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Abstract: The volume of fluid (VOF) method is a popular technique for the direct numerical simula-
tions of flows involving immiscible fluids. A discrete volume fraction field evolving in time represents
the interface, in particular, to compute its geometric properties. The height function method (HF)
is based on the volume fraction field, and its estimate of the interface curvature converges with
second-order accuracy with grid refinement. Data-driven methods have been recently proposed as
an alternative to computing the curvature, with particular consideration for a well-balanced input
data set generation and symmetry preservation. In the present work, a two-layer feed-forward
neural network is trained on an input data set generated from the height function data instead of the
volume fraction field. The symmetries for rotations and reflections and the anti-symmetry for phase
swapping have been considered to reduce the number of input parameters. The neural network
can efficiently predict the local interface curvature by establishing a correlation between curvature
and height function values. We compare the trained neural network to the standard height function
method to assess its performance and robustness. However, it is worth noting that while the height
function method scales perfectly with a quadratic slope, the machine learning prediction does not.

Keywords: curvature computation; volume of fluid; height function; machine learning; neural network

1. Introduction

Flows with immiscible fluids, such as water and air, are common in natural phenomena
and engineering applications. A wide range of spatial scales is usually observed, ranging
from meters, as in sea waves, to microns, as in atomizing jets. A popular approach to deal
with these flows, which require the computation of an interface evolving in time, is the
one-fluid formulation of the Navier–Stokes equations for incompressible flows, where the
different fluids are treated as one fluid with material properties that may change abruptly
at the interface.

In this paper, we consider the one-fluid formulation for two-phase flow over a two
or three-dimensional domain Ω. When the one-fluid formulation is combined with an
interface-capturing method, a marker function f (x, t) is required to distinguish the two
different fluids and compute the geometric properties of the interface. Let reference phase
1 be contained in Ω f . We denote by f (x, t) the indicator function for the reference phase
defined in such a way that is one for all x ∈ Ω f and zero on Ω−Ω f . The indicator function
f behaves like a passive scalar and satisfies the following advection equation:

∂ f
∂t

+ u · ∇ f = 0 in Ω× [0,T] . (1)

The fluid state consists of a unique velocity–pressure field (u, p) that satisfies the
following Navier–Stokes equation [1,2].
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ρ
(∂u

∂t
+ u · ∇u

)
= −∇p +∇ ·

[
µ(∇u +∇uT)

]
+ F + Fs in Ω× [0,T] , (2)

and obeys the incompressibility constraint

∇ · u = 0 in Ω . (3)

F and Fs are the external body (e.g., gravity) and the interface force, respectively. The
two fluids, the reference phase 1 and the secondary phase 2, both have constant densities,
ρ1 and ρ2, and dynamic viscosity, µ1 and µ2, respectively. The density ρ and viscosity µ in
(2) are functions of the indicator function f

ρ = f ρ1 + (1− f )ρ2 , (4)

µ = f µ1 + (1− f )µ2 on Ω . (5)

The surface tension force, located at the interface Γ f separating the two fluid phases,
can be written as [3,4].

Fs = σκn , (6)

where σ is the constant surface tension coefficient and n is the normal to the interface.
The computation of an accurate discrete curvature κ is very difficult since the interface is
approximated by a piecewise linear representation with discontinuous normal and tangent
vectors. The best numerical computation of the function indicator f , which determines
the interface location and its geometrical properties (6), is still an open question and, since
discontinuous functions are involved, a weak formulation may be more appropriate [2,5].

The numerical error derived from the capillary force introduces the appearance of
spurious currents. This leads to speed fluctuations at the interface and numerical instabil-
ities that may not decrease over time and lead to artificial interface breakdown. The im-
plementation and calculation of capillary force is then critical. For details on different
implementations and instabilities, see [1,3] and citations in them.

The position of the interface is updated by numerically solving Equation (1), for the
marker function f (x, t) with algebraic or geometric methods [1]. Among the interface
capturing methods, the volume of fluid (VOF) method considers the discrete volume
fraction or “Color” function C to characterize the interface on a computational grid [6].
Grid cells with only one fluid will have C = 1 or C = 0, according to the presence or
lack of the reference phase. An intermediate value, 0 < C < 1, is found in the cells cut
by the interface. Discrete spatial derivatives of the volume fraction field are required to
compute the local geometric properties of the interface and they are usually very noisy
because of their discontinuous representation. Diffusion operators or convolution with
a smoothing kernel can be applied to the volume fraction field locally to obtain a more
regular C̃ field before differentiating it [3,7]. An outward normal n at each surface point
can then be computed by a discrete approximation of the expression n = −∇C̃/||∇C̃||
and the curvature κ of the expression κ = −∇ · n. The numerical convergence of these
techniques over different grids depends on the type and support of the kernels.

