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Abstract 13 

 14 

This study aims to theoretically and numerically investigate the dispersion relations of Rayleigh waves propagating 15 

through vertical oscillators periodically distributed on stratified media. The classical elastodynamics theory and an 16 

effective medium approximation method are adopted to describe the dynamic behavior of metasurfaces and hybridization 17 

between the local oscillators and the foundational surface wave modes. The Abo-zena algorithm and delta-matrix method 18 

are combined to simplify the eigen equation to overcome the accuracy problem in solving the closed-form dispersion laws 19 

and improve the computational efficiency. Subsequently, plane-strain finite element (FE) models with three configurations 20 

are developed to confirm the analytical predictions and obtain further insight into the resonator-Rayleigh wave coupling 21 

mechanism. The numerical results are in good agreement with the analytical solutions, revealing that only the foundational 22 

mode is strongly coupled with the vertical resonators at resonance, while the surface wave band gap reported in 23 

homogeneous media is crossed by the remaining higher-order surface modes. The attenuation performance and mechanical 24 

behavior of a finite-length metasurface are investigated, and it is demonstrated that the output surface ground motion can 25 

be significantly reduced in a narrow frequency band near resonance. Moreover, a graded resonant metasurface with 26 

decreasing frequency is simulated to assess the feasibility of broadband attenuation. In summary, the aforementioned 27 

analytical framework and numerical simulation results show that the vertical oscillators placed atop a stratified soil system 28 

can be designed as resonant metasurfaces for shielding seismic surface waves to protect multiple large infrastructures or 29 

special structures from earthquake hazards. 30 

 31 
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1 INTRODUCTION 37 

 38 

Synthetic periodic structures with periodic unit cells or local resonant inclusions, namely, phononic crystals and 39 

elastic metamaterials, have been extensively studied to manipulate the propagation of acoustic and mechanical 40 

waves at different scales, resulting in frequency band gaps wherein wave propagation is suppressed.1 Therefore, the 41 
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engineered periodic structures are expected to be applied for wave filtering and waveguiding through approaches 42 

that cannot be adopted in natural materials. In particular, the use of finite periodic structures to form elastic 43 

metamaterials can generate exceptional effects, including dispersion properties,2–5 negative refraction,6,7 and 44 

acoustic invisibility.8,9 These effects have been widely used in optics, acoustics, and elastic media at both microscale 45 

and geophysical scales, such as superlensing,10,11 wave guiding,12–14 acoustic cloaking,15–17 elastic wave 46 

obstacles,18–20 and seismic wave mitigation.20–24 47 

 48 

In 1987, Yablonovitch2 and John3 first reported the discovery of band gaps in their study of the propagation of light 49 

waves in periodic media. By introducing the concept of transformation optics in 2006, Leonhardt25 and Pendry et 50 

al.26 popularized the technique, based on which metamaterials control wave propagation. This concept has been 51 

applied at different geometric scales, ranging from nanometer-scale for thermal insulation27 to meter-scale for 52 

seismic wave isolation.20–24 For this reason, in the past two decades, many researchers have developed a variety of 53 

novel passive isolation devices utilizing periodicity and local resonances in civil engineering. Cheng and Shi28 54 

innovatively constructed a new type of seismic isolation device called periodic foundation, where inclusions are 55 

periodically embedded in matrix materials. Subsequently, Xiang29 and Zhao et al.23,24 experimentally and 56 

numerically analyzed the feasibility of a one-dimensional layered periodic foundation to attenuate longitudinal and 57 

shear waves in the 0–50 Hz frequency range. The results revealed that both the horizontal and vertical dynamic 58 

responses of the superstructure decreased noticeably when the excitation frequencies were within the band gaps. 59 

Considering that the surface wave components in seismic excitation are more harmful to infrastructures, Brûlé et 60 

al.22 conducted a large-scale experiment in which a meter-sized periodic array of cylindrical holes was used to shield 61 

seismic surface waves, thereby mitigating ground vibration at frequencies of approximately 50 Hz. Analogous 62 

conclusions were published by Miniaci et al.,20 who numerically studied the attenuation performance of three 63 

periodic configurations for low-frequency bulk and surface waves, showing that only periodic structures with a 64 

lattice constant at decameter dimensions could generate band gaps below 10 Hz. 65 

 66 

Conversely, locally resonant structures consisting of inclusions embedded in a matrix can interact with incident 67 

waves at a sub-wavelength scale.1,5 Recently, researchers have proposed the feasibility of shielding surface seismic 68 

waves by arranging a periodic array of resonators or barriers on the soil surface. A series of interesting studies 69 

conducted by Colombi et al.30 showed that the strong impedance mismatch and coupling of wave modes between 70 

surface waves and an array of trees could generate surface wave hybridization band gaps at approximately 40 Hz. 71 

Later, Colquitt and Colombi et al.31,32 reported the initial idea of vertical sub-wavelength resonators distributed on 72 

infinite elastic half-space interacting with Rayleigh waves to mitigate surface ground motion, commonly known as 73 

“resonant metasurfaces” from their seminal works. According to the local resonance mechanism, Palermo et al.33 74 

designed soil-embedded resonators to block seismic surface waves below 10 Hz and theoretically and 75 

experimentally demonstrated the conversion of Rayleigh waves to shear bulk waves. 76 

 77 

In addition, the heterogeneity of soil profile in practical engineering might induce elastic wave bending effects, 78 

frequently indicated as the “mirage” effect.34 To consider the effect of substrate material inhomogeneity, Palermo et 79 

al.35 numerically and experimentally investigated how sagittal polarized guided surface acoustic modes (GSAMs) 80 

interact with surface resonances in unconsolidated granular media. Later, Zaccherini et al.36 further revealed the 81 

propagation and mitigation performance of Rayleigh-like waves in a granular medium equipped with multi-layer 82 



sub-wavelength resonant metabarriers. Both the small-scale experiment and numerical simulation showed that the 83 

low-order GSAM could be strongly coupled to the metasurfaces at resonance, while all higher-order surface acoustic 84 

modes presented a down-conversion phenomenon, owing to the heterogeneity of the granular media. Moreover, 85 

Zeighami and Palermo et al.37 numerically designed a locally resonant metabarrier placed over a heterogeneous soil 86 

surface to assess the attenuation performance of medium-size scale resonant barriers for seismic surface waves in 87 

the range of 50–100 Hz. 88 

 89 

To the best of the Authors’ konwledge, due to the high cost of resonator preparation and soil excavation engineering, 90 

the aforementioned studies mainly focused on describing the interaction of Rayleigh waves with vertical resonators 91 

in semi-infinite space based on analytical models and numerical simulations, or emphasizing vertically hybrid 92 

surface waves in inhomogeneous media through numerical analyses and small-scale experiments. In such case, some 93 

practical engineering problems, such as real site conditions, the effect of hysteretic damping and soil nonlinearity 94 

under dynamic excitations have not been fully considered so far. Although Pu et al.38 have investigated the influence 95 

of resonant metasurfaces and fluid–solid interaction on surface wave propagation under groundwater level variations, 96 

an analytical framework for the coupling between Rayleigh waves and local resonators distributed on stratified soil 97 

surfaces has not been reported on the geophysical scale. In this study, we aim to investigate (i) the analytical 98 

solutions of the dispersion laws for local resonators placed atop a stratified soil surface, (ii) the interaction of 99 

