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A B S T R A C T

We consider the onset of convective instability in an inclined porous layer heated from below. Linearised
stability theory tells us that there always exists a band of wavenumbers within which small-amplitude
disturbances will grow, but this is true only when the inclination of the layer is less than 31.49032◦. At higher
inclinations such disturbances always decay. However, it is also widely known that nonlinear convection may
be computed for larger inclinations. This paper provides an initial explanation for how these two facts may
be reconciled. It is generally assumed that the onset of convection in an inclined layer is supercritical, and,
while this is certainly true when the layer is horizontal, there is no reason to assume that it remains so for
other inclinations. The present paper, then, is a combined weakly-nonlinear and numerical investigation of the
effect of inclination on the manner of onset. The weakly nonlinear analysis shows that the transition from a
supercritical onset to a subcritical one takes place when the inclination is 24.247627◦, and this is confirmed
using a detailed and focussed set of nonlinear numerical simulations.
1. Introduction

The Darcy–Bénard problem has played a very substantial role within
general stability theory and very many analytical and numerical tools
have been devised to increase our understanding of it. At its simplest,
the Darcy–Bénard problem consists of a fluid-saturated porous medium
which is uniform in many different ways and where the horizontal
plane boundaries that enclose the porous medium are held at constant
but different temperatures. Instability is possible when the lower sur-
face is hotter than the upper surface. The monograph by Nield and
Bejan [1] devotes a very large amount of space discussing the many
different aspects and extensions of this stability problem. However, for
a layer of infinite horizontal extent, the critical Darcy–Rayleigh number
is well-known to be 4𝜋2 with the corresponding wavenumber, 𝑘 = 𝜋.

Also important, but not studied anywhere near as extensively, is the
corresponding inclined layer. Generally, fluid flows up the hot surface
and down the cold one due to the direct action of buoyancy, and it is the
additional presence of this nonstationary basic state which alters the
stability characteristics from that of the horizontal layer. Caltagirone
and Bories [2] found that streamwise vortices (longitudinal rolls) have
the same critical wavenumber, but the critical Darcy–Rayleigh number
is now 4𝜋2∕ cos 𝛼, where 𝛼 is the inclination. But when convection
is confined to being two-dimensional (transverse rolls) the detailed
stability characteristics become very much more complicated. Unlike
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longitudinal rolls, where instability is possible whenever cos 𝛼 > 0,
Caltagirone and Bories [2] have quoted 𝛼 = 31.8◦ (strictly, 31◦ 48′)
as the maximum inclination for the onset of transverse rolls.

A much more comprehensive linear stability analysis of the inclined
layer was undertaken by Rees and Bassom [3] who showed how
the morphology of the neutral curves changes with inclination. They
also found some neutral branches that correspond to unsteady modes,
although the lowest value of the Darcy–Rayleigh number for any given
inclination always corresponds to steady convection. Neutral curves
eventually form closed loops as 𝛼 gets close to 31.49032◦, and then they
disappear at an isola point at that inclination. Thus, the layer is linearly
stable at higher inclinations.

Without further knowledge, one might then be left wondering
whether this maximum inclination is indeed the final chapter in the
story for the onset of convection. One may also wonder if it is possible
to obtain strongly nonlinear convection at higher inclinations simply
because the layer is still being heated from below. And it could even
be worth questioning whether the onset of convection is subcritical in
some circumstances.

A definitive answer to these questions may be found in the very
recent papers by Wen and Chini [4,5]. A Fourier-Chebyshev-tau pseu-
dospectral solver was used by Wen and Chini [5] to compute strongly
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nonlinear two-dimensional convective flows, and they present an ex-
ample of a nonlinear flow when the inclination angle is 35◦, which is
above the maximum inclination obtained from linear theory. In Wen
and Chini [4] a nonlinear stability analysis is described and the main
conclusion there is that the basic conduction state is not energy-stable
for any inclination once the Darcy–Rayleigh number exceeds 91.6.
Given that the onset of convection in a horizontal layer is supercritical,
it is quite clear, then, that the general discrepancy between the linear
theory and the nonlinear energy analysis means that the onset of
convection must be subcritical for at least some range of inclinations.
But the bifurcation must be supercritical for a complementary range
of inclinations that includes a horizontal layer. At the very simplest,
it must therefore be true that there will be an inclination where
supercriticality undergoes a transition to subcriticality.

