative reduced cost), we store it and its cost in this table. This may
happen if heuristic pricing is used, as many subsets of scenarios are considered and
the induced solution for each subset is computed, but also if an exact solver is used
for the pricing problem. In the latter case, indeed, one can exploit the possibility of
modern solvers to provide, in addition to the optimal one, a pool of feasible solutions
with no computational overhead. Before using the heuristic, we compute the reduced
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cost (taking into account the updated dual values) for each variable corresponding to a
subset of scenarios stored in the hash table; if a variable with negative reduced cost is
found, we add it to the master problem, which is then re-optimized. Our computational
experiments (see Sect. 6) show that this may have a dramatic impact in the perfor-
mances of the overall procedure, mainly when the underlying problem is hard to solve.
Using hash tables makes the column generation procedure faster and faster the more
iterations are executed. As a consequence, the method shows a speed-up during the
exploration of the enumeration tree in the branch-and-price algorithm because large
parts of these hash tables can be passed on from the parent node to a child node.

4.2.2 Branching scheme

The algorithm for computing the LP relaxation of model (SF) has been embedded into
a branch-and-price algorithm. At the root node, a feasible solution is computed using
a fast heuristic algorithm [7]. At each node, the continuous relaxation of the current
subproblem is solved, producing a lower bound on the optimal solution value of the
current subproblem. If the solution of the relaxation is integer, the incumbent may be
improved and the node is fathomed. Otherwise, if the lower bound is smaller than the
incumbent value, the optimal solution of the continuous relaxation is used to branch,
producing two subproblems that are explored according to a depth-first strategy. In
particular, let a be a scenario that is included in more than one subset that is selected
in the current fractional solution (note that this scenario always exists in a non-integer
solution). Let S1 and S2 be two of these subsets, and let b be a scenario that belongs to
the symmetric difference of S1 and S2. In the first node we impose the scenarios a and
b belong to the same subset, while in the other node we forbid it. Observe that these
branching rules affect the pricing subproblems at the descendant nodes. However, a
nice property of this branching scheme is that handling these modification is very easy
both in the heuristic generation, and in the exact model. Indeed, in the latter case, it
is enough to enforce in (10) the additional constraints πa = πb for the first node, and
πa + πb ≤ 1 for the second one.

In general, we have a number of candidate scenarios for a and b, thus we use the
following tie breaking rules. For each scenario j , we define a score

score1
j =

∑
t : j∈St

min{1 − ϑt , ϑt },

that gives a measure of the distance to the closest integer of all the variables associated
with subsets that contain j , and select the scenario a having the maximum score.

For a given a, we assign to each scenario a second score

score2
j = min

{|{t : ϑt > 0, a ∈ St , j /∈ St }|, |{t : ϑt > 0, a ∈ St , j ∈ St }|
}
,

and take the scenario b that maximizes this figure. In this way, we define a branching
which balances (among the descendant nodes) the number of subsets that were in the
solution and that violate branching conditions.
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5 Approximation

In Sect. 2 we discussed the complexity of checking feasibility of (DCmEm), proving
hardness results even for the case of polynomial-time solvable underlying problem.
We now present some results concerning the approximation of (DCmEm). Given the
negative results on approximability in [7], we focus on problem (9), i.e., computing the
solution induced by a subset of scenarios S; observe that this problem can be hard even
if the underlying problem is polynomial-time solvable. We show that, replacing the
exact oracle for problem (9) with an approximation algorithm yields an approximation
algorithm for (DCmEm) as well.

Theorem 8 Assuming that all the optimal values of the oracle are either always non-
negative or always non-positive, using an α-approximation as oracle for optimizing
a subset of scenarios (problem (9)) gives an α-approximation algorithm with respect
to the algorithm embedding an exact oracle.

Proof Without loss of generality, we assume that all the optimal values of the oracle
are non-negative and that we have a minimization problem. (A similar proof can be
given in case of non-positive optimal values).