Rayleigh waves with vertically resonant metasurfaces, and (iii) the attenuation performance of finite-length resonant 100 

metasurfaces. 101 

 102 

The remainder of this paper is organized as follows. After reviewing the dynamic properties of periodic and locally 103 

resonant structures, an analytical model of resonant metasurfaces under practical engineering conditions is proposed, 104 

considering the propagation of Rayleigh waves through a stratified semi-infinite space equipped with local 105 

resonators in Section 1. Based on the classical elastodynamic theory and an effective medium approach, the 106 

dispersion equation of stratified soil–resonator interaction is derived in Section 2, and the eigen equation is 107 

simplified by recombining the Abo-zena algorithm and delta matrix method to avoid the problem of high-frequency 108 

effective digit loss. In Section 3, three types of unit cell FE models and transmission models with finite-length 109 

metasurfaces are designed, and the validity of the FE model is verified by comparison with those proposed in 110 

previous studies. In Section 4, to gain further insight into the resonator–surface wave coupling mechanism, the 111 

theoretical dispersion laws of stratified soil–resonators are plotted and validated again based on FE simulations. 112 

Additionally, the attenuation performance of finite-length metasurfaces is investigated in the frequency and time 113 

domains. We subsequently design a graded resonant metasurface with decreasing frequency and compare their 114 

isolation effectiveness with those of the reference models via time history analyses. Finally, concluding remarks are 115 

presented in Section 5. 116 

 117 

Notation 118 

 119 

  = density LC  = longitudinal wave velocity 

d  = thickness  = ( 2 ) /  +  

,   = Lame elastic constants SC  = shear wave velocity 

f  = frequency  = /   



c  = phase velocity of the free wave along the x-axis 
L  = 

2

L

2

L

( / ) 1

1 ( / )

i c C

c C

 −


−

 
Lc C  

u  = x component of displacement Lc C  

w  = z component of displacement 
S  = 

2

S

2

S

( / ) 1

1 ( / )

i c C

c C

 −


−

 
Sc C  

z  = normal stress Sc C  

xz  = tangential stress   = 
2

S2( / )C c  

  = 2πf P  = Lexp( )kd  

k  = ω/c Q  = Sexp( )kd  

i  = 1−     

 120 

2 ANALYTICAL FRAMEWORK 121 

 122 

In this section, we develop an analytical framework to derive the dispersion equation of Rayleigh waves in stratified 123 

soils interacting with surface resonators, numerically and experimentally, to investigate sagittal polarized GSAMs in 124 

unconsolidated granular media interacting with vertical surface oscillators.35 Accordingly, we restrict the 125 

investigation to a two-dimensional (2D) plane strain problem in the x-z plane (see Figure (1a)). Consider a 126 

horizontally stratified elastic semi-infinite space with surface waves propagating along the x-axis. Each layer is 127 

assumed to be isotropic, homogeneous, and perfectly bonded at the interface, and its geometric and physical 128 

properties are shown in Figure 1(a). Additionally, numerous previous studies30–33,35–38 have demonstrated that only 129 

the vertical resonance mode can open a significant surface wave band gap. Thus, the resonant metasurfaces are 130 

represented by a certain number of identical single-degree-of-freedom single mass–spring resonators in meter-size 131 

dimensions. 132 

 133 

The dispersion laws of the hybrid Rayleigh waves are theoretically derived through an effective medium 134 

approximation and continuity of displacement and stress at the interface to guide the design of resonant 135 

metasurfaces. The procedures of the analytical framework are arranged as follows: (i) the displacements and stresses 136 

at the free surface caused by Rayleigh waves propagating in isotropic, linear elastic half-space, (ii) the dynamic 137 

response of a vertical oscillator subjected to harmonic base excitation, (iii) the eigen equation of Rayleigh waves 138 

interacting with surface resonators, and (iv) an improved algorithm for solving the eigen equation. 139 

 140 



 141 

 142 

Figure 1. Schematic of the resonant metasurfaces. (a) Rayleigh waves interacting with surface resonators on 143 

stratified soils, with notations used in the theoretical model; (b) Physical model of the resonant metasurfaces; 144 

(c) Motion of representative single mass–spring resonator under vertical seismic excitation. 145 

 146 

2.1 Waves motion in elastic media 147 

 148 

The physical model is shown schematically in Figure 1(b). For isotropic, linear elastic media ignoring damping and 149 

body force, the governing equation of waves propagating in the soil substrate can be drawn by the displacement 150 

vector u(r): 151 
2

2

2

( )
( ( ) ( )) ( ( )) ( ) ( )

t
   


+    +  =



u r
r r u r u r r , (1) 

where  / , /x z =      is the differential operator, u(r) = [u, w] is the displacement vector, and t is the time. 152 

According to the Helmholtz decomposition, the vertical and horizontal displacement components u and w of the 153 

wave field can be expressed as 154 

,u w
x z z x

      
= − = +
   

, (2) 

where ϕ and ψ are the scalar and vector potential functions of the dilatational and transverse components of the 155 

displacement, respectively, and those for a semi-infinite elastic domain take the following form:39,40 156 

2 2
2 2

2 2 2 2

L S

1 1
= , =

C t C t

 
 

 
 

 
. (3) 

 157 

Assuming harmonic waves traveling along the x-axis with angular frequency ω and wavenumber k and recognizing 158 

that the waves are plane, the potential functions can be considered as 159 

 0( , , ) ( )exp ( )x z t z i t kx  = − , (4a) 

 0( , , )= ( )exp ( )x z t z i t kx   − . (4b) 

 160 

Substituting Equation (4a) and (4b) into Equation (3) yields two uncoupled equations: 161 



2 2
20

02 2

L

(1 )
d c

k
dz C


= − , (5a) 

2 2
20

02 2

S

(1 )
d c

k
dz C


= − . (5b) 

Solutions to Equation (5a) and (5b) are 162 

0 1 L 2 L( )= exp( ) exp( ) ( ) ( )z a kz a kz z z    + −+ − = + , (6a) 

0 1 S 2 S( )= exp( ) exp( ) ( ) ( )z b kz b kz z z    + −+ − = + , (6b) 

where the four unknown constants a1, a2, b1, and b2 appearing in Equation (6a) and (6b) are determined by the 163 

boundary conditions of each surface layer. For convenience, Equation (6a) and (6b) are expressed more concisely, 164 

where ϕ+ and ψ+ represent the up-going waves and ϕ- and ψ- represent the down-going waves. 165 