So the aim of this short paper is to use a weakly nonlinear analysis to
derive a Landau equation for the amplitude of near-critical convection
and, from this, to find the inclination at which this transition takes
place. A finite difference code was then used to confirm the results of
the weakly nonlinear analysis. Subject to restricting attention to the
minimum of each neutral curve, we find that the onset of convection
becomes subcritical once the inclination exceeds 24.247627◦.

2. Governing equations

We are considering the onset and subsequent development of con-
vection within a homogeneous and isotropic porous layer which is
heated from below and inclined at an angle, 𝛼, to the horizontal. This
configuration is illustrated in Fig. 1. We shall assume that the density of
the fluid varies linearly with temperature, that the Boussinesq approx-
imation holds, that Darcy’s law is valid, and that the solid and fluid
phases are in local thermal equilibrium. Given the restricted space that
is available here, we begin by quoting the nondimensional form of the
two-dimensional equations for buoyant flows in porous media,

𝜓𝑥𝑥 + 𝜓𝑧𝑧 = Ra
[

𝜃𝑥 cos 𝛼 − 𝜃𝑧 sin 𝛼
]

, (1)

𝜃𝑡 = 𝜃𝑥𝑥 + 𝜃𝑧𝑧 + 𝜓𝑧𝜃𝑥 − 𝜓𝑥𝜃𝑧, (2)

see Rees and Bassom [3] for details of the nondimensionalization. In
these equations 𝜓 and 𝜃 are the scaled streamfunction and temperature
fields, respectively, while 𝑥 is the Cartesian coordinate up the layer
and 𝑧 is the coordinate across the layer. The subscripts which appear
in Eqs. (1) and (2) denote partial derivatives. The value, Ra, is the
Darcy–Rayleigh number which is defined as,

Ra =
𝜌𝑔𝛽(𝑇ℎ − 𝑇𝑐 )𝐾𝑑

𝜇𝜅
. (3)

Here, 𝜌 is the reference density, 𝑔 the acceleration due to gravity, 𝛽 the
coefficient of volumetric expansion, 𝑇ℎ (𝑇𝑐) the fixed temperature of
the lower (upper) boundary, 𝐾 the permeability, 𝑑 the thickness of the
layer, 𝜇 the dynamic viscosity of the fluid and 𝜅 the thermal diffusivity
of the porous medium. Apart from a slight notational change (i.e. 𝑦
there has become 𝑧 here) all of the above are precisely as described in
Rees and Bassom [3].

Eqs. (1) and (2) are to be solved subject to the boundary conditions,

𝜓 = 0, 𝜃 = 1 on 𝑧 = 0
nd

𝜓 = 0, 𝜃 = 0 on 𝑧 = 1,
(4)

and we also assume that the resulting convection has period, 𝐴, in the
𝑥-direction where 𝐴 will be defined below.
2

Fig. 1. Depicting an inclined porous layer heated from below. The domain is periodic
with period, 𝐴, in the 𝑥-direction.

3. Weakly nonlinear analysis

The aim here is to describe very briefly the derivation of a Landau
equation for the evolution of the amplitude of convection for values
of Ra that are just above the threshold value, Ra𝑐 . The coefficients of
such an equation allow us to determine easily whether the onset of
convection is supercritical (which it is when the layer is horizontal) or
subcritical.

The weakly nonlinear analysis proceeds by expanding both 𝜓 and
𝜃 as power series in 𝜖 where |𝜖| ≪ 1 in magnitude and where Ra =
Ra0 + 𝜖2Ra2 defines the distance of the Darcy–Rayleigh number from
the critical value, Ra0. Therefore, we expand as follows,

𝜓 =
(𝑧2 − 𝑧)

2
Ra sin 𝛼 +

∑

𝑛=1
𝜖𝑛𝜓𝑛(𝑥, 𝑧, 𝑡, 𝜏),

𝜃 = (1 − 𝑧) +
∑

𝑛=1
𝜖2𝜃𝑛(𝑥, 𝑧, 𝑡, 𝜏),

(5)

where the 𝑂(1) terms correspond to the basic state whose stability is
being analysed. The slow time scale, 𝜏, is defined using 𝑡 = 1

2 𝜖
2𝜏, and

it reflects the very slow evolution of convection with time when Ra is
very close to neutrally stable conditions. The numerical coefficient, 1

2 ,
is present here purely for numerical convenience.

