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A B S T R A C T 

We present a machine-learning-based model for the total density profiles of subhaloes with masses M � 7 × 10 

8 h 

−1 M � in the 
IllustrisTNG100 simulation. The model is based on an interpretable variational encoder (IVE) which returns the independent 
factors of variation in the density profiles within a low-dimensional representation, as well as the predictions for the density 

profiles themselves. The IVE returns accurate and unbiased predictions on all radial ranges, including the outer region profile 
where the subhaloes experience tidal stripping; here its fit accuracy exceeds that of the commonly used Einasto profile. The IVE 

disco v ers three independent degrees of freedom in the profiles, which can be interpreted in terms of the formation history of the 
subhaloes. In addition to the two parameters controlling the normalization and inner shape of the profile, the IVE disco v ers a 
third parameter that accounts for the impact of tidal stripping on to the subhalo outer profile; this parameter is sensitive to the 
mass loss experienced by the subhalo after its infall on to its parent halo. Baryonic physics in the IllustrisTNG galaxy formation 

model does not impact the number of degrees of freedom identified in the profile compared to the pure dark matter expectations, 
nor their physical interpretation. Our newly proposed profile fit can be used in strong lensing analyses or other observational 
studies which aim to constrain cosmology from small-scale structures. 

Key words: methods: numerical – cosmology: dark matter – cosmology: large-scale structure of the Universe – cosmology: 
theory. 
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 I N T RO D U C T I O N  

 key prediction of the cold dark matter (CDM) paradigm is that dark
atter haloes are not smooth: they are filled with a large number

f self-bound substructures (Diemand et al. 2008 ; Springel et al.
008 ), known as subhaloes, wherein galaxy formation takes place
see e.g. Zavala & Frenk 2019 ). The abundance and density structure
f subhaloes are sensitive probes of the fundamental nature of dark
atter; for example alternative dark matter models including warm

ark matter and ultralight scalar field dark matter suppress subhalo
bundances on small scales (e.g. Macci ̀o & Fontanot 2010 ; Schive,
hiueh & Broadhurst 2014 ). 
The existence of subhaloes is a natural consequence of hierarchical

tructure formation: haloes are built up both through mergers with
maller structures that survive as subhaloes within the larger host
nd by some degree of smooth mass accretion (Wang et al. 2011 ).
fter their initial radial fall into the host halo, these subhaloes are

ubject to a gradual loss of energy due to dynamical friction and
idal forces in the host halo (Binney & Tremaine 2008 ; Mo, van den
osch & White 2010 ). Subhaloes survive until dynamical friction
auses them to sink into the host’s centre, or they are completely
isrupted by tidal forces which unbind their particles and mix them
nto the larger host halo. The population of surviving subhaloes will
 E-mail: luisals@mpa-garching.mpg.de 
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xhibit changes to their density profiles compared to isolated haloes,
s matter in the outer region of the subhaloes is stripped away due to
idal forces. 

The most direct method to search for the ubiquitous small-mass
ark haloes beyond our galaxy is strong gravitational lensing. The
istortions of images observed in lensing are due to gravity only,
hus allowing us to measure the total mass of the deflectors – both
uminous and dark – directly. Subhaloes can be detected by the effect
he y hav e on the flux ratios of multiply imaged quasars (Gilman et al.
019 ; Hsueh et al. 2020 ) or by the perturbations they cause to the
urface brightness of extended arcs in strong g alaxy–g alaxy lens
ystems (Vegetti, Czoske & Koopmans 2010 ; Vegetti et al. 2012 ;
ezaveh et al. 2016 ; Despali et al. 2022 ; O’Riordan et al. 2023 ;
ightingale et al. 2024 ). Flux ratio anomalies are sensitive to the

ntegrated effect of the population of perturbers, i.e. subhaloes in the
ain lens or dark isolated haloes along the line of sight. In extended

rcs, a detailed lens modelling can be used to infer the mass of
ndividual perturbers, which range from 1 . 9 × 10 8 to 2 . 7 × 10 10 M �
or current detections. Lensing can robustly infer the mass within
he Einstein radius (in practice the location where the lensed images
ppear), while the total mass depends on the underlying assumptions
f (sub)halo distribution and density profiles, typically derived from
umerical simulations. Recent works (Minor et al. 2021 ; S ¸eng ̈ul &
vorkin 2022 ) found that the concentrations of previously detected

ubhaloes are exceptionally high when their profile is modelled
ith Navarro–Frenk–White (NFW; Navarro, Frenk & White 1996 )
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rofiles, making them 2 σ outliers of the CDM model. Alternative 
ark matter models, such as self-interacting dark matter, have been 
roposed as a solution to this tension (Nadler, Yang & Yu 2023 ).
nother possibility is that the detected perturbers are subhaloes 
hich experienced tidal stripping, whose profiles therefore deviate 

ignificantly from the standard NFW model (Heinze, Despali & 

lessen 2024 ). In addition to a model of the number density of
ubhaloes (Despali & Vegetti 2017 ), a detailed understanding of the 
ensity profiles of dark matter substructures is thus key to inferring
heir correct mass from observational data. 

In order to derive constraints on the (sub)halo mass function 
y comparing observations of gravitational lensing with theoretical 
redictions, it is essential to understand the density distribution of 
ubstructures. F or e xample while isolated dark matter haloes follow 

FW density profiles to a good approximation, this need not be the
ase for subhaloes. These are identified in numerical simulations as 
econdary density peaks within the main halo, their density profiles 
iffer from the NFW profile, particularly in the outskirts, and their 
irial mass (one of the two NFW parameters) is typically ill-defined. 
Our goal is to provide a new model for the density profiles

f subhaloes, which includes the effect of stripping and baryonic 
hysics. To fully describe the variety of subhalo profiles, one needs a
unctional form with more free parameters than the classic NFW 

rofile – which is well-described by the density normalization 
nd scale radius. Previous works have already derived analytic 
arametrizations of subhalo profiles, such as the Einasto profile 
Einasto 1965 ), the truncated NFW profile (Baltz, Marshall & Oguri 
009 ; Green & van den Bosch 2019 ), or more complex profiles
Stoehr 2006 ; Di Cintio et al. 2013 ; Heinze et al. 2024 ), thus needing
hree or more (often degenerate) parameters. Ho we ver, choosing a 
pecific functional form can limit the performance of the model and 
t is not trivial to determine how many parameters would provide 
he best-fit, given that the parameters are usually highly correlated. 
einze et al. ( 2024 ) have recently shown that individual subhalo
ensity profiles depend on multiple physical properties of the subhalo 
distance from the host halo, concentration, infall time or baryonic 
raction) at the same time, and that these properties are correlated. 
n this paper, we use machine-learning to leverage these issues and 
etermine the number of degrees of freedom required to describe 
he density profiles of realistic subhaloes from hydrodynamical 
imulations. 