The interested reader can find different approaches for curvature computations
in [2,8–11]. For example, another approach to compute the curvature of an interface
is the height function (HF) method. In two dimensions (2D), the height function can be
envisioned as the distance of the points of an interface line from a reference coordinate
axis. With the introduction of a continuous formulation, it has been shown analytically
that the HF method converges quadratically to the exact values of the unit normal n and
the curvature κ [8]. The HF data are proportional to a local integral of the volume fraction
field, and numerically, on a uniform Cartesian grid, they can be obtained by summing the
volume fractions along columns aligned with coordinate directions. A stencil of heights is
then used to compute the local value of the geometric properties of the interface line with
finite differences.

In the standard approach in 2D, a fixed 7× 3 stencil is used for the summation to
obtain three consecutive HF values. An adaptive stencil is an efficient alternative that can
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be considered to compute the curvature when complex topologies are present, as in the
case of merging or seperating of interfaces. Furthermore, the standard method is unreliable
or even breaks down when the interface radius of curvature is comparable to the grid step.
A few hybrid methods have been developed to overcome this issue [12]. Usually, they
combine the HF method at high grid resolution with another method at low resolution. One
option is a least-squares (LS) method that fits a parabola over a set of interface points [13],
and another one is the convolution (CV) method [14]. A branching algorithm is usually
required to switch between the two methods.

In recent years, machine learning has been considered to estimate interface properties.
In this data-driven approach, a mapping function between input data and output variables
is learned from the data [10,15–18]. Due to their modular structure, neural networks are,
in principle, able to manage complex functional relations. For example, this approach has
been used to compute the normal at the interface from volume fractions [15] and the constant
α in the linear equation n · x + α = 0 for Piecewise Linear Interface Construction (PLIC) [10].

When the interface property to be computed is the local curvature κ in the reference
cell denoted by (i, j), the functional relationship f between κ and the nine-volume fractions
C around the reference cell (i, j) can be formally stated as

h κ = f

Ci−1,j+1 Ci,j+1 Ci+1,j+1
Ci−1,j Ci,j Ci+1,j

Ci−1,j−1 Ci,j−1 Ci+1,j−1

 , (7)

where the local curvature has been multiplied by the constant grid spacing h to make the previ-
ous expression non-dimensional. Circular geometries of different radii have been considered
to initialize the volume fractions [19]. This approach was extended to three dimensions (3D)
by considering a 3× 3× 3 stencil and spherical segments to initialize the local volume fraction
field [20], and a feed-forward neural network with a single hidden layer was employed.

Neural network models are not sensitive to interface symmetries, which can be ob-
tained by a rotation or reflection of the volume-fraction grid or an inversion between
two phases. Symmetry-preserving models have been proposed in the context of interface
reconstruction [7]. However, other configurations need to be evaluated. With a proper
choice of the neural network, the number of configurations in the training dataset for each
volume fraction stencil can be reduced in 2D to only four interface configurations [9].

In this paper, we develop a machine learning model (ML) that computes the local
interface curvature using the height function values. HF configuration symmetry is inves-
tigated with respect to rotations and reflections together with the convexity or concavity
of the interface. As a result, the number of independent parameters for three aligned HF
points is reduced to only two. The proposed model is tested on different shapes and is
compared with the same ML model that uses the volume fractions as input data and with
the HF model. Since the forces generated by the fluid motion can easily predominate over
the capillary force, it is necessary to test the accuracy of the curvature without motion. We
are planning to report the dynamical simulations in future papers.

In Section 2, the HF method is briefly reviewed along with the invariance of the
curvature with respect to a few geometric transformations. The neural network model is
analyzed in Section 3, including the data generation methodology and the training process.
Finally, the results are presented in Section 4 followed by conclusions.