 166 

Substituting Equation (6a) and (6b) into Equation (2) yields a set of equations relating the displacement components 167 

to ϕ+, ϕ-, ψ+, and ψ- as follows: 168 

S Su ik ik k k     + − + −= − − − + , (7a) 

L Lw k k ik ik     + − + −= − − − , (7b) 

from which the stresses σz and τxz can be expressed as follows: 169 
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x zz
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(8a) 

2 2 2

xz 2 2

2 2 2 2 2 2 2

L L S S

(2 )

= 2 2 ( ) ( )

x z x z

ik ik k k k k

  
 

        + − + −

  
= + −

   

 − + − + − + 

, (8b) 

where the factor  exp ( )i t kx −  is suppressed in Equation (7) and (8). 170 

 171 

2.2 Dynamics of surface resonators 172 

 173 

The kinematic equation of a single mass–spring resonator subjected to the base excitation is expressed as follows: 174 

( )( )0 0 0 0m Z w z k Z+ + = , (9) 

where m0 is the resonator mass, k0 is the vertical spring stiffness, Z denotes the relative motion of the mass with 175 

respect to the ground, and w(z0) the base displacement (and both are supposed to be positive in the downward 176 

z-direction, see Figure 1(c)). 177 

 178 

A harmonic wave solution of the form  0= exp ( )Z Z i t kx −  is assumed. Substituting the equation into Equation 179 

(9), we obtain the resonator displacement amplitude as follows: 180 
2

0 02 2

0

= ( )Z w z


 −
, (10) 

where ω0 is the angular resonance frequency. The Rayleigh wavelength at the angular resonance frequency is much 181 

larger than the mass–spring spacing a, that is, the resonator and its footprint length have sub-wavelength dimensions 182 

at the resonance frequency. Thus, an effective medium approximation method is introduced to approximate the 183 

uniform vertical pressure stress σz exerted by the mass–spring at the surface (z = 0) as the elastic force divided by 184 



the area of the resonator foundation. 185 
2 2

0 0 0

0 02 2

0

( ) ( )
( )

z

k Z m
z w z

A A

 


 
= =

−
, (11) 

where A is the area of each resonator foundation. For the surface resonators arranged in a square lattice in this study, 186 

A = a2. 187 

 188 

2.3 Eigen equation 189 

 190 

Moreover, Equation (7) and (8) can be written in the matrix notation as 191 

( ) ( )z z=S HΦ , (12) 

where 192 

2 2 2 2
( )

T

xzzz
iiu w

z
k k k c k c

 
=  
 

S , (13a) 

( )= ( ) ( ) ( ) ( )
T

z z z i z i z   + − + − − Φ , (13b) 

and H is a 4 × 4 matrix whose elements are a function of the elastic constants of the medium at each layer and phase 193 

velocity c, and independent of the frequency f (see Appendix). Thus, Equation (12) can be applied to each layer. 194 

 195 

For the mth layer, according to the displacement characteristics of each layer in the positive z-direction, the relation 196 

between the four unknown coefficients at the boundary m and the boundary m-1 can be written as 197 

1( ) ( )m m m m mz z −=Φ E Φ , (14) 

where 198 

0

1 1
, 0m

m

diag P Q z
P Q

 
= = 

 
E . (15) 

 199 

By substituting Equation (12) into Equation (14), the stress displacement vector can be expressed as 200 
1

1 1

1

( ) ( ) ( )

( )

m m m m m m m m m m m

m m m

z z z

z

−

− −

−

= =

=

S H E Φ H E H S

T S
, (16) 

where 201 
1

m m m m

−=T H E H . (17) 

 202 

Owing to the continuity of the stress displacement vector at the boundary of any layer, Equation (16) can be further 203 

expressed as: 204 

1 1 0 0( ) ( ) ( )n n nz z z−= =S T T TS KS , (18) 

where 205 

1 1n n−=K T T T . (19) 

 206 

By substituting Equation (12) into Equation (18), we obtain 207 
1

1 1 0 0( ) ( ) ( )n n nz z z−

+ += =Φ H KS RS , (20) 

where 208 
1

1= n

−

+R H K . (21) 

 209 



Equipped with the interaction of the surface wave with the resonators, the stress-free boundary condition for the 210 

semi-infinite medium is substituted with the vertical stress σz. In addition, there is no source at infinity, i.e., 211 

1 1( ) ( ) 0n n n nz z + +

+ += = . Thereafter, Equation (20) becomes 212 

0
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where 

2

0 0

2 2

0

=
( )

k m

A




 −
, rij is the element of the matrix R. 213 

 214 

By arranging the first and third equations in Equation (22), we obtain 215 

 

 

0 0

11 12 13

0 0

31 32 33

( ) ( )
0

( ) ( )
0

iu z w z
r r r

k k

iu z w z
r r r

k k






+ + =


 + + =


. (23) 

To obtain the nontrivial solutions of Equation (23), the coefficient matrix LS can be calculated as 216 

  11 12 13

31 32 33

det 0
r r r

r r r





+ 
= = 

+ 
LS . (24) 

 217 

2.4 Improved matrix formulation 218 

 219 

The eigen equations derived thus far constitute a closed-form solution to the problem, and a concise algorithm can 220 

be developed on this basis. Numerically, however, the coefficient matrix LS was unsatisfactory. The research results 221 

of Knopoff,41 Dunkin,42 and Thrower et al.43 showed that there were serious precision difficulties in determining all 222 

the real roots of the characteristic determinant for a layered elastic half-space, and they proposed to overcome this 223 

problem by introducing a delta matrix algorithm. Additionally, Abo-zena44 developed another method that not only 224 

avoids the persistent problem of loss of effective digits at high frequencies, but also improves the convergence speed. 225 

Accordingly, we improve the Abo-zena algorithm and delta matrix method to determine the hybrid Rayleigh wave 226 

dispersion of layered elastic medium without restriction on the loss of high-frequency effective digits, ensuring a 227 

higher computational efficiency. 228 

 229 

As is evident, LS is only a 2 × 2 matrix formed by multiplying the first and third rows of the matrix 
1

1n

−

+H  and the 230 

first three columns of matrix K. Therefore, the first and third rows of the matrix 
1

1n

−

+H  can be denoted as 231 

L LA

B

S S

( 1) 1 1

1
=

( 1) 1 12
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E

E
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Thereafter, the matrix LS can be expressed as 232 
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from which Equation (24) can be rewritten as 233 

         A B A B
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       = −
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Using the transpose property of the matrix, we can obtain the eigen determinant as 234 
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 235 

The related matrix can be further defined as        
T T

1 A B B An+ = −Y E E E E . More specifically, 236 
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By substituting Equations (29) and (19) into Equation (28), we obtain 237 