Lucie-Smith et al. ( 2022 ) tackled a similar problem in the
ontext of field dark matter haloes in gravity-only simulations. 
hey modelled the spherically averaged density profiles of field 
ark matter haloes using an interpretable variational encoder (IVE); 
he model not only provides accurate predictions taking advantage 
f the flexibility of machine-learning models, but also generates 
 compact, low-dimensional latent representation that is equiv- 
lent to the independent degrees of freedom in the output of
nterest. They showed that 3 degrees of freedom are required 
and sufficient) to model field halo density profiles; two of these 
esemble the NFW mass and concentration parameters, while the 
dditional latent contains information about the dynamical, unre- 
axed component of the haloes similar to the splashback effect. 
n Lucie-Smith, Peiris & Pontzen ( 2024 ), they exploited the latent
epresentation further by going beyond its original training task. 
hey demonstrated that the latent representation discovered by the 
eural network from z = 0 data carries memory of the evolution
istory of the haloes, thus shedding light on to the origin of the
ensity profiles degrees of freedom in terms of the haloes’ accretion 
istories. 
t
In this work, we extend their work to construct a new data-driven
odel for density profiles of substructures in both gravity-only and 

ydrodynamical simulations. This paper is structured as follows. 
e describe the set of simulations used in this work in Section 2 ,

nd the construction of the training data in Section 3 . In Section 4 ,
e present an o v erview of our framework, including details on the
achine-learning model and the training procedure. We show the 

redictive performance of our model in Section 5 and then move
o interpreting the latent representation disco v ered by the neural
etwork in Section 6 . We then show the relation between the latent
nd physical parameters in Section 7 . We draw our final conclusions
n Section 8 . 

 SI MULATI ONS  

he training data for the machine-learning model were constructed 
sing the IllustrisTNG simulations (Pillepich et al. 2018 ; Springel 
t al. 2018 ). The IllustrisTNG project is a suite of state-of-the-art
osmological magnetohydrodynamical simulations, which include 
 comprehensive model for galaxy formation physics and adopt a 
lanck cosmology (Planck Collaboration XIII 2016 ). In particular, 
e make use of the IllustrisTNG-100-1 (TNG100 hereafter) sim- 
lation which provides the best compromise between volume and 
esolution for probing the halo (and subhalo) mass range we wish
o consider. The simulation has a volume of (75 h 

−1 Mpc ) 3 traced by
 × 1820 3 resolution elements, with a dark matter mass of m DM 

=
 . 1 × 10 6 h 

−1 M � and a baryon mass of m baryon = 9 . 4 × 10 5 h 

−1 M �.
e also employ its dark matter only counterpart for compari- 

on, IllustrisTNG-100-1-Dark (TNG100-Dark hereafter), which was 
volved with the same initial conditions and the same number of
ark matter particles with m DM 

= 6 × 10 6 h 

−1 M �. The dark matter
oftening length is ε = 0 . 74 kpc . 

The dark matter haloes in TNG100 (and TNG100-Dark) were 
dentified at z = 0 by applying the substructure finder SUBFIND

Springel et al. 2001 ) to friends-of-friends haloes found with a
inking length of 0.2. This determines subhaloes as locally o v erdense
roups of particles and cells that are gravitationally bound. We 
onsider subhaloes that live within host haloes of mass M host ≥
0 11 h 

−1 M �. Out of those, we further select subhaloes with a total
umber of resolution elements N p ≥ 150 and a virial radius R vir ≤
00 h 

−1 kpc . The virial radius R vir is here defined as the smallest
adius enclosing the total bound mass of the subhalo. We make
he same cuts when selecting the subhaloes in TNG100 and TNG
00-Dark. 
In addition to the halo and subhalo catalogues, we also make use of
erger trees constructed with the SUBLINK (Rodriguez-Gomez et al. 

015 ) algorithm, which are part of the data released with the TNG
imulations (Nelson et al. 2019 ). These merger trees are constructed
t the subhalo level, by identifying progenitors and descendants of 
ach subhalo. First, descendant candidates are identified for each 
ubhalo as those subhaloes in the following snapshot that have 
ommon particles with the subhalo in question. These are then 
anked based on the binding energy of the shared particles, and
he descendant of a subhalo is defined as the candidate with the
ighest score. Knowledge of all the subhalo descendants, along with 
he definition of the first progenitor, uniquely determines the merger 
rees. It is thus possible to walk the tree backward in time to determine
hen each subhalo formed as an independent structure, and when it

hen fell into the host halo. 
MNRAS 532, 164–176 (2024) 
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 T R A I N I N G  DATA  

.1 Outputs: spherically averaged density profiles 

e used the z = 0 snapshot of the simulation to assign to each
ubhalo its ground-truth spherically averaged density profile. We use
he density profile of the CDM for the TNG100-Dark subhaloes,
nd the total density profile including contributions from CDM, gas,
tars, and black holes when using TNG100 ones. We choose to model
he total density profile since observational probes, such as strong
ensing and other direct profile measurements, are sensitive to the
otal mass within (sub)structures. We adopt as centre the position
f the particle with the minimum gravitational potential energy. For
very subhalo, we computed its density profile by e v aluating the
ensity within 24 bins in radius, logarithmically spaced in the range
 ∈ [1 h 

−1 kpc , R vir ], where R vir is the virial radius of the subhaloes
ssuming M vir to be the total bound mass. 

The density ρ( r) is computed using all particles at distance r 
rom the subhalo centre, not just those gravitationally bound to
he halo as identified by the halo finder. This choice is moti v ated
y the fact that lensing observations are sensitive to the total mass
istribution, and not just that coming from particles gravitationally
ound to the subhalo according to the halo finder. Subhalo profiles
re tidally truncated by an amount that depends on their intrinsic
roperties and history inside the main halo. This has moti v ated the
se of Einasto (Einasto 1965 ), ‘pseudo-Jaffe’ (Mu ̃ noz, Kochanek &
eeton 2001 ) or truncated NFW (Baltz et al. 2009 ) profiles to
escribe the density distribution of subhaloes; ho we ver, these models
nly provide reasonable fits when considering only particles that are
ravitationally bound to the halo. Here, we aim to describe the entire
ensity field around subhalo centres, similarly to what was done for
aloes in Lucie-Smith et al. ( 2022 ). In practice, this means that our
ensity profiles are not visually truncated but rather flattened at large
adii where the background density of the halo starts dominating, as
e will discuss further below. 

