
09 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges /
Lesort, Timothée; Lomonaco, Vincenzo; Stoian, Andrei; Maltoni, Davide; Filliat, David; Díaz-Rodríguez,
Natalia. - In: INFORMATION FUSION. - ISSN 1566-2535. - ELETTRONICO. - 58:(2020), pp. 52-68.
[10.1016/j.inffus.2019.12.004]

Published Version:

Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges

Published:
DOI: http://doi.org/10.1016/j.inffus.2019.12.004

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/713396 since: 2020-01-14

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.inffus.2019.12.004
https://hdl.handle.net/11585/713396

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat,
Natalia Díaz-Rodríguez, Continual learning for robotics: Definition, framework,
learning strategies, opportunities and challenges, Information Fusion, Volume 58,
2020, Pages 52-68, ISSN 1566-2535,

The final published version is available online at:
https://doi.org/10.1016/j.inffus.2019.12.004.

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1016/j.inffus.2019.12.004

Continual Learning for Robotics: Definition, Framework,
Learning Strategies, Opportunities and Challenges

Timothée Lesort*,1,2, Vincenzo Lomonaco*,3, Andrei Stoian2, Davide Maltoni3,
David Filliat1, and Natalia Díaz-Rodríguez*,1

1Flowers Team (ENSTA Paris, Institut Polytechnique de Paris & INRIA).
2Thales, Theresis Laboratory.

3Department of Computer Science and Engineering - University of Bologna
*Equal contribution.

Abstract

Continual learning (CL) is a particular machine learning paradigm where the data distribu-
tion and learning objective change through time, or where all the training data and objective
criteria are never available at once. The evolution of the learning process is modeled by a
sequence of learning experiences where the goal is to be able to learn new skills all along the
sequence without forgetting what has been previously learned. CL can be seen as an online
learning where knowledge fusion needs to take place in order to learn from streams of data
presented sequentially in time. Continual learning also aims at the same time at optimizing
the memory, the computation power and the speed during the learning process.

An important challenge for machine learning is not necessarily finding solutions that work
in the real world but rather finding stable algorithms that can learn in real world. Hence, the
ideal approach would be tackling the real world in a embodied platform: an autonomous agent.
Continual learning would then be effective in an autonomous agent or robot, which would
learn autonomously through time about the external world, and incrementally develop a set of
complex skills and knowledge.

Robotic agents have to learn to adapt and interact with their environment using a continuous
stream of observations. Some recent approaches aim at tackling continual learning for robotics,
but most recent papers on continual learning only experiment approaches in simulation or with
static datasets. Unfortunately, the evaluation of those algorithms does not provide insights on
whether their solutions may help continual learning in the context of robotics. This paper aims
at reviewing the existing state of the art of continual learning, summarizing existing benchmarks
and metrics, and proposing a framework for presenting and evaluating both robotics and non
robotics approaches in a way that makes transfer between both fields easier. We put light on
continual learning in the context of robotics to create connections between fields and normalize
approaches.

Keywords: Robotics, Reinforcement Learning, Deep Learning, Lifelong Learning, Continual
Learning, Catastrophic Forgetting

1 Introduction
Machine learning (ML) approaches generally learn from a stream of data randomly sampled from a
stationary data distribution. This is often a sine qua non condition to learn efficiently. However, in
the real world, this setting is rather uncommon. Continual Learning (CL) [128] gathers together
work and approaches that tackle the problem of learning when the data distribution changes over
time, and where knowledge fusion over never-ending streams of data needs to be accounted for.
Consequently, CL is the paradigm to deal with catastrophic forgetting [102, 47].

For convenience, we can empirically split the data stream into several subsections temporally
bounded we call tasks. We can then observe what we learn or forget when learning a new task. Even
if there is no mandatory constraint on a task, a task often refers to a particular period of time where
the data distribution may (but not necessarily) be stationary, and the objective function constant.
Tasks can be disjoint or related to each other, in terms of learning objectives, and depending on
the setting.

1

One solution to Continual Learning would be saving all data, shuffle it, and come back to a
traditional machine learning setting. Unfortunately, in this case, this is not always possible nor
optimal. Here are several examples of settings where continual learning is necessary:

• You have a trained model, you want to update it with new data but the original training data
was discarded or you do not have the right to access it any longer.

• You want to train a model on a sequence of tasks but you can not store all your data or you
do not have the computational power to retrain the model from all data (e.g., in an embedded
platform).

• You want an agent to learn multiple policies but you do not know when the learning objective
changes nor how.

• You want to learn from a continuous stream of data that may change through time but you
do not know how and when.

In order to handle such settings, representations should be learned in an online manner [87]. As
data gets discarded and has a limited lifetime, the ability to forget what is not important and retain
what matters for the future are the main issues that continual learning targets and focuses on.

From a robotics point of view, CL is the machine learning answer to developmental robotics [93].
Developmental robotics is the interdisciplinary approach to the autonomous design of behavioural
and cognitive capabilities in artificial agents that directly draws inspiration from developmental
principles and mechanisms observed in children’s natural cognitive systems [18, 93]1.

In this context, CL must consist of a process that learns cumulative skills and that can
progressively improve the complexity and the diversity of tasks handled.

Autonomous agents in such settings learn in an open-ended [36] manner, but also in a contin-
ual way. Crucial components of such developmental approach consist of learning the ability to
autonomously generate goals and explore the environment, exploiting intrinsic motivation [113] and
computational models of curiosity [112].

We propose a framework to link continual learning to robotics. This framework also sets
the opportunities for continual learning to have a framed mathematical formulation to present
approaches in a clear and systematic way.

First we present the context and the history of continual learning. Secondly, we aim at
disentangling vocabulary around continual learning to have a clear basis. Thirdly, we introduce our
framework as a standard way of presenting CL approaches to help transfer between different fields
of continual learning, especially to robotics. Fourthly, we present a set of metrics that will help to
better understand the quality and shortcomings of every family of approaches. Finally, we present
the specifics and opportunities of continual learning in robotics that make CL so crucial.

We kept the sections definitions, framework, strategies and evaluation general enough to both
robotics and non-robotics domains. Nevertheless, the last section, Continual Learning for Robotics
(Section 6) benefits from the content of previous sections to present the specificities of Continual
Learning in the field of robotics.

2 Definition of Continual Learning
Given a potentially unlimited stream of data, a Continual Learning algorithm should learn from a
sequence of partial experiences where all data is not available at once. A non-continual learning
setting would then be when the algorithm can have access to all data at once and can process it as
desired. Continual learning algorithms may have to deal with imbalanced or scarce data problems
[154], catastrophic forgetting [47], or data distribution shifts [50].

As a more constrained version of on-line learning, CL needs to implicitly or explicitly account
for knowledge fusion at different levels over time. Firstly, CL is required to support data-level
fusion and, at the same time, be able to preserve learned knowledge from data that may disappear
(e.g. due to inability to re-process certain data, due to the right to be forgotten of EU GDPR2, or
simply legacy reasons like for medical records). CL requires as well fusion at model level, since

1Synonyms of Developmental Robotics include cognitive developmental robotics, autonomous mental development
as well as epigenetic robotics

2Art. 17 GDPR – Right to erasure (right to be forgotten) https://gdpr-info.eu\T1\guilsinglrightart-17-gdpr

2

https://gdpr-info.eu \T1\guilsinglright art-17-gdpr

different tasks to be learned may require different model architecture components that in the end
must act as one.

Lastly, fusion needs also to occur at the knowledge or conceptual level, since memorization of
raw data has to be avoided, but without incurring catastrophic forgetting. We consider continual
learning a synonym of Incremental Learning [50, 125], Lifelong Learning [24, 159] and Never
Ending Learning [19, 107]. For the sake of simplicity, in the remaining of the article we refer to all
Continuous, Incremental and Lifelong learning synonyms as Continual Learning (CL).

In this section we first present the history and motivation of continual learning, then we present
several definitions of terms related to CL and, finally, we present challenges addressed by CL in
machine learning.

2.1 History and Motivation
The concept of learning continually from experience has always been present in artificial intelligence
and robotics since their birth [162, 169]. However, it is only at the end of the 20th century that it
has began to be explored more systematically. Within the machine learning community, the lifelong
learning paradigm has been popularized around 1995 by [159] and [128], while the robotics field
only later catches up with a renewed interest in developmental robotics [93].

Between the end of the 90s and the first decade of the 21st century, sporadic attention has
been devoted to the topic within the supervised, unsupervised and reinforcement learning domains.
However, despite the first pioneering attempts and early speculations, research in this area has never
been carried out extensively until the recent years [114, 24]. We argue that this is because there
were more complex and fundamental problems to solve and a number of additional constraints:

• Lack of systemic approaches: Machine learning research for the past 20 years has focused
on statistical and algorithmic approaches on simple tasks (e.g., tasks where the distribution
of data is assumed static). CL typically needs a systems approach that combines multiple
components and learning algorithms in complex and dynamic tasks. The complexity of tasks
and their multiple uses in continual learning greatly complicates training and evaluation
procedures. Disentangling “static” learning performance from continual learning side effects
is important for the very incremental nature of the research and to facilitate comparison
between approaches in this area.

• Limited amount of data and computational power : Digital data is a luxury of the 21st century.
Before the big data revolution, collecting and processing data was a daunting task. Moreover,
the limited amount of computational power available at the time did not allow complex and
expensive algorithmic solutions to run effectively, especially in a continual learning setting
which undoubtedly makes learning more complex by having to deal with multiple tasks at the
same time, as well as having to incorporate the concept of time into the learning process.

• Manually engineered features and ad-hoc solutions: Before early 2000s and first works on
representation learning, creating a machine learning system meant to handcraft features and
finding ad-hoc solutions, which may differ significantly depending on the task or domain.
Having a general algorithm with a more systematic approach seemed for a long time a very
distant goal. Manually engineered features is also a clear limitation to achieve autonomy, as
new tasks need to have the same features or re-engineered ones.

• Focus on supervised learning : creating labeled data is probably the slowest and the most
expensive step in most ML systems. This is why learning continuously has been for a long
time not a viable and practical option.

The relaxation of these constraints, thanks to recent advancements and results in machine
learning research, as well as the rapid technological progress witnessed in the last 20 years, have
open the door for starting tackling more complex problems such as learning continually.

We argue that the robotics community, which has always been intrigued by endowing embodied
machines with lifelong and open-ended learning [36] of new skills and new knowledge, would
highly benefit by the recent advances of ML in this area. Robotics applications in unconstrained
environments, indeed, have always posed questions out of reach for previous machine learning
techniques. On the other hand, CL developed in the context of robotics is involved in understanding

3

the role and the impact of the concept of “embodiment” in intelligent machines that learn and think
like humans.

Learning, embodiment, and reasoning are presented as the three great families of challenges
for robotics in [158]. We postulate that CL tackles the learning problem, taking into account the
importance and constraints of embodiment. At best, CL would also benefit from reasoning in order
to maximize the learning process. Thus, continual learning lies in the intersection of crucial robotics
challenges.

Despite lifelong learning approaches existing in different ML disciplines (such as evolutionary
algorithms for example [5, 6, 13, 7]), in the rest of the article we focus on recent continual learning
developments in the context of gradient-based neural network and deep learning approaches. For
a more detailed description of many other classic approaches to continual learning with shallow
architectures we refer the reader to [24].

2.2 Terminology Clarification
In this section we aim at clarifying the distinction and similarities of continual learning with related
topics and terms used in the literature.

Online learning
Online learning is a special case of CL [66] where updates are done on per single data point

basis and therefore, the batch size is one. Online learning algorithms are suited to scenarios where
information should be processed instantly, either to adapt the model to learn as fast as possible or
because data can not be saved.

Few-shot Learning
Few shot learning [76, 42] is the ability to learn to recognize new concepts based on only few

samples of them. It may be used for continual learning problems when the number of data points is
very low. The extreme case of zero-shot learning consists of the ability to detect new classes while
being trained with a disjoint set of classes [166].

Curriculum Learning
Curriculum learning [9] is a training process that proposes a sequence of more and more difficult

tasks to a learning algorithm in order to make it able to learn, at last, a generally harder task. The
sequence of tasks is designed in order to be able to learn the last one. Both CL and curriculum
learning learn on a sequence of tasks (or partial experience). However, in curriculum learning, tasks
are chosen in a way that makes possible to learn tasks of different complexity, by taking into account
the difficulty of them, while in CL, tasks are not voluntarily chosen nor ordered. Furthermore,
while the interest of curriculum learning ultimately lies into solving the last task, the continual
learning objective is to be able to solve all tasks.

Meta-learning
Meta-learning [12] is a learning process that uses meta-data about past experiences, such as

hyper-parameters, in order to improve its capacity to learn on new experiences. It also learns
several different tasks; however, its goal is not learning without forgetting but to progressively
improve the learning efficiency while learning on more and more tasks. It is also called "learning
to learn", and it can or not be used in a continual learning setting.

Transfer learning
Transfer learning [122, 44, 177] is the ability to use what has been learned from a previous task

on a new task. The difference with continual learning is that transfer learning is not concerned about
keeping the ability to solve previous tasks. In computer vision, transferring what has been learned
from a past environment to new environments would be often referred to as domain adaptation
[118, 31].