2. The Height Function Method
2.1. The Continuous and Discrete Height Function

Consider an interface line that can locally be written in the explicit form y = g(x),
and assume that g(x) is continuous with its derivatives. The continuous height function
H(x; h) is defined as

H0 = H(x; h) =
1
h

∫ x+h/2

x−h/2
g(s) ds (8)
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The function H represents the mean value of g(x) in the given interval of integration
of size h. Analogously, the value of the height function in the two adjacent intervals can
be denoted as H−1 = H(x− h; h) and H+1 = H(x + h; h), respectively. With these three
consecutive values, it is possible to approximate with centered finite differences the value
of the first and second derivatives and of the curvature κ of the function g(x) at point x

Hx =
H+1 − H−1

2h
, Hxx =

H+1 + H−1 − 2H0

h2 , κ =
−Hxx(

1 + H 2
x
)3/2 (9)

It has been shown that these expressions are second-order accurate with the grid
spacing h [8].

In a computational grid in 2D with square cells of side h, the discrete height function
can be calculated by adding the volume fraction data along a coordinate direction. In the
standard height function method (SHF), a fixed 2D stencil is used, usually involving
7× 3 cells, where the first digit refers to the number of cells involved in the summation,
and the second digit to the number of heights that are necessary to numerically approximate
the curvature. With respect to a reference cell (i, j) cut by the interface, with volume fraction
Ci,j that satisfies 0 < Ci,j < 1, the summation in the y-direction is along the 1D stencil that
extends three cells above and below the reference one

Hi =
1
h

∫ xi+h/2

xi−h/2
g(s) ds =

1
h

k=+3

∑
k=−3

Ci,j+k h2 (10)

The interface line should cross the column with thickness h within the 1D stencil. This
condition can be enforced by requiring that this stencil is bounded by a full cell on one
end, C = 1, and an empty cell on the other one, C = 0. This is a sufficient condition for
a well-defined height value. The summation is along the coordinate direction with the
largest projection along the interface unit normal n, which can be computed numerically
from the volume fraction field with different alternative methods [1].

However, it is not always possible to find three consecutive well-defined heights along
the same direction, in particular, when the local radius of curvature ρ is comparable to the
grid spacing h, ρ∼h, or when two different interface lines are approaching or separating
from each other.

A way to consider this issue is to use the generalized height function (GHF) with an
adaptive 1D stencil. In the present study, the maximum extension of the stencil is limited to
5 cells. In Figure 1, the height can be computed in the first two cases but not in the third
one, where a stencil with at least 6 cells is required. However, in the last case, the height
can probably be computed along the other coordinate direction. The HF value is stored as
an offset from the center of the cell (i, j) that contains it. An integer flag is set to indicate
that the cell contains the HF and its orientation. A different value of the integer flag is
used to indicate that a cell does not contain the HF value but that it was involved in the
summation, as in the case of Figure 1b, where there are three cut cells, but only one contains
the HF value. In isolated cut cells or with very complex local topologies, the midpoint of the
Parker–Youngs reconstruction is considered [21]. Once the HF data have been computed,
another sweep across the computational domain is required to collect triplets of HF values
to compute n and the local curvature κ and to interpolate these geometric properties of the
interface in the cut cells where the HF is not present.

2.2. Symmetry Considerations for the Machine Learning Model

The curvature of an interface should be invariant under a few geometric transfor-
mations of the computational grid and the related volume fraction distribution. These
transformations include reflections over a coordinate axis or the diagonal lines y = ±x.
A rotation of an angle that is a multiple of π/2 can be viewed as a sequence of such
reflections. In Figure 2, a triplet of HF values of a given color, either red or blue, is clearly in-
variant with such a rotation. In particular, the symmetry axes are shown as yellow straight
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lines in that image. The set of red HF values is identical when considering a rotation of
90◦. The same is true for the set of blue HF values. Furthermore, red HF values can be
mapped onto the blue ones, and vice versa, with a reflection over the appropriate yellow
line. The whole circumference can be reduced to an arc of 45◦ when considering all the
rotations and reflections mentioned above.

C = 0C = 1

(a)

(b)

(c)

Figure 1. One-dimensional adaptive stencil for height computation: (a) only three cells are required,
(b) the whole stencil is necessary and (c) the stencil is not wide enough to compute the height.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2. Geometric sectors of a circular interface: each HF triplet of a given color, here either blue or
red, can overlap with another one through a sequence of reflections over the symmetry axes (yellow
straight lines).