.2 Inputs: 3D density cubes 

he inputs were generated from the 3D density field, ρ( x ), at
 = 0. More specifically, the input for each subhalo is given by
og [ ρ( x ) / ̄ρm 

+ 1] in a cubic subregion of the full simulation of size
 sub −box = 200 h 

−1 kpc and resolution N sub −box = 101 3 , centred on
he subhalo centre. 1 ρ̄m 

is the mean matter density of the universe.
hen training on the TNG100-Dark subhaloes, the density field is

hat from the CDM component only; when training on TNG100, we
nstead use the total density field which includes contributions from
DM, gas, stars, and black holes (when present). All subhaloes,

ndependently of their size and mass, have input sub-boxes of the
ame size and resolution. The choice of volume and resolution of
he input sub-boxes was made to ensure the IVE has access to the
ele v ant scales: the voxel size, l ∼ 2 h 

−1 kpc , matches the smallest
adial value of the profile, and the sub-box size is 2 times larger
han the virial radius of more than 99 per cent of the subhaloes.
epending on the location of the subhalo with respect to the parent
alo, and on the o v erall size of the halo, the input sub-box will
o v er different fractions of the volume of the parent halo. The
NRAS 532, 164–176 (2024) 

 An alternative choice of input would be the 1D spherically averaged 
ensity profile. Ho we ver, we opt for the more generalizable choice of a 
etwork architecture utilizing the 3D density field as input, which allows for 
traightforward extensions to other halo observables, such as halo triaxiality 
r accretion histories, which require the entire 3D density field as input. 

w  

G  

K

D

etwork is not explicitly provided with information about the parent
alo of each subhalo; ho we ver, the network implicitly has access
o information about the parent halo’s properties which affects the
ubhalo environment via the input density field. The density field
as constructed from the positions of particles in the simulation
sing a smoothed particle hydrodynamics (SPH) procedure, and then
 v aluated at each voxel of the cubic sub-box. 

 A N  I NTERPRETABLE  VA R IAT IO NA L  

N C O D E R  

e used an IVE to model the density profiles of subhaloes giving as
nput the ‘raw’ 3D density field surrounding each subhalo centre. The
VE architecture used in this w ork w as first developed in Lucie-Smith
t al. ( 2022 ), and has two main components: the encoder, mapping the
D density field to a low-dimensional latent representation, and the
ecoder, mapping the latent representation and an additional input –
he query radius log ( r) – to the output profile log [ ρ( r)]. By design,
he latent space contains all the information required by the model
o predict the output ρ( r) as a function of any query value log ( r); in
ther words, it captures all the information in the inputs about the
ensity profile. An illustration of the model is shown in Fig. 1 . 
The encoder is a 3D convolutional neural network with parameters
that maps the input density δ( x ) to a multi v ariate distribution in the

atent space p φ( z | δ( x )). We choose the latent representation to be a set
f independent Gaussians, p φ( z | x ) = 

∏ L 

i= 1 N ( μi ( x ) , σi ( x )), where
 is the dimensionality of the latent space; under this assumption, the
ncoder maps the inputs δ( x ) to the vectors of means μ = μi , .., μL 

nd standard deviations σ = σi , .., σL . The dimensionality of the
atent space L is a hyperparameter of the network that must be
et prior to training. The typical strategy is to train the IVE using
ncreasing values of L until the accuracy no longer increases; the
mallest L providing the highest possible accuracy is equi v alent to
he underlying dimensionality of the output of interest. The decoder
f the IVE consists of another neural network model with parameters
that maps a sampled latent vector z ∼ p φ( z | δ( x )) and a value of

he query log ( r) to a single predicted estimate for log [ ρpred ( r)]. 

.1 The loss function 

raining the IVE involves optimizing the parameters of the encoder
and of the decoder θ such that the loss function is minimized. The

oss function is given by (Higgins et al. 2017 ), 

 = L pred ( ρ true , ρpred ) + β D KL [ p φ( z | x ); q( z )] , (1) 

here the first term measures the predictive accuracy of the model
nd the second is the Kullback–Leibler (KL) divergence (Kullback &
eibler 1951 ) between the latent distribution returned by the encoder
 φ( z | x ) and a prior distribution o v er the latent variables q( z ). The
arameter β weighs the KL divergence term with respect to the
redictive term, and must be carefully optimized. We took the
redictive term to be the mean-squared error loss, 

 pred = 

1 

N 

N ∑ 

i= 1 

(
log 10 ρi, true − log 10 ρi, pred 

)2 
, (2) 

here N is the training set size. Assuming a set of independent unit
aussian distributions as the prior o v er the latent variables q( z) , the
L divergence term takes the closed form, 

 KL ( N ( μz , σz ); N (0 , 1)) = −1 

2 

L ∑ 

i= 1 

[
1 + 2 log σi − μ2 

i − σ 2 
i 

]
, (3) 
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Figure 1. The IVE takes as input a cubic subregion of the simulation centred around the subhalo, and outputs the spherically averaged density ρ( r) as a function 
of (log of) r (i.e. the subhalo density profile). The input is first compressed by the encoder into a low-dimensional latent space, where each latent is a Gaussian 
distribution. The decoder then maps samples from the latent space and a gi ven v alue of r to the spherically averaged total density ρ( r); the latter flattens out 
towards the virial radius where the background dominates. In this illustration, the latent space is 3D. Note that the inputs to the encoder are in 3D but shown as 
2D projections in this illustration. 
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here L is the dimensionality of the latent space. The role of the
L term in the loss function is to promote independence between 

he latents (Higgins et al. 2017 ). This encourages the model to find
 disentangled latent space, where independent factors of variation 
n the density profiles are captured by different, independent 
atents. Here, independence is intended in terms of both linearly 
nd non-linearly uncorrelated variables. Although the KL term 

ncourages the network to find disentangled latent parameters, 
t does not strictly impose disentanglement; we therefore use 
utual information (MI) to quantify more strictly the level of 

isentanglement between the latents. 