Active Learning
Active learning is a special case of semi-supervised machine learning in which a learning algorithm

is able to interactively query the user (or some other information source) to obtain the desired
output labels for new data points [147, 148]. Active learning may be used in CL to query new
examples and have control of the data the algorithm has access to.

2.3 Challenges Addressed by CL
In this section we describe the specific problems addressed by continual learning; the kind of
problems that arise when data cannot be assumed i.i.d., and when the hypothesis that the data
distribution is static is not valid.

4

2.3.1 Catastrophic Forgetting

Catastrophic forgetting [102, 47] refers to the phenomenon of a neural network experiencing
performance degradation at previously learned concepts when trained sequentially on learning new
concepts [102]. Since by definition the continual learning setting deals with sequences of classes or
tasks, the catastrophic forgetting is an important challenge to be tackled. Catastrophic forgetting
might also be referred to as catastrophic interference. The notion of interference is pertinent since
the acquisition of new skills interferes with past skills by modifying important parameters.

2.3.2 Handling Memories

One of the main components that distinguishes two CL approaches is the way they handle memories.
In order to deal with catastrophic forgetting, each strategy should find a way to remember what
gradient descent will make forget. Continual learning needs a mechanism to store memories of past
tasks, which can take very different forms. It is important to note that memories can be saved in
different manners: as raw data, as representations, as model weights, regularization matrices, etc.
An efficient memory management strategy should only save important information, as well as be
able to transfer knowledge and skills to future tasks. In practice, it is almost impossible to know
what will be important and what could be transferable in the future; a trade off should then be
found between the precision of the information saved and the acceptable forgetting. This trade-off
problem is known as the stability/plasticity dilemma [103].

An important challenge inherent to handling memories is to automatically assess them. Learning
new tasks may lead to degradation of the memories. Furthermore, the memory process needs
mechanisms to evaluate how the memories are degraded, i.e., how it forgets. As no more data and
labels from past tasks may be available, this check-up might be very challenging.

2.3.3 Detecting Distributional Shifts

When the distribution is not stationary, a shift into the data stream is observed. When there
is no external information concerning this shift, the CL model has to detect it, and account for
fixing it by itself. An undetected shift in the data distribution will irrevocably lead to forgetting.
Changes in the data distribution over time are commonly referred to as concept drift. This idea
is related to online change detection algorithms [140, 109] or Bayesian surprise [156] in ML. Two
kinds of concept drift are defined [50]: Virtual and real concept drift. Virtual concept drift concerns
the input distribution only, and can easily occur, e.g., due to imbalanced classes over time. Real
concept drift, on the contrary, is caused by novelty on data or new classes, and can be detected by
its effect, on e.g., classification accuracy. However shift may also happen when the task change. In
RL for example an agent may have to solve a new task. Then the shift is not exactly in the data
distribution but in the supervision signal. Regardless of where exactly the shift happened it has to
be detected to avoid catastrophic interference with non related skills or knowledge.

2.4 Learning Paradigms Orthogonal to Continual Learning
In this section we describe the relationship of continual learning with respect to the main three,
generally acknowledged machine learning paradigms: supervised, unsupervised and reinforcement
learning.

2.4.1 Supervised Continual Learning

Supervised learning is the machine learning problem of learning from input-output example pairs
[135]. For each input-output pair (Xt,Yt), the model should learn to predict Yt from Xt. Xt is the
input data, Yt is the supervision signal. Supervised continual learning is a particular case where
the data is not available all at once. The function should then be learned from a sequence of data
points in order to be able to map data to labels at the end of the sequence for the whole dataset.
Supervised Continual Learning approaches have been mostly focused on classification [92, 97, 73].

While the study of continual learning in this context may help disentangling the complexity
introduced by algorithms that learn continually, in the context of robotics, the lack of supervision
does not allow, most of the time, to apply directly supervised methods.

5

2.4.2 Unsupervised Continual Learning

Unsupervised learning refers to machine learning algorithms that do not have labels or rewards
to learn from. In the context of robotics, unsupervised continual learning may play an important
role in building increasingly robust multi-modal representations over time to be later fine-tuned
with an external and very sparse feedback signal from the environment. In order to learn robust
and adaptive representations with unsupervised learning, the main objective is to find suitable
surrogate and meaningful learning signals, as robotics priors [64, 84], self-supervised models or
curiosity driven techniques.

A particular unsupervised task learned in a continual learning setting is the generation of images.
Image generation is achieved by training generative models to reproduce images from a dataset. In
a CL setting, the distribution changes over time and the generative model should be able to produce
at the end images from the whole distribution. This problem has been studied for various generative
models (cf. section 4) as adversarial models [171, 81], variational auto-encoders [111, 124, 1, 41, 81]
and standard auto-encoders [161, 178].

There is also a different relation between unsupervised learning and CL, since unsupervised
models can be used to learn representations from vast amounts of data sources and can then
generate such data (cf section 4.4). This capacity can then be used to perform CL for classification
[172, 150, 161, 83] or reinforcement learning tasks [20]. Another use case is using data generation
as a data augmentation strategy.

2.4.3 Continual Reinforcement Learning

Reinforcement Learning is a machine learning paradigm where the goal is to train an agent to
perform actions in a particular environment in order to maximize the expected cumulative reward.
In traditional RL, the world is modeled as a stationary MDP: i.e., fixed dynamics and states that
can recur infinitely often [129]3. Since in general, complex RL environments have no access to all
data gathered at once, RL could often be framed as a CL situation. Moreover, RL borrows several
tools used in CL models, such as approximating data to an i.i.d. distribution, via either i) setting
multiple agents or actors to learn in parallel [99], or ii) using a replay buffer (or experience replay
[108]), that is equivalent to a particular category of CL (rehearsal, see Section 4.3). An analogy
of a popular stable method in RL is PPO algorithm [143], which constrains learning by using the
Fisher information matrix to improve learning continually, in the same way as some CL strategies
(e.g., EWC, see Section 4.2.1). Most of Continual Learning approaches in RL have been applied in
simulation settings such as Atari games [73]. However, many approaches [160, 68, 6, 13] also tackle
use cases on real robots.

3 A Framework for Continual Learning
Despite the rapidly growing interest in continual learning and mainly empirical developments of the
recent years [114], very little research and effort has been devoted to a common formalization of
algorithms that learn continually in dynamic environments. However, the availability of a common
ground for thoroughly evaluating and understanding continual learning algorithms is essential to
reduce ambiguities, enhancing fair comparisons and ultimately better advancing research in this
direction.

Being able to better compare and evaluate continual learning strategies, while still being
general enough to overlook implementation-dependent details over different learning paradigms,
becomes essential. This is specially true when targeting deployment of CL paradigms in real-word
applications, such as robotics. Nowadays, despite the existence of a basic set of shared practices,
many are the fundamental questions often overlooked in recent continual learning research. For
example, questions about the data availability during training and evaluation, the amount of
supervision with respect to the tasks separation and composition, as well as common but biased
assumptions on the nature of the data among others. A list of questions of interest we would like
to address and report are the following:

(a) Data Availability
3This MDP assumption was recognized and first removed in [129]

6

• Q1: Does some data need to be stored? if yes, how and what for? (e.g. regularization,
re-training, validation)?
• Q2: Is the algorithm tuned based on the final performance? I.e. is it possible to go back
in time to improve performance?
• Q3: Are data distributions assumed i.i.d. at any point?
• Q4: Is each task assumed to be encountered only once?

(b) Prior Knowledge

• Q5: Is the continual learning algorithm agnostic with respect to the structure of the
training data stream? (e.g. number of classes, numbers of tasks, number of learning
objectives...)
• Q6: Does the approach need a pretrained model for the CL setting? If so, what is the
new knowledge that needs to be acquired while learning continually?

(c) Memory and Computational Constraints

• Q7: How much available memory does the algorithm require while learning? Does the
memory capacity requirement changes as more tasks are learned?
• Q8: Is the continual learning algorithm constrained in terms of computational overhead
for each learning experience? Does the computational overhead increase over the task
sequence?
• Q9: Is the continual learning algorithm agnostic with respect to the data type? (e.g.
images, video, text,...)
• Q10: Is the continual learning algorithm able to handle situations where there is not
enough time to learn?

(d) Amount/Type of Supervision

• Q11: In the presence of multiple tasks, is the task label available to the algorithm during
the training phase? And during evaluation?
• Q12: Are all the data labeled? or only the first training set? Can the user provide sparse
label/feedback (e.g. active learning) to correct the system errors?

(e) Performance Expectation

• Q13: What is expected from the algorithm to remember at the end of the full stream? Is
it acceptable to forget somehow, when task, context or supervision change?

To summarize these questions, in any new CL algorithm proposition, it is fundamental to clearly
describe the data stream, its use, the algorithm functioning, its assumed prior knowledge , and its
requirements in terms of supervision, memory and computation.

We will now propose a comprehensive and detailed framework to help distill and disentangle
different approaches in different continual learning settings and help answer these questions.

Early theoretical attempts to formalize the CL paradigm are found in [129] as a combination
between reinforcement learning and inductive transfer. More general framework approaches include
the one on non i.i.d. tasks of [119]. As in [119], we assume CL is tackling a probably approximately
correct (PAC) learnable problem in the approximation of a target hypothesis h∗ as well as learning
from a sequence of non i.i.d. training sets. Our framework could also be seen as a generalization of
the one proposed in [92], where learning happens continuously through a continuum of data and a
“task supervised signal” t may be provided along with each training example.

In continual learning data can be conveniently seen as drawn from a sequence of distributions
Di, and thus the need to redefine a CL framework taking into account this important property is
defined as follows.

Definition 1 Continual Distributions and Training Sets
In Continual Learning, D is a potentially infinite sequence of unknown distributions D =

{D1, . . . , DN} over X × Y , with X and Y input and output random variables, respectively. At time
i a training set Tri containing one or more observations is provided by Di to the algorithm.

7

As the framework hereby proposed is supposed to be general enough to cover the orthogonal and
classical unsupervised, supervised and reinforcement learning approaches, Tri, as better detailed in
Definition 3, is a collection of training observations/data samples that act as signal of the joint
distribution to be learned.

Definition 2 Task
A task is a learning experience characterized by a unique task label t and its target function

g∗
t̂
(x) ≡ h∗(x, t = t̂), i.e., the objective of its learning.

It is important to note that the tasks are just an abstract representation of a learning experience
represented by a task label. This label helps to split the full learning experience into smaller learning
pieces. However, there is not necessarily a bijective correspondence between data distributions and
tasks.

Definition 3 Continual Learning Algorithm Given h∗ as the general target function (i.e. our
ideal prediction model), and a task label t, a continual learning algorithm ACL is an algorithm with
the following signature:

∀Di ∈ D, ACLi : < hi−1, T ri,Mi−1, ti >→< hi,Mi > (1)

Where:

• hi is the current hypothesis at timestep i, or, practically speaking, the parametric model
learned continually.

• Mi is an external memory where we can store previous training examples or partial computation
not directly related to the parametrization of the model.

• ti is a task label, that can be used to disentangle tasks and customize the hypothesis parameters.
For simplicity, we can assume N as the number of tasks, one for each Tri.

• Tri is the training set of examples. Each Tri is composed of a number of examples eij with
j ∈ [1, . . . ,m]. Each example eij =< xij , y

i
j >, where yi is the feedback signal and can be the

optimal hypothesis h∗(x, t) (i.e., exact label yij in supervised learning), or any real tensor
(from which we can estimate h∗(x, t), such as a reward rij in RL).

It is worth pointing out that each Di, can be considered as a stationary distribution. However,
this framework setting allows to accommodate continual learning approaches where examples can
also be assumed to be drawn non i.i.d. from each Di over X × Y , as in [50, 56].

Definition 4 Continual Learning scenarios A CL scenario is a specific CL setting in which
the sequence of N task labels respects a certain “task structure” over time. Based on the proposed
framework, we can define three different common scenarios:

• Single-Incremental-Task (SIT): t1 = t2 = · · · = tN .

• Multi-Task (MT): ∀i, j ∈ [1, .., n]2, i 6= j =⇒ ti 6= tj.

• Multi-Incremental-Task (MIT): ∃ i, j, k : ti = tj and tj 6= tk.

Table 1 illustrates an example to clarify the definition of SIT, MT and MIT.
An example of Single-Incremental-Task (SIT) scenario is an ordinary classification task between

cats and dogs, where the distribution changes through time. First, there may only be input images
of white dogs and white cats, and later only black dogs and black cats. Therefore, while learning to
distinguish black cats from black dogs the algorithm should not forget to differentiate white cats
from white dogs. The task is always the same, but the concept drift might lead to forgetting.

However, in a classification setting, a Multi-Task (MT) scenario would first consist of learning
cats versus dogs, and later cars versus bikes, without forgetting. The task label changes when
the classes change, and the algorithm can use this information to maximize its continual learning
performance. The Multi-Incremental-Task (MIT) is the scenario where the same task can happen
several times in the sequence of tasks, but such task is not the only existing one.

In any learning problem (be it classification, RL or unsupervised learning), the ability to adapt
to new concepts to be learned (from the PAC ML framework [163]), as well as new instances of

8

Table 1: Example: Sequential task labels (corresponding to different distribution Di ∈ D) to reflect
differences among CL categorization w.r.t. number and unicity of tasks for SIT, MT and MIT.
Notice that a MIT setting requires breaking the constraint definition of SIT but also breaking the
constraint definition of MT, i.e., it corresponds to the case where not all the tasks are considered
having the same ID, and not all the task are considered distinct.