For a given set S of scenarios, let valα(S) be the solution value obtained solving
problem (9) for S through an α-approximation algorithm. With an abuse of notation,
given an arbitrary partition P̃ = {S1, S2, . . . , SK } of the scenarios, we denote by
valα(P̃) the solution value obtained executing the α-approximation algorithm for
each S ∈ P̃ . Finally, let val1(S) and val1(P̃) be the same figures when an exact
oracle is used. By definition of α-approximation, for each subset S of scenarios in the
partition, we have valα(S) ≤ α · val1(S), and hence

valα(P̃) =
∑
S∈P̃

valα(S) ≤
∑
S∈P̃

α · val1(S) = α · val1(P̃)

Denote now by val∗α = min
P

valα(P) the best solution value, over all possible parti-

tions, using the α-approximation algorithm. We have

val∗α ≤ valα(P̃) ≤ α · val1(P̃) (11)

Finally, let val∗1 denote the optimal solution value for the problem, i.e., the solution
obtained solving with an exact oracle the subproblems associated with an optimal
partitioning.
Observe that (11) is valid for any partition P̃ . Using an optimal partition, we get
val∗α ≤ α · val∗1 , which concludes the proof. 	


Note that Theorem 8 requires that the optimal values of the subproblems are all
non-negative, a typically mild assumption in practice. However, the theorem does not
imply the existence of a polynomial time α-approximation algorithm for (DCmEm),
neither in case a polynomial time α-approximation for subproblem (9) is available,
as (DCmEm) cannot be solved in oracle polynomial time in general (and isNP-hard
even for underlying problems that are solvable in polynomial time).
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Theorem 9 Replacing the exact oracle with an algorithm having absolute approxi-
mation OPT + c yieds an algorithm for (DCmEm) having absolute approximation
(OPT + K · c).
Proof The proof is similar to that of Theorem 8. The only difference is that, for each
subset S of scenarios, the algorithm has an absolute approximation, i.e., the associated
solution value is

valα(S) ≤ c + val1(S)

where c is a positive constant. Using the approximation algorithm for all subsets of
scenarios we get

valα(P̃) =
∑
S∈P̃

valα(S) ≤
∑
S∈P̃

(c + val1(S)) = K · c + val1(P̃)

	

Note that in the case of an absolute approximation, we do not need to make the

assumption that all the optimal values of the oracle are non-negative or non-positive.

6 Computational experiments

The described algorithms were implemented in Java version 1.8.0_212 and executed
onmachines using Intel Xeon processors with 2.6 GHz. For all the linear and quadratic
integer programming problems we used IBM-ILOG Cplex version 12.9. The branch-
and-price algorithm was implemented without using any predefined framework.

In our experimentswe considered the following three different underlying problems
with increasing level of complexity:

– Maximum flow problems For these problems, we always used a quadratic grid
graph as network. The capacity of the arcs were generated in each scenario as
equally independent distributed rational numbers between 0.0 and 1.0, while the
entries of each cost vector ξ were set to −1.0 if the corresponding arc leaves the
source and 0.0 otherwise. All numbers were rounded to the second digit;

– Knapsack problems In each scenario, the profits and weights of the items were
randomly generated as uncorrelated uniformly distributed values between 0.0 and
1.0. The capacity value was always set to 0.75W , where W denotes the current
sum of the weights of the items. In this case, all values were rounded to the third
digit;

– Multidimensional knapsack problems We considered a variant of the knapsack
problem in which there are 5 knapsack constraints. The profit, weight and capacity
values for each scenario were generated as in the knapsack case;

In this sectionwe compare exact algorithms for (DCmEm) on instances definedwith
different values of K and �. For the maximum flow problem, variables are associated
with arcs, and we used n ∈ {24, 40}. For knapsack and multidimensional knapsack
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instances, variables are associated with items, and we used n ∈ {10, 15}. In all cases,
for each combination of parameters K , �, and n, we randomly generated 10 instances.