.2 Mutual information 

n this work, the uses of MI are twofold: (i) to e v aluate the degree
f disentanglement between the different latents, and (ii) to interpret 
he latents in terms of their physical information content. MI is a
ell-established information theoretical measure of the correlation 
etween two random variables. In contrast to linear correlation 
easures such as the r-correlation, MI captures the full (linear and 

on-linear) dependence between two variables. In other words, the 
I between two variables is zero if and only if these are statisti-

ally independent. Mathematically, the MI between two continuous 
ariables X and Y with values o v er X × Y , I ( X, Y ) is defined as: 

I ( X, Y ) ≡
∫ 

X×Y 
p ( X,Y ) ( x , y ) 

[
ln 

p ( X,Y ) ( x , y ) 

p X ( x ) p Y ( y ) 

]
d x d y , (4) 

here p ( X,Y ) is the joint probability density distribution of X and Y ,
nd p X and p Y are their marginal distributions, respectively. MI as
efined by equation ( 4 ) is measured in natural units of information
nats). We make use of the publicly available software GMM-MI (Piras
t al. 2023 ), which performs density estimation using Gaussian 
ixtures and additionally provides MI uncertainties through 

ootstrap resampling. We refer the reader to Piras et al. ( 2023 )
or further descriptions of MI and their estimator. Our goal is that
if ferent latent v ariables describe independent factors of variation in 
he density profiles, implying that the amount of shared information 
mongst the latents (i.e. their MI) should be negligible. We take MI
O(10 −4 ) nats to be a reasonable threshold for disentanglement. 
.3 Training the IVE 

e constructed two sets of training data – one for TNG100 and the
ther for TNG100-Dark – as follows. For each simulation, we split 
he parent haloes into three sets: 50 per cent for training, 20 per cent
or validation, and 30 per cent for testing. We then randomly selected
4000/960/6400 subhaloes from the parent haloes and set them aside 
or training/v alidation/testing, respecti vely. We found that increasing 
he training set size further did not impro v e the accurac y of the model.
he training set was used to optimize the parameters (weights and
iases) of the IVE. The validation set does not directly enter the
raining process of the algorithm, but was used for model selection,
.e. to select the best-performing model amongst the range of possible
yperparameters, and to determine the stopping point for training. 

The training set was subdivided into batches, each made of 32
amples. Batches were fed to the network one at a time, and each
ime the IVE updates its parameters according to the samples in
hat batch. Training was done using the AMSGrad optimizer (Reddi, 
ale & Kumar 2018 ), a variant of the widely used Adam optimizer

Kingma & Ba 2015 ), with a learning rate of 10 −4 . Early stopping was
mployed to interrupt the training at the epoch where the validation
oss reaches its minimum value. 

We started with the task of finding the underlying dimensionality 
f the density profile outputs. To do so, we trained four different
VE models with an L -dimensional latent space where L = 2, 3, 4,
nd 5, respectiv ely. F or this task specifically, we focused primarily
n training the model to achieve the best accuracy; thus, we set β
n equation ( 1 ) to a very small value, β = 10 −8 . In practice, this is
qui v alent to setting β = 0. Note, that β is fixed to 10 −8 only for this
nitial task of finding the underlying dimensionality of the density 
rofile outputs. We compared the accuracy of the four models and
ound that the accuracy saturates when L ≥ 3. We concluded that
he underlying dimensionality of subhaloes density profiles is 3 (see 
ppendix A1 for more details). 
Having found the underlying dimensionality, we then proceeded 

ith the next task of achieving both accurate predictions and a
isentangled set of latent parameters; here, β is not fixed to a
ingle small value but rather varied to achieve the best accuracy-
o-disentanglement trade-off. We trained the IVE with L = 3 (and
 = 4 as a sanity check) latent dimensionality and v arying β v alues,
iming to achieve simultaneously highest accuracy and lowest KL 
MNRAS 532, 164–176 (2024) 
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ivergence 2 in equation ( 1 ). In practice, we optimized both the
earning rate and β via cross validation. At the end of this process,
e were left with two best-performing IVE models, one trained on
NG100 subhaloes and the other on TNG100-Dark ones. 

 T H E  P R EDIC TED  PROFILES  O F  S U B H A L O E S  

e compare the predicted profiles of the IVE trained on TNG100-
ark (and on TNG100) to the ground-truth profiles measured from

he simulations of individual subhaloes from the testset. The IVE
redicts three latent distributions for each subhalo, and a predicted
ensity profile given a randomly sampled latent vector from the latent
pace. Fig. 2 shows the residuals log 10 [ ρpred /ρsim 

] where ρpred ( r) are
he predicted profiles of the IVE (in coral) and ρsim 

( r) are the ground-
ruth profiles (in coral). The four panels show the residuals for four
ifferent mass bins of subhaloes. The x-axis gives the mean value of
 in each radial bin, while the y-axis shows the mean and standard
eviation of the residuals. 
We compare the IVE model to the Einasto density profile (Einasto

965 ), a widely used analytic fitting formula for subhalo density
rofiles, 

( r) = ρs exp 

{
− 2 

α

[(
r 

r s 

)α

− 1 

]}
, (5) 

here r s and ρs are the scale radius, defined as the radius at which
 ln ρ/ d ln r = −2, and the characteristic density , respectively . The
arameter α is a shape parameter that regulates a smooth, gradual
ransition between the two asymptotic profile slopes of −1 and −3.

e fitted the Einasto formula to each subhalo’s profile o v er the
ame radial bins used to train the IVE model, by minimizing the
xpression: 

 

2 = 

1 

N bin 

N bin ∑ 

i= 1 

[
log 10 ρsim , i − log 10 ρfit, i 

]2 
, (6) 

here log 10 ρsim , i and log 10 ρfit, i are the simulation’s ground-truth data
nd the Einasto fitted density profile in radial bin i. This expression
inimizes the rms deviation between the subhaloes’ binned ρ( r) and

he Einasto profile, assigning equal weight to each bin. Fig. 2 shows
he residuals between the Einasto predicted profile and the simulation
round-truth in grey. 
Fig. 2 demonstrates that the IVE returns profile predictions that are

nbiased and accurate. When compared to Einasto, we find a similar
ccuracy for the inner radial scales for all mass bins we consider.
t intermediate and larger radii that approach the subhaloes’ virial

adii, and especially for less-massive subhaloes, the IVE performs
ignificantly better than the Einasto profile at modelling the total
ensity profile. The large decline in accuracy in the Einasto fit
t r → r vir is due to the fact that its functional form is unable
o simultaneously fit the subhalo truncation and the outer density
lateau; the Einasto profile can only provide a reasonable fit to the
ensity profiles of bound subhalo particles in N -body simulations
Springel et al. 2008 ). The IVE is instead able to correctly capture
he density structure in the outskirts of the subhaloes, thus returning
nbiased predictions with similar errors as on smaller radial scales.
s we will show in Section 6 , tidal truncation induces a first-order

ffect on the density profile which cannot be ignored. We therefore
onclude that, although the Einasto profile can provide reasonable
NRAS 532, 164–176 (2024) 