Task ID/Session CL settings
Task ID SIT MT MIT
t1 0 1 0
t2 0 2 1
t3 0 3 0
...
ti 0 i ...

each concept, should be accounted. This is the objective of the next definition where we formally
set three different settings an algorithm is required to manage, as they can have very high impact
on the algorithm performance.

Definition 5 Task label and concept drift scenarios The task label can specify different
assumptions made in a continual learning scenario. We can define three main categories of task
label assumptions regarding concept drift:

• No task label: Changes in the distribution are not signaled by any task label. The task is
always the same (equivalent to SIT scenario).

• Sparse task label: Changes in the distribution are sparsely signaled by the task label. There
are several tasks but changes in distribution may as well happen inside a task.

• Task label oracle: Every change in the data distribution is signaled by the task label, which is
given.

We illustrate the different scenarios in Figure 1.

Figure 1: Task label and concept drift: illustration of the different scenarios.

Definition 6 Availability of task label. When a task label is provided, it is worth distinguishing
among two different cases:

• Learning labels: Task labels are provided for learning only. At test time, inference should be
done without knowing from which task a data point is coming from.

• Permanent labels: The task labels are provided for learning, and it is assumed they will also be
provided at test time for inference.

Definition 7 Content Update Type The nature of the data samples or observations contained
in each Tri can be conveniently framed in three different categories:

9

• New Instances (NI): Data samples or observations contained in the training set at time-step i
relate to the same dependent variable Y used in the past.

• New Concepts (NC): Data samples or observations contained in the training set at time-step i
relate to a new dependent variable Y to be learned from the model.

• New Instances and New Concepts (NIC): Data samples or observations contained in the training
set at time-step i relate to both, already encountered dependent variables, and new ones (Y).

In order to exemplify the concept of Content Update Type defined in Definition 7, let us recover
the aforementioned example of classification. If an algorithm learns the cat vs dogs classification
problem on a dataset and then new images of cat vs dogs are provided to the algorithm, we are
then in a New Instances case (NI), we have new data but no new concepts. If the new instances
were of different classes (e.g. cars vs bikes) we then would face the New Concepts case (NC). The
new instances and new concepts case would then have been a mix of both new images of known
and new classes.

If a CL algorithm uses a network pretrained on a dataset, the features of such dataset will need
to be accounted for as one more task or the same, depending on the distribution of new instances
and new classes according to definitions 4 and 7. In other words, using a pretrained model is
similar to assume there is a task already learned by the model, and the new learning experiences of
the algorithm are just a continuum of learning curricula. If there is any intersection between the
pretraining and the new tasks, it should be reported in the setting description. The pretraining
effect can then be estimated with the metrics proposed in Section 5.2.

Constraints

Constraint 1 For every step in time, the number of current examples contained in the memory is

lower than the total number of previously seen examples4: ∀i ∈ [1, ..., n], |Mi| �
∣∣∣∣i−1⋃
i=1

Tri

∣∣∣∣
Constraint 2 Memory and computation for each iteration step i are bounded. Given two functions
ops() and mem() that compute the number of operations and memory occupation required by
ACLi , two reasonably small values max_ops and max_mem should exist, such that, for each i,
ops(ACLi) < max_ops and mem(hi−1,Mi−1) < max_mem.

max_ops and max_mem are the max throughput, in number of operations, and the max
memory capacity of the system running ACLi . Having a memory and computational bounds for
each iteration i is an important constraint for a continual learning algorithm. The reason is that
the number of training sets Tri can potentially be unlimited, and thus, computation and memory
should not be proportional to the number of hypothesis updates hi over time. A finite upper bound
should exist and be considered, especially with n→∞.

Relaxation and desiderata Given the difficult setting and the additional constraints imposed
by Continual Learning with respect to the classic “static” setting, many researchers in the recent
literature have proposed new CL strategies in slightly relaxed [137, 73, 95, 92] yet reasonable
settings:

Relaxation 1 Memory relaxation: Removes the fixed memory bound constraint over ops() and
mem().

Relaxation 2 Computation relaxation: Removes the fixed computational bound constraint ops(hi) <
max_ops.

In both cases we assume that for practical applications, a finite (and reasonable) number of
tasks N are encountered, hence, for many settings with a generous memory and computational
bounds, many continual learning strategies that, in terms of complexity and memory usage, grow
somehow proportional to the number of training sets Tri may still be a viable option, especially if
they can guarantee better performance.

Having defined a formal framework for CL, we can therefore highlight a number of desiderata:
4I.e., if we could fit all previous examples in memory M , it would become a problem of scarce interest for the CL

community, given that re-training the entire model hi from scratch would be always possible [66]

10

Desideratum 1 Storage-Free Continual Learning: Avoid the use of external memory M to store
raw data.

Desideratum 2 Online Continual Learning: Limit the size of each training set, moving towards
online learning so that |Tri| = 1.

Being able to learn without storing any raw data would mean a large step towards continual
learning. In fact, getting rid of storing raw data means that the learning algorithm is able to extract
information from the current task that may be not only useful and accurate for the actual task, but
also transferable for the future.

In our biological counterparts, namely the brain, a system-level consolidation process is often
thought to take place, where memories are encoded, stored and than retrieved for rehearsal purposes
[32]. However, the idea of storing high-dimensional perceptual data appears impractical given the
incredible amount of information flowing into our brain every day from our multi-modal senses.
Being able to process data online as well, is an important desideratum especially for reducing
adaptation time and operational memory usage in an embedded or robotics setting.

Desideratum 3 Task indicator free Continual Learning: Learning continually without help of an
external signal t indicating the current task, in particular at test time, is strongly desirable.

4 Continual Learning Strategies
In this section we present a summary of the most popular continual learning strategies in the
literature (see Fig. 2). For a more in depth overview, we refer the reader to the recent overview in
[114] that additionally exposes the bio-inspired aspects of existing continual approaches.

4.1 Dynamic Architectures Approaches
The architecture of learning models has a strong influence on how they learn. One approach to CL
is to modify dynamically the architecture of a model to make it learn new concepts or skills without
interfering with old ones. We present two types of dynamic architectures. Firstly, when the changes
in the architecture are explicit; and secondly, when changes are implicit architectural changes by
freezing weights. We also present an important architectural approach to CL: dual memory models.

4.1.1 Explicit Architecture Modification

Explicit dynamics architecture gather all methods that add, clone or save parts of parameters of
the models to avoid catastrophic forgetting.

Progressive neural networks [137] is one of the first approaches within this paradigm for deep
neural networks. For each new task to be learned, a new model is created connected to all past
ones. The goal of this new model is to learn the new task by using what was already learned by
previous models, and so develop the new skills needed. At test time, the proposed method needs to
input data to all the neural networks previously created, and needs to know the task index to pick
the right output. Because the weights are used to connect neural networks together, the growth
of parameters is quadratic w.r.t. the number of tasks. This growth is generally to be prevented.
Instead, layers may be dynamically expanded in a single network without the need of re-training or
freezing previously learned parameters, improving model capacity over time [167].

Another type of dynamic architecture strategy consists of dynamically adding neurons for new
tasks. As an example, output layers can be added in order not to change output parameters from
previous tasks as in LWF approach [87]. This method ensures that the output layer will not be
modified; however, as the feature extraction layers are shared between tasks, some parameters risk
to be modified and forgotten. In addition, at test time, the method needs the task label.

It is worth mentioning that we consider as dynamic architecture, those approaches that adapt
their architecture specifically with the aim of not forgetting, while similar mechanisms can be used
for other purposes5.

5If the architecture is changed without this objective, it is not considered as part of the CL approach. As an
example, when new classes are available, we might choose to make the output size grow to handle these, without
making it as a way to not forget.

11

4.1.2 Implicit Architecture Modification

Implicit architecture modification is the use of model adaptation for continual learning without
modifying its architecture. This adaptation is typically achieved by inactivating some learning units
or by changing the forward pass path.

We categorize the fact of dynamically freezing weights as an implicit dynamic architecture
approach. It is implicit because the architecture of the model does not change; however, the capacity
of the model to learn new tasks does in an inevitable way.

Freezing weights consist of choosing some weights at the end of a task that will no more change
in the future. The backward pass will not be able to tune them anymore; however, they can still be
used in the forward pass. This method assures that these weights will not forget, and tries to keep
enough free parameters to learn in the future [96, 95, 146]. The difficulty lies in freezing enough
weights to remember, but not too much to still be able to learn new skills. The way weight freezing
is implemented in PackNet [96], Piggypack [95] or HAT [146] is by defining a special mask for each
task that is used to both protect weights when new tasks are learned, and to define which weights
to use at inference time for a given task. The use of masks to freeze important weights can be
referred to as hard attention process [146]. Weight freezing can also be used to keep the decision
boundary of the output unchanged [65].

An alternative to a weight freezing when tasks change is to define a dynamics path inside the
model in order to use a specific path for a specific task and not modify already learned weights.
This is the idea exploited in PathNet [43].

The use of implicit architecture modifications is not incompatible with explicit architecture
modification as it is shown in [95, 146].

4.1.3 Dual Architectures

Dual approaches characterize architectures that are split in two models. One model is used in order
to learn the actual task and should be easily adaptable, while the second model is used as a memory
of past experiences. This approach can be linked to interactions between the hippocampus and
neocortex to avoid catastrophic interference in mammals [101]. The stable network plays the role
of the neocortex, and the flexible one plays the role of hippocampus [48, 50, 51, 97].

The use of dual architecture is explicit in many bio-inspired approaches such as [48, 51, 115, 154,
70]. Dual architectures are extended in [154] with the addition of an embedding model, and then,
continual learning happens in the embedding space. The dual architecture can also be extended
to more than two components, as in FearNet [70], which takes inspiration from the basolateral
amygdala from the brain to add a third component that is able to choose between the flexible and
the stable memory for recall.

4.2 Regularization Approaches
4.2.1 Penalty Computing

Regularization is a process of introducing additional information in order to prevent overfitting [14].
In the context of Continual Learning, the model should not overfit a new problem because it would
make it forget it’s previous skills. The regularization approaches in continual learning consist in
modifying the update of weights when learning in order to keep memory of previous knowledge.

Basic regularization techniques that could be used for CL are weight sparsification, dropout
[53], and early stopping [97]. These simple regularization techniques reduce the chance of weights
being modified, and thus decrease the probability of forgetting. More complex methods consist
in searching for important weights inside the models and protect them afterwards to prevent
forgetting. The Fisher matrix can be used to estimate the importance of weights and produce an
adapted regularization as for Elastic Weight Consolidation (EWC) approach [73]. For efficiency
purpose, EWC only use the diagonal of the Fisher matrix to estimate importance. [131] proposes
an alternative to get a better estimation of the Fisher matrix using the Kronecker factorization.
EWC approach needs to have clear task delimitation to compute Fisher matrix at the end of the
task, but Synaptic Intelligence (SI) [176] extended the method in an online learning fashion to relax
this constraint. [80] propose to use a regularization method called incremental moment matching to
overcome catastrophic forgetting. This method saves the moment posterior distribution of neural
networks weights from past tasks and uses it to regularize learning of a new task. Two different

12

declinations of this method are proposed: one with the use of first order moment IMM-mean and
one with second order moment IMM-mode.

Another method to apply regularization for continual learning is the use of Conceptor [62, 57].
Conceptor are memory mechanism that store learned patterns and representation. They are used
to guide the gradient of the loss function to prevent forgetting and then favor modification for some
weights and penalize others.

The regularization methods have been shown to be efficient in reinforcement learning [73],
classification [73, 131, 176, 57] and also generative models [111, 145]. A limitation is that after
several tasks the model may saturate because of a too high regularization, and finding a good
trade-off between regularization that allows learning without forgetting may be hard.

4.2.2 Knowledge Distillation

Distillation techniques were introduced by [60] in order to transfer knowledge from neural network
A to neural network B. The idea is that after A has learned to solve a task, we want B to share
this skill with A. We then forward the same input to both A and B and impose B to have the same
output as A. Distillation should be more efficient than retraining B because A produces a soft-target
that helps B to learn faster. In order to apply this method for continual learning, after network A
learned to solve the first task, and while B is learning the second one, we distill knowledge from A
to B. In the end, B should be able to solve both tasks. This and related methods have been used
in various approaches [171, 144, 48, 136, 68, 160, 33, 105]. A drawback of distillation is that it
generally needs to preserve a reservoir of persistent data learned for each task in order to apply
distillation from a teacher model to a student model. Distillation can also be used to transfer policy
learning from one model to another [136].

4.3 Rehearsal Approaches
Rehearsal approaches gather all methods that save raw samples as memory of past tasks.

These samples are used to maintain knowledge about the past in the model. Ideally, those
samples are carefully chosen in order to be representative of past tasks; by default, they can be
randomly chosen.

The initial strategy is to save the representative samples and incorporate them in the new
training set [125, 81]. In the second article samples are chosen randomly for continual learning of
generative models but in [125] the set is carefully sorted in order to keep the most representative
samples into a coreset. This process allows to dynamically adapt the weights of the feature extractor
and strengthen the network connections for memories already learned without forcing to keep
previous weights.