Independently from the sign convention, the curvature should change its sign when
we swap the two fluid phases. As shown in Figure 3, when the interface is concave to the
reference phase, the midpoint of the segment connecting the two side HF points is inside
the phase with a height smaller than the central one; on the other hand, when the interface
is convex, the midpoint is in the other phase, beyond the central HF point.

Figure 3. The position of the midpoint connecting the two side HF points is inside the reference phase
if the interface is concave (left), and it is outside if the interface is convex (right).
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For this reason, only the first case is considered in the machine learning model since the
curvature is always assumed to be positive, and then the two fluids are swapped when necessary.

Each HF point position is stored as an offset for the cell center. When the heights
are collected to compute the geometric interface properties, these points are translated to
the same local coordinate system. With three consecutive heights aligned along the same
direction and the notation of Equations (8) and (9), the coordinates of the three HF points
are (−h, H−1), (0, H0) and (h, H+1). Lengths are then normalized to the grid spacing h with
the origin of the local coordinate system placed on top of the central HF. The updated val-
ues of the coordinates of the three points are finally (−1, ∆H−), (0, 0) and (1, ∆H+), with
∆H− = (H−1 − H0)/h and ∆H+ = (H+1 − H0)/h. It is clear that the geometry of the
HF triplet is fully described by the two independent parameters ∆H− and ∆H+. At low
resolutions or with very complex topologies, it will be necessary to consider both vertical
and horizontal height functions or even the midpoint of the Parker–Youngs reconstruc-
tion. In that case, the points coordinate after normalization are (−δh−, ∆H−), (0, 0) and
(δh+, ∆H+), and the number of independent parameters increases to 4.

The machine learning database is constructed only with geometries with a positive
curvature value. The point with the highest HF value is always positioned to the left of
the central value to preserve the invariance of the curvature to geometric transformations,
∆H− > ∆H+.

3. Neural Network Model

This section describes the machine learning (ML) model used to calculate interface
curvatures. The input data can be either the values of the color or the height function
since the model is the same for all the different training datasets. Considering both the
color function and the height function data, we analyze a huge set of input data and
the performance of the ML model. We describe in detail both the methodology adopted
for the training dataset and the structure of the neural network. The results are then
compared to those obtained directly with the height function method to evaluate its
accuracy and performance.

3.1. Data Generation

The quality of the training dataset strongly influences the performance of the machine
learning model, so it is fundamental to generate a set that covers the whole range of input
data that are expected to be found in actual two-phase flow simulations as close as possible.
To this aim, a large number of circles are generated on a fixed Cartesian grid, each of
them characterized by a random position of the center, (xc, yc), a random value of the
radius, R, and of the angle, θ to determine a random point on the circumference. This
ensures that the position of the interface is arbitrary without any alignment bias. Traditional
methods for Direct Numerical Simulations (DNS) of two-phase flows perform accurately
for a radius-to-grid ratio R/h above 10. However, their performance degrades rapidly as
that ratio decreases. Hence, we set the admissible radius range between Rmin = 2 h and
Rmax = 1000 h, where h = 1/2000 is the fixed grid spacing of the unit square. The radius
distribution between these two limiting values can be determined with different approaches.
A simple approach is to use a uniform distribution in the radius R, while a more target-
oriented approach is to use a uniform distribution in the curvature κ, which results in a
larger density of small radii when it is compared to the region of large radii. The uniform-
in-curvature distribution guarantees that the training set spans all the output values we
want to reproduce with similar density. On the other hand, in the uniform-in-radius
approach, the density of training data with a large radius is comparatively much higher,
so it can have unique orientations between the grid and the interface. Nevertheless, we
have selected the uniform-in-curvature approach because, as already stated, traditional
curvature reconstruction methods generally perform better at smaller curvature values and
need a smaller density of training data in that range to achieve a good performance.



Energies 2024, 17, 3674 7 of 15

The generation of the training data can be summarized in the following procedure and
is also represented in Algorithm 1. We start by setting seeds for the random number genera-
tor to ensure the reproducibility of the sequence of random numbers: we used the standard
pseudo-random number generation routine available in the GNU libc library version 2.31,
which is available in many Linux distributions. The quality of this distribution is somewhat
limited but still adequate to generate the training data for machine learning [22]. We
generate sets of random values Vk, k = 1, 2, 3, 4, by assuming that all they lay in the interval
[0, 1], or we can convert them to this interval when the generated numbers are integers in
a given range. We set the curvature value as κ = κmin + V1(κmax − κmin) and determine
the radius R = 1/κ. We set the center to (xc, yc), with xc = xmin + V2(xmax − xmin) and
yc = ymin + V3(ymax − ymin), and the angle to θ = 2π V4 to determine the point P on the
circumference. We then locate the reference cell (iP, jP) that contains P and consider a
square section of the grid around that cell. Finally, we compute the volume fractions in that
square section. The central 3× 3 block of volume fraction values is stored in a dataset. HF
values around the reference cell (iP, jP) are also computed, and the three HF central values
are stored in another dataset.