 We remind the reader that lowest KL divergence corresponds to highest 
isentanglement amongst latents. 

o  

s  

a  

m  
ts to isolated field haloes, it is not a sufficiently good model for sub-
aloes which experience considerable tidal truncation. The IVE on
he other hand provides us with a flexible model that can easily adapt
o the corresponding effects using a minimal set of disentangled latent
arameters. 
We find similar results when training (and testing) the IVE on

he total density profiles of subhaloes (including stars, gas, and
lack holes as well as CDM) from the (hydrodynamical) TNG100
imulation; we show the corresponding results in Appendix A2 . We
nd that the tidal truncation in the profiles is less pronounced than in

he gravity-only simulation due to the presence of baryons, as pointed
ut in previous work (Dolag et al. 2009 ; Romano-D ́ıaz et al. 2009 ).
revious studies also showed that the number of subhaloes in the
icinity of the halo centre substantially decreases in hydrodynamical
imulations compared to gravity-only ones; this is because baryonic
rocesses associated with the presence of a large galaxy in the halo
entre enhance tidal disruption and destruction by tidal shocking
D’Onghia et al. 2010 ; Richings et al. 2020 ). Since subhaloes closer
o the halo centre are also the most tidally disrupted, this effect also
oints to a population of subhaloes in hydrodynamical simulations
hat is less tidally disrupted than in gravity-only simulations. As
 result, the discrepancy between the Einasto and the IVE model
ecomes smaller than in the TNG100-Dark case at large radii,
lbeit it is still present. Additionally, the performance of the Einasto
odel worsens at intermediate radii, especially for low-mass haloes;

s previously mentioned, the flexibility of the IVE allows for
ignificantly better predictions on these scales compared to Einasto.
e additionally investigated whether or not more flexible profile

tting functions such as the generalized NFW profile (gNFW; Zhao
996 ; Freundlich et al. 2020 ) yield better descriptions of the subhalo
ensity profile than Einasto. We find that the gNFW profile yields
ery similar fits to Einasto in the subhalo outer region and mild
mpro v ements in the inner slope. 

.1 The effect of the latents on the predicted profiles 

n addition to predicting the density profile, the IVE also generates
he best-fitting latent distributions associated with each subhalo. To
ain further intuition on the profiles modelled by the IVE, we show
ow the predicted profiles vary as a function of the three latent
ariables. 

Fig. 3 shows the impact of each latent on the predicted profile of
n individual subhalo. In each panel, we show the predicted density
rofiles as we systematically vary the value of one latent, while
eeping the others fixed to the mean of their respective Gaussian
istributions. The top and bottom panels show the predictions
f the IVE trained on TNG100-Dark and TNG100 subhaloes,
espectively. The three latents are denoted A, B, and C, where
he ordering is based on the amount of information each latent
aptures about the final profile (this will be quantified using MI in
ection 6 ). 
Latent A captures primarily the normalization of the density profile

ince varying the latent value shifts the profile in the vertical direction.
atent B determines the shape of the outer profile on the largest radial
cales out to the virial radius; in particular, higher/lower latent values
roduce a steeper/shallower profile in the outer region around a pivot
 ∼ 0 . 6 r 200m 

. The location of this pivot can change depending on the
xact values of latent A and B, but it is al w ays larger than the pivot
bserved for latent C. The influence of the latent on the profile is
imilar to the effect of tidal stripping which ‘truncates’ the profile at
 radius smaller than the virial radius. Here, this ‘truncation’ effect
anifests through a flattening of the profile where the spherically
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Figure 2. Mean and standard deviation of the residuals log 10 [ ρpred /ρsim 

] as a function of radius, where ρsim 

is the ground-truth profile measured from the 
simulations and ρpred is the predicted profile for either the Einasto (in the lighter, grey colour) or the IVE model trained on TNG100-Dark (in the darker, coral 
colour). Each panel shows the residuals for subhaloes of four different mass bins. The radius value on the x-axis is given by the mean value of r amongst the 
subhaloes in each radial bin. 

Figure 3. Variations in the predicted density profile of a given subhalo when systematically varying the value of one latent, while keeping the others fixed. 
Each panel from left to right varies latent A, B or C, respectively; the top and bottom panels show the predictions of the IVE trained on TNG100-Dark and 
on TNG100, respectively. The first latent describes the normalization of the profile; the second the shape of the profile in the outskirts around the pivot scale 
r ∼ 0 . 8 r 200m 

; the third the shape of the inner profile around a smaller pivot scale r ∼ 0 . 2 r 200m 

. The inclusion of baryonic effects does not vary the number of 
degrees of freedom in the model, and their qualitative impact on the profile. 
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veraged density reaches the background value at radii smaller than 
he virial boundary. In other words, the smaller the radius at which
he profile starts flattening, the larger the mass loss due to the effect of
idal stripping. Latent C primarily affects the steepness (or shape) of
he inner part of the profile: higher/lower values of the latent produce
 steeper/shallower slope in the inner re gion. F or this particular
ubhalo, the slope varies around the pivot point r ∼ 0 . 2 r vir , although
ote that the exact location of the pivot can change depending on
hich values of A and C are kept fixed. The comparison between
NG100-Dark (top panels) and TNG100 (bottom panels) subhaloes 
hows that the inclusion of baryonic effects does not qualitatively 
hange the meaning of the three latents disco v ered by the IVE; the
atents’ impact on the final profile is qualitatively similar to that of
MNRAS 532, 164–176 (2024) 
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Figure 4. Mutual information (MI) between each latent parameter and the 
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Our results show that, compared to field haloes which can be
escribed by two-parameter models such as the NFW and Einasto
at fixed α) profiles, subhaloes require three parameters to model their
ensity profiles up to the virial radius. Two of those are similar to
he two needed for field haloes; that is, a normalization and an inner
lope parameter similar to the mass and concentration parameters
f the NFW profile (Navarro et al. 1996 ). Subhalo profiles require
n additional third parameter which controls the slope of the outer
egion where the subhalo experiences mass loss due to a combined
ffect of tidal stripping, dynamical friction, and tidal heating. The
ame degrees of freedom are required (and sufficient) to describe
he total density profiles of subhaloes in both gravity-only and
ydrodynamical simulations. 