    T T T

1 1 1 1 1

0

1
det 1 0 0 0

0

n n n n n


− + −

 
 
 =
 
 
 

LS T T T Y T T T . (30) 

Equation (30) can be expressed in a recursive format equivalent to 238 
T

1 , 1, 1m m m m n n+= −Y T Y T , (31a) 

  1 1det (1,2) (1,3)= +LS Y Y , (31b) 

where Y1(1,2) and Y1(1,3) represent the elements of row1, column2, and row1, column3, respectively, in matrix Y1. 239 

From Equation (29), it follows that 
1n+Y  is an antisymmetric matrix; if 

1n+Y  is antisymmetric, then 
T

1m m m+T Y T  is 240 

also antisymmetric. 241 

 242 

This indicates that the above recursive formulas still cannot overcome the loss of significant digits. Additionally, 243 



because there are only six independent elements in the matrix 
mY , Equation (31a) can be arranged in terms of 244 

operations on the matrix elements: 245 
4 4

1 1

ˆ
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= =

= , (32) 

where ˆ
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mY , 
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1m+Y , respectively. According to the 246 

property of the antisymmetric matrix, Equation (32) can be expressed as: 247 
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Equation (33) can be written in vector form: 248 
*

1 , 1, ,1m m m m n n+= = −W W T , (34) 

where  12 13 14 23 24 34
ˆ ˆ ˆ ˆ ˆ ˆ

m y y y y y y=W  and  1 12 13 14 23 24 34m y y y y y y+ =W . From the expression 249 

of the elements of the matrix 
*

mT  in Equation (33), it can be observed that each element of the matrix 
*

mT  is a 2 × 250 

2 sub-determinant of the matrix mT , i.e., 
*

mT  refers to the delta matrix of mT . 251 

 252 

Considering the property of the delta matrix, the matrix 
*

mT  can be expressed as 253 

* * * 1 *( )m m m m

−=T H E H , (35) 

where 
*

mH , 
*

mE , and 
1 *( )m

−
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mH , 
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1

m

−
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 255 

By substituting Equation (35) into Equation (34), we obtain the system 256 

* * 1 *

1

1
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4
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+= = −W W H E H , (36) 

where the initial vector Wm in Equation (36) can be expressed as 257 
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= − − + − − − 
 

W . (37) 

Therefore, the characteristic Equation (31b) can be further written as 258 

1 1(1,1) (1,2) 0+ =W W , (38) 

where W1(1,1) and W1(1,2) represent the elements of row1, column1, and row1, column2, respectively, in matrix 259 

W1. Incidentally, if n is set to zero, Equation (38) is reduced to the dispersion relation of the interaction between the 260 

resonant metasurfaces and Rayleigh waves propagating in an idealized elastic half-space.33 261 

42 2 2 2 2
2 0

2 2 2 2 2 2 2 3 4 2 2

0 S L S S L

( 1) (2 ) 4 1 1 1
m

k C k C k C A k C k C

    

 

 
− − − − − = − 

  

 (39) 

 262 

3 FE MODEL AND VALIDATION 263 

 264 

Before proceeding with any numerical simulation related to the dispersion of stratified soil, it is necessary to choose 265 

the appropriate site condition characterizing the mechanical properties of each soil stratum. Cai et al.45 have reported 266 

the attenuation performance of 1D layered periodic trenches embedded in stratified soil and its application in 267 

train-induced ground vibration damping. Thus, the depth-dependent speed profiles were considered in this study, as 268 

shown in Table 1. 269 

 270 

Moreover, three types of 2D unit cell FE models and a transmission calculation model, developed in COMSOL 271 



Multiphysics, were designed to confirm the analytical dispersion relation and obtain further insights into the 272 

resonator–surface wave coupling mechanism. Accordingly, we first verified the accuracy of the Bloch-wave FE 273 

method by comparing it with the numerical results published by Palermo et al.46 Furthermore, the attenuation of 274 

surface waves inside the frequency band gap was also validated by performing a transmission analysis of an array of 275 

metasurfaces distributed on the surface of the ground in the frequency domain. 276 

 277 

Table 1. Soil stratification and mechanical parameters.45 278 

 279 

No. Soil type 
Thickness  

d (m) 

Density 

ρ 

(kg/m3) 

Shear wave 

speed  

CS (m/s) 

Longitudinal wave 

speed  

CL (m/s) 

1 Miscellaneous fill 4.6 1810 80.92 40.76 

2 Plasticized silty clay 6.0 1850 117.99 60.71 

3 
Hard-plasticized granite residual 

soil 
3.4 1950 125.05 65.62 

4 Completely weathered granite 16.8 2100 121.89 70.37 

5 Strongly weathered granite 9.2 2200 126.77 74.15 

 280 

3.1 Unit cell design 281 

 282 

Three configurations of the FE model were considered in the dispersion analysis: a stratified soil system with a 283 

stress-free boundary condition (BC) at the top, labeled as Unit cell A; a portion of homogeneous soil coupled with 284 

point mass–spring resonators, denoted as Unit cell B; and a unit cell C of the stratified soil–resonator interaction. 285 

For the stratified soil system (see Figure 2(a)), the unit cell has a width w = a/10 and a height h = 40 m to accurately 286 

identify surface wave modes around the resonant frequency. The soil stratification and mechanical parameters are 287 

provided in Table 1. In the numerical simulation, the unit cell substrate domain was discretized into triangular 288 

elements with quadratic Lagrange shape functions. In addition, we used the discretization of 10 elements for the 289 

minimum wavelength at the highest frequency of interest,47,48 that is, 
min R max/ /10d C f= , where 

RC  is the 290 

Rayleigh velocity and 
maxf  is the highest frequency of interest in this study. 291 

 292 

Owing to the periodicity of the model, Bloch–Floquet BCs were applied to the lateral edges of the unit cell to 293 

simulate an infinite array of the stratified soil system along the direction of wave propagation and fixed BCs to the 294 

bottom edge to avoid undesired rigid motions. It is observed that the dispersion relation is an implicit function of the 295 

wavenumber k and eigen frequency f. The corresponding eigen frequency can be solved based on the FE approaches 296 

reported by Phani et al.49 by changing across the wave numbers in the boundary of the first irreducible Brillouin 297 

zone. Thereafter, a post-processing method reported by Huang et at.50 is implemented to automatically identify the 298 

numerical surface wave solutions from all the Bloch modes. 299 

 300 

The Unit cell B and C (see Figure 2(b) and (c)) have the same geometric size and mesh quality attributes as Unit cell 301 

A, except for the substitution of the standard zero-stress BCs with the previously discussed metasurface stresses. To 302 

simulate the uniform vertical stress imposed on the resonator foundation, a single mass–spring resonator was 303 



dispersed over a set of 10 truss elements, as described in Ref 46, resulting in each point mass mt = m0/100 and 304 