The 𝑂(𝜖) terms correspond to linear stability, and the equations for
𝜓1 and 𝜃1 are,

∇2𝜓1 = Ra0
[

𝜃1,𝑥 cos 𝛼 − 𝜃1,𝑧 sin 𝛼
]

,

∇2𝜃1 = −𝜓1,𝑥 − (𝑧 − 1
2 )Ra0 sin 𝛼 𝜃1,𝑥 + 𝜃1,𝑡.

(6)

These may be solved by first using the following substitution,

(𝜓1, 𝜃1) =
1
2𝐵(𝜏)

(

𝑖 𝑓1(𝑧), 𝑔1(𝑧)
)

𝑒𝑖𝑘𝑥+𝑖𝜎𝑡 + c.c., (7)

where 𝑘 is the wave number and 𝜎 is the oscillation frequency. Despite
the fact that the Principle of the Exchange of Stabilities does not apply,
Rees and Bassom [3] showed numerically that the base of the neutral
curve always corresponds to 𝜎 = 0. The value, 𝐵, is the complex
amplitude of the ensuing convection.

The equations for 𝑓1 and 𝑔1 are,

𝑓 ′′
1 − 𝑘2𝑓1 = Ra0 [𝑘𝑔1 cos 𝛼 − 𝑔′1 sin 𝛼],

𝑔′′1 − 𝑘2𝑔1 = 𝑘𝑓1−(𝑧 −
1
2 )Ra0𝑖𝑘 sin 𝛼 𝑔1 + 𝑖𝜎𝑔1,

(8)

which need to be solved subject to 𝑓1 = 𝑔1 = 0 on 𝑧 = 0, 1. Numerical
solutions were obtained using a shooting method and the fourth-order
Runge–Kutta scheme. In all cases 100 equally-spaced intervals were
used and this yields at least six significant figures of accuracy. A curve-
tracking variant with pseudo-arc-length continuation was used in order
to be able to compute folds and to follow around the closed-loop neutral
curves.
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Fig. 2. Selected neutral curves for the given inclinations. The red dashed line
orresponds to the saddle point at 𝛼 = 29.234◦. The black disk shows the location

of the isola point at 𝛼 = 31.49032◦. The black dotted line follows the minima in the
neutral curves from 𝛼 = 0 up to the isola point. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Although a detailed account of the variation in the shapes of the
neutral curves with inclination has already been presented in Rees and
Bassom [3], a subset of those neutral curves have been chosen to appear
in Fig. 2 in order to improve their clarity for the present context.

We have also followed the extended-system approach given in Rees
and Bassom [3] to obtain the locations of the minima in the neutral
curves; this is shown as the dotted black line in Fig. 2. In the rest of
the paper we shall confine ourselves solely to this locus.

We may now continue to 𝑂(𝜖2) in the expansion. This yields,

∇2𝜓2 = Ra0
[

𝜃2,𝑥 cos 𝛼 − 𝜃2,𝑧 sin 𝛼
]

,

∇2𝜃2 = −𝜓2,𝑥 − (𝑧 − 1
2 )Ra0 sin 𝛼 𝜃2,𝑥 + 𝜃2,𝑡

+ 𝜓1,𝑥𝜃1,𝑧 − 𝜓1,𝑧𝜃1,𝑥.

(9)

he nonlinear terms in Eq. (9) include those which are proportional to
2𝑒2𝑖(𝑘𝑥+𝜎𝑡), �̄�2𝑒−2𝑖(𝑘𝑥+𝜎𝑡) and 𝐵�̄�. Each provides a nonresonant forcing

erm so that Eqs. (9) may be solved numerically by using substitutions
hat are of similar form to Eq. (7). We omit the details of this for the
ake of brevity.

Finally, the equations at 𝑂(𝜖3) are now,

∇2𝜓3 = Ra0
[

𝜃3,𝑥 cos 𝛼 − 𝜃3,𝑧 sin 𝛼
]

+ Ra2
[

𝜃1,𝑥 cos 𝛼 − 𝜃1,𝑧 sin 𝛼
]

,

∇2𝜃3 = −𝜓3,𝑥 − (𝑧 − 1
2 )Ra0 sin 𝛼 𝜃3,𝑥 + 𝜃3,𝑡

− (𝑧 − 1
2 )Ra2 sin 𝛼 𝜃1,𝑥 +

1
2 𝜃1,𝜏

+ 𝜓2,𝑥𝜃1,𝑧 + 𝜓1,𝑥𝜃2,𝑧 − 𝜓2,𝑧𝜃1,𝑥 − 𝜓1,𝑧𝜃2,𝑥.