Algorithm 1 Generation of the training data
Ensure: Random data generation

1: for k← 1 to 4 do
2: Seed_Generator()
3: Event_Generator()
4: end for

Ensure: Parametric values setting
5: Set_Curvature()
6: Set_Location()
7: Set_Angle()

Ensure: Compute training datasets
8: for i← 1 to Ns do
9: Grid_Cell()

10: Volume_Fraction()
11: Height_Function()
12: end for
13: Seed_Generator() { Set a seed for the k-th random number generator }
14: Event_Generator() { Generate a set of Ns random values Vk }
15: Set_Curvature() { Set the Ns curvatures κ and determine the radius R = 1/κ }
16: Set_Location() { Set the Ns positions of the circle center }
17: Set_Angle() { Set the Ns angles }
18: Grid_Cell() { Locate the computational grid cell that contains P and consider a

square section of the grid around that cell }
19: Volume_Fraction() { Compute the volume fractions in that square section and store

the central 3× 3 block of values in a dataset }
20: Height_Function() { Compute the height functions in that square section and store

the three central values in another dataset }

The volume fraction field is initialized in each square cell of the computational grid
with the new version of the VOFI library [23], which requires a user-defined implicit
equation of the interface. This version optimizes and introduces a few new features with
respect to the first release of the library [24].

Figure 4 shows the distribution of radii with the two different approaches that we have
previously described. We have considered nt = 5× 105 random circles. The total number of
cases obtained with the two distributions is quite different. In particular, we have generated
nc = 413,798 cases with the uniform-in-curvature approach and nr = 563,133 cases with the
uniform-in-radius approach. As previously stated, with the uniform-in-curvature approach,
we have many more cases with circles having a small radius, where often it is not even possible
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to find three consecutive heights along the same direction, nc < nt. On the contrary, with the
uniform-in-radius approach, we have many more cases with a large radius, where the three
consecutive heights are found along both coordinate directions, nr > nt.

0.0 0.1 0.2 0.3 0.4 0.5
curvature 

101

102

103

104

105

106

# 
of

 c
as

es

0.0 0.1 0.2 0.3 0.4 0.5
curvature 

101

102

103

104

105

106

# 
of

 c
as

es

Figure 4. Comparison of curvature distribution in the training dataset when using uniform curvature
distribution (left) or uniform radius distribution (right) from the same 5× 105 random circles.

3.2. Treatment of Regular and Non-Regular Cases

As previously stated, when it is possible to find three consecutive HF values along the
same coordinate direction and around the central cut cell (i, j) that contains the discrete
height H0, the number of independent parameters, which constitute the input data to train
the neural network, is reduced to only two values, ∆H− and ∆H+. This standard case is
called a regular one.

Figure 5 shows the distribution of the training dataset as a function of these two
values ∆H− and ∆H+. The map on the left is obtained by using the uniform-in-curvature
approach, while the one on the right considers the uniform-in-radius approach. It is clear
that the second method heavily concentrates the values near the diagonal line where the
curvature is smaller and dilutes them away from that line where the curvature is higher.
On the contrary, the first approach provides a more uniform distribution of the pairs of
values (∆H−, ∆H+).

Figure 5. Comparison of scatter plot maps of the training dataset when using uniform curvature
distribution (left) or uniform radius distribution (right) from the same 2× 105 random circles.

The heights can be computed along the two coordinate directions x and y. When the
two computations are possible, that is to say, three consecutive HF values are found along
both coordinate directions, we add the two sets to the dataset.