Interestingly, we find that all latents have a non-negligible in-
uence on the profile o v er the entire radial range. For example
lthough latent C primarily models the outer profile it also has a
on-negligible impact on the amplitude of the profile in the inner
egion; this amplitude modulation cannot be absorbed into latent A
ut is instead strictly tied to the physical effect captured by latent
. This in turn implies that one cannot model the effect of tidal

tripping based on the outer profile in isolation, as it modulates the
ntire profile in a non-trivial way . Similarly , as the normalization of
he profile is increased via modifications to latent A, the slope of the
uter profile also changes. In particular, subhaloes with the highest
ormalization tend to have a steeper outer slope which differs from
he environmental background density; this reflects the fact that high-

ass haloes (which have the highest normalization) tend to be less
idally stripped than low-mass (or low normalization) subhaloes. 

 INTER P R ETING  T H E  LATENTS  WITH  

U T UA L  I N F O R M AT I O N  

e now mo v e to a more quantitativ e inv estigation of the information
ontent of the latent parameters, and their relation to the physics of
he formation history of subhaloes. To do so, we again make use of

I to quantify the amount of information contained within the latent
arameters about other quantities of interest. We start with the MI
etween each latent and the subhalo density profile. This MI measure
rovides a complementary approach for interpreting the latent space
ompared to varying one latent at a time as in Fig. 3 . The latter shows
ow the predicted profiles depend on any given latent, conditioned
n fixed values of the other latents; the mutual information reveals a
ore global dependency between latents and ground truths, sensitive

o variations in the profiles from all factors simultaneously. In other
ords, the mutual information tells us how much variation in the
round-truths is captured by each latent at any given radial scale. 
We denote the n th latent as z n where n = { A, B, C, D } , and the

round-truth density in radial bin i as t i ; their MI is given by 

I ( t i , z n ) = 

∫ 

t i 

∫ 

z n 

p( t i , z n ) log 

[
p( t i , z n ) 

p ( t i ) p ( z n ) 

]
d t i d z n , (7) 

here p( t i , z n ) is the joint probability density function between t i and
 n . We make use of the publicly available software GMM-MI (Piras
t al. 2023 ) as mentioned in Section 4.2 . 

Fig. 4 shows the MI between each latent and the ground-truth
ensity profiles in every radial bin, for both TNG100-Dark (solid)
nd TNG100 (dashed) subhaloes. While our main results are based
n a 3D latent space model, we present here the results for a 4D
atent space model; this enables us to demonstrate the (non-)impact
f an additional fourth latent dimension. Latent A encodes the
argest component of variability in the density profiles throughout
NRAS 532, 164–176 (2024) 
he entire radial range. Its MI with ρtrue ( r) increases starting from the
mallest radius up to r eff ∼ 5 h 

−1 kpc (which on average corresponds
o r ∼ r vir / 2), and decreases again all the way to r eff ∼ 12 h 

−1 kpc
which on average corresponds to r ∼ r vir ). This means that latent
 captures variations in the profile on all radial scales, and it carries
ost information about the profile shape at intermediate radial scales.
Fig. 4 shows that latent B and C capture less amount of information

han latent A, but are nevertheless required for an accurate description
f the subhalo profiles. Latent B captures primarily information
bout the profile in the outskirts at scales approaching the virial
adius, where the MI with ρtrue ( r) reaches values comparable to the

I of latent A. This means that the two latents capture a similar
evel of (independent) variability in the density profiles; in other
ords, variations in the profile due to normalization and mass loss

re comparable at large radii. Latent C shows two peaks in its MI,
ne in the core of the subhalo ( r eff ≤ 5 h 

−1 kpc ) and one around
 eff ∼ 8 − 10 h 

−1 kpc . This is consistent with the picture revealed by
ig. 3 , where latent C induces changes in the profile abo v e and below

he pivot scale r ∼ 6 h 

−1 kpc . However, latent C’s MI never exceeds
hat of either latent for all values of r , meaning that its influence on
he density profile, while still important, is subdominant compared
o the other two latents. 

For completeness, we also show the impact of including an
dditional fourth dimension to the latent space; the MI between
he fourth latent (latent D) and the density profile is O(10 −4 ) which
s 2 −3 orders of magnitude smaller than the MI of the other three
atents. This confirms that 3 degrees of freedom are sufficient to
odel the subhalo density profile, and any additional latent contains

o additional independent information about the profiles. 
The comparison between the MI curves for the TNG100-Dark

nd TNG100 subhaloes reveals a similar story to that of Fig. 3 .
he MI between each latent and the profile for TNG100 subhaloes

ollows the same trend as a function of radial scale as that for
NG100-Dark subhaloes. In both cases, one latent encodes the

argest amount of information about the profile on all radial scales,
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Figure 5. MI between the latents and the subhalo mass accretion histories 
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respectively. z infall denotes the time at which, on average, the subhaloes fall 
inside the main parent halo, while z 1 / 2 is the redshift at which, on average, 
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build-up of mass on to the subhalo before the average infall time, while latent 
B probes the subhalo mass loss after the average infall time. Latent C captures 
the early formation history of the subhalo, and peaks at the average subhalo 
formation time. The latents are connected to the physics of the subhaloes’ 
formation history, despite no information about the latter has been provided 
during training. 
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he other two encode information about the profile outer shape and 
nner shape, respectively. Minor differences in the MI values reflect 
he differences in the subhalo populations of the TNG100-Dark and 
NG100 simulations; the variability in the final profiles differs for 
ifferent subhalo populations, which in turn affects the amount of 
ariability that can be captured by the latents and therefore the MI
alues too. We conclude that the latents disco v ered by the IVE when
rained to model subhalo profiles from hydrodynamical simulations 
ave similar information content to those describing subhalo profiles 
rom gravity-only simulations. 

The mutual information measure not only reveals the underlying 
imensionality but also a ‘hierarchy’ of latents ordered by their 
nformation content similar to the principal components of a principal 
omponent analysis (PCA) decomposition. Indeed, the latents can 
e thought of as the principal components of a ‘non-linear’ PCA
ecomposition. The normalization latent (latent A) is the most 
mportant variable which describes the majority of the variance 
n the profile; the next most important latent is that capturing the
uter profile (latent B) affected by tidal stripping; lastly, latent C
aptures the most subdominant information about the shape of the 
nner profile. The hierarchical nature of the latent space is achieved 
aturally through the disentanglement constraint, without the need 
o design specific layers or impose additional constraints to the loss
unction (Ho, Zhao & Wandelt 2023 ). 

