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Abstract—The interest in multiphase machines for high
power and reliable drives has been growing, and many
control algorithms have been proposed to improve their
torque performance. This work presents a new approach to
the modeling of a multi three-phase drive, aiming at the
minimization of the torque ripple introduced by Pulse Width
Modulation (PWM) voltage excitation, by the shift of carrier
phase angles among different three-phase inverters. The
underlying idea is to use standard three-phase converters
feeding the individual segment and to apply a phase shift
between the PWM carriers. For the torque ripple analyzed in
this paper, only the interaction between the armature field,
resulting from the PWM voltage excitation, and the
fundamental component of the permanent magnet field is
considered. The proposed carrier phase shift angles are
obtained for a case study of sectored triple three-phase
synchronous permanent magnet machine. Analytical,
numerical and finite element analysis (FEA) results are
presented to explain how the carrier shift angles affect the
current and torque ripple. Finally, experimental results are
presented to validate the model and the control algorithm.

Index Terms— Analytical models, multiphase drives,
machine vectorcontrol, permanentmagnetmachines, pulse
width modulation, torque control.
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ߙ Space phase shift angle between the ௧

three-phase system and the stator reference
frame [rad].

߱ Mechanical speed of the machine [rad/s].
ܸୢ ୡ DC link supply voltage of each independent

converter module [V].
ܯ Modulation index,ܯ ∈ [0,1].
݉ Carrier signal index.
݊ Modulating signal index.

݊݉ܣ Amplitude of the harmonic component with
݉ carrier signal index, and ݊ modulating
signal index.

ୡ݂ Frequency of the carrier signal [Hz].

ୡ߱ Frequency of the carrier signal [rad/s].

୭߱ Frequency of the modulating signal [rad/s].
߱ Frequency of the harmonic component with

m carrier signal index, and n modulating
signal index [rad/s].

ܼ( ߱) Impedance of the fundamental component.
ܼ(߱) Impedance of the harmonic component at the

frequency of ߱ .
ୡ,ߠ Phase angle of the carrier signal of the ௧

three-phase system [rad].
(ݐ)ݔ Time-varying angle of the carrier signal in

the ௧ three-phase system [rad].
ߠ Phase angle of the fundamental phase

voltage (modulating signal) of the first three-
phase system [rad].

oߠ
ᇱ Phase angle of the fundamental phase current

of the first three-phase system [rad].
(ݐ)ݕ Time-varying angle of the fundamental

phase voltage (modulating signal) of the first
three-phase system [rad].

(ݐ)ᇱݕ Time-varying angle of the fundamental
phase current of the first three-phase system
[rad].

ܴ Stator phase resistance [Ω].
ܮ ܯ, Self and mutual phase inductances of the

machine matrix ࡸ of a general machine
winding, ܺ,ܻ ∈ {Aଵ, B1 , C1, A2, B2 , C2, A3,
B3 , C3} and ܺ ≠ ܻ.
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1ܯ,ܮ 3ܯ,2ܯ, Self and mutual phase inductances for the
representation of the inductance matrix ࡸ for
the analysed winding layout.

LIST OF ACRONYMS

PWM Pulse Width Modulation
CPS-PWM Carrier-based Phase Shift Pulse Width

Modulation
FEA Finite Element Analysis
PMSM Permanent Magnet Synchronous Machine
Back-EMF Back Electromotive Force
FFT Fast Fourier Transformation

I. INTRODUCTION

ultiphase drives are well known for being a suitable
solution for high power systems such as ship propulsion,

electric vehicles and More Electric Aircraft applications [1]–[6].
The main advantage of a multiphase drive is the significant
improvement in terms of flexibility in the design and control of
the converters, and the reduced power rating requirement of the
power electronic components [7]–[11]. Among the multiphase
drives, the multi three-phase layout offers the possibility to
obtain amultiphase system bymeans of commercial three-phase
inverters. Furthermore, the multi three-phase layout with
parallel or independent dc links offers a higher fault tolerance
[12]–[15]. A scheme of a multi three-phase drive is presented in
Fig. 1.
To achieve high power and high power density drives, one of

the main solution is to significantly increase the speed of the
machine [16]–[19]. However, in high power systems the power
electronics must bear high currents (or voltages) and the
switching frequency of the power semiconductor is usually
limited (below 30 kHz) [20]–[23]. This results in significant
high frequencycurrent ripple caused by the PWMof the DC/AC
converter [24], [25]. The ripple affects the performance of the
machine in terms of machine copper loss and torque [24]–[26].
In particular, the introduction of high frequency torque ripple is

source of vibrations and noise that are undesired, especially for
transport applications with high reliability requirements
[27][28]. The possibility of reducing the torque ripple in PWM
drive systems has been validated by previous works [24], [25],
[27]. For example, in [27] the authors define a technique to
eliminate the vibration in a phase shifted dual three-phase
machine. This paper proposes an analytical model of the torque
ripple generated in a sectored multi three-phase machine fed by
a PWM control of multi three-phase modular converters.
Starting from the model, a method for the torque ripple
reduction by applying CPS-PWM technique to the multi three-
phase inverters is defined. Results of analytical, numerical and
FEA simulations are presented and validated by experimental
tests.
In Section II, the model of the sectored multi three-phase

machine is derived as well as the torque equation. Section III
describes the torque ripple due to a PWM excitation. Section IV
analyzes a case study of a sectored triple three-phase PMSM.
Section V and VI show the simulation and experimental results.
Section VII draws the conclusion.