In this study, a slightly different neural network has been trained with a second dataset
that contains the non-regular cases. These cases occur when three consecutive height points
do not exist along the same coordinate direction. To be able to extend the methodology
to very high curvatures, we have devised a methodology that combines the vertical and
horizontal heights that are available in the 3× 3 block of cells centered around the cut cell
(i, j) that contains the height H0. When the total number of vertical and horizontal heights
is equal to three, the coordinates of these three HF points can be written as (−δh−, ∆H−),
(0, 0) and (δh+, ∆H+), with 4 independent parameters.
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However, a relatively common situation is where we can find two heights in both
directions. In that case, the best solution is to consider two heights from one direction
and select the third one in the other direction to enlarge the footprint of the selected set
as much as possible. Failure to do so may lead to two HF points on the interface that are
excessively close to each other with a possible inaccurate curvature estimate. In general,
the non-regular case leads to a non-uniform distribution of HF values and forces the neural
network to handle a wider range of scenarios. However, as the standard height function
method needs to be changed or integrated with another method at low resolution, we
do not present that scenario in this paper, where we study only the high-resolution or
asymptotic region.

3.3. Neural Network Definition and Training

The machine learning model for the curvature evaluation is based on a two-layer
feed-forward neural network with N neurons in the hidden layer and a single neuron in
the output layer, as shown in Figure 6. This structure of the network is effective when
mapping a continuous set onto another [25], which is the one we obtain starting from the
set of volume fractions or height functions, and compute a curvature value. A single output
value justifies a single neuron in the output layer. The neurons in the hidden layer have an
activation function based on the hyperbolic tangent, given the non-linear relation between
volume fractions or height functions and the curvature. We have tested the network with a
different number Nn of neurons in the hidden layers, with Nn =25, 50, 75, 100, 125. Figure 7
shows the behavior of the mean square error as a function of Nn. The MSE decreases
significantly for the lowest values of Nn, but it saturates when Nn is greater than 75. With a
smaller number of neurons, the network cannot suitably reproduce the sets of values in
the dataset. On the other hand, using a large set does not give any appreciable gain, while
significantly extending the computational time required to train the model. Therefore, we
choose the value Nn = 100 to compare the results with the literature [19].

curvature κneuron

neuron

neuron

neuron

input data

input hidden layer output layer output

Figure 6. Diagram of the neural network.

25 50 75 100 125
# of neurons

0.6

0.8

1.0

1.2

1.4

1.6

M
SE

×10 6

Figure 7. Mean Square Error as a function of the number of neurons Nn in the hidden layer. The
range is scaled down by a factor of 10−6.
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The input dataset is a Ns-by-2 or Ns-by-9 matrix, where Ns is the number of entries.
Each entry is made up of the 2 parameters ∆H− and ∆H+ in the first matrix, or the 9 values
of the volume fraction around the central cell (i, j) in the other one. In the following, Nt
will represent the value 2 or 9 based on the training dataset under consideration, when no
ambiguity is present. A dataset with Ns exact curvature values is also considered and we will
refer to each single value as the target ti. The output y of the neural network can be written as

y =
Nn

∑
k=1

w0
k tanh

(
Nt

∑
j=1

wn
kj xj + bn

k

)
+ b0 , (11)

where wn
kj are the weights associated to the k-th neuron in the hidden layer and j-th input

value, and bn
k is the bias of the k-th neuron. The output layer neuron is marked by the

superscript 0. The values of wn
kj and bn

k are computed during the training. We can then
introduce the mean square error (MSE), defined as

MSE =
1

Ns

Ns

∑
i
(ti − yi)

2 . (12)

This quantity measures the distance between the neural network solutions yi and
the exact values ti. In a typical machine learning framework, the input dataset is split
into a training set, a validation set, and a testing set, with weights of 70%, 15%, and 15%,
respectively. The weights and biases are adjusted to minimize the MSE of the training
dataset only. The neural network is implemented in the MATLAB version 2023.1 deep
learning toolbox [25], with the Levenberg–Marquardt algorithm [26,27] used to minimize
the MSE. The input dataset passes many times through the neural network, each pass
is referred to as an epoch, and the MSE for the training, validation, and testing sets is
constantly monitored. The process is stopped after 6 consecutive iterations in which the
MSE does not change appreciably, according to a given tolerance, or the number of epochs
reaches the threshold of 1000. For all the results shown later in the text, the convergence of
the procedure is reached before the threshold, typically around 700–800 epochs.

Other backpropagation algorithms are available in the deep learning toolbox. Their
performance was always inferior to the Levenberg–Marquardt neural network model. Once
the neural network has been run, all the weights and biases are stored and used without
any further access to the input dataset.