Young’s modulus of each truss 
2

0 0 / /100E m S= , where S is the cross-sectional area of the truss element. 305 

Additional point masses are also used to model the resonator mass borne by each truss element. 306 

 307 

 308 

 309 

Figure 2. Schematic of unit cell FE model for dispersion analysis. (a) A stratified soil system with free BC at 310 

the top; (b) A homogeneous soil system coupled with a set of single mass–spring resonators; (c) A stratified 311 

soil system coupled with a set of single mass–spring resonators. 312 

 313 

3.2 Transmission model design 314 

 315 

A 2D strip model with a finite array of resonators under plane-strain conditions was developed to assess the 316 

attenuation efficiency of the resonant metasurfaces placed atop a stratified soil surface, as schematically shown in 317 

Figure 3. When the surface waves propagate in the first-layered soil, the velocity of the Rayleigh waves can be 318 

approximated as CR ≈ (0.87+1.12v) CS / (1+v) = 38 m/s. The frequency range for frequency domain analysis is 1–10 319 

Hz. Therefore, the Rayleigh wavelength for the first-layered soil at the resonance frequency is expressed as λωR = CR 320 

/ f0, where f0 is the resonance frequency of the resonator. The computational domain has a depth of 5 λωR and a total 321 

length of 18 λωR + 2 lbar, where lbar represents the distribution length of the metasurfaces. The incident surface wave 322 

was generated by applying a vertical harmonic displacement (w(f) = w0eiωt, w0 = 0.01m). It should be emphasized 323 

that the source displacement generates both Rayleigh waves traveling along the free surface and bulk waves in the 324 

soil substrate, but the surface displacements in the far-field are dominated by Rayleigh waves, ensuring surface wave 325 

interaction with surface resonators. 326 

 327 

Triangular elements with quadratic Lagrange shape functions were also applied to discretize the field domain, and 328 

the mesh quality was consistent with the unit cell FE model. To avoid numerical oscillation near the resonance 329 

frequency, all the elements were assigned a small isotropic loss factor (that is, ζ = 0.05). Additionally, perfectly 330 



matched layers (PMLs) were employed at both the lateral and the bottom of the substrate to prevent undesired 331 

reflections from the domain boundaries. 332 

 333 

To evaluate the attenuation effect of the metasurfaces, the acceleration reduction spectrum (ARS) is defined as 334 

ωR

ωR

2

z,with
0

10 2

z,without
0

ARS 20log
a dx

a dx




=




, (40) 

where az,with represents the vertical acceleration component extracted from output1, az,without is the reference 335 

acceleration field obtained from the left side of the domain (Output2). Note that the ARS is negative if az,with is less 336 

than az,without that indicates that metasurfaces mitigate the ground vibration. 337 

 338 

 339 

 340 

Figure 3. Schematic of the 2D plane-strain FE model geometry. The computational domain on the right 341 

represents a finite number of mass–spring resonators attached to the free surface of a stratified soil system, 342 

while that on the left represents surface waves propagating along the free surface subjected to harmonic 343 

excitation. 344 

 345 

3.3 Comparison and validation 346 

 347 

To substantiate the feasibility of the FE models, the problem of surface waves interacting with resonant matabarriers 348 

reported by previous researchers is reconsidered.46 The upper panel of Figure 4(a) shows the dispersion curves for 349 

sedimentary soil coupled with a single-mass metabarrier. The unit cell has a width w = A/(1m)/10 and a height h = 350 

4λωr, where λωr is the Rayleigh wavelength at f = 2.43 Hz. The relationship between the transmission coefficient and 351 

excitation frequency obtained in this study was also compared with that in previous research, as depicted in the 352 

lower panel of Figure 4(a). In transmission analysis, the considered metabarrier has a length Lres = λωr, with resonator 353 

mass m = 10500 kg and resonance frequency fr = 2.43 Hz. Evidently, the surface wave dispersion curves and 354 

transmission spectra obtained in the present study agree well with those in previous studies. 355 

 356 

Furthermore, it should be noted that the attenuation peak of the transmission spectrum deviates from the surface 357 

wave band gap (gray shaded area) and appears in the frequency region below the resonance frequency, where the 358 

surface waves are strongly hybridized with the resonant metabarrier. Figure 4(b) displays the nephogram of the 359 



vertical displacement field generated by harmonic excitation at 2.21 Hz, 2.43 Hz, and 4 Hz. Apparent mode 360 

conversion of Rayleigh waves into bulk shear waves is observed at the frequency corresponding to the attenuation 361 

peak (2.21 Hz) that again validates the accuracy of the FE model. This phenomenon is further discussed in Section 362 

4. 363 

 364 

 365 

 366 

Figure 4. Comparative study of dispersion laws and transmission spectra of surface waves interacting with 367 

resonators arranged on homogeneous soil surface. (a) Dispersion curves and corresponding acceleration 368 

reduction spectrum; (b) The nephogram of vertical displacement field generated by harmonic excitation at 369 

2.2 Hz, 2.43 Hz, and 4 Hz. 370 

 371 

4 RESULTS AND DISCUSSION 372 

4.1 Dispersion analysis 373 

 374 

According to the mechanical parameters in Table 1, the first three–order surface wave modes (frequency versus 375 

wave number) of Unit cell A in the range of 1–10 Hz are theoretically and numerically calculated (see Figure 5(a)), 376 

along with the dispersion curves in terms of phase velocity versus frequency, as plotted in Figure 5(b). Note that the 377 

theoretical dispersion curves that are solutions of Equation (40) (that is, ξ = 0), are shown as solid lines in three 378 

colors (for example, M1–M3), while solid pink circles represent the FE surface wave solutions. As reported by 379 

Graff,39 multiple surface modes are induced by the presence of stress-free BC and inhomogeneous elastic properties 380 

of the stratified soil system. Additionally, the analytical solutions show excellent agreement with the numerical 381 

results, confirming the accuracy of the Bloch-wave FE approach again. 382 

 383 



 384 

 385 

Figure 5. Dispersion curves for Unit cell A in terms of (a) frequency versus wavenumber and (b) phase 386 

velocity versus frequency. 387 

 388 

The dispersion curves for vertically polarized surface waves in a stratified soil system are displayed, and the 389 

mechanical parameters of the soil and surface resonator are specified in Table 1 and Table 2, respectively. It should 390 

be noted that each resonance frequency f0 of the resonator is crucial for the mitigation of surface seismic waves 391 

below 10 Hz that cover the most energetic frequencies of seismic spectra. Specifically, for a mass of m0 and resonant 392 

frequency f0, the compression stiffness of each resonator is k0 = m0(2πf0)2. Figure 6(a) and (b) show the analytical 393 

dispersion curves and FE solutions for Unit cell C in terms of frequency versus wavenumber and phase velocity 394 