We compare the following four exact algorithms, each executed with a time limit
of 600 seconds per instance:

– Compact formulation direct application of the solver to the compact formulation
(5)–(8). In this case,we linearized constraints (7) using largeM coefficients instead
of using indicator constraints, and let the solver handle the the linearization of the
objective function;

– Set partitioning direct application of the solver to the set partitioning formula-
tion SF. In our implementation, we spent at most 90% of the time for subsets
enumeration; in case this limit is reached, the solver is applied to a restricted
formulation, thus producing a heuristic approach;

– Enum. of partitions enumeration of partitions according to the procedure described
in Sect. 4.1;

– Branch-and-price enumerative algorithmbasedoncolumngeneration, as described
in Sect. 4.2.

Tables 1, 2 and 3—report the results for the different classes of instances. Each
table reports, for each algorithm:

– value average ratio (over 10 instances) between the solution produced by the
algorithm and the best known solution for each instance;

– # TL number of instances (out of 10) for which the algorithm hit the time limit;
– time average computing time (with respect to the instances solved to optimality
only).

The results in Table 1 show that, on the Maximum Flow Problem instances, the
compact formulation is the best approach for K ≤ 3. Increasing the value of K , this
method could solve to proven optimality only a few instances with small values of K
and/or �, though it produced high-quality solutions in the other cases. The branch-and-
price algorithm is the best approach for K ≥ 4. It is the only algorithm that is able to
solve instances of all settings. Finally, note that the enumeration of partitions is able
to solve a large fraction of the instances. However, the computing time required by
this algorithm is typically larger than that for set partitioning and branch-and-price.
Also, it strongly depends on the number of scenarios, and the approximation given for
unsolved instances is unsatisfactory in some cases.

For the single Knapsack Problem (see Table 2) the situation is similar: the compact
formulation has good performances for most settings with K = 2 and for K = 3,
while this algorithm becomes unpractical for larger values of K . For most of the other
settings branch-and-price outperforms the other algorithms. Observe that there are
some instances for which Set Partitioning does not reach the global time limit but
hits the time limit imposed on the subsets enumeration phase, which prevents the
possibility to compute an optimal solution.

The results show that an increase of � has a higher impact on the running time of all
algorithms apart the branch-and-price algorithm. Therefore, we expect that branch-
and-price algorithm could outperform the compact formulation even more in case of
larger instances and could also be able to be better in some instances with K = 2
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in case a larger time limit is used. However, when both algorithms hit the time limit,
frequently the compact formulation has a slightly better solution value than the branch-
and-price algorithm. This is due to the lack of heuristics in the latter approach, while
the former takes advantage of the heuristic algorithms that the MILP solver may use
on a compact formulation. The integration of heuristic algorithms at the various nodes
of the branch-and-price algorithm could improve the performances of this method, but
this is outside the scope of the current paper.

Finally, Table 3 illustrates the results of the tests for theMultidimensional Knapsack
Problem. In this case too, the compact formulation is the best exact algorithm for K ≤ 3
and � = 15 only. The enumeration of partitions solves to optimality only the cases
with � = 15. In all the other settings the branch-and-price is the best algorithm.

6.1 Large instances

In order to determine the computational limit of the proposed approaches, we consid-
ered an additional benchmark of randomly generated instances whose size is larger
than those addressed in the previous experiments. In all these instances, the underlying
problem is the Knapsack Problem, which has an intermediate level of computational
complexity compared with Maximum Flow and with Multidimensional Knapsack
problems. The additional instances are generated exactly as those addressed in Table 2,
but for the choice of parameters K , �, and n, whose values are raised up to 15, 30, and
50, respectively.

For these experiments we tested the compact formulation, the set partitioning and
the branch-and-price with a time limit of two hours per instance. The results are
given in Table 4 and report, for each algorithm, the average ratio (over 10 instances)
between the solution produced by the algorithm and the best known solution for each
instance (column “value”). In addition, for the branch-and-price algorithm, we report
the number of instances (out of 10) for which the algorithm hit the time limit (column
“TL”) and the average computing timewith respect to the instances solved to optimality
(column “time”). These two columns are not reported for compact formulation and
set partitioning that hit the time limit for all the instances in the benchmark.