(10)

We note that the nonlinear terms and those terms which involve Ra2
nd 𝜃1,𝜏 all contain components that are proportional to 𝑒𝑖𝑘𝑥+𝑖𝜎𝑡. Respec-
ively, these components involve 𝐵2�̄�, Ra2𝐵 and 𝐵𝜏 as coefficients. It is
ommon practice at this point in a weakly nonlinear analysis to apply
solvability condition which will then yield a Landau equation of the
3

Fig. 3. The variation of 𝑐2∕𝑐1 with inclination. Negative values correspond to a
ubcritical instability. We note that 𝑐1 always remains positive.

orm,

𝜏 = 𝑐1Ra2𝐵 − 𝑐2𝐵2�̄�. (11)

owever, we have taken the unusual alternative approach of solving
he appropriate equations numerically. Once more we shall suppress
he details of how the shooting method was employed to find 𝑐1 and 𝑐2
ut it became necessary to solve a 52nd system to accomplish this.

It is important to note that, when the layer is horizontal and the
ormalisation boundary condition is set to 𝑔′1(0) = 1∕𝜋, then the
oefficients in (11) may be shown analytically to be 𝑐1 = 𝑐2 = 1,
ut the present numerical approach shows that 𝑐1 and 𝑐2 vary with
nclination. We find that 𝑐1 always remains positive as 𝛼 increases from
◦ to 31.49032◦, the isola point. For relatively small inclinations the
alue of 𝑐2 is positive, and this corresponds to a supercritical onset of
onvection where the steady-state weakly nonlinear solution is given by
�̄� = (𝑐1∕𝑐2)Ra2. Fig. 3 shows the variation of 𝑐2∕𝑐1 with inclination,
nd it is seen easily that it takes negative values once 𝛼 is above
pproximately 24◦ degrees. A more precise value for this transitional
nclination was obtained by using a very slightly modified version of the
ame shooting method code: rather than computing 𝑐2∕𝑐1 for a fixed
alue of Ra, the modified code computed that value of Ra for which
2∕𝑐1 = 0. Thus, the transitional inclination was found to be,

= 24.247627◦, (12)

which is correct to six decimal places. Therefore, we conclude that the
onset of convection is supercritical when 𝛼 takes smaller values than
this and is subcritical when it takes larger values. The critical Rayleigh
number and wave number which correspond to Eq. (12) are,

Ra𝑐 = 52.851961, 𝑘𝑐 = 2.969012. (13)

4. Nonlinear simulations

The above weakly nonlinear analysis gives a precise criterion for
the transition from a supercritical onset of convection to a subcritical
onset, and the purpose of this section is to present a suitable set of fully
nonlinear simulations of Eqs. (1) and (2) to confirm this conclusion.

The computations were undertaken using second-order accurate

finite differences in space and the DuFort–Frankel scheme in time. The
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Fig. 4. The variation of Nu with the Darcy–Rayleigh number for a selection of
inclinations. For further details, see the text. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

nonlinear terms in Eq. (2) were approximated using Arakawa’s formula-
tion [6], which is well-suited for problems involving instabilities due to
its superior conservation properties [7]. The stream function equation,
(1), was solved using a standard Correction Scheme multigrid method
at each timestep.

As it was decided to restrict the present paper to cases which are
equivalent to flow at the critical wavenumber, this means that the
monotonic variation in wavenumber from 𝑘𝑐 = 𝜋 when 𝛼 = 0◦ to
𝑘𝑐 = 2.55532 when 𝛼 = 31.49032◦ at the isola point, is equivalent to
the spatial period increasing monotonically from 𝐴 = 2 to 𝐴 = 2.45886.
Given that 𝐴 does not vary by a particularly large amount, it was
decided to use a 64 × 32 uniform spatial mesh in all cases. Thus,
the mesh aspect ratio varied between 1 and roughly 1.2194, which
hardly affects iterative convergence. For each case, the computations
proceeded until a steady flow was attained. Finally, the Nusselt number
per unit distance in the 𝑥-direction was computed:

Nu = − 1
𝐴 ∫

𝐴

0

𝜕𝜃
𝜕𝑧

|

|

|𝑧=0
𝑑𝑥. (14)

lthough a one-sided difference was used to compute 𝜕𝜃∕𝜕𝑧, it may
e shown easily that this approximation does in fact have second-
rder accuracy. The integration in Eq. (14) was undertaken using the
rapezium rule which also has second-order accuracy.