II. SECTORED MULTI THREE-PHASE MACHINE

A sectored multi three-phase PMSM layout presents a set of
three-phase windings symmetrically placed around the stator,
covering one pole pair each. The advantage of this layout can be
found in terms of fault tolerance and manufacturing. Indeed, the
phases under one pole pair have not physical contact
(overlapping) with the other phases. Therefore, the magnetic
mutual coupling among phases of different windings are
significantly lower than the one of other distributed winding
solution [29]. The previous advantages allow for reducing the
spread of faults. As example, Fig. 2 shows the triple three-phase
sectored machine analyzed in this work. The model of the PWM
voltage waveform applied to this machine is based on a double
Fourier transformation already used in some research works on
the PWM topic [30], [31]. This work aims at extending the
theory to an arbitrary number of phases.
As it is shown in Fig. 1, in the equivalent 2-pole space

winding structure of the ܰ three-phase systems, the space shift
angles between the ௧ three-phase system ) ∈ {1, . . ,ܰ}) and
the stator reference frame are represented by ଵߙ , …, ேߙ
respectively. In addition, the back-EMFs generated on each
phase are represented by ݁భ(ݐ), ݁భ(ݐ) , ݁େభ(ݐ), …, ݁ಿ(ݐ),
݁ಿ ,(ݐ) ݁େಿ(ݐ) respectively. The total back-EMF space vector
related to all the ܰ three-phase systems ݁⃗௧௧(ݐ) can be
represented by (1):

݁⃗୲୭୲ୟ୪(ݐ) =
ଶ

ଷே
∑ [݁(ݐ)݁

ఈே
ୀଵ

+݁(ݐ)݁
(ఈା

మ

య
గ) + ݁େ(ݐ)݁

(ఈି
మ

య
గ)]. (1)

The phase currents flowing through phase Aଵ, Bଵ, Cଵ, …, Aே,
Bே , Cே , are represented by ݅భ , ݅భ , ݅େభ , …, ݅ಿ , ݅ಿ , ݅େಿ
respectively. The phase current space vector representative of
all the ܰ three-phase systems ଓ⃗௧௧(ݐ) can be expressed by (2):

ଓ⃗୲୭୲ୟ୪(ݐ) =
ଶ

ଷே
∑ [݅(ݐ)݁

ఈே
ୀଵ

+݅(ݐ)݁
(ఈା

మ

య
గ) + ݅େ(ݐ)݁

(ఈି
మ

య
గ)]. (2)

It results, from (1) and (2), that the instantaneous torque
generated by the ܰ three-phase systems can be written as (3):

M

Fig. 1. N three-phase drive system.
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୲ܶ୭୲ୟ୪ሺݐሻ ൌ
ଷே

ଶఠ
ሾଓ⃗୲୭୲ୟ୪(ݐ) ή ݁⃗୲୭୲ୟ୪(ݐ)]. (3)

Owing to the symmetrical distribution of the different three-
phase windings under the different pole pairs, typical of a
sectored machine, the space phase shift angles ߙ is 0.

III. PWMRELATED TORQUE RIPPLE

For double-edge naturally sampled pulse width modulation,
the harmonic components of the PWM voltage waveform of
each converter leg, and the resulting phase voltage, can be
evaluated by using the double Flourier integration [31]. The
voltage difference between the terminals aଵ, bଵ, cଵ, …, aܰ, bܰ,
cܰ and the middle point of the DC link (z in Fig. 1) is referred

to as ݑ . Its time-varying expression (ݐ)z݇ݑ can be

represented by (4):

(ݐ)ݑ =
ܸୢ ୡ

2
�ܯ��ሾݕሺݐሻ െ [ߙ

+∑ ∑ �ܣ��ሼ݉ݔሺݐሻ  ݊ሾݕሺݐሻ െ {[ߙ
ஶ
ୀିஶ

ஶ
ୀଵ , (4)

with:

݊݉ܣ =
ʹܸdc

݉Ɏ
ܬ
݊
ቀ݉

π

2
ቁܯ sin[(݉  ݊)

π

2
], (5)