The results in Table 4 show that compact formulation and set partitioning are unable
to face instances characterized with large values of K , � or n. Note that, in many cases,
the set partitioning formulation is unable to even compute a feasible solution within
the time limit; in these situations we report a ‘–’ in the corresponding entry in column
“value”. The performances of the branch-and-price improve with larger values of K :
the number of instances (out of 100) that are solved to optimality is equal to 13 for
K = 2, and this figure is equal to 20 for K = 5, 52 for K = 10 and 81 for K = 15.
Conversely, increasing the number n of items produces a worsening of the results:
the algorithm hits the time limit for 11 instances with n = 15 (out of 80), 54 times
for n = 25, and 70 times for n = 50. As to parameter �, its value seems to have a
minor impact in this analysis: the algorithm solves 105 instances (out of 200) with
� = 25 and 61 instances with � = 30. Finally, for what concerns the quality of the
solution produced, we observe that branch-and-price algorithm is the best algorithm
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Table 4 Results for the exact methods for large Knapsack instances

K � n Compact formulation Set partitioning Branch-and-price
Value Value Value # TL Time

2 25 15 0.999 – 0.999 1 4807.7

2 25 20 1.000 – 0.991 10 –

2 25 25 1.000 – 0.987 10 –

2 25 30 1.000 – 0.987 10 –

2 25 50 1.000 – – 10 –

2 30 15 0.999 – 0.996 6 3723.8

2 30 20 1.000 – 0.983 10 –

2 30 25 1.000 – 0.979 10 –

2 30 30 1.000 – 0.989 10 –

2 30 50 1.000 – 0.991 10 –

5 25 15 0.983 1.000 1.000 0 2174.5

5 25 20 0.986 1.000 0.992 7 6053.0

5 25 25 0.985 1.000 0.988 10 –

5 25 30 0.986 1.000 0.982 10 –

5 25 50 0.984 1.000 0.983 10 –

5 30 15 0.983 0.997 0.996 4 5319.7

5 30 20 0.987 0.998 0.992 9 7199.0

5 30 25 0.997 – 0.999 10 –

5 30 30 0.998 – 0.997 10 –

5 30 50 1.000 – 0.992 10 –

10 25 15 0.988 1.000 1.000 0 115.5

10 25 20 0.988 1.000 1.000 0 762.8

10 25 25 0.987 1.000 0.998 3 3798.1

10 25 30 0.989 1.000 0.991 4 7048.7

10 25 50 0.981 1.000 0.984 10 –

10 30 15 0.987 1.000 1.000 0 437.4

10 30 20 0.989 1.000 0.999 1 2969.6

10 30 25 0.985 1.000 0.988 10 –

10 30 30 0.984 1.000 0.986 10 –

10 30 50 0.980 1.000 0.983 10 –

15 25 15 0.994 1.000 1.000 0 36.9

15 25 20 0.993 1.000 1.000 0 211.0

15 25 25 0.989 1.000 1.000 0 533.0

15 25 30 0.989 1.000 1.000 0 738.4

15 25 50 0.987 1.000 1.000 0 2732.9

15 30 15 0.992 1.000 1.000 0 64.6

15 30 20 0.990 1.000 1.000 0 906.7
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Table 4 continued

K � n Compact formulation Set partitioning Branch-and-price
Value Value Value # TL Time

15 30 25 0.988 1.000 0.999 1 3918.3

15 30 30 0.985 1.000 0.991 8 6029.0

15 30 50 0.983 1.000 0.986 10 –

on average, though set partitioning is very effective for those instances for which it is
able to compute a feasible solution within the time limit.

7 Conclusions

We considered stochastic problems in which recourse actions can be taken after the
exact nature of uncertainty materializes, and one is allowed to implement a specific
solution chosen among K that have been computed in advance. The resulting K -
adaptability paradigm is extremely challenging both from a theoretical and from a
computational viewpoint: we proved that even determining if the problem has a solu-
tion is NP-hard, also in case the underlying problem can be solved in polynomial
time. We introduced mathematical formulations of the problem and exact solution
approaches. Finally, an extensive computational analysis has been carried out on a
large set of randomly generated instances.
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copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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