versus frequency, respectively. This indicates that the FE solutions agree well with the analytical predictions. The 395 

vertical resonance of the resonator is plotted in Figure 6 by the gray dashed line. The first insight into the main 396 

features of the dispersion curves indicates that a highly localized mode (that is, M1) arises because of the coupling 397 

between Rayleigh waves and the metasurfaces, resulting in a flat dispersive branch at the resonance of the vertical 398 

resonator. 399 

 400 

To emphasize the localization mechanism induced by the heterogeneous elastic properties, the analytical dispersion 401 

curves of a homogeneous soil system coupled with a resonant metasurface (Unit cell B), denoted by the solid cyan 402 

line, are also superimposed in Figure 6 (a). The mechanical parameters of the homogeneous soil are derived from the 403 

first layer in Table 1. It is observed that the Rayleigh waves in infinite elastic half-space hybridize with the vertical 404 

resonators at resonance, exhibiting a characteristic “avoided crossing” behavior. The dispersion curves are split into 405 

two repelling branches around the resonance frequency that results in a narrow surface wave band gap, as depicted 406 

in the gray area in Figure 6 (a). Within the frequency band gap, the propagation of Rayleigh waves is mitigated, and 407 

surface waves deviate from the stress-free surface in the form of shear vertically polarized waves, similar to what 408 

was observed in previous studies.33,46 However, this behavior is not observed in the case of stratified soil 409 

configuration. Although the presence of vertical oscillators results in a flat branch for the first-order surface modes 410 

of a stratified soil system that is akin to the lower branch of a homogeneous soil system, the surface wave band gap 411 

is permeated by higher-order surface modes, that is, the frequency band gap disappears. 412 

 413 

Table 2. Mechanical parameters of the surface resonator. 414 

 415 



Parameter Value 

Mass, m0 400 kg 

Stiffness, k0 2.5266 × 105 N/m 

Resonance frequency, f0 4 Hz 

Lattice constant, a 1 m 

 416 

 417 

 418 

Figure 6. Dispersion curves for Unit cell C in terms of (a) frequency versus wavenumber and (b) phase 419 

velocity versus frequency. The superimposed solid cyan lines in panel (a) are the dispersion curves of a 420 

homogeneous soil system coupled with resonant metasurfaces. 421 

 422 

For this reason, the normalized vertical displacement amplitudes of Unit cell A and C changing with the depth 423 

profile below the resonant frequency were extracted to emphasize the hybridization degree of surface waves by the 424 

metasurfaces, as plotted in Figure 7. The vertical displacement data at different frequency–wavenumber values are 425 

extracted from the dispersion curves in Figure 5(a) and Figure 6(a), where the Rayleigh (R) and hybrid Rayleigh (Rh) 426 

wave shapes represent the surface waves propagating in Unit cell A and C, respectively. The vertical displacement 427 

amplitude of the first-order R-wave at different frequency wavenumbers does not change significantly, and the trend 428 

of the attenuation changes with depth is basically the same. In contrast, the vertical displacement of the Rh-wave 429 

near the resonance frequency (that is, (k, f) = (0.85,3.8)) is confined to a thin layer, and the amplitude decays rapidly 430 

with depth further away from the free surface. Similar results (see Figure 7(b) and (e)) can be seen from the vertical 431 

displacement distribution of the second-order R-wave and Rh-wave along the depth. It can be asserted that such a 432 

phenomenon is the result of hybridization between the fundamental surface mode and metasurfaces that interact with 433 

an inhomogeneous elastic medium and gradually restrict the energy to the near-surface. 434 

 435 

To investigate the coupling level of each order of surface modes with the metasurfaces, the vertical displacement 436 

fields of the first two order R and Rh waves close to the resonance frequency (that is, f = 3.8 Hz) were also 437 

compared, as shown in Figure 7(c) and (f). As shown in Figure 7(c), the vertical displacement amplitudes of the two 438 

modes are similar at the free surface, but the vertical displacement component of the first-order mode decays faster 439 

in the perpendicular direction than that of the second-order mode. Similar results can be observed in Figure 7(f). It 440 

can be concluded that only the fundamental surface mode can strongly couple to the resonant metasurfaces owing to 441 

the significant disappearance of the vertical displacement component at the free surface. Thus, it can be predicted 442 



that these higher-order modes do no affect on the surface wave attenuation near the resonance frequency of 443 

metasurfaces. 444 

 445 

 446 

 447 

Figure 7. Normalized vertical displacement amplitude of surface modes of Unit cell A and C changing with 448 

depth. 449 

 450 

4.2 Harmonic analysis 451 

4.2.1 Frequency domain 452 

 453 

In this section, the transmission efficiency of a finite number of surface resonators based on harmonic analysis is 454 

performed to validate the dispersion analysis predictions and obtain further insight into the attenuation performance 455 

of the stratified soil–resonator interaction. 456 

 457 

The ARS and corresponding dispersion curves for surface resonators arranged on the surface of homogeneous and 458 

stratified soil configurations were calculated (see Figure 8), respectively, to assess the attenuation performance of 459 

the metasurfaces. Figure 8(a) shows a significant acceleration amplitude attenuation near the resonant frequency 460 

owing to the local resonance or wave hybridization mechanism. As initially proposed by Boechler et al.51 and later 461 

by Palermo et al.,33,46 within the frequency band gap (gray shaded area in Figure 8(a)), Equation (39) has no real 462 

mathematical root and the corresponding solutions exist in the region below the shear wave (solid green line in 463 

Figure 9(a)) in the form of hybrid Rayleigh waves. The incident Rayleigh waves near the resonant frequency are 464 

either captured by the resonant metasurfaces or forced to propagate downward as hybrid Rayleigh waves with 465 

different phase velocities, thus reducing ground motion. Simultaneously, the offset phenomenon of the attenuation 466 

peak can be explained by the previous studies wherein Rayleigh waves and hybrid Rayleigh waves have been poorly 467 

coupled at the metasurfaces.32,46 Similarly, a prominent peak reduction can also be observed near the metasurface 468 

resonance in Figure 8(b) that can be attributed to the confinement of the first-order surface mode. 469 

 470 



 471 

 472 

Figure 8.  Analytical dispersion curves and corresponding transmission spectra under different soil types. (a) 473 

homogeneous soil and (b) stratified soil. 474 

 475 

Moreover, the harmonic responses (vertical displacement fields) of homogeneous and stratified soil systems with 476 

and without metasurfaces are plotted in Figure 9 and 10, respectively. Specifically, Figure 9(b), (c), and (d) present 477 

the nephograms of the vertical displacement field generated by harmonic excitation at 3.84 Hz, 4 Hz, and 5 Hz. It 478 

can be observed that the incident Rayleigh waves near the resonant frequency (that is, 3.84 Hz and 4 Hz) cause a 479 

strong local resonance, resulting in a π phase shift of the incident waves that is converted into shear waves at the 480 

metasurface edges and transferred to the underground. In contrast, the vertical displacement field generated by 481 

harmonic excitation at 5 Hz (see Figure 9(b)) is basically consistent with the reference model on the left, 482 

demonstrating that Rayleigh waves outside the band gap can propagate through the metasurfaces. 483 