ሻݐሺݔ ൌ ୡ߱ݐ  ୡǡߠ , (6)
ሻݐሺݕ ൌ ߱୭ݐ  ,୭ߠ (7)

where ݇ א {ܽǡܾǡ ܿ} and  א {ͳǡ Ǥ Ǥ Ǥ ǡܰ}.
The voltage difference between o and z, is referred to as the

common mode voltage .୭ݑ Since each three-phase system is
star connected, according to Kirchhoff’s law, the common mode
voltage will not generate any zero sequence current. Therefore,
the common mode voltage will not lead to torque ripple, and its
effects are not considered in this paper. The phase voltage is the
voltage drop between the terminals aଵ, bଵ, cଵ , …, aே , bே , cே
and the terminals oଵ, …, oே, and are named as ,భݑ భݑ , େభݑ ,
…, ಿݑ , ಿݑ , େಿݑ respectively. Removing all the common

mode voltage components from the phase leg voltages ,(ݐ)z݇ݑ

the total phase voltage space vector of all the ܰ three-phase
systems ሬ⃗ݑ ௧௧(ݐ) can be defined as:

ሬ⃗ݑ ୲୭୲ୟ୪(ݐ) =
ౚౙ

ଶ
௬(௧)݁ܯ +

ଵ

ே
ܣ

∑ ∑ ∑ ቐ
݁ൣ௫(௧)ା൫௬(௧)ିఈ൯ାఈ൧ǡ ݊ ൌ ͵݈  ͳ

Ͳǡ ݊ ൌ ͵݈

݁ିሾ௫(௧)ା൫௬(௧)ିఈ൯ିఈ)]ǡ ݊ ൌ ͵݈ െ ͳ

ஶ
ୀିஶ

ஶ
ୀଵ

ே
ୀଵ ,

(8)
where ݈ is an integer number. The voltage space vector

ሬ⃗ݑ ௧௧(ݐ) contains the fundamental component
ౚౙ

ଶ
௬(௧)݁ܯ and

the harmonic components which are caused by the PWM. The
harmonic components include both positive sequence
components:

ଵ

ே
ܣ ∑ ∑ ∑ ݁ஶ

ୀିஶ
ஶ
ୀଵ

ே
ୀଵ

ൣ௫(௧)ା൫௬(௧)ିఈ൯ାఈ൧,

and negative sequence components:
ଵ

ே
ܣ ∑ ∑ ∑ ݁ஶ

ୀିஶ
ஶ
ୀଵ

ே
ୀଵ

ିሾ௫(௧)ା൫௬(௧)ିఈ൯ିఈ)].

The main torque ripple caused by the PWM is due to the
interaction of the high order winding field harmonics with the
fundamental component of the permanent magnet field. The
torque ripple caused by the interaction of the high order
harmonics (5th, 7th, 11th, 13th…) is neglected in this analysis.
Thus, only the fundamental component of the total back-EMF

space vector ݁⃗୲୭୲ୟ୪ǡ(ݐ) is considered while modelling the total
phase current space vector ଓ⃗୲୭୲ୟ୪(ݐ), which can be represented
by (9):

ଓ⃗୲୭୲ୟ୪(ݐ) ൌ ݁ܫ
௬ᇲ(௧) +

ଵ

ே



ሺఠ)

∑ ∑ ∑ ቐ
݁ൣ௫(௧)ା൫௬(௧)ିఈ൯ାఈ൧ǡ ݊ ൌ ͵݈  ͳ

Ͳǡ ݊ ൌ ͵݈

݁ିሾ௫(௧)ା൫௬(௧)ିఈ൯ିఈ)]ǡ ݊ ൌ ͵݈ െ ͳ

ஶ
ୀିஶ

ஶ
ୀଵ

ே
ୀଵ

(9)
with:

݁ܫ
௬ᇲ(௧) =

ଵ

ሺఠ)
[
ౚౙ

ଶ
௬(௧)݁ܯ െ ݁⃗୲୭୲ୟ୪ǡ(ݐ)], (10)

(ݐ)ᇱݕ ൌ ୭߱ݐ  ୭ߠ
′ , (11)

߱ ൌ ݊ ୭߱  ݉ ୡ߱ , (12)
Under the assumption of considering for only the

fundamental component of the total back-EMF space vector
݁⃗୲୭୲ୟ୪ǡ(ݐ), the instantaneous torque can be rewritten as:

୲ܶ୭୲ୟ୪ǡሺݐሻ ൌ
ଷே

ଶఠ
ሾଓ⃗୲୭୲ୟ୪(ݐ) ή ݁⃗୲୭୲ୟ୪ǡ(ݐ)]. (13)

It results from (13) that the average torque is produced by
controlling the fundamental component ܫ of the total current
space vector ଓ⃗୲୭୲ୟ୪(ݐ), whereas the main torque ripple caused by
the PWM is generated by the harmonic components in the total
current space vector ଓ⃗୲୭୲ୟ୪(ݐ). Therefore, the minimization of
the harmonic components of the total current space vector
ଓ⃗୲୭୲ୟ୪(ݐ) corresponds to the minimization of the related torque
ripple. As it is expressed in (9), there are ܰ degrees of freedom
to change the carrier phase angle ୡǡߠ of each sub three-phase
system. Thus, different optimized carrier phase angles ୡǡߠ can
be found for multi three-phase drives with different values of
three-phase systems ܰ and related phase shift angles .ߙ