However, the coreset can also be used for regularization purpose and not just to be replayed
from time to time along with new data in the learning process.

For example, the coreset can be used for distillation in [132] and in A-LTM (Active Long Term
Memory Networks) [48] or to regularize the gradient when learning new tasks as in GEM (Gradient
Episodic Memory) [92] and A-GEM (Averaged Gradient Episodic Memory) [23]. Coresets have also
been used to regularize the continual learning of a generative model in the CloGAN approach [130].
In a bayesian learning setting the coreset can be incorporated into the prior to regularize learning
update as in [111]. The authors experimented the use of a coreset to create a variational continual
learning model (VCL).

The disadvantage of rehearsal approaches is the utilization of a separate memory of raw and
unprocessed data which is a vanilla way of saving knowledge that does not respect data privacy.
Nevertheless it ensure that the memories are not degraded through time.

4.4 Generative Replay
Instead of modeling the past from few samples as it is done in Rehearsal approaches, Generative
Replay approaches train generative models on the data distribution. Therefore, they are able to
afterwards sample data from past experience when learning on new data. By learning on actual
data and artificially generated past data, they ensure that the knowledge and skills from the past is
not forgotten. These methods have also been associated with the term pseudo-rehearsal [132] or
Intrinsic Replay [37]. They could be understood as methods that perform regeneration of samples
or internal states, and thus, they can be associated with model-based learning, where the model

13

learns the data distribution of past experiences. The generative models is generally a GAN [52] as
in [172, 81, 150] or an auto-encoder as in [37, 70, 20, 69].

A classical method implementing a generative replay normally makes use of dual models
[69, 150, 172, 41, 70]. One frozen model generates samples from past experiences and another learns
to generate and classify actual samples in addition to the regenerated ones. When a task is over, we
replace the frozen model by the actual one, freeze it, and initialize a new model to learn next task.

Generative Replay models can be categorized into two different approaches: "Marginal Replay"
and "Conditional Replay" [83]. Techniques using Marginal Replay make use of standard generative
models, while Conditional Replay are a particular case of the former where the generative model
is conditional. Conditional models can generate data from a specific condition, e.g. a class or a
task. In continual learning, it allows then to choose from which past learning experience we want
to generate. It is important for example to balance data in generated replay [83].

While most of the Generative Replay based approaches are meant to solve classification tasks
[70, 69, 150, 172, 130], some models use it for unsupervised learning [81, 171] or reinforcement
learning [20].

4.5 Hybrid Approaches
Most CL approaches have an implicit dual architecture strategy, as they always have a slow learning
and a fast learning mechanisms to learn continually. For example, in rehearsal approaches (Section
4.3) the stable model role is played by a memory that stores samples, in generative replay approaches
(Section 4.4) a generative model plays the role of stable model, in some regularization approaches
(Section 4.2.1) the stable model is played by the Fisher matrix which saves important weights.

Moreover, most of continual learning approaches do not rely on a single strategy to tackle
catastrophic forgetting. As stated in previous sections, each approach offers advantages and
disadvantages, but most of the times, combining strategies allows to find the best solutions. We
summarize in Table 2 and Figure 2 the different approaches cited and the strategies they propose.

Figure 2: Venn diagram of some of the most popular CL strategies w.r.t the four approaches
illustrated in Section 4: CWR [91], PNN [137], EWC [73], SI [176], LWF [87], ICARL [125], GEM
[92], FearNet [70], GDM [115], ExStream [55], Pure Rehearsal, GR [150], MeRGAN [171] and AR1
[97]. Rehearsal and Generative Replay upper categories can be seen as a subset of replay strategies.
Better viewed in color.

5 Evaluation of Continual Learning Algorithms
Before applying CL solutions to autonomous agents, they should be experimented and evaluated in
simulation or toy examples. It is crucial to have a set of good evaluation metrics and benchmarks to

14

Table 2: Continual Learning Main Strategies

References
Regularization Rehearsal Architectural

Generative-
Replay

Zhou et al. [178] X
Goodfellow et al. [53] X
Lyubova et al. [94] X
Rusu et al. [136] X
Camoriano et al. [17] X X
Furlanello et al. [48] X X
Li et al. [87] (LwF) X X
Rusu et al. [137] (PNN) X
Jung et al. [65] X X
Aljundi et al. [3] X
Rebuffi et al. [125] (Icarl) X X
Kirkpatrick et al. [73] (EWC) X
Fernando et al. [43] X
Lee et al. [80] X
Lee et al. [174] X
Triki et al. [161] X
Seff et al. [145] X
Shin [150] (DGR) X
Velez et al. [165] X
Lopez-Paz et al. [92] (GEM) X X
Zenke et al. [176] (SI) X
Nguyen et al. [111] (VCL) X X X
Ramapuram et al. [124] X X
Mallya et al. [96] X
Kamra et al. [69] X
Draelos et al. [37] X
Serra et al. [146] X
Mallya et al. [95] X
Parisi et al. [115] (GDM) X X X
He et al. [57] X X
Hayes et al. [55] X
Wu et al. [172] X X
Ritter et al. [131] X
Schwarz et al. [144] X
Maltoni et al. [97] X X
Achille et al. [1] X X
Wu et al. [171] (MeRGAN) X X
Dhar et al. X
Lesort et al. [81] X
Caselles-Dupré et al. [20] X
Riemer et al. [127] (MER) X X
Rios et al. [130] (CloGAN) X X X
Lesort et al. [83] X
Sprechmann et al. [154] X X
Kemker et al. [70] (FearNet) X X
Chaudhry et al. [23] X X
Kalifou1 et al. [68] X X

assess if the approaches are scalable to real problems or may not solve harder ones. In this section
we summarize existing evaluation methods and benchmarks and highlight some of them we believe
worth using when targeting the deployment of practical CL applications.

15

Table 3: Benchmarks and environments for continual learning. For each resource, paper use cases
in the NI, NC and NIC scenarios are reported.

Benchmark NI NC NIC Use Cases
Split MNIST/Fashion MNIST X [83, 81, 57, 130]
Rotation MNIST X [92, 83, 127]
Permutation MNIST X [53, 73, 43, 150, 176, 83, 57, 127]
iCIFAR10/100 X [125, 97, 70]
SVHN X [71, 145, 130]
CUB200 X [80]
CORe50 X X X [91, 115, 97]
iCubWorld28 X [116, 90]
iCubWorld-Transformation X [117, 16]
LSUN X [171]
ImageNet X [125, 95]
Omniglot X [77, 144]
Pascal VOC X [104, 151]
Atari X [136, 73, 144]
RNN CL benchmark X [153]
CRLMaze (based on VizDoom) X [89]
DeepMind Lab X [99]

5.1 Evaluation Protocols and Benchmarks
In continual learning, the difficulty of learning on a sequence of tasks is first of all dependant on
the difficulty of each of the tasks separately. If a task is difficult to learn, a model will have to
deeply modify its weights. If those weights contain knowledge from previous tasks, there is a high
probability they will be degraded. On the other hand, the risk of forgetting is also dependant on
the likelihood of tasks occurring. Indeed, after learning a task Tt, it is easier for a neural network to
learn a radically different task Tt+1 without forgetting, than learning a task Tt+1 with similarities
to Tt [41].

There are several kinds of similarities in a sequence of tasks:

• Similarities in learning objectives: They occur when the objective is similar from task to
task. For example, in a classification setting, when the same classes are used from one task to
another (e.g. Permuted MNIST), or in RL, the same tasks need to be achieved in different
environments.

• Similarities in features: the features from task to task are the same or very similar (e.g.
Rotation MNIST).

Beyond the similarity among tasks and the learnability of each task, the availability of data is
primordial to evaluate the difficulty of a benchmark. For convenience, most of the classical bench-
marks assume that each task is available long enough to learn a satisfying solution. Nevertheless,
even when there is no constraint on the time to learn a task, data from the past can not be available
again in the future. In several approaches, past data is used for model selection, however using
the performance obtained on task Tt to fine-tune a model that will learn on T0 violates temporal
causality [120]. Data might be saved for later use as in rehearsal approaches, but this must be done
before moving on to the next task.

Most CL benchmarks are benchmarks adapted from others fields, for instance:

• Classification: MNIST [79], Fashion-MNIST [173], CIFAR10/100 [74], Street View House
Numbers (SVHN) [110], CUB200 [168], LSUN [175], ImageNet [75], Omniglot [77] or Pascal
VOC [39] (object detection and segmentation).

• Reinforcement Learning: Arcade Learning Environment (ALE) [8] for Atari games, SUR-
REAL [40] for robot manipulation and RoboTurk for robotic skill learning through imitation
[98], CRLMaze extension of VizDoom [89] and DeepMind Lab [99].

• Generative models: Datasets that prevail in this domain are the same as those used in
classification tasks.

16

These datasets are then split, artificially modified (e.g., with image rotations or permutation of
pixels) or concatenated together to create sequences of tasks and build a continual learning setting.
As an example, permuted MNIST [73] and rotated MNIST [92] are continual learning datasets
artificially created from MNIST. Another possible continual learning scenario is the use of naturally
non i.i.d. datasets (e.g. NICO [58]) or learning sequentially different datasets either on the same
input space [80, 146] or in a multi-modal fashion [71]. However, only few datasets, such as CORe50
[91] or [153], are specifically built with continual learning in mind.

In robotics, numerous datasets are often recorded in a online fashion through video. Therefore,
they are suitable to evaluate continual learning algorithms. As an example, those proposed by
[116, 117, 4] are composed of sequences of images captured during robotics object manipulation;
they are used for classification and detection algorithms. A summary of the main datasets and
examples of their applications can be found in Table 3.

5.2 Continual Learning Metrics
Following the evaluation of an algorithm on a challenging benchmark, we should make sure that the
evaluation criteria are rigorous and cover the whole aspect of the full learning problematic. It is not
enough to observe good final accuracy on an algorithm to know if it is transferable to a robotics
settings. We should also evaluate how fast it learns and forgets, if the algorithm is able to transfer
knowledge from one task to another, and if the algorithm is stable and efficient while learning. In
this section we gather a set of metrics to rigorously evaluate a CL approach.

For a rigorous evaluation, we can assume to have access to series of test sets Tei. The aim
is to assess and disentangle the performance of our hypothesis hi as well as to evaluate if it is
representative of the knowledge that should be learned by the corresponding training batch Tri.

For instance, one example of such evaluation is one of the first metrics proposed for CL [56]; it
consists of an overall performance Ω in a supervised classification setting. It is based on the relative
performance of an incrementally trained algorithm with respect to an offline trained algorithm
(which has access to all the data at once). In our notation, Ω is:

Ω =
1

N

N∑
i=1

Ri,i
RCi,i

. (2)

Where N is the number of tasks encountered, RCi,j is the potentially best accuracy we can have
on TeCi if the model was trained with all data at once, i.e. on TrCi (the accumulation of training
sets TrCt from t=0 to t=i). TeCi is the accumulation of all test sets TeCt from t = 0 to t = i. Ω = 1
indicates identical performance to an off-line cumulative setting; an Ω larger than one is possible
when the offline model is worse than trained in a CL paradigm.

In [146], instead, the authors try to directly model forgetting with the proposed forgetting ratio
metric ρ after learning i tasks, defined as:

ρj≤i =
1

N

N∑
i

N∑
j

(
Rij −RRj
RCij −RRj

− 1

)
(3)

Where, RRj is the accuracy of a random stratified classifier using the class information of task j.
Always in the same sequential setting, in [92] other three important metrics are proposed:

Average Accuracy (ACC), Backward Transfer (BWT), and Forward Transfer (FWT). In this case,
after the model finishes learning about the training batch Tri, its performance is evaluated on all
(even future) test batches Tej .

The larger these metrics, the better the model. If two models have similar ACC, the preferred
one is the one with larger BWT and FWT. Note that it is meaningless to discuss backward transfer
for the first batch, or forward transfer for the last batch. The metrics are extended for more fine
grained, generic evaluation [34] so that the original accuracy [92] (as well as BWT and FWT) can
account for performance at every timestep in time. Accuracy is defined as:

A =

∑N
i=1

∑i
j=1Ri,j

N(N+1)
2

(4)

where R ∈ RN×N is the training-test accuracy matrix that contains in each entry Ri,j the test
classification accuracy of the model on task tj after observing the last sample from task ti, Accuracy

17

(A) considers the average accuracy for training set Tri and test set Tej by considering the diagonal
elements of R, as well as all elements below it (i.e., averages Ri,js where i >= j see Table 4).
Backward Transfer (BWT) measures the influence that learning a task has on the performance on

Table 4: Accuracy matrix R: elements accounted to compute A (white & cyan), BWT (cyan), and
FWT (gray). R∗ = Rii, Tri = training, Tei= test tasks.

R Te1 Te2 Te3

Tr1 R1,1 R1,2 R1,3

Tr2 R2,1 R2,2 R2,3

Tr3 R3,1 R3,2 R3,3

previous tasks. It is defined as the accuracy computed on Tei right after learning Tri as well as at
the end of the last task on the same test set (see Table 4 in light cyan).

BWT =

∑N
i=2

∑i−1
j=1(Ri,j −Rj,j)
N(N−1)

2

(5)

The original BWT [22, 92] is extended into two terms to distinguish among two semantically
different concepts (so that, as the rest of metrics, is to be maximized and in [0,1]).