4. Results

The neural network approach is applied to an extensive input dataset of height func-
tion values and the obtained results are presented in this section. We consider randomly
generated points on circular interfaces with a different radius, and a Cartesian uniform grid
with spacing h in the unit square. To create a complete dataset distributed evenly within
the target limits, we choose a random and uniform distribution of curvatures ranging from
h/Rmax = 0.001 to h/Rmin = 0.25, corresponding to Rmax/h = 1000 and Rmin/h = 4. The
input and output datasets, generated by this distribution, contain Ns = 413, 798 entries.
The input dataset is organized as an Ns × 2 array of HF differences, ∆H− and ∆H+, and the
output dataset as a Ns × 1 array of the corresponding curvature values, acting as the targets
for our analysis. We remark that the total number of entries Ns does not equal the number
of randomly generated cases because the input dataset ignores the cases where less than
3 heights are found in the 3× 3 block of cells.

The data fitting was performed using Matlab with its built-in Neural Network Toolbox,
as previously described. The training process ends when the MSE value of Equation (12)
does not improve for 6 consecutive epochs or the total epoch count reaches 1000. Figure 8
shows the results obtained with the uniform-in-curvature training dataset. The evaluation
involves the comparison of the output, which consists of the curvatures predicted by the
neural network, with the target values representing the exact curvatures. For each data
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subset (training, validation, and testing) and for the entire dataset, a regression line and
the correlation coefficient R have been calculated. It can be noticed in Figure 8, that the
coefficient R is basically equal to 1, and therefore, the theoretical lines (in color in the
various graphs) are completely covered by the dataset points. The error in absolute value
between the numerical curvatures and the corresponding target values is always less than
10−5 for all the entries in the dataset. This indicates a very good accuracy and a successful
fit between the computed and the actual values of the curvature.

Figure 8. Scatter plots of predicted and target values for the training, validation, testing, and complete
data sets, using the uniform distribution in curvature. The coordinate axes span the range of
curvatures between 0.0 and 0.25.

We have also considered the corresponding input dataset organized as a Ns × 9 array
of volume fraction data. With this more homogeneous dataset, we observe an increase
in the value of the overall correlation coefficient from R= 0.99868 of [19], where only a
limited number of circular interfaces were considered, to R= 0.99965.

4.1. Circle Test Case

In Figure 9, we show the relative error of the curvature as a function of the angle
θ, for different radii R, ranging from R = 20 h to R = 320 h, computed with the height
function method and the machine learning approach. The circles that have been considered
are not present in the input database. The relative error scales quadratically with the radius
R, or equivalently by increasing the grid resolution, for the HF method. Furthermore,
the error increases from θ = 0, where the interface is almost aligned with the computational
grid, to θ = π/4, where the interface cuts the grid diagonally. These results are consistent
with the theory detailed in [8]. The bottom part of Figure 9 reports the same graph obtained
with the machine learning approach. In this case, the relative error does not scale with the
grid resolution and does not show any clear behavior with the angle variation. The machine
learning approach shows no convergence when the curvature decreases, leading to a graph
with superimposed lines with similar errors independent of angle and curvature.



Energies 2024, 17, 3674 12 of 15

0 /16 /8 3 /16 /4
angle

10 5

10 4

10 3

re
la

tiv
e 

er
ro

r

HF 20
HF 40
HF 80
HF 160
HF 320

0 /16 /8 3 /16 /4
angle

10 6

10 5

10 4

10 3

10 2

re
la

tiv
e 

er
ro

r

ML 20
ML 40
ML 80
ML 160
ML 320

Figure 9. Curvature relative error as a function of the angle θ, 0 ≤ θ ≤ π/4, for circles with ratio R/h
equal to 20, 40, 80, 160, 320, for the height function method (top) and the machine learning model (bottom).

To compare the convergence of the different approaches, we consider the L2 and L∞
error norms, as defined in [9]:

E2 =

√√√√∑Ns
i

(
κ − κre f

)2

Ns
, E∞ = max

(
|κ − κre f |

)
(13)

where κ is the numerical value and κre f the reference curvature. The results are shown
in Figure 10 for a circle with a fixed radius and variable grid spacing h. The line with a
constant slope equal to −2 is also depicted.
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10 3

E i
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E 2
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Figure 10. Infinite error (top) and mean squared error (bottom) for the ML and HF methods with
increasing circle resolution.
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As expected, the height function method scales quadratically, as demonstrated in [8].
On the other hand, the machine learning results reflect the lack of convergence, see also
Figure 9, with an almost flat value of the error that does not change with h. Nevertheless,
the error is rather small. A similar behavior is also found in [9,20] for different geometrical
configurations of the interface.