IV. CASE STUDY ON A TRIPLE THREE-PHASE SECTORED
PMSM

As a case study, an 18 slots and 6 poles triple three-phase
PMSM is shown in Fig. 2. The machine has three sectors, sector
1, sector 2 and sector 3 respectively. Each sector has three
phases (phaseA, phase B, phase C) with an independent floating
neutral point. Therefore, the three-phase back-EMFs generated

Fig. 2. Cross section of the 18 slots – 6 poles 3 sectored PM machine.
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in each sector are supposed to have no electrical degree phase
shift with respect to other sectors.
For the mathematical model of the total current space vector

ଓ⃗୲୭୲ୟ୪(ݐ) shown in (9), the number of three-phase systems is 3
(ܰ ൌ ͵) and the equivalent space phase shift angle is 0 for all of
the three sectors ߙ) = 0,  א {1, 2, 3}). By analyzing the effect
of the carrier phase angle of the ௧ three-phase system ୡǡߠ
ሻݐሺݔ) ൌ ߱ୡݐ  ୡǡߠ ) in the voltage and current total space
vector equations (8)-(9), it can be found that when the carrier

phase shift angles are ୡǡଵߠ = 0 , ୡǡଶߠ =
ଶ

ଷ
and ୡǡଷߠ =

ସ

ଷ
for

sector 1, sector 2 and sector 3 respectively, all of the harmonic
components of the current space vector are cancelled out except
the groups of harmonics around the frequency of ͵݉ ୡ݂ (݉ א
{1, 2,… ,∞}). As it is shown in (5) and (9), the amplitude of each
PWM harmonic component changes under different moduation
index .(ܯ) The modulation index is one of the main factor
affecting the amplitudes of the harmonics. According to (13),
the corresponding FFT spectrum of the normalized torque
without and with applying the proposed carrier phase shift
angles under different modulation index (ܯ) is shown in Fig. 3.
The cross section of the considered machine is shown in Fig.

2. The self-inductance of each stator phase Aଵ, Bଵ, Cଵ, Aଶ, Bଶ,
Cଶ , Aଷ , Bଷ , Cଷ are represented by భܮ , భܮ , େభܮ , మܮ , మܮ ,
େమܮ , యܮ , యܮ , େయܮ , respectively. The mutual inductance

between the phases A1 , B1 , C1 , A2 , B2 , C2 , A3 , B3 , C3 are
represented by భభܯ

, భେభܯ
, …, େయయܯ

, େయయܯ
respectively.

Due to the symmetrical design of the winding configuration in
Fig. 2, the matrix inductance table ࡸ of the machine can be
represented by:
ࡸ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

ܮ െܯଵ െܯଵ

െܯଵ ܮ ଶܯ

ଵܯ− ଶܯ ܮ

െܯଷ ଷܯ ଷܯ

ଷܯ െܯଷ െܯଷ

ଷܯ ଷܯ− ଷܯ−

െܯଷ ଷܯ ଷܯ

ଷܯ െܯଷ െܯଷ

ଷܯ ଷܯ− ଷܯ−

െܯଷ ଷܯ ଷܯ

ଷܯ െܯଷ െܯଷ

ଷܯ ଷܯ− ଷܯ−

ܮ െܯଵ െܯଵ

െܯଵ ܮ ଶܯ

ଵܯ− ଶܯ ܮ

െܯଷ ଷܯ ଷܯ

ଷܯ െܯଷ െܯଷ

ଷܯ ଷܯ− ଷܯ−

െܯଷ ଷܯ ଷܯ

ଷܯ െܯଷ െܯଷ

ଷܯ ଷܯ− ଷܯ−

െܯଷ ଷܯ ଷܯ

ଷܯ െܯଷ െܯଷ

ଷܯ ଷܯ− ଷܯ−

ܮ െܯଵ െܯଵ

െܯଵ ܮ ଶܯ

ଵܯ− ଶܯ ܮ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

where: ܮ ൌ ܮ , ݇ א {A, B, C} ,  א {1, 2, 3} ; ܯ
భ =

ܯ
భ

ൌ ଵܯ , ݇
ଵ ∈ {B, C} ; େܯ

ൌ େܯ
ൌ ଶܯ ; ᇲܯ

ᇲ =

,ଷܯ ݇ǡ ݇
ᇱ ∈ {A, B, C}, ǡ ᇱ ∈ {1, 2, 3},  ് .ᇱ

The PWM related phase voltage harmonics and phase current
harmonics of the ௧ three-phase system can be represented by
ǡ୦ݑ and ݅ǡ୦ (  א {1, 2, 3} ) respectively. Since the three

phases in each sector are star-connected, the sum of three-phase
currents is zero in any sector, leading to the following
constraint:

݅ǡ୦  ݅ǡ୦  ݅େǡ୦ = 0, (14)