 484 

Regarding the stratified soil–resonator configuration, it can be found from Figure 10(b), (c), and (d) that most of the 485 

wave energy is concentrated in the first layer because of the reflection of the elastic wave at the interface. However, 486 

this peculiar soil stratification and stiffness profile have a negligible effect on the trapping ability of the resonant 487 

metasurfaces. Considering the vertical displacement field under 3.8 Hz harmonic excitation as an example, the local 488 

resonance of the surface resonators can still capture most of the wave energy, leading to the reduction of ground 489 

vibration within a finite length behind the metasurfaces, as shown in Figure 10(d). For comparison, we also present 490 

the vertical displacement field of a stratified soil system with and without metasurfaces at 5 Hz, as plotted in Figure 491 

9(b). No apparent phenomena such as surface wave–resonance interaction and surface-to-shear wave conversion 492 

were observed. 493 

 494 



 495 

 496 

Figure 9. (a) Magnification of the dispersion curves of a homogeneous soil system coupled with resonant 497 

metasurfaces. The dispersion relation for both the shear wave (solid green line) and Rayleigh wave (solid red 498 

line) in the homogeneous elastic half-space are also superimposed in panel (a). (b) The nephogram of vertical 499 

displacement field generated by harmonic excitation at 3.84 Hz, 4 Hz, and 5 Hz. 500 

 501 

 502 

 503 

Figure 10. (a) Magnification of the dispersion curves of stratified soil–resonator interaction and (b) 504 

nephogram of vertical displacement field generated by harmonic excitation at 3.84 Hz, 4 Hz, and 5 Hz. 505 

 506 

Parametric analyses, including resonator mass m0 and arrangement length lbar, were performed to investigate the 507 

attenuation capabilities of the metasurfaces. Keeping the resonance frequency of the resonator unchanged, Figure 508 

11(a) presents the attenuation performance of the surface resonators with different masses. It is observed that both 509 



the attenuation peak and starting frequency shift to lower frequencies, resulting in a larger attenuation domain for the 510 

surface resonator. Therefore, increasing the resonator mass can widen the ARS and thus induce more broadband 511 

performance for the metasurfaces. Simultaneously, another parametric study with different metasurface lengths was 512 

conducted to assess the minimum surface wave barrier length required for significant ground attenuation. We 513 

performed transmission analyses with different lengths of 0.2 λωR, 0.5 λωR, and λωR, and with a constant mass m0 = 514 

400 kg and k0 = 2.5266 × 105 N/m for each resonator, as shown in Figure 11(b). As expected, the vertical 515 

acceleration responses at the output area decreased significantly as the metasurface length increased. In particular, 516 

for a metasurface length of lbar = 0.5 λωR, an approximately 30% reduction (that is, ARS = -10) of surface ground 517 

motion is observed, indicating adequate attenuation performance of surface resonators. 518 

 519 

 520 

 521 

Figure 11. Effects of different parameters on acceleration reduction spectra. (a) Resonator mass (in this study, 522 

m0 = 400 kg) and (b) Metasurface distribution length. 523 

 524 

4.2.2 Time domain 525 

 526 

Time-transient harmonic numerical simulations were also performed to further validate the numerical predictions of 527 

the dispersion analyses and to investigate the wave attenuation capability of vertical oscillators near resonance. In 528 

order to avoid undesired wave reflection, low reflection boundary conditions (LRBCs) are applied to the outside of 529 

the PML layers that are proven to be more effective in absorbing the propagating shear and longitudinal waves at the 530 

truncated boundaries in transient analysis.37 Simultaneously, the bottom corners of the model are fixed, and three 531 

input signals with 2 Hz, 4 Hz, and 6 Hz are considered (see Figure 12). Surface waves are excited at the source point 532 

by utilizing a normalized harmonic acceleration in the z-direction. To avoid spurious oscillations at the onset, the 533 

normalized acceleration amplitude is modulated by a Heaviside step function, as follows: 534 
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where Amax is the maximum signal amplitude, fc is the central frequency of the applied pulses, C is the number of 535 

wave cycles, and t is the time duration. Such excitation is chosen to highlight the isolation performance of the 536 

designed metasurfaces, emphasizing that strong coupling occurs around the resonator resonance. In addition, the FE 537 

model used for transient analysis was consistent with the description of the transmission model, as shown in Figure 538 



3.  539 

 540 

 541 

 542 

Figure 12.  Normalized input wave signal. (a) fc = 2 Hz, C = 8; (b) fc = 4 Hz, C = 12; and (c) fc = 6 Hz, C = 12. 543 

 544 

The normalized average vertical acceleration responses at the detection area (that is, Output 1 and Output 2) were 545 

recorded and compared, as shown in Figure 13. The dashed and solid lines denote the results obtained with and 546 

without metasurfaces, respectively. As shown in Figure 13(b), the vertical acceleration responses at the output 547 

domain with metasurfaces are significantly smaller than those of signals without metasurfaces, owing to the 548 

generation of local resonance. When the center frequency of the input signal fc = 4 Hz, the average vertical 549 

acceleration amplitude decreases by approximately 30% compared with the reference free surface. The output 550 

signals far from the resonant frequencies are plotted, as shown in Figure 13(a) and (c). It can be observed that the 551 

amplitudes of the time transient acceleration at the detection area are almost the same in both configurations (with 552 

and without resonators). Again, the transient analysis results confirm that the considerable amplitude reduction 553 

observed around the resonant frequency is caused by the strong coupling between the surface waves and 554 

metasurfaces. 555 

 556 

 557 

 558 

Figure 13. Normalized average vertical acceleration response at the output area. (a) fc = 2 Hz, C = 5; (b) fc = 4 559 

Hz, C = 12; (c) fc = 5 Hz, C = 10; and (d) fc = 12 Hz, C = 12. 560 

 561 

4.3 Attenuation efficiency of a graded metasurface 562 

 563 

As mentioned above, the resonance frequencies of the metasurface were reasonably tailored to achieve considerable 564 

attenuation. To obtain attenuation at ultralow frequencies and a wider frequency range, the classic gradient 565 

metawedge presented by Colombi and Colquitt et al.31 with decreasing frequencies along the propagation direction 566 



is reconsidered. Note that a decreasing frequency metasurface can be modeled by linearly modifying the mass or 567 

spring stiffness of the vertical oscillators. Therefore, a decreasing-frequency case is adopted by linearly increasing 568 

the masses from 200 to 800 kg and maintaining the spring stiffness k0 at 2.5266 × 105, as depicted in Figure 14(a). 569 