REM = 1− |min(BWT, 0)| (6)

i.e., Remembering, and (the originally positive) BWT, i.e., improvement over time, Positive Backward
Transfer :

BWT+ = max(BWT, 0) (7)

Likewise, the FWT redefined to account for the dynamics of CL at each timestep is

FWT =

∑j−1
i=1

∑N
j=1Ri,j

N(N−1)
2

(8)

FWT accounts for the train-test accuracy entries Ri,j above the principal diagonal of R, excluding
it (see elements accounted in Table 4 in light gray). Forward transfer can occur when the model is
able to perform zero-shot learning.

A Learning Curve Area (LCA) (∈ [0, 1]) metric to quantify the learning speed by a CL strategy
is proposed in [23]. It uses the b-shot performance (where b is the mini-batch number) after being
trained for all the N tasks:

Zb =
1

N

N∑
i=1

ai,b,i (9)

where ai,k,j ∈ [0, 1] is the accuracy evaluated on the test set of task j after the model has been
trained with the k-th mini-batch of task i. This amount is equivalent to previous accuracy matrix
entry Rij but at a lower granularity of a batch level. ai,k,j is used to define a forgetting measure
∈ [−1, 1] that quantifies the drop in accuracy on previous tasks [22]. fkj is the forgetting on task j
after the model is trained with all mini-batches up to task k:

fkj = max
l∈1,..,k−1

al,Bl,j − ak,Bk,j (10)

where Bi is all mini-batches corresponding to training dataset of task k (Dk).
LCAβ is the area of the convergence curve Zb during training as a function of b ∈ [0, β]:

LCAβ =
1

β + 1

∫ β

0

Zbdb =
1

β + 1

β∑
b=0

Zb (11)

The interpretation of LCA is intuitive: an LCA0 is the average 0-shot performance (FWT), and
LCAβ is the area under the Zb curve, which is high if the 0-shot performance is good and if the
learner learns quickly. LCA aims at disambiguating the performance of models that may have the

18

same Zb or AT , but very different LCAβ because despite both eventually obtaining the same final
accuracy, one may learn much faster than the other.

While forgetting and knowledge transfer could be quantified and evaluated in various ways, as
argued in [41, 56, 71], these may not suffice for a robust evaluation of CL strategies. For example, in
order to better understand the different properties of each strategy in different conditions, especially
for embedded systems and robotics, it would be interesting to keep track and unambiguously
determine the amount of computation and memory resources exploited. In this context, the
metrics proposed in [92] are extended in [34] to unify in a common evaluation framework different
infrastructural and operational metrics. Other practical metrics included are Model Size (MS),
Samples Storage Size (SSS) efficiency and Computational Efficiency (CE). We briefly describe them
next.

The memory size of model hi is quantified in terms of parameters θ at each task i, Mem(θi);
with the idea that it should not grow too rapidly with respect to the size of the model that learned
the first task, Mem(θ1):

MS = min(1,

∑N
i=1

Mem(θ1)
Mem(θi)

N
) (12)

Some CL approaches save training samples (or generative replay generated samples) as a replay
strategy to not forget. The Samples Storage Size (SSS) efficiency establishes a metric for the
memory occupation in bits by the samples storage memory M , Mem(M), to be bound by the
occupation of the total number of examples encountered at the end of last task:

SSS = 1−min(1,

∑N
i=1

Mem(Mi)
Mem(D)

N
) (13)

where D is the lifetime dataset associated to all distributions D.
A metric that bounds the Computational efficiency (CE) by the number of operations for

training set Tri is defined as:

CE = min(1,

∑N
i=1

Ops↑↓(Tri)·ε
1+Ops(Tri)

N
) (14)

where Ops(Tri) is the number of (mul-adds) operations needed to learn Tri, Ops ↑↓(Tri) are the
operations required to do one forward and one backward (backprop) pass on Tri, and ε is a scaling
factor (associated to the nr of epochs needed to learn Tri). Overall CLscore and CLstability metrics
are also finally proposed [34] in order to aggregate different criteria to be maximized that allow to
rank CL strategies. In order to assess a CL algorithm ACL, each criterion to be optimized by the
CL model, ci ∈ C (where ci ∈ [0, 1]) is assigned a weight wi ∈ [0, 1] where

∑C
i wi = 1. Each ci is

the average of r runs, and the final CLscore to maximize is computed as:

CLscore =

#C∑
i=1

wici (15)

where each final criterion ci is to be maximized by a CL algorithm. CLstability is the pondered
standard deviation of each CL metric [34]:

CLstability = 1−
#C∑
i=1

wiσ(ci) (16)

with σ(ci) the standard deviation of criterion ci.
In future evaluation scenarios, particularly in robotics, stability is another important property

that should be evaluated since in many robotic tasks and safety-critical conditions, potential abrupt
performance drifts would be a major concern when learning continuously. The metrics presented
here can also be combined to assess higher-level capabilities. As an example, if we are to assess the
scalability of a CL algorithm, one could use a weighted average of SSS, MS, and CE.

The metrics presented in a supervised classification context [34] can also be generalized with
different performance measure P , instead of accuracy, and used in different settings such as
reinforcement and unsupervised learning. For instance, they can be extended to RL; the underlying
performance metric is, instead of accuracy, the accumulated reward on test episodes. In general in

19

RL, cumulative reward plots over time are common norm to evaluate policy learning algorithms.
Extra performance metrics in RL tasks will very much depend on the task being assessed, the
reward function, and other evaluation metrics that act as evaluation proxies, as it is common in
semi/unsupervised learning settings.

The evaluation of generative models in any setting is challenging. Fréchet Inception Score (FID)
[59] is a common metric that compares features from generated data and true data. Inception Score
(IS) [139] has also been widely used as a proxy to evaluate the quality of generative models. It
measures if the class of generated samples are varied by making use of a model trained on ImageNet.
One shortcoming of these scores is that they may be maximized by over-fitting generative models.
Another evaluation method is using generated data to train a classifier and evaluate its accuracy
on a test set of true data [85]. The test accuracy, called Fitting Capacity (FC) gives a proxy on the
quality of the generated data. Fitting Capacity and Fréchet Inception Score were used in a CL
setting in [83, 81].
More methods for evaluating generative models are described and assessed more in depth in [11, 61];
however, they have never been used in a CL setting. In any case, the need for real data is mandatory
in most evaluation schemes. In a CL setting, evaluating the generation of data from past tasks may
need to violate the data availability assumption. The different metrics for generative models may
then be useful tools for example for evaluating generative replay methods; however, they have to be
manipulated carefully to be incorporated into the continual learning spirit.

6 Continual Learning for Robotics
In the previous section we listed and described the different existing types of strategies to tackle
continual learning. In this section, we will present real use cases of CL with an emphasis on
robotics applications. First, we present why continual learning is crucial for robotics, and then, the
challenges that robotics face in CL tasks. Finally, we present concrete robotic applications with
potential insights to draw from CL.

6.1 Opportunities for Continual Learning in Robotics
A robot is an agent that interacts with the real world. It means that it can not go back in time
to improve what it has learn in the past. These particularities of robotic platforms make them
a natural playground for CL algorithms. Furthermore, robots suffer from several constraints in
terms of power or memory, and that is exactly what CL intends to optimize, in the way it addresses
learning problems. On the other hand, robots have rich information about their experiences. They
are in control of their interaction with the environment, which may help them understanding the
concept of causality, and extracting knowledge from different kinds of sensors (images, sound,
depth...). This rich information helps machines to produce strong representations which are crucial
for a well performing CL algorithm [82].

We could almost conclude that CL is born for robotics, and it may be true; however, today most
of CL approaches are not robotics related and rather focus on experiments on image processing or
simulated environments. Next section will present the challenges that make CL difficult to apply in
robotic environments.

6.2 Challenges of Continual Learning in Robotics
6.2.1 Robotics Hardware

The first challenge to deal with when doing any experiment with robots is the hardware. Robots
are known to be unstable and fragile. Robot failures are one of the main restrictions for researchers
to propose new approaches on robotics tasks. They add unavoidable delay in any experiment and
are expensive to fix. Moreover, if the failure is not hardware but software, since it is not possible
to reset the state of the robot automatically, manual help is often needed, e.g., to put back the
robot in his starting position or recover it from an irrecoverable state. Furthermore, most of the
time building or buying a robot is itself quite costly. Once the robot is correctly working, one new
problem arises, which is its autonomy in terms of energy. This aspect is also a main difficulty to
deal with when experiments need to be set. It is difficult to program long experiments without
manually recharging the robot and making sure that it will not stop by a lack of power supply

20

or failure. Lastly, robots are embedded platforms and, consequently, have limited memory and
computation resources, which should be carefully managed to avoid overflow.

The difficulties of using robots in experiments explain why there are so few approaches of
continual learning with robots in the literature. In the next section, we will see how robotic
environments challenge continual learning algorithms.

6.2.2 Data Sampling

When a robot needs to learn a task in a known or unknown environment, it must collect its own
training data in the real world [170]. Data serves as the basis for environment exploration and
comprehension. This problematic is exactly the same as the one met by RL algorithms [157].
In infants, a crucial component of lifelong learning is the ability to autonomously generate goals
and explore the environment driven by intrinsic motivation [113, 18]. Self-supervised approaches
[121, 86, 170, 149] also help to automatically explore environments. Curiosity [15] and self-supervision
[35] allow to search for new experiences (or data) and build a base of knowledge useful to achieve
actual or future tasks via transfer learning [115]. As an example, manipulation tasks [72] such as
grasping [121], reaching [123, 26], pushing buttons [84], throwing [155, 72] or stacking [26] objects
(cubes, balls...) are common complex tasks built on comprehensive sets of experiments.

Data gathered in this way can then be used on the fly in an online learning process or stored for
later processing.

However, in order to improve learning algorithms the need for annotations or external help is
crucial. In the next subsection we will describe the particular needs for annotations in robotics.

6.2.3 Data Labeling

As seen in previous section, gathering a varied set of raw data is already a difficult task. However,
using it and understanding it is even more tedious. In this section, we detail different needs for
labelling that autonomous agents such as robots need. First of all, to understand its environment,
a robot will need to apprehend the objects that compose it. To do so, the robot will need at some
point that an external expert assesses that the object representation learned is good. This is the
first kind of label the robot will need, i.e., object labelling [28, 30]. Secondly, if we want the robot
to perform a certain task, it will need to get information about the goals we gave it and also what
it should not do. This is generally done by a reward function that defines credit assignment [106],
or it can also be defined internally by more abstract rules such as self-supervision [54, 152], intrinsic
motivation or curiosity [113, 142] as in [46, 27, 30, 78]. Thirdly, the robot should know when the
task changes, and what task it should try to solve. This process consists of labelling the task; and
the label is called the task identifier [92].

All these types of labels are not mandatory, but they drastically help and impact the learning
process. The downside of labelling is that it is expensive and time consuming, which slows down
the learning algorithms. To tackle those two problems, CL needs to find efficient solutions that can
make the best out of the available labels for learning.

The specific fields that aim at answering these questions are few-shot learning [76, 42] and active
learning [148]. The former tries to grasp a concept from very few data points. Active learning aims
at identifying and selecting the most needed labels in order to maximize learning. By combining
optimization procedures in learning from few instances and minimizing the needs for labels, the
field of robotics could be more suitable for leveraging continual learning settings in the real world.
Furthermore, efficiency in learning reduces the risks of forgetting and degrading memories.

6.2.4 Learning Algorithms Stability

In continual learning, algorithms face several learning experiences in a row. From each learning
experience, some memory should be saved to later prevent for not forgetting. The stability of
learning algorithms is then crucial: if only one learning experience fails, the whole process may
be corrupted. Moreover, if we respect the continual learning causality, we can not go back one
or several tasks earlier in time in order to fix an actual problem. The corruption of one learning
experience can lead to the corruption of memories and then to the model degradation when learning
later tasks. The needs for robust mechanisms to validate or reject results of a learning algorithm
is key to keep sane memories and weights; however, the instability of deep learning models must
also be addressed to improve this drawback. As an example, generative models are powerful tools

21

for continual learning but their instability may make them unsuitable for this kind of setting [81].
Reinforcement learning algorithms are also known to be unstable and unpredictable, which is
disastrous for continual learning.

6.3 Applications

Figure 3: Sample tasks tested for unsupervised open-ended learning [123, 36] and continual
learning settings [68] in a couple of robotics labs, among others, from the DREAM project
(www.robotsthatdream.eu).

Real-word applications of continual learning are virtually unlimited. In fact, any learning
algorithm that needs to deal with the real world will face a non i.i.d. data stream. This as well
happens for autonomous robots that learn new manipulation tasks, for exploration policies, as well
as for autonomous vehicles that need to learn and adapt to new circumstances [10, 25, 63, 126].
Non-static settings are also faced by algorithms that learn how to predict trends based on data
streams from internet user activities, e.g., among others, for advertisement or finance. This problem
is likewise confronted when an already trained algorithms needs to acquire new knowledge without
forgetting, e.g., recognize new classes for classification, anomaly detection, etc. However, in this
section we focus on specific continual learning use cases on robotics.