4.2. Four-Petaled Star Test Case

An additional test has been performed on a more complex interface with variable
curvature. The test is based on the four-petaled star introduced in [9]. The parametric
equations of the interface line as a function of the angle θ are

x(θ) =
(
(R0 + A0 cos(n0 θ)) cos θ

(R0 + A0 cos(n0 θ)) sin θ

)
∀θ ∈ [0, 2π] (14)

where R0 is the base radius, A0 is the amplitude of the oscillation and n0 is the number of
petals. In this test, R0 is equal to 1, A0 is equal to 0.25 and n0 = 4. Given the symmetry of
the interface, in Figure 11, we show the interface only in the upper-right quadrant together
with a portion of the grid at the lowest resolution, h = 1/20. This setup has been chosen to
compare our results with those obtained in [9]. In the angular range shown in Figure 11,
the interface presents two points where the convexity changes and the curvature is zero,
and regions where the curvature value is either positive or negative.

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

Figure 11. Interface line of the four-petaled star in the upper-right quadrant. The full line can be
obtained with two consecutive reflections over the coordinate axes. A small portion of the grid at the
lowest resolution is also shown.

The E2 error in the curvature calculation is shown in Figure 12 for the HF method (HF
line) and a few machine learning methods—in particular, the method presented in this
paper (ML line), the method from [19] (QLSTZ2019 line) and the SymMLP method from [9]
(Onder2023 line). The new algorithm shows a lower value of the error at all resolutions
when compared to the other two ML approaches. Furthermore, the error scales similarly to
the HF method, but again, it stops converging at the highest resolution. It is interesting
to see that at the lowest resolution, it performs better the the HF method, as was the case
for the circle test. This is an interesting feature because the HF method degrades for very
coarse resolutions when it is not possible to construct three proper height values around a
cut cell. We can then think of a hybrid method that relies on the HF method at intermediate
and high resolutions and that switches to the ML method at low resolutions. A similar
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method has been implemented in [14] that uses the convolution method at low resolution.
We plan to explore this strategy in future works.

20 40 80 160 320
R/h

10 3

10 2

10 1

E 2

slope -1
slope -2
HF
ML
QLSZT2019
Onder2023

Figure 12. E2 error for the four-petaled star interface as a function of the grid resolution. Comparison
of the Height Function method (HF), the Machine Learning method from this article (ML), the original
ML method from [19] (QLSZT2019) and the SymMLP from [9] (Onder2023).

5. Conclusions

In this work, we have explored an alternative approach for computing curvature in
two-phase flow simulations with the Volume of Fluid (VOF) method by employing machine
learning techniques. We have used the height function data in combination with machine
learning to develop a neural network model capable of efficiently predicting the local
interface curvature. Since the fluid forces can easily predominate over the capillary one,
in this paper, we have tested the accuracy of the curvature computation without motion
and leave dynamic tests for future papers. The proposed model is tested on different
geometric shapes and compared with the HF method based on the same volume fractions.
The state-of-the-art HF method has been widely used to compute curvature on smooth
and low-varying interfaces. However, we note it may face accuracy loss in non-regular
cases where three consecutive height points do not exist in any direction. To overcome this
limitation, a novel neural network model has been developed by training it with the HF
data. Our approach aims to handle regular and non-regular cases by creating a synthetic
dataset with a wide range of interface curvatures. When an optimal alignment between the
predicted curvatures and the exact curvatures can be found, the neural network achieves
a high degree of accuracy. However, it is worth noting that while the HF method scales
quadratically with the grid resolution, the machine learning prediction does not.

The computational cost associated with the height function method is typically only a
fraction of that associated with a two-phase flow solver, so, in general, the time reduction
that the machine learning algorithm would provide does not justify, at this stage, the loss in
accuracy with resolution. A case can be made for the ML approach in situations where the
HF method is not robust or accurate enough, i.e., when the radius of the bubble or droplet
is close to the mesh spacing. Further analysis should be carried out in this direction, as well
as in the improvement of the ML methodology.
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