.1 Relation to the subhaloes’ mass accretion history 

he z = 0 density profiles of substructures (and other cosmic objects)
re determined by the complex, non-linear evolutionary history of 
he subhaloes. The latents, which contain all the information required 
o model the subhalo profiles, must therefore also be connected to 
he subhaloes’ history. Similar to the work of Lucie-Smith et al. 
 2024 ), we compute the MI between the latents and the mass
ccretion histories of the subhaloes. We emphasize that the network 
oes not have access to any information about the subhaloes’ mass
ccretion histories during training – the latents were generated given 
nformation about the 3D density field at z = 0 only. 

The mass accretion histories follow the mass of the main progen- 
tor of the subhalo as a function of time. This is constructed from
he merger trees which allow one to link the properties of simulated
ubhaloes across snapshots and identify progenitors and descendants 
f each subhalo. The main progenitor of each subhalo is defined as the
ne with the ‘most massive history’ behind it (see De Lucia & Blaizot
007 ), among those that share particles with the target subhalo. The
ain progenitor is thus not simply the most massive one, removing 

he arbitrariness, especially in cases when the two largest progenitors 
ave similar masses. 
Fig. 5 shows the mutual information between the latents and the 
ass of the subhaloes as a function of time; the three panels show the

esults for the three different latents. The continuous and dashed lines
how the MI results for TNG100-Dark and TNG100, respectively. In 
he case of latent A (top panel), the MI increases steadily with mass
s a function of redshift. This means that latent A is increasingly
ensitive to the build-up of mass on to the subhalo as a function of
ime. The MI peaks at the time where, on average, the subhaloes fall
nside the main parent halo – we call this ̄z infall . This means that latent
 is primarily sensitive to the build-up of mass prior to the infall time.
fter infall, the MI between the latent and M( z) decreases, meaning

hat the latent does not capture information about those post-infall 
hysical processes that affect the resulting subhalo mass. 
On the contrary, latent B is only mildly sensitive to the formation

istory prior to infall time; this is shown by the approximately flat (but
on-zero) MI between the latent and M( z) for most of the redshift
ange (middle panel of Fig. 5 ). Ho we ver, the MI starts increasing
harply after z̄ infall , implying that the latent becomes increasingly 
ensitive to the subhalo mass after infall time. This reveals that latent
 captures information about the impact on the density profiles of
hysical processes that happen after the subhaloes’ infall on to their
ain host. This is entirely consistent with the picture revealed by
igs 3 and 4 in which latent B captures the shape of the outer profile

hat is driven by the amount of tidal stripping experienced by the
ubhalo since it entered its main parent halo. This result is in line with
he long-studied effect of tidal stripping in subhaloes from numerical 
imulations (Ghigna et al. 2000 ; Nagai & Kravtsov 2005 ; Diemand,
uhlen & Madau 2007 ; Diemand et al. 2008 ; Springel et al. 2008 ;
ngulo et al. 2009 ; Nadler et al. 2018 ), and confirms the ability of the

VE to find physically meaningful latent parameters. To summarize, 
he IVE found 2 degrees of freedom that are sensitive to the pre-
nfall and post-infall accretion history, respectively – all this without 
ny information about the dynamical history of the subhaloes during 
raining. Latent C on the other hand is sensitive to the early-time
ormation history and peaks at the redshift where, on average, the
ubhaloes have accreted half of their present-day mass (we denote 
his z̄ 1 / 2 ). This is consistent with latent C being equi v alent to the
FW concentration; the latter also affects the shape of the density
rofiles in the inner region, and it is well-known to carry information
bout the halo formation times (Wechsler et al. 2002 ; Ludlow et al.
013 ). 
We find that the physical interpretation of the latents in terms

f the subhaloes’ formation history is the same for subhaloes from
MNRAS 532, 164–176 (2024) 
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M

Figure 6. MI between the latents and the subhaloes’ mass accretion rate, 
d ln M( a) / d ln a, for TNG100-Dark (top) and TNG100 (bottom) subhaloes. 
z infall denotes the time at which, on average, the subhaloes fall inside the 
main parent halo, and it is indicated by a vertical solid (dashed) line for the 
gravity (hydro) IVE. Latent C, which captures the amount of tidal disruption 
in the subhalo outskirts, is sensitive to the rate of change of subhalo mass 
post-infall. 
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NG100 and from TNG100-Dark. This means that the independent
egrees of freedom in the density profiles with or without including
aryonic effects are similarly connected to the formation history of
he subhaloes; in other words, baryonic effects do not qualitatively
hange the physical meaning of the latent parameters. The only
ifferences lie in the exact MI values of each latent, and M( z), which
iffer because the underlying population of subhaloes naturally
iffers slightly between TNG100 and TNG100-Dark. 
We further test our physical interpretation of the latents by also

howing the MI between the latents and the mass accretion rate
f the subhaloes in Fig. 6 . The mass accretion rate is given by
 ln M( a) / d ln a and it is estimated by taking a finite difference
etween the subhalo mass in subsequent time-steps in the subhaloes’
erger trees. The mass accretion rate is a noisier estimate of the

ormation history of a subhalo compared to the (cumulative) M( z),
hich explains why the MI values in Fig. 6 are o v erall significantly

ower than the MI values shown in Fig. 5 . We find that latent A
nd latent C, controlling the normalization and inner shape of the
rofile, are largely insensitive to the rate of change in mass; their
ain source of information lies in the cumulative build-up of mass

n to the halo up to infall and formation time, respectively. We
ote ho we ver a slight increase in the MI of latent C at z ∼ 1;
his is more pronounced for the hydro case than the gravity-only
ase, but present in both. This finding is consistent with the work
f Lucie-Smith et al. ( 2024 ) for field haloes showing that the
nner shape latent (and the NFW concentration) depends on both
he halo formation time during the early assembly phase and the
ater time mass accretion rate. This dual dependence explains the
imodal shape of the MI between the inner latent and the profile
n Fig. 4 : the early assembly phase determines the shape of the
rofile in the innermost region of the halo, while the later time
ass accretion rate determines that beyond the pivot on scales

 eff ∼ 10 h 

−1 kpc . 
Latent B, controlling the outer profile shape, is instead extremely

ensitive to the rate of change of mass after the infall time. This further
trengthens our interpretation of the latent capturing the amount of
NRAS 532, 164–176 (2024) 
ass lost by the subhalo due to tidal stripping. This in turn changes
he boundary of the halo in the outskirts, and therefore the steepness
f the profile at those larger scales. 