According to the electric principle, the corresponding ௧phase
voltage harmonic ,ǡ୦ݑ ,ǡ୦ݑ େǡ୦ݑ can be represented by (15)
(16) and (17) respectively:

ǡ୦ݑ ൌ ܴ݅ǡ୦ + ܮ)  (ଵܯ
d

ݐ�
݅ǡ୦

(ଷܯʹ)−
ୢ

ୢ௧
ሺ݅

ᇲ
ǡ୦  ݅

ᇲᇲ
ǡ୦) , (15)

ǡ୦ݑ ൌ ܴ݅ǡ୦ + ܮ) ܯଵ)
d

ݐ�
݅ǡ୦ + ଵܯ) ܯଶ)

d

ݐ�
݅େǡ୦

(ଷܯʹ)−
ୢ

ୢ௧
ሺ݅

ᇲ
ǡ୦  ݅

ᇲᇲ
ǡ୦)− (ଷܯʹ)

ୢ

ୢ௧
ሺ݅େ

ᇲ
ǡ୦  ݅େ

ᇲᇲ
ǡ୦), (16)

େǡ୦ݑ ൌ ܴ݅େǡ୦ + ܮ)  (ଵܯ
d

ݐ�
݅େǡ୦ + ଵܯ) ܯଶ)

d

ݐ�
݅ǡ୦

(ଷܯʹ)−
ୢ

ୢ௧
ሺ݅େ

ᇲ
ǡ୦  ݅େ

ᇲᇲ
ǡ୦)− (ଷܯʹ)

ୢ

ୢ௧
ሺ݅

ᇲ
ǡ୦  ݅

ᇲᇲ
ǡ୦). (17)

where ǡ ᇱǡ ᇱᇱ ∈ {1, 2, 3} ,  ് ᇱ ് ᇱᇱ . The fundamental
components of phase currents and phase voltages are not
defined by (15)-(17) as the back-EMFs are not included. As it is
mentioned above, for this case study, the electrical phase shift
among the various three-phase systems is zero.( ߙ = 0,  א
{1, 2, 3}). Therefore, without CPS-PWMmethod ୡǡଵߠ) ൌ ୡǡଶߠ =
ୡǡଷߠ = 0), the phase current harmonics of each sector are the
same ( ݅ǡ୦ ൌ ݅ᇱǡ୦ ൌ ݅ᇱᇱǡ୦ , ݇ א {A, B, C} ). By properly

manipulating (15), (16) and (17), the corresponding ௧ phase
voltage harmonicݑǡ୦ , ǡ୦ݑ , େǡ୦ݑ without applying CPS-
PWM can be respectively rewritten as:

ǡ୦ݑ ൌ ܴ݅ǡ୦ + ଵܯܮ) െ Ͷܯଷ)
ୢ

ୢ௧
݅ǡ୦, (18)

ǡ୦ݑ ൌ ܴ݅ǡ୦ + ଵܯܮ) െ Ͷܯଷ)
d

ݐ�
݅ǡ୦

Fig. 3. FFT spectrum of the normalized torque a) without applying
carrier phase shift method b) with applying the proposed carrier phase
shift method.
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ሺܯଵ  ଶܯ െ Ͷܯଷ)
ୢ

ୢ௧
݅େǡ୦, (19)

େǡ୦ݑ ൌ ܴ݅େǡ୦ + ଵܯܮ) െ Ͷܯଷ)
d

ݐ�
݅େǡ୦

ሺܯଵ  ଶܯ െ Ͷܯଷ)
ୢ

ୢ௧
݅ǡ୦. (20)

Whereas, by applying the proposed CPS-PWMmethod ୡǡଵߠ) =

0 , ୡǡଶߠ =
ଶ

ଷ
, ୡǡଷߠ =

ସ

ଷ
), there are two conditions of phase

current harmonics according to (9). First, for the harmonic
components of the total current space vector which cannot be
cancelled out by the CPS-PWM method (around the frequency
of ݖ͵ ୡ݂, z ∈ {1, 2, … ,∞}), the relevant phase current harmonics
of each sector are the same (݅భǡ୦ ൌ ݅మǡ୦ ൌ ݅యǡ୦, ݇ א {A, B, C}).
Therefore, the corresponding ௧ phase voltage harmonics
,ǡ୦ݑ ,ǡ୦ݑ େǡ୦ݑ with applying CPS-PWM can be represented

by (18), (19) and (20) respectively. Secondly, for the harmonic
components of the total current space vector which can be
cancelled out by the CPS-PWM method (around the frequency
of ݖ ୡ݂ and ݖʹ ୡ݂ , z ∈ {1, 2, … ,∞} ), the sum of phase current

harmonics from different sectors is equal to 0, which can be
represented by (21):

݅ǡ୦ = ∑ ݅ǡ୦
ே
ୀଵ ൌ ݅భǡ୦  ݅మǡ୦  ݅యǡ୦ = 0, (21)

where ݇ א {A, B, C}. It results that the corresponding ௧ phase
voltage harmonic ,ǡ୦ݑ ,ǡ୦ݑ େǡ୦ݑ with applying CPS-PWM

can be represented by (22) (23) and (24) respectively:

ǡ୦ݑ ൌ ܴ݅ǡ୦ + ܮ)  ଵܯ  (ଷܯʹ
ୢ

ୢ௧
݅ǡ୦, (22)

ǡ୦ݑ ൌ ܴ݅ǡ୦ + ܮ) ܯଵ  (ଷܯʹ
d

ݐ�
݅ǡ୦

ሺܯଵ  ଶܯ  (ଷܯʹ
ୢ

ୢ௧
݅େǡ୦, (23)

େǡ୦ݑ ൌ ܴ݅େǡ୦ + ଵܯܮ)  (ଷܯʹ
d

ݐ�
݅େǡ୦

ሺܯଵ  ଶܯ  (ଷܯʹ
ୢ

ୢ௧
݅ǡ୦. (24)

For phase A in each sector, the effective inductance ଵܯܮ) −
Ͷܯଷ) in (18) is smaller than the effective inductance ܮ) ܯଵ +
(ଷܯʹ in (22). For phase B and C in each sector, the effective
self-inductance ଵܯܮ) െ Ͷܯଷ) in (19) and (20) is smaller than
the effective self-inductance(ܮ ܯଵ  (ଷܯʹ in (23) and (24);
the effective mutual inductance between phase B and C ሺܯଵ +
ଶܯ െ Ͷܯଷ) in (19) and (20) is smaller than the effective mutual
inductance ሺܯଵ  ଶܯ  (ଷܯʹ in (23) and (24). Overall, for the
considered sectored machine, the effective inductance without
applying CPS-PWM method is smaller than the effective
inductance with applying CPS-PWM. The amplitudes of phase
voltage harmonics with and without CPS-PWM are the same
[31]. Therefore, the amplitudes of phase current harmonics with
applying CPS-PWMmethod are smaller than the ones obtained
without the CPS-PWMmethod. The numerical results obtained
in PLECS of the normalized phase current FFT spectrum with
and without CPS-PWMunder different modulation index ( ܯ ൌ
ܯ,0.3 ൌ ͲǤ and ܯ ൌ ͲǤͻ ) is shown in Fig. 4.
It results that applying the CPS-PWM method to the triple

three-phase sectored PMSM machine brings two major
advantages to the machine. First, the torque ripple ofmachine is
reduced, hence the noise and vibration of the machine is
effectively reduced. Secondly, the phase current harmonic is
reduced as well, hence less copper loss of the machine is
expected.

V. ANALYTICAL, NUMERICAL AND FEA RESULTS

Analytical, numerical and FEA simulations have been carried
out in order to evaluate and validate the advantages of the
proposed control of the carrier phase angles. Analytical results
are obtained using the time-varying equations (13) (18) and (22)
in Matlab. The numerical results are obtained by using variable-
step simulations in PLECS. The operating condition concerning
the numerical results is no load condition. There is no external
load on the machine and the machine operating power is to
overcome the mechanical (friction) power loss and the
electromagnetic power loss of the machine itself. FEA results
are finally realized by Magnet with the triple three-phase
machine model (Fig. 2) excited by the currents resulting from
the PLECS simulation. The numerical and FEA results are used
to validate the analytical model described by (13) (18) and (22),
and quantify the phase current and torque ripple with and

Fig. 4. Numerical result of phase current FFT spectrum without and
with CPS-PWM a) current phase A with ܯ ൌ ͲǤ͵ b) current phase A
with ܯ ൌ ͲǤ c) current phase A with ܯ ൌ ͲǤͻ d) current phase B&C
with ܯ = 0.3 e) current phase B&C with ܯ = 0.6 f) current phase B&C
with ܯ = 0.9.
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without CPS-PWM. The main converter and machine
parameters are shown in Table I.
Fig. 5 shows the block diagram for the control of the nine-

phase machine fed by its three independent PWM converters.
The CPS-PWM method is applied to the three three-phase
systems with carrier phase shift angles ୡǡଵߠ , ୡǡଶߠ , and ୡǡଷߠ
respectively. Themachine in the PLECS simulations (numerical
results) is controlled in speed, by a simple proportional-integral
(PI) controller which provides the same current reference (iq) as
input to the internal current PI regulator of each three-phase
system.
Fig. 6 shows the comparison of the analytical and numerical

models in terms of phase current (phase Aଵ is considered). Fig.
6a and Fig. 6c show the analytical and numerical results without
applying CPS-PWMmethod. Fig. 6b and Fig. 6d show the same
while applying the CPS-PWMmethod. Fig. 6d shows that there
is slightly difference between the analytical and numerical
results at the groups of harmonics around 2 kHz, 4 kHz, 8 kHz,
10 kHz, 14 kHz and 16 kHz. The reason is that the analytical
model is based on a simplification of the system considering the
equations in electrical degrees for phase A , B and C (  א
{1, 2, 3}) independent from the sector where they are placed. In
this machine, due to the sectored stator winding structure,
applying CPS-PWM in numerical model will lead to small
harmonic phase current difference among phase A, B and C
in each sector, which is shown in Fig. 4.
Fig. 7 shows the numerical current results of phase Aଵ, Aଶ