6.3.1 Perception

While the world of perception is a multi-faceted topic at the very center of every application on
autonomous sytems, the vast majority of CL algorithms in the literature are evaluated on object
recognition tasks. Most models, indeed, are evaluated on datasets including static or moving objects.
This is motivated by the fact that before any further action or policy, an autonomous agent (or
robot) needs to identify the different component of its environment. In the case of classification,
the robot may be pre-trained from an initial dataset. However, in any environment the robot would
probably need to learn new objects from the new domain, and new variants (different poses, lighting,
aspect) of already learned objects should be leveraged to improve its recognition [94] capabilities.
CL is crucial to tackle such dynamic scenarios. Initial progresses in this area have been proposed in
[159, 116, 90, 16, 91]. Concrete Continual learning approaches to object segmentation can be found
in [104, 105], and in object detection in [151].

Visual saliency for semantic segmentation and unsupervised object detection are other equally
important applications in the context of perception which have been recently explored under
continual learning and robotics settings [29]. RL-IAC (RL Intelligent Adaptive Curiosity), in
particular, explores to learn visual saliency incrementally [30] with an articulated autonomous
exploration technique based on curiosity to efficiently and continually learn a saliency model in a
complex robotics environment tested in the real-world.

A classic problem in robotics within inherently continual learning settings are simultaneous
localization and mapping (SLAM) [21] and navigation [159]. In [159], using a HERO-2000 mobile

22

www.robotsthatdream.eu

robot with a radar sensor a continual learning algorithm based on explanation-based neural network
learning (EBNN) is proposed to perform room mapping and navigation. Action models in EBNN
explain (in terms of previous experiences) and analyze observations to transfer task-independent
(navigation) knowledge via predicting collisions and their prediction certainty.

6.3.2 Reinforcement Learning

In reinforcement learning the data distribution is dependent on the actions taken by the controlled
agent. Therefore, since the actions taken are not random, data is not i.i.d. and the data distribution
is not stationary. In the context of reinforcement learning similar techniques to those proposed in
CL are often adopted in order to learn over a data distribution which is approximately stationary.
An example of such techniques is the use of a external memory for rehearsal purposes, also know as
experience or memory replay buffer [88, 141, 55].

The first challenge for RL is the extraction of representations to understand and compact what is
relevant from the input data [82]. Continual learning of state representations for RL is intrinsically
close to unsupervised learning or representation learning for classification; the methods used in
both cases may then be very similar or worth leveraging across.

The second RL challenge is learning a policy to solve a specific task. The CL challenge of policy
learning is different because it often should take into account both state and context. Context is
usually handled with recurrent neural networks, and this kind of model is not yet been studied
extensively in CL; one example is in [153]. Different robot manipulation tasks such as grasping
and reaching objects that are used as benchmarks can be seen in Fig. 3 and, for instance, in
state representation learning for robotics goal-based tasks [123, 68]. These two challenges face
continual learning problems, to learn representations and to learn policies from non stationary
data distributions. However, it is worth distinguishing among both problems because learning and
transfer between tasks are different challenges. Two tasks may need similar representations with
different policies, while similar policies may require dissimilar representations.

In the context of robotics, fewer RL approaches have been proposed than in video-games or
simulation settings. In particular, this is due to the low data efficiency of RL algorithms [123].
We can still note several approaches that successfully tackle this problem, either in an end-to-end
manner [67, 121], or by splitting the two challenges to address them separately, i.e., by first learning
a state representation [82] and later performing policy learning [45, 164, 100, 2, 38, 64]. Nevertheless,
a solution to this problem is to learn the policy in simulation and transfer it to deploy it in a real
world robot [10, 138, 49, 68].

6.3.3 Model-based Learning

Smoothly moving and interacting with always different, unpredictable environments, while con-
structing a coherent model of the external world, is one of the holy grail of robotics. For many years,
researchers in this area have tried to propose robust and general enough sensory-motor solutions to
complex problems such as navigation or object grasping. However, as it appears to be also true for
humans, there will always be an environment or situation in which our biased model of the world
fails and adaptation is needed.

Online (inverse dynamics) learning has also been applied in robotics, but generally not using
deep learning. In [133, 17], the inverse and semiparametric dynamics of an iCub humanoid robot is
learned in an incremental manner. This means both parametric modelling (based on rigid body
dynamics equations) and nonparametric modelling (using incremental kernel methods) are used. In
[134] it is shown that derivative-free models outperform numerical differentiation schemes in online
settings when applied to non parametric (e.g. Gaussian processes with kernel function) model
structures.

In the pioneering work by [159], a model of both the external world and the robot itself is
incrementally learned through reinforcement learning in complex navigation tasks on a real robot.
However, incrementally and autonomously building a causal model of the external world, still
remains a poorly explored topic in the context of robotics. Nevertheless, as it has been shown in
recent RL literature, a model-based approach may be of fundamental importance in the real-world
where millions of trials and errors are not always conceivable.

23

7 Discussion and Conclusion
Several notions appear to be crucial to clearly describe learning algorithms in CL settings, fairly
compare them and transfer them from simulation to real autonomous systems and robotics. First
of all, identifying the exact problem we want to solve, and what are the existing constraints is
mandatory. The framework we introduce in Section 3 should assist to achieve the characterization of
these settings. This formal step helps finding the proper approach to use and identifying similarities
with other settings. Secondly, in the same spirit of defining what we want to learn, it is important
to define the level of supervision we are able to give to our learning algorithm. For example, if we
can give it the task label, or some kind of information about the structure of the input data stream
(number of classes, type of data distribution, number of instances of each task, etc.). This point is
also discussed in our proposed framework (Section 3). Finally, it is important to exactly clarify
what is the expected performance of the algorithm. The set of metrics and benchmarks gathered in
Section 5 should help defining and articulating the dimension of evaluation for important properties
worth considering in the development of embodied agents that learn continually.

For more concrete indications on what we consider worthwhile checking while creating a CL
approach, we suggest a set of recommendations. After defining in Section 3 a set of assumptions,
constraints, relaxations and desiderata of CL algorithms, the following concrete measure and
action-based guidelines aim at being taken into account as general advice to palliate limiting factors
of CL models in the literature.

Recommendation 1 On-line capabilities: CL algorithms should not assume the number of total
tasks to be solved is given beforehand.

Recommendation 2 Learning complexity: We recommend keeping the learning model complexity
below an upper bound of a linear growth in terms of the number of parameter growth when performing
architectural dynamic changes.

Recommendation 3 Scalability evaluation: In order to provide a proper evaluation of the scal-
ability and continual learning performance, we recommend, as the authors from [41], to evaluate
algorithms on more than two tasks.

Recommendation 4 Memory limitation: In order for realistic CL systems to be practical, they
should not assume unlimited memory resources.

Recommendation 5 Reporting metrics: We recommend reporting as many metrics as possible
and at least final performance, forward and backward (learning) transfer, the model’s remembering
capacity, model memory size, samples storage size, computational efficiency, CL score and stability
metrics as described in Section 5.2.

Recommendation 6 Offline baselines: we recommend the usage of publicly available baselines
for metrics computation and fair assessment for reproducibility purposes.

Recommendation 7 Ablation studies: we recommend reporting ablation studies to motivate as
best as possible the different components and choices made in the CL algorithm such as initialization
settings (using pre-trained network or not), optimization methods, hyper-parameters and surrogate
losses used, etc.

Recommendation 8 Distributional shifts: We recommend to formally describe the mechanism to
handle distributional shifts, not only when tasks change, but also among batches where data points
conform to different distributions.

Recommendation 9 Benchmarks: We recommend the use of complex datasets with realistic and
higher resolution scales than MNIST and CIFAR100; the use of the former is seen as a limiting
factor and not a realistic robustness assessment method for CL (see Section 5.1).

Recommendation 10 Report precisely and clearly how an approach learns and the assumptions
it makes, as described in the framework (Section 3).

24

To summarize, in this paper, we proposed a generalized framework to hold a variety of CL
strategies and make easier the connection between machine learning and robotics in continual
learning settings. We reviewed the state of the art in continual learning and illustrated how to
use the proposed framework to present various approaches. We also discussed benchmarks and
evaluation techniques currently being used in continual learning algorithms. We hope it helps the
AI community to better categorize and compare approaches, as well as to smoothly adapt to today’s
industry problems. Machine learning and robotics are fields undergoing an aggressive development
period. We believe that pushing them forward to find formalization solutions to facilitate transfer
between both fields is critical in order to understand each other, and make them profit from each
other’s successes.

Acknowledgments

This work is supported by the DREAM project6 through the European Union Horizon 2020 FET
research and innovation program under grant agreement No 640891.

References
[1] A. Achille, T. Eccles, L. Matthey, C. P. Burgess, N. Watters, A. Lerchner, and I. Higgins. Life-

long disentangled representation learning with cross-domain latent homologies. In Proceedings
of the 32Nd International Conference on Neural Information Processing Systems, NIPS’18,
pages 9895–9905, USA, 2018. Curran Associates Inc.

[2] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking:
Experiential learning of intuitive physics. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29,
pages 5074–5082. Curran Associates, Inc., 2016.

[3] R. Aljundi, P. Chakravarty, and T. Tuytelaars. Expert gate: Lifelong learning with a
network of experts. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3366–3375, 2017.

[4] P. Azagra, F. Golemo, Y. Mollard, M. Lopes, J. C. Civera, and A. C. Murillo. A Mul-
timodal Dataset for Object Model Learning from Natural Human-Robot Interaction. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017),
Vancouver, Canada, Sept. 2017.

[5] F. Bellas, J. A. Becerra, and R. J. Duro. Using promoters and functional introns in genetic
algorithms for neuroevolutionary learning in non-stationary problems. Neurocomputing,
72(10-12):2134–2145, 2009.

[6] F. Bellas, R. J. Duro, A. Faina, and D. Souto. Multilevel darwinist brain (mdb): Artificial
evolution in a cognitive architecture for real robots. volume 2, pages 340–354, Dec 2010.

[7] F. Bellas, A. Faiña, G. Varela, and R. J. Duro. A cognitive developmental robotics architecture
for lifelong learning by evolution in real robots. pages 1–8, 2010.

[8] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

[9] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings
of the 26th annual international conference on machine learning, pages 41–48. ACM, 2009.

[10] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to end learning for
self-driving cars. CoRR, abs/1604.07316, 2016.

[11] A. Borji. Pros and cons of gan evaluation measures. Computer Vision and Image Under-
standing, 179:41–65, 2018.

6http://www.robotsthatdream.eu

25

http://www.robotsthatdream.eu

[12] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. Metalearning: Applications to Data
Mining. Springer Publishing Company, Incorporated, 1 edition, 2008.

[13] N. Bredeche, E. Haasdijk, and A. Prieto. Embodied evolution in collective robotics: A review.
Frontiers in Robotics and AI, 5:12, 2018.

[14] P. Bühlmann and S. van de Geer. Statistics for High-Dimensional Data: Methods, Theory
and Applications. Springer Publishing Company, Incorporated, 1st edition, 2011.

[15] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Large-scale study
of curiosity-driven learning. In ICLR, 2019.

[16] R. Camoriano, G. Pasquale, C. Ciliberto, L. Natale, L. Rosasco, and G. Metta. Incremental
robot learning of new objects with fixed update time. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pages 3207–3214, May 2017.

[17] R. Camoriano, S. Traversaro, L. Rosasco, G. Metta, and F. Nori. Incremental semiparametric
inverse dynamics learning. In Robotics and Automation (ICRA), 2016 IEEE International
Conference on, pages 544–550. IEEE, 2016.

[18] A. Cangelosi and M. Schlesinger. From babies to robots: The contribution of developmental
robotics to developmental psychology. Child Development Perspectives, 2018.

[19] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and T. M. Mitchell. Toward
an architecture for never-ending language learning. In AAAI, volume 5, page 3. Atlanta, 2010.

[20] H. Caselles-Dupré, M. Garcia-Ortiz, and D. Filliat. S-TRIGGER: Continual State Represen-
tation Learning via Self-Triggered Generative Replay. arXiv e-prints, page arXiv:1902.09434,
Feb 2019.

[21] T. Cavallari, S. Golodetz, N. A. Lord, J. Valentin, L. Di Stefano, and P. H. Torr. On-the-fly
adaptation of regression forests for online camera relocalisation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4457–4466, 2017.

[22] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr. Riemannian walk for incremental
learning: Understanding forgetting and intransigence. In ECCV, 2018.

[23] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient lifelong learning with
A-GEM. In ICLR, 2019.

[24] Z. Chen and B. Liu. Lifelong machine learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 12(3):1–207, 2018.

[25] F. Codevilla, M. Muller, A. Dosovitskiy, A. L’opez, and V. Koltun. End-to-end driving
via conditional imitation learning. 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 1–9, 2017.

[26] C. Colas, P. Fournier, M. Chetouani, O. Sigaud, and P.-Y. Oudeyer. CURIOUS: Intrinsically
motivated modular multi-goal reinforcement learning. In K. Chaudhuri and R. Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 1331–1340, Long Beach, California, USA,
09–15 Jun 2019. PMLR.

[27] C. Colas, O. Sigaud, and P.-Y. Oudeyer. GEP-PG: Decoupling exploration and exploitation
in deep reinforcement learning algorithms. In J. Dy and A. Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1039–1048, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

[28] A. Collet, B. Xiong, C. Gurau, M. Hebert, and S. S. Srinivasa. Herbdisc: Towards lifelong
robotic object discovery. The International Journal of Robotics Research, 34(1):3–25, 2015.