Figure 14(b) displays the acceleration attenuation spectra of the gradient metasurfaces in the frequency range of 570 

1–10 Hz. The shaded area represents the corresponding resonance frequencies in the range of 2.82 Hz to 5.65 Hz. A 571 

wider attenuation zone and a more significant attenuation effect can be visually observed in the case of a resonant 572 

metasurface with a decreasing frequency compared with a constant frequency. 573 

 574 

 575 

 576 

Figure 14. (a) Schematic of the mass distribution of graded metasurfaces for a constant stiffness of the 577 

resonators and (b) corresponding acceleration reduction spectra. The considered graded metasurfaces have a 578 

length lbar = 5λωR and stiffness k0 = 2.5266 × 105 N/m. 579 

 580 

Furthermore, it is important to scrutinize the attenuation effect of the graded resonant metasurfaces via time-domain 581 

analyses with a natural seismic acceleration record. Thus, three accelerograms recorded from the Pacific Earthquake 582 

Engineering Research Ground Motion Database52 were selected: Imperial Valley, Northridge, and L’Aquila as 583 

seismic inputs. Figure 15 depicts the time history and corresponding Fourier spectra of the three ground vibrations. 584 

Figure 15(b) shows that the dominant frequencies of the Imperial Valley earthquake are in the range of 1–6 Hz that 585 

is consistent with the attenuation zones of the graded metasurfaces and is expected to achieve significant shielding 586 

performance. However, the main frequency bands of the other two seismic records are relatively scattered, and there 587 

are still large vibration amplitudes in the frequency bands outside the attenuation zone (for example, 6–10 Hz) that 588 

makes it difficult to achieve attenuation. 589 

 590 

Time history analyses were performed by applying seismic inputs directly to the source location. For the FE models 591 

with or without graded metasurfaces, the average acceleration responses in the vertical direction were calculated in 592 

the detection area. After the acquisition, fast Fourier transform was applied to the output responses, and their 593 

frequency components were compared to highlight the attenuation effect in the decreasing-frequency case. Figure 16 594 

displays the normalized average vertical acceleration responses and corresponding Fourier spectra at the output area, 595 

considering the presence or absence of graded metasurfaces. It can be found that the vertical acceleration amplitude 596 

in the FE model with graded metasurfaces (denoted as solid red lines) is reduced by 39%, 27%, and 25%, 597 

respectively, compared with those in the reference model (denoted as solid blue lines). Simultaneously, the 598 



corresponding frequency components at Output 1 (graded metasurface), as shown in Figure 16(b), (d), and (f) are 599 

significantly reduced in the attenuation zone compared with those at Output 2 (free surface). In conclusion, the 600 

above results once again prove that the tuned resonant metasurfaces can achieve broadband surface wave attenuation 601 

and are expected to effectively avoid seismic damage to critical infrastructures. 602 

 603 

 604 

Figure 15. Input seismic wave acceleration records and corresponding Fourier spectra. (a, b) Imperial Valley 605 

earthquake; (c, d) Northridge earthquake and (e, f) L’Aquila earthquake.52 606 

 607 

 608 

 609 

Figure 16. Normalized average vertical acceleration response at the output area and corresponding Fourier 610 

spectra with and without metasurfaces. (a, b) Imperial Valley earthquake; (c, d) Northridge earthquake; and 611 

(e, f) L’Aquila earthquake. 612 

 613 

5 CONCLUSIONS 614 

 615 

The recent proliferation of resonant metamaterials developed for seismic wave shielding is based on stimulated 616 

theoretical and analytical frameworks capable of describing the interaction of surface waves with longitudinal 617 

resonance metasurfaces. Within this context, this study theoretically investigates the dispersion properties in the 618 



actual site conditions by considering the coupling of Rayleigh waves with metasurfaces attached to the free surface 619 

of a stratified semi-infinite space. The dispersion curves of the three configurations, including a stratified soil system, 620 

a homogeneous soil–resonator coupling system, and a stratified soil–resonator coupling system, were obtained by 621 

numerical simulations. Additionally, a finite-length metasurface and a graded resonant metasurface with decreasing 622 

frequency were used to evaluate the attenuation efficiency in the frequency domain and time domain, respectively. 623 

The main findings of this study are summarized as follows: 624 

 625 

(1) The analytical framework is developed by introducing the classical elastodynamics theory and an 626 

effective medium description to investigate the eigen equation of Raleigh waves propagating through 627 

periodically distributed vertical resonators in multiple stratified soil substrates. Simultaneously, the 628 

improved matrix algorithm proposed in this study can be used to calculate the dispersion relations of 629 

stratified soil–resonator interactions promptly and accurately, avoiding the problem of high-frequency 630 

effective digit loss. 631 

(2) The analytical and numerical solutions of the dispersion curves are in good agreement that validates the 632 

feasibility of the Bloch-wave FE method. It is observed that the first-order surface mode gradually 633 

becomes a flat dispersive branch near the metasurface resonance, while the other higher-order surface 634 

modes still cross the surface wave band gap. Thus, it is highlighted that only the first-order mode is 635 

strongly coupled with the resonant metasurfaces, and the effect of the higher-order modes is negligible. 636 

(3) The results of harmonic analyses show that the transmission model with a finite-length metasurface 637 

exhibits a sharp attenuation in a narrow frequency range near resonance. In addition, the coupling degree 638 

of Rayleigh waves and hybrid Rayleigh waves at the soil–resonator interface is sensitive to the resonator 639 

mass m0. Broadband attenuation can be achieved by increasing the resonator mass or metasurface length 640 

within a certain range. 641 

(4) By reasonably adjusting the resonator mass or spring compression stiffness, it is possible to obtain a 642 

graded metasurface with an ultra-low starting frequency and broadband attenuation. In particular, it is 643 

found that the vertical acceleration amplitude in the output region of the FE model with a graded resonant 644 

metasurface can be reduced by 39% relative to the reference model. 645 

 646 

As mentioned above, the actual site conditions are far more complex than the stratified case assumed in this paper; 647 

for example, weak interbeds and groundwater are common in practice. Moreover, the failure of soil bearing capacity 648 

caused by the large resonating masses should be checked according to real site conditions. Further research efforts 649 

will be devoted to develop 3D resonant metasurfaces and investigate the resonators damping, soil nonlinearity, and 650 

activation time of the resonant metasurfaces on the shielding effect. One can expect a substantial volume of 651 

quantitative studies on seismic metabarriers using realistic materials and structural paremeters in the coming years. 652 

 653 
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APPENDIX: Definition of the matrix elements 755 
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The matrix H is: 757 
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The matrix H-1 is 759 
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The matrix 
*

mE  is: 761 

* 1
1 1m

P Q
diag PQ

Q P PQ
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The elements of matrix 
*

mH  are: 763 
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