and Aଷ with and without applying CPS-PWM. Fig. 7b and Fig.
7d are the zoom of the waveform in between the cursor ranges
of Fig. 7a and Fig. 7c respectively. Comparing Fig. 7b and Fig.
7d, the phase current harmonics in different sectors are
effectively shifted with applying the CPS-PWM method.
Comparing Fig. 7a and Fig. 7c, the amplitudes of phase current
harmonics obtained by applying CPS-PWM are reduced
compared with those obtained by not applying the CPS-PWM.
The corresponding FFT spectrum of Fig. 7a and Fig. 7c are
shown in Fig. 6c and Fig. 6d respectively. For all of the
harmonic components except the harmonics around 6 kHz and
12 kHz in Fig. 6c and Fig. 6d (numerical result), their
amplitudes in Fig. 6d are reduced by 45.18% compared with the
ones in Fig. 6c.
Fig. 8 shows the comparison of analytical, numerical and

FEA models in terms of the machine electromagnetic torque.

Fig. 8(a-d) show that the analytical results match with the
numerical results for bothwithout and with applyingCPS-PWM.
Fig. 8(a-b) show that the FEA results match with the analytical
and numerical results with a good approximation considering
for the analyzed ripple. Fig. 8(c-d) show that there are low order
harmonics (6th at 300Hz12th at 600Hz) in FEA results, which
are not shown in analytical and numerical results. One reason is
that only fundamental component of back-EMF is considered in
analytical and numerical models, which has been mentioned in
chapter II. In the FEA machine model, the interaction between
the fundamental component of winding field and the 5 th, 7th,
11th, 13th…permanent magnet harmonics results in the 6th,
12th…harmonics of the torque ripple. The other reason is that
the machine model in Magnet is a 6 poles, 18 slots PMSM, and

Fig. 5. Block diagram of simulation model.

Fig. 6. a) & b) Analytical and numerical results of phase A1 current
waveform a) without CPS-PWM b) with CPS-PWM c) & d) Analytical
and numerical results of phase A1 current FFT spectrum c) without
CPS-PWM d) with CPS-PWM.

TABLE I
CONVERTER AND MACHINE PARAMETERS

Parameter Value

DC voltage (Vୢ ୡ) 60 [V]

Switching frequency ( ୡ݂) 2 [kHz]
Modulating frequency ( ୭݂) 50 [Hz]
Pole pair number 3
Power rating of the machine 1.5 [kw]
Rated torque of the machine 5 [Nm]
Rated current of the machine 11.5 [Apk]
Rated voltage of the machine 28.5 [Vpk]
Phase resistance (ܴ) 0.08 [Ω]
Stator inductance matrix(ࡸ) ;0.31=ܮ =ଵܯ 0.087; =ଶܯ 0.03;

=ଷܯ 0.029 [mH]
Mechanical speed (߱) 104.72 [rad/s] (1000rpm)
Back-EMF coefficient (ாܭ) 0.085 (phase peak back-EMF

is 8.9V at 50Hz)
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the interaction between the permanent magnet rotor and stator
slots generate 6th, 12th…harmonics in the torque caused by the
cogging effect. In addition, Fig. 8(c-d) show that the FEA result
presents slightly higher amplitudes compared with analytical
and numerical results, this is due to machine parameter
uncertainties in themodel, for example the changes of themwith
working operation due to saturations and non-linear effects.
Comparing the torque waveform with and without CPS-

PWM, Fig. 8(a-b) show that the peak-to-peak torque are
reduced by 79.5%, 78.5% and 63.8% with applying CPS-PWM
in analytical, numerical and FEA results respectively. Fig. 8(c-
d) show that the harmonic components of the torque FFT
spectrum around 2 kHz, 4 kHz, 8 kHz, 10 kHz, 14 kHz and 16
kHz obtained by applying CPS-PWM are effectively cancelled
out in analytical, numerical and FEA results.

VI. EXPERIMENTAL RESULTS

In order to validate the analytical model and the simulation
results, experimental tests have been carried out bymeans of the
platform shown in Fig. 9. The parameters and the control
algorithm used in the experimental platform is the one explained
in chapter V. The operating condition concerning the
experimental results (same as the numerical result) is no load
condition. There is no external load and the machine operating
power is to overcome the mechanical (friction) power loss and
the electromagnetic power loss of the machine itself. The
experimental setup consists of three three-phase inverters with
standard IGBT modules, a sectored triple three-phase PMSM
with its cross section shown in Fig. 2, and a centralized
controller (uCube [32]). Optical fiber is used to communicate
between the power module gate drives and the uCube.
Fig. 10 shows the experimental current results of phase Aଵ,