[29] C. Craye, D. Filliat, and J. Goudou. Exploration strategies for incremental learning of
object-based visual saliency. In 2015 Joint IEEE International Conference on Development
and Learning and Epigenetic Robotics (ICDL-EpiRob), pages 13–18, Aug 2015.

26

[30] C. Craye, T. Lesort, D. Filliat, and J.-F. Goudou. Exploring to learn visual saliency: The
rl-iac approach. Robotics and Autonomous Systems, 112:244 – 259, 2019.

[31] G. Csurka. A Comprehensive Survey on Domain Adaptation for Visual Applications, pages
1–35. Springer International Publishing, Cham, 2017.

[32] J.-F. Delvenne. Science of memory: Concepts. henry l. roediger iii, yadin dudai, and susan m.
fitzpatrick (eds.). oxford university press, new york, 2007. no. of pages 464. isbn 978-0-19-
531044-3.(paperback). Applied Cognitive Psychology: The Official Journal of the Society for
Applied Research in Memory and Cognition, 23(6):895–896, 2009.

[33] P. Dhar, R. V. Singh, K.-C. Peng, Z. Wu, and R. Chellappa. Learning without memorizing.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[34] N. Díaz-Rodríguez, V. Lomonaco, D. Filliat, and D. Maltoni. Don’t forget, there is more
than forgetting: new metrics for Continual Learning. In Workshop on Continual Learning,
NeurIPS 2018 (Neural Information Processing Systems, Montreal, Canada, Dec. 2018.

[35] C. Doersch and A. Zisserman. Multi-task self-supervised visual learning. In Proceedings of
the IEEE International Conference on Computer Vision, pages 2051–2060, 2017.

[36] S. Doncieux, D. Filliat, N. Díaz-Rodríguez, T. Hospedales, R. Duro, A. Coninx, D. M. Roijers,
B. Girard, N. Perrin, and O. Sigaud. Open-ended learning: a conceptual framework based on
representational redescription. Frontiers in Neurorobotics, 2018.

[37] T. J. Draelos, N. E. Miner, C. C. Lamb, J. A. Cox, C. M. Vineyard, K. D. Carlson, W. M.
Severa, C. D. James, and J. B. Aimone. Neurogenesis deep learning: Extending deep networks
to accommodate new classes. 2017 International Joint Conference on Neural Networks
(IJCNN), pages 526–533, 2017.

[38] W. Duan. Learning state representations for robotic control. M. Thesis, 2017.

[39] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes challenge: A retrospective. International Journal of Computer
Vision, 111(1):98–136, Jan. 2015.

[40] L. Fan, Y. Zhu, J. Zhu, Z. Liu, O. Zeng, A. Gupta, J. Creus-Costa, S. Savarese, and L. Fei-Fei.
Surreal: Open-source reinforcement learning framework and robot manipulation benchmark.
In Conference on Robot Learning, 2018.

[41] S. Farquhar and Y. Gal. Towards robust evaluations of continual learning. arXiv preprint
arXiv:1805.09733, Lifelong Learning: A Reinforcement Learning Approach (LLARLA) Work-
shop at FAIM 2018, 2018.

[42] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE transactions
on pattern analysis and machine intelligence, 28(4):594–611, 2006.

[43] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel, and
D. Wierstra. Pathnet: Evolution channels gradient descent in super neural networks. CoRR,
abs/1701.08734, 2017.

[44] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, pages 1126–1135. JMLR.org, 2017.

[45] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel. Deep spatial autoencoders
for visuomotor learning. 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 512–519, 2015.

[46] S. Forestier, Y. Mollard, and P.-Y. Oudeyer. Intrinsically motivated goal exploration processes
with automatic curriculum learning. arXiv preprint arXiv:1708.02190, 2017.

[47] R. M. French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences,
3(4):128–135, 1999.

27

[48] T. Furlanello, J. Zhao, A. M. Saxe, L. Itti, and B. S. Tjan. Active Long Term Memory
Networks. ArXiv e-prints, June 2016.

[49] D. Gandhi, L. Pinto, and A. Gupta. Learning to fly by crashing. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3948–3955, Sep.
2017.

[50] A. Gepperth and B. Hammer. Incremental learning algorithms and applications. In European
Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, 2016.

[51] A. Gepperth and C. Karaoguz. A Bio-Inspired Incremental Learning Architecture for Applied
Perceptual Problems. Cognitive Computation, 8:924 – 934, 2016.

[52] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 2672–2680. Curran Associates, Inc., 2014.

[53] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An Empirical Investigation
of Catastrophic Forgetting in Gradient-Based Neural Networks. ArXiv e-prints, Dec. 2013.

[54] A. Gopnik, A. Meltzoff, and P. Kuhl. The scientist in the crib: Minds, brains and how
children learn. Journal of Nervous and Mental Disease - J NERV MENT DIS, 189, 03 2001.

[55] T. L. Hayes, N. D. Cahill, and C. Kanan. Memory efficient experience replay for streaming
learning. 2019 International Conference on Robotics and Automation (ICRA), pages 9769–
9776, 2018.

[56] T. L. Hayes, R. Kemker, N. D. Cahill, and C. Kanan. New metrics and experimental paradigms
for continual learning. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 2112–21123, June 2018.

[57] X. He and H. Jaeger. Overcoming catastrophic interference using conceptor-aided backpropa-
gation. In International Conference on Learning Representations, 2018.

[58] Y. He, Z. Shen, and P. Cui. NICO: A Dataset Towards Non-I.I.D. Image Classification. arXiv
e-prints, page arXiv:1906.02899, Jun 2019.

[59] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 6626–6637. Curran Associates, Inc., 2017.

[60] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network. In NIPS
Deep Learning and Representation Learning Workshop (2015), pages 1–9, 2015.

[61] D. J. Im, A. H. Ma, G. W. Taylor, and K. Branson. Quantitatively evaluating GANs with
divergences proposed for training. In International Conference on Learning Representations,
2018.

[62] H. Jaeger. Using conceptors to manage neural long-term memories for temporal patterns.
Journal of Machine Learning Research, 18(13):1–43, 2017.

[63] M. Jaritz, R. de Charette, M. Toromanoff, E. Perot, and F. Nashashibi. End-to-end race
driving with deep reinforcement learning. 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 2070–2075, 2018.

[64] R. Jonschkowski and O. Brock. Learning state representations with robotic priors. Autonomous
Robots, 39(3):407–428, 2015.

[65] H. Jung, J. Ju, M. Jung, and J. Kim. Less-forgetting learning in deep neural networks. CoRR,
abs/1607.00122, 2016.

[66] C. Käding, E. Rodner, A. Freytag, and J. Denzler. Fine-tuning deep neural networks in
continuous learning scenarios. In Asian Conference on Computer Vision, pages 588–605.
Springer, 2016.

28

[67] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, and S. Levine. Scalable deep reinforcement learning for
vision-based robotic manipulation. In A. Billard, A. Dragan, J. Peters, and J. Morimoto,
editors, Proceedings of The 2nd Conference on Robot Learning, volume 87 of Proceedings of
Machine Learning Research, pages 651–673. PMLR, 29–31 Oct 2018.

[68] R. T. Kalifou, H. Caselles-Dupré, T. Lesort, T. Sun, N. Diaz-Rodriguez, and D. Filliat.
Continual reinforcement learning deployed in real-life using policy distillation and sim2real
transfer. In ICML Workshop on Multi-Task and Lifelong Learning, 2019.

[69] N. Kamra, U. Gupta, and Y. Liu. Deep Generative Dual Memory Network for Continual
Learning. ArXiv e-prints, Oct. 2017.

[70] R. Kemker and C. Kanan. Fearnet: Brain-inspired model for incremental learning. In
International Conference on Learning Representations, 2018.

[71] R. Kemker, M. McClure, A. Abitino, T. L. Hayes, and C. Kanan. Measuring catastrophic
forgetting in neural networks. In AAAI, 2017.

[72] S. Kim, A. Coninx, and S. Doncieux. From exploration to control: learning object manipulation
skills through novelty search and local adaptation. CoRR, abs/1901.00811, 2019.

[73] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proc. of the national academy of sciences, 2017.

[74] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[75] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012.

[76] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum. One shot learning of simple visual
concepts. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 33,
2011.

[77] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[78] A. Laversanne-Finot, A. Pere, and P.-Y. Oudeyer. Curiosity driven exploration of learned
disentangled goal spaces. In A. Billard, A. Dragan, J. Peters, and J. Morimoto, editors,
Proceedings of The 2nd Conference on Robot Learning, volume 87 of Proceedings of Machine
Learning Research, pages 487–504. PMLR, 29–31 Oct 2018.

[79] Y. LeCun and C. Cortes. MNIST handwritten digit database. public, 2010.

[80] S.-W. Lee, J.-H. Kim, J. Jun, J.-W. Ha, and B.-T. Zhang. Overcoming catastrophic forgetting
by incremental moment matching. In Advances in Neural Information Processing Systems,
pages 4652–4662, 2017.

[81] T. Lesort, H. Caselles-Dupré, M. Garcia-Ortiz, J.-F. Goudou, and D. Filliat. Generative
Models from the perspective of Continual Learning. In IJCNN - International Joint Conference
on Neural Networks, Budapest, Hungary, July 2019.

[82] T. Lesort, N. Díaz-Rodríguez, J.-F. Goudou, and D. Filliat. State representation learning for
control: An overview. Neural Networks, 2018.

[83] T. Lesort, A. Gepperth, A. Stoian, and D. Filliat. Marginal replay vs conditional replay for
continual learning. In Artificial Neural Networks and Machine Learning - ICANN 2019: Deep
Learning - 28th International Conference on Artificial Neural Networks, Munich, Germany,
September 17-19, 2019, Proceedings, Part II, pages 466–480, 2019.

29

[84] T. Lesort, M. Seurin, X. Li, N. Díaz-Rodríguez, and D. Filliat. Deep unsupervised state
representation learning with robotic priors: a robustness analysis. In 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–8, July 2019.

[85] T. Lesort, A. Stoian, J. Goudou, and D. Filliat. Training discriminative models to evaluate
generative ones. In Artificial Neural Networks and Machine Learning - ICANN 2019: Image
Processing - 28th International Conference on Artificial Neural Networks, Munich, Germany,
September 17-19, 2019, Proceedings, Part III, pages 604–619, 2019.

[86] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[87] Z. Li and D. Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2017.

[88] L.-J. Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 8(3-4):293–321, 1992.

[89] V. Lomonaco, K. Desai, E. Culurciello, and D. Maltoni. Continual reinforcement learning in
3d non-stationary environments. arXiv preprint arXiv:1905.10112, 2019.

[90] V. Lomonaco and D. Maltoni. Comparing incremental learning strategies for convolutional
neural networks. In IAPR Workshop on Artificial Neural Networks in Pattern Recognition,
pages 175–184. Springer, 2016.

[91] V. Lomonaco and D. Maltoni. CORe50: a New Dataset and Benchmark for Continuous
Object Recognition. In S. Levine, V. Vanhoucke, and K. Goldberg, editors, Proceedings of
the 1st Annual Conference on Robot Learning, volume 78 of Proceedings of Machine Learning
Research, pages 17–26. PMLR, 13–15 Nov 2017.

[92] D. Lopez-Paz and M.-A. Ranzato. Gradient episodic memory for continual learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 6467–6476. Curran
Associates, Inc., 2017.

[93] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini. Developmental robotics: a survey.
Connection Science, 15(4):151–190, 2003.

[94] N. Lyubova, S. Ivaldi, and D. Filliat. From passive to interactive object learning and
recognition through self-identification on a humanoid robot. Autonomous Robots, page 23,
2015.

[95] A. Mallya, D. Davis, and S. Lazebnik. Piggyback: Adapting a single network to multiple
tasks by learning to mask weights. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 67–82, 2018.

[96] A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 7765–7773, 2018.

[97] D. Maltoni and V. Lomonaco. Continuous learning in single-incremental-task scenarios.
Neural Networks, 116:56 – 73, 2019.

[98] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,
E. Orbay, S. Savarese, and L. Fei-Fei. Roboturk: A crowdsourcing platform for robotic skill
learning through imitation. In Conference on Robot Learning, 2018.

[99] D. J. Mankowitz, A. Žídek, A. Barreto, D. Horgan, M. Hessel, J. Quan, J. Oh, H. van Hasselt,
D. Silver, and T. Schaul. Unicorn: Continual learning with a universal, off-policy agent. arXiv
preprint arXiv:1802.08294, 2018.

[100] J. Mattner, S. Lange, and M. A. Riedmiller. Learn to swing up and balance a real pole based
on raw visual input data. In Neural Information Processing - 19th International Conference,
ICONIP 2012, Doha, Qatar, November 12-15, 2012, Proceedings, Part V, pages 126–133,
2012.

30

[101] J. L. McClelland, B. L. McNaughton, and R. C. O’reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures
of connectionist models of learning and memory. Psychological review, 102(3):419, 1995.

[102] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[103] M. Mermillod, A. Bugaiska, and P. Bonin. The stability-plasticity dilemma: investigating the
continuum from catastrophic forgetting to age-limited learning effects. Frontiers in psychology,
4(August):504, 2013.