Fig. 4 shows how the Nusselt number varies with the Darcy–
ayleigh number for a suitable selection of inclinations. We note

hat Nu = 1 corresponds to a purely conductive state. The black
urves correspond to inclinations which are multiples of 5◦ degrees,
amely 0◦ (far left), 5◦, 10◦, 15◦, 20◦, 25◦ and 30◦. The red curves
orrespond to the intermediate inclinations, 21◦ to 24◦ and 26◦ to
9◦ in steps of one degree, and also to 31◦. Other inclinations are
mitted to avoid cluttering. The horizontal axis also displays the critical
alues of Ra from linear theory; we note that there is a very small
ismatch between the linear and nonlinear theories which is due to
small discretisation error. Indeed, a very small error is also incurred
hen attempting to extrapolate the Nusselt number curves back to
u = 1. Nevertheless, the agreement between linearised theory and the
redicted onset criterion from the nonlinear computations remains very
ood when 𝛼 ≲ 24◦ when the system exhibits a supercritical bifurcation.

When the inclination is larger than this, the Nusselt number curves
ppear to terminate well above Nu = 1 but this is the signature for
4

the presence of a fold bifurcation. Thus, these curves should continue
downwards while retreating back to larger values of Ra. Such curves
are unstable in time, and are therefore inaccessible to a time-stepping
code. However, the fold may be approached quite closely using the
present unsteady solver by successively decreasing Ra by very small
amounts and by using the previously-found steady solution as the initial
condition for the next case.

Finally, the location of each fold is found by fitting a quadratic in Ra
as a function of Nu to the last three data points and then by minimising
that quadratic. These points are shown in Fig. 4 as grey disks and it is
quite clear that these disks lie on an essentially straight line which can
be extrapolated back to Nu = 1 to find the transitional values of Ra and
𝛼. This procedure yields 𝛼 = 24.355, a value which is only very slightly
above the weakly nonlinear value given in Eq. (12), despite being the
outcome of two different extrapolations.

In the range, 0◦ ≤ 𝛼 ≤ 24.247627◦, the positive slope of the
Nusselt number curve at Nu = 1 indicates that onset is supercritical.
Once 𝛼 rises above its threshold value, the slope should be negative
to reflect the subcritical nature of the onset. Therefore, there will be
another branch of the Nusselt number curve which attaches to the point
corresponding to the critical Rayleigh number for linear theory. For the
purpose of illustration, these curves have been approximated by fitting
a cubic which has exactly the same curvature at the fold and which
recovers the linear theory when Nu = 1; these curves, which merely
have the status of being reasonable guesses for the true curves, are
shown as grey dotted lines. Because such curves are impossible to find
using an unsteady solver, we plan to develop a direct steady solver to
confirm the qualitative nature of these guessed branches.

5. Discussion and conclusion

In this short paper, we have described a two-pronged attack on
the question of whether the onset of two-dimensional convection in a
porous layer remains supercritical (as it is when the layer is horizontal)
or whether it may become subcritical as the inclination increases. The
works of Wen and Chini [4,5] give very strong reasons for expecting
some sort of transition, but our task was to determine the precise
conditions for the that transition. Both a weakly nonlinear theory and a
two-dimensional unsteady finite difference scheme were developed and
deployed for this purpose. It is clear that, despite the natural presence
of very small differences caused by standard discretisation errors and
by the use of some ad hoc extrapolations, the two studies validate one
another and yield a definitive conclusion: the onset of convection is
supercritical when 𝛼 < 24.247627◦ but it is subcritical otherwise.

Whilst this conclusion is novel, it is perhaps not a surprise given
that Wen and Chini [5] found that strongly nonlinear convection exists
when 𝛼 = 35◦. Clearly, the inclined layer is linearly stable at this
inclination and therefore this solution must exist on an isolated solution
branch that does not intersect with Nu = 1. It is now quite important
to extend the present analysis by first approaching the isola point and
then passing beyond it in terms of inclination. At present it is suspected
that the closed-loop neutral curves play a central role in this for there
will be two neutral locations, one at the bottom of the neutral loop (a
subcritical bifurcation) and one at the top (possibly supercritical). We
think that it is reasonable to expect the solution curves corresponding
to the two neutral locations to join when 𝛼 reaches the isola point, and
then the resulting single curve will lift away from Nu = 1 as 𝛼 increases
further. However, this will need to be confirmed numerically and will
require the use of a steady-state solver possibly based on a 2D spectral
decomposition and Newton–Raphson iteration; such a scheme has been
used in [8].
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