Aଶ and Aଷ with and without applying CPS-PWM. Fig. 10b and
Fig. 10d are the zoom of the waveform in between the cursor
ranges of Fig. 10a and Fig. 10c respectively. Comparing Fig.
10b and Fig. 10d, the phase current harmonics in different
sectors are effectively shifted with applying the CPS-PWM
method. Comparing Fig. 10a and Fig. 10c, the amplitudes of the
phase current harmonics obtained by applying CPS-PWM are

Fig. 7. a) & b) Numerical results of current waveform of phase A1 A2
& A3 without CPS-PWM a) One period range of fundamental signal b)
Two periods range of carrier signal c) & d) Numerical results of current
waveform of phase A1 A2 & A3 with CPS-PWM c) One period range of
fundamental signal d) Two periods range of carrier signal.

Fig. 8. a) & b) Analytical, numerical and FEA results of torque
waveform a) without CPS-PWM b) with CPS-PWM c) & d) Analytical,
numerical and FEA results of torque FFT spectrum c) without CPS -
PWM d) with CPS-PWM.

Fig. 9. Triple three-phase machine drive system experimental set-up.
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reduced compared with those obtained by not applying CPS-
PWM. The corresponding FFT spectrum of Fig. 10a and Fig.
10c are shown in Fig. 10e, which shows that the amplitudes of
harmonic components around 2 kHz, 4 kHz, 8 kHz, 10 kHz, 14
kHz and 16 kHz obtained by applying CPS-PWM are reduced

by about 36.1% 38.4%, 36.1%, 34.7%, 34.1%, 29.5%
respectively compared with those obtained by not applying
CPS-PWM. The improvement achieved with CPS-PWM in the
experimental results is reduced compared with the improvement
in the numerical results, due to the back-EMF distortion, the
machine parameter uncertainties, the inverter non-linearity and
the dead time effect. Another effect is the switching noise that
causes current spikes during the commutations, as visible in Fig.
10b and Fig. 10d, that accounts for 4.6% of torque ripple
increase (evaluated by numerically removing the switching
noise).
The experimental phase currents are used to calculate the

equivalent electromagnetic torque, and only the fundamental
component of the back-EMF is considered. The equivalent
electromagnetic torque is calculated based on (2) and (13), due
to the bandwidth limitation of commercial torque meters. The
equivalent electromagnetic torque waveforms and their
corresponding FFT spectrum with and without CPS-PWM, are
shown in Fig. 11. Comparing the torque waveform with and
without CPS-PWM,Fig. 11a shows that the peak-to-peak torque
is reduced by 58.3% with applying CPS-PWM. The
experimental torque ripple reduction of 58.3% is smaller than
the analytical (numerical, FEA) results, but it still represents a
major improvement compared to the control without CPS-
PWM. Fig. 11b shows that the harmonic components of the
torque FFT spectrum around 2 kHz, 4 kHz, 8 kHz, 10 kHz, 14
kHz obtained by applying CPS-PWM are effectively cancelled
out.

VII. CONCLUSION

This work proposes a new mathematical modeling approach
to multi three-phase drive systems in order to improve the
torque performance of multi three-phase machines by applying
carrier phase shift among three-phase inverters (CPS-PWM
method). Numerical, FEA simulations and experimental tests
validate the analytical model shown in Chapter III and IV. The
carrier phase shift angles obtained by the developed theory are
applied on a case studyof a sectored triple three-phase machine.
The peak-to-peak values of the torque waveforms obtained by
applying CPS-PWM are reduced by 79.5%, 78.5%, 63.8% and
58.3% compared with those obtained by not applying CPS-
PWM in analytical, numerical, FEA and experimental results
respectively. The PWM related harmonic components of the
torque FFT spectrum obtained by applying CPS-PWM are
effectively cancelled out. In addition, the phase current
harmonics in different sectors are effectively shifted with
applying the CPS-PWM method. For this case study on the
sectored triple three-phase machine, while the CPS-PWM
method is applied, the amplitudes of PWM related harmonic
components of the phase current FFT spectrum (except the
components around 6 kHz and 12 kHz) are reduced by 45.18%
and about 35% in numerical and experimental results
respectively.
Therefore, applying CPS-PWM method to multi three-phase

drives can effectively improve the torque performance of the
machine, guaranteeing major benefits in terms of current and
torque ripple without additional computational burden.

Fig. 10. a) & b) Experimental result of current waveform of phase A1
A2 & A3 without CPS-PWM a) One period range of fundamental signal
b) Two periods range of carrier signal c) & d) Experimental results of
current waveform of phase A1 A2 & A3 with CPS-PWM c) One period
range of fundamental signal d) Two periods range of carrier signal e)
Experimental result of phase A1 current FFT spectrum without and with
CPS-PWM.

Fig 11. a) Experimental results of equivalent electromagnetic torque
waveform with and without CPS-PWM b) FFT spectrum of equivalent
electromagnetic torque waveform with and without CPS- PWM.
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