[104] U. Michieli and P. Zanuttigh. Incremental learning techniques for semantic segmentation.
In International Conference on Computer Vision (ICCV), Workshop on Transferring and
Adapting Source Knowledge in Computer Vision (TASK-CV), 2019.

[105] U. Michieli and P. Zanuttigh. Knowledge distillation for incremental learning in semantic
segmentation, 2019.

[106] M. Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, Jan 1961.

[107] T. Mitchell, W. Cohen, E. Hruscha, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi,
M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohammad, N. Nakashole,
E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. Never-ending learning. In AAAI, 2015. : Never-Ending
Learning in AAAI-2015.

[108] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, Feb. 2015.

[109] V. Moens and A. Zénon. Learning and forgetting using reinforced bayesian change detection.
PLOS Computational Biology, 15(4):1–41, 04 2019.

[110] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning 2011, 2011.

[111] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner. Variational continual learning. In
International Conference on Learning Representations, 2018.

[112] P. Oudeyer. Computational theories of curiosity-driven learning. CoRR, abs/1802.10546,
2018.

[113] P.-Y. Oudeyer, F. Kaplan, and V. Hafner. Intrinsic motivation systems for autonomous
mental development. Evolutionary Computation, IEEE Transactions on, 11(2):265–286, April
2007.

[114] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong learning
with neural networks: A review. Neural Networks, 113:54 – 71, 2019.

[115] G. I. Parisi, J. Tani, C. Weber, and S. Wermter. Lifelong learning of spatiotemporal
representations with dual-memory recurrent self-organization. Frontiers in Neurorobotics,
12:78, 2018.

[116] G. Pasquale, C. Ciliberto, F. Odone, L. Rosasco, and L. Natale. Teaching icub to recognize
objects using deep convolutional neural networks. In Proceedings of the 4th International
Conference on Machine Learning for Interactive Systems - Volume 43, MLIS’15, pages 21–25.
JMLR.org, 2015.

[117] G. Pasquale, C. Ciliberto, L. Rosasco, and L. Natale. Object identification from few examples
by improving the invariance of a deep convolutional neural network. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4904–4911, Oct
2016.

31

[118] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa. Visual domain adaptation: A survey of
recent advances. IEEE Signal Processing Magazine, 32(3):53–69, May 2015.

[119] A. Pentina and C. H. Lampert. Lifelong learning with non-iid tasks. In Advances in Neural
Information Processing Systems, pages 1540–1548, 2015.

[120] B. Pfulb and A. Gepperth. A comprehensive, application-oriented study of catastrophic
forgetting in DNNs. In International Conference on Learning Representations, 2019.

[121] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and
700 robot hours. 2016 IEEE International Conference on Robotics and Automation (ICRA),
pages 3406–3413, 2015.

[122] L. Y. Pratt. Discriminability-based transfer between neural networks. In Advances in neural
information processing systems, pages 204–211, 1993.

[123] A. Raffin, A. Hill, K. R. Traoré, T. Lesort, N. Díaz-Rodríguez, and D. Filliat. Decoupling
feature extraction from policy learning: assessing benefits of state representation learning in
goal based robotics. In ICLR, 2019.

[124] J. Ramapuram, M. Gregorova, and A. Kalousis. Lifelong generative modeling. arXiv preprint
arXiv:1705.09847, 2017.

[125] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and rep-
resentation learning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5533–5542, July 2017.

[126] N. Rhinehart, R. McAllister, and S. Levine. Deep imitative models for flexible inference,
planning, and control. CoRR, abs/1810.06544, 2018.

[127] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, , and G. Tesauro. Learning to
learn without forgetting by maximizing transfer and minimizing interference. In International
Conference on Learning Representations, 2019.

[128] M. B. Ring. Continual learning in reinforcement environments. PhD thesis, University of
Texas at Austin Austin, Texas 78712, 1994.

[129] M. B. Ring. Toward a formal framework for continual learning. In NIPS workshop on
Inductive Transfer, Whistler, Canada., 2005.

[130] A. Rios and L. Itti. Closed-loop memory gan for continual learning. In Proceedings of the
28th International Joint Conference on Artificial Intelligence, IJCAI’19, pages 3332–3338.
AAAI Press, 2019.

[131] H. Ritter, A. Botev, and D. Barber. Online structured laplace approximations for overcoming
catastrophic forgetting. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31,
pages 3738–3748. Curran Associates, Inc., 2018.

[132] A. Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science,
7(2):123–146, 1995.

[133] D. Romeres, M. Zorzi, R. Camoriano, and A. Chiuso. Online semi-parametric learning for
inverse dynamics modeling. In 2016 IEEE 55th Conference on Decision and Control (CDC),
pages 2945–2950, Dec 2016.

[134] D. Romeres, M. Zorzi, R. Camoriano, S. Traversaro, and A. Chiuso. Derivative-free online
learning of inverse dynamics models. IEEE Transactions on Control Systems Technology,
pages 1–15, 2019.

[135] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Press,
Upper Saddle River, NJ, USA, 3rd edition, 2009.

[136] A. A. Rusu, S. Gomez Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pas-
canu, V. Mnih, K. Kavukcuoglu, and R. Hadsell. Policy Distillation. arXiv e-prints, page
arXiv:1511.06295, Nov 2015.

32

[137] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu,
R. Pascanu, and R. Hadsell. Progressive Neural Networks. ArXiv e-prints, June 2016.

[138] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell. Sim-to-real robot
learning from pixels with progressive nets. CoRR, abs/1610.04286, 2016.

[139] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, and X. Chen.
Improved techniques for training gans. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
2234–2242. Curran Associates, Inc., 2016.

[140] P. Sarkar and W. Q. Meeker. A bayesian on-line change detection algorithm with process
monitoring applications. Quality Engineering, 10(3):539–549, 1998.

[141] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

[142] J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

[143] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[144] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W. Teh, R. Pascanu, and
R. Hadsell. Progress & compress: A scalable framework for continual learning. In J. Dy and
A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 4528–4537, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

[145] A. Seff, A. Beatson, D. Suo, and H. Liu. Continual learning in generative adversarial nets.
CoRR, abs/1705.08395, 2017.

[146] J. Serra, D. Suris, M. Miron, and A. Karatzoglou. Overcoming catastrophic forgetting with
hard attention to the task. ICML, 80:4548–4557, 10–15 Jul 2018.

[147] B. Settles. Active learning literature survey. Technical report, University of Wisconsin-Madison
Department of Computer Sciences, 2009.

[148] B. Settles. Active learning literature survey. Computer Sciences Technical Report 1648,
University of Wisconsin–Madison, 2009.

[149] E. Shelhamer, P. Mahmoudieh, M. Argus, and T. Darrell. Loss is its own reward: Self-
supervision for reinforcement learning. arXiv preprint arXiv:1612.07307, 2016.

[150] H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning with deep generative replay. In
Advances in Neural Information Processing Systems, pages 2990–2999, 2017.

[151] K. Shmelkov, C. Schmid, and K. Alahari. Incremental learning of object detectors without
catastrophic forgetting. In IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017, pages 3420–3429, 2017.

[152] L. Smith and M. Gasser. The development of embodied cognition: Six lessons from babies.
Artificial life, 11:13–29, 12 2005.

[153] S. Sodhani, S. Chandar, and Y. Bengio. On training recurrent neural networks for lifelong
learning. CoRR, abs/1811.07017, 2018.

[154] P. Sprechmann, S. Jayakumar, J. Rae, A. Pritzel, A. P. Badia, B. Uria, O. Vinyals, D. Hass-
abis, R. Pascanu, and C. Blundell. Memory-based parameter adaptation. In International
Conference on Learning Representations, 2018.

[155] F. Stulp, L. Herlant, A. Hoarau, and G. Raiola. Simultaneous on-line discovery and im-
provement of robotic skill options. In Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on, pages 1408–1413. IEEE, 2014.

33

[156] Y. Sun, F. Gomez, and J. Schmidhuber. Planning to be surprised: Optimal bayesian
exploration in dynamic environments. In International Conference on Artificial General
Intelligence, pages 41–51. Springer, 2011.

[157] R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning, volume 2. MIT press
Cambridge, 1998.

[158] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft, P. Abbeel,
W. Burgard, M. Milford, and P. Corke. The limits and potentials of deep learning for robotics.
The International Journal of Robotics Research, 37(4-5):405–420, 2018.

[159] S. Thrun and T. M. Mitchell. Lifelong robot learning. In The biology and technology of
intelligent autonomous agents, pages 165–196. Springer, 1995.

[160] R. Traoré, H. Caselles-Dupré, T. Lesort, T. Sun, G. Cai, N. D. Rodríguez, and D. Filliat.
Discorl: Continual reinforcement learning via policy distillation. CoRR, abs/1907.05855,
2019.

[161] A. Triki Rannen, R. Aljundi, M. B. Blaschko, and T. Tuytelaars. Encoder based lifelong
learning. IEEE International Conference of Computer Vision, 2017.

[162] A. M. Turing. Computing machinery and intelligence. In Parsing the Turing Test, pages
23–65. Springer, 2009.

[163] L. G. Valiant. A theory of the learnable. In Proceedings of the sixteenth annual ACM
symposium on Theory of computing, pages 436–445. ACM, 1984.

[164] H. van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters. Stable reinforcement learning
with autoencoders for tactile and visual data. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3928–3934, Oct 2016.

[165] R. Velez and J. Clune. Diffusion-based neuromodulation can eliminate catastrophic forgetting
in simple neural networks. PLOS ONE, 12(11):1–24, 11 2017.

[166] W. Wang, V. W. Zheng, H. Yu, and C. Miao. A survey of zero-shot learning: Settings,
methods, and applications. ACM Trans. Intell. Syst. Technol., 10(2):13:1–13:37, Jan. 2019.

[167] Y.-X. Wang, D. Ramanan, and M. Hebert. Growing a brain: Fine-tuning by increasing
model capacity. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2471–2480, 2017.

[168] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-
UCSD Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology,
2010.

[169] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, and E. Thelen.
Autonomous mental development by robots and animals. Science, 291(5504):599–600, 2001.

[170] J. M. Wong. Towards lifelong self-supervision: A deep learning direction for robotics. arXiv
preprint arXiv:1611.00201, 2016.

[171] C. Wu, L. Herranz, X. Liu, y. wang, J. van de Weijer, and B. Raducanu. Memory replay
gans: Learning to generate new categories without forgetting. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 5962–5972. Curran Associates, Inc., 2018.

[172] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, Z. Zhang, and Y. Fu. Incremental classifier
learning with generative adversarial networks. CoRR, abs/1802.00853, 2018.

[173] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[174] J. Yoon, E. Yang, J. Lee, and S. J. Hwang. Lifelong learning with dynamically expandable
networks. In International Conference on Learning Representations, 2018.

34

[175] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao. Lsun: Construction of a large-scale image
dataset using deep learning with humans in the loop. CoRR, abs/1506.03365, 2015.

[176] F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In
D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 3987–3995,
International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[177] C. Zhao, T. M. Hospedales, F. Stulp, and O. Sigaud. Tensor based knowledge transfer across
skill categories for robot control. In Proceedings of the 26th International Joint Conference
on Artificial Intelligence, pages 3462–3468. AAAI Press, 2017.

[178] G. Zhou, K. Sohn, and H. Lee. Online incremental feature learning with denoising autoencoders.
In N. D. Lawrence and M. Girolami, editors, Proceedings of the Fifteenth International
Conference on Artificial Intelligence and Statistics, volume 22 of Proceedings of Machine
Learning Research, pages 1453–1461, La Palma, Canary Islands, 21–23 Apr 2012. PMLR.

35

	Copertina_postprint_IRIS_UNIBO(2)
	inffus2020-58
	1 Introduction
	2 Definition of Continual Learning
	2.1 History and Motivation
	2.2 Terminology Clarification
	2.3 Challenges Addressed by CL
	2.3.1 Catastrophic Forgetting
	2.3.2 Handling Memories
	2.3.3 Detecting Distributional Shifts

	2.4 Learning Paradigms Orthogonal to Continual Learning
	2.4.1 Supervised Continual Learning
	2.4.2 Unsupervised Continual Learning
	2.4.3 Continual Reinforcement Learning

	3 A Framework for Continual Learning
	4 Continual Learning Strategies
	4.1 Dynamic Architectures Approaches
	4.1.1 Explicit Architecture Modification
	4.1.2 Implicit Architecture Modification
	4.1.3 Dual Architectures

	4.2 Regularization Approaches
	4.2.1 Penalty Computing
	4.2.2 Knowledge Distillation

	4.3 Rehearsal Approaches
	4.4 Generative Replay
	4.5 Hybrid Approaches

	5 Evaluation of Continual Learning Algorithms
	5.1 Evaluation Protocols and Benchmarks
	5.2 Continual Learning Metrics

	6 Continual Learning for Robotics
	6.1 Opportunities for Continual Learning in Robotics
	6.2 Challenges of Continual Learning in Robotics
	6.2.1 Robotics Hardware
	6.2.2 Data Sampling
	6.2.3 Data Labeling
	6.2.4 Learning Algorithms Stability

	6.3 Applications
	6.3.1 Perception
	6.3.2 Reinforcement Learning
	6.3.3 Model-based Learning

	7 Discussion and Conclusion