 RELATI ON  BETWEEN  LATENTS  A N D  

HYSI CAL  PA RAMETERS  

e now investigate the relation between the latents and physical
arameters typically adopted in the literature related to the study of
ubhaloes. 

We calculate the tidal radius defined as the radius at which the
ifferential tidal force of the host halo is equal to the gravitational
orce due to the mass of the subhalo (Binney & Tremaine 1987 ;
ormen, Diaferio & Syer 1998 ; Springel et al. 2008 ). This is
ommonly assumed to be a good proxy for the subhalo boundary
ince the expectation is that matter beyond the tidal radius will be
emo v ed from the subhalo, thus reducing its mass as it orbits around
he host halo. Assuming a subhalo of mass M sub and distance R 

rom the centre of the main halo, the tidal radius can be expressed
s 

 tidal = R 

(
M sub 

[ 2 − d ln M/ d ln r ] M( < R) 

)1 / 3 

, (8) 

here M ( < r ) is the main halo mass within a sphere of radius r , and
 ln M/ d ln r should be e v aluated at R. The tidal radius is a quantity
ypically used in the literature to describe the boundary of a subhalo
n the presence of tidal stripping. It can therefore be thought of as a
roxy for the physics captured by latent B of the IVE. 
In Fig. 7 , we show scatter plots between v arious rele v ant physical

arameters and the latent variables. The top panels show the scatter
etween latent A (controlling normalization) and the mass of the
ubhalo, coloured by R tidal /R vir , for the TNG100-Dark (left) and
NG100 (right) subhaloes. Note that in the case of the TNG100
ubhaloes (right panel), the x-axis is flipped to decreasing order
o facilitate visual comparisons with the TNG100-Dark case (left
anel). The ordering of the latent values does not carry meaning and
s arbitrary during training. Latent A correlates with the mass of the
ubhalo, and the scatter between the two is in turn correlated with
 tidal /R vir . The latter is a proxy for the amount of tidal stripping

xperienced by the subhalo, where R tidal /R vir ∼ 1 is equi v alent to no
tripping, and R tidal /R vir < 1 corresponds to some amount of tidal
tripping. This confirms the physical interpretation of latent A: the
atent captures the normalization of the profile, which is primarily
ependent on the final mass of the subhalo. Ho we ver, the amount of
idal stripping in the post-infall phase also affects the normalization,
hich is therefore responsible for introducing scatter in an otherwise
irect relation between the mass and the normalization. The latent is
ble to capture both such dependencies on the profile normalization.
he comparison between the TNG100 and TNG100-Dark cases
hows the same results for latent A. 

The two bottom panels of Fig. 7 show the scatter between latent B
controlling the profile outer shape) and R tidal /R vir , coloured by the
irial radius log R vir . Similar to the top panels, the x-axis in the right
anel is flipped to decreasing order to facilitate visual comparisons
ith the left panel. We find that the relation between the latent and
 tidal /R vir is not so straightforward; while the two are correlated the

orrelation exhibits a significant amount of scatter. The scatter is
ot directly related to the mass of the subhalo either, suggesting an
ntricate non-trivial relation between latent B and commonly used
hysical parameters (such as the tidal radius and subhalo mass) to
escribe the tidal stripping. We find a one-to-one mapping between
 tidal /R vir and the distance of the subhaloes from the centre of their
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Figure 7. Scatter between physical parameters and latent parameters learnt by the IVE. Top panels : Scatter plot between latent A and the mass of the subhalo 
coloured by R tidal /R vir for TNG100-Dark (left) and TNG100 (right) subhaloes. Latent A correlates with the mass of the subhalo; the scatter between the two is 
in turn correlated with the amount of tidal stripping. Bottom panels : Scatter plot between latent B and R tidal /R vir , coloured by R vir for TNG100-Dark (left) and 
TNG100 (right) subhaloes. Latent B is correlated with the amount of tidal stripping estimated by R tidal /R vir , albeit with a large scatter largely uncorrelated with 
R vir . 

m
w  

B  

s  

o
r
v
s  

l
t
w
d
a
t

8

W
o  

s  

w
a  

c  

d
l  

t  

i  

n  

u
t
o
f  

e
 

m  

fi  

a  

i  

t  

T  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/532/1/164/7693142 by U
niversita Bologna Biblioteca user on 03 Septem

ber 2024
ain halo (another quantity known to correlate with tidal stripping), 
hich in turn means that the correlation between the latter and latent
 resembles that seen in Fig. 7 . We tried various other quantities,

uch as the mass of the subhalo at infall time, the maximum mass
f the subhalo throughout its history, infall redshift, maximum mass 
edshift; although all these quantities are correlated with the latent to 
arious degrees, we found no clear quantity which could explain the 
catter between the latent and R tidal /R vir . We conclude that the IVE
atent parameter B, which controls the outer profile shape affected by 
idal stripping, does not (and is not expected to) correlate perfectly 
ith any one physical parameter typically adopted in the literature to 
escribe tidal truncation in subhalo profiles. Its information content is 
 non-trivial combination of the complex physical effects go v erning 
he shape of the total density profiles of subhaloes in the outskirts. 

 C O N C L U S I O N S  

e have presented a novel deep-learning model for the density profile 
f subhaloes with masses M � 7 × 10 8 h 

−1 M � in the TNG100
imulation. The model consists of an IVE (Lucie-Smith et al. 2022 )
hich predicts the spherically averaged total density profiles of 
 subhalo given the raw 3D density field around that subhalo’s
entre. The IVE first compresses the 3D density field into a low-
imensional, disentangled latent representation, and then maps this 
atent representation to a prediction for the density profile ρ( r). All
he information required by the model to predict the final profile
s therefore captured within the latent space. In this way, the IVE
ot only generates accurate profile predictions but also disco v ers the
nderlying degrees of freedom in the subhaloes’ profiles through 
he disentangled latent representation. This serves the dual purpose 
f understanding and trust: we learn about the underlying physical 
actors which go v ern the density distribution within subhaloes while
nsuring that the model’s learning is trustworthy and robust. 

We find that a 3D latent representation is required to accurately
odel the density profiles of subhaloes up to their virial radius. The
rst latent captures most of the variability in the density profiles
nd controls the o v erall normalization of the profile. This latent is
ncreasingly sensitive to the build-up of mass of the subhalo over
ime, up to the time when the subhalo falls into its parent halo.
he second latent is instead sensitive to the physics of the subhalo
MNRAS 532, 164–176 (2024) 
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ormation history after its infall time; in particular, it is driven by
he amount of mass loss of the subhalo due to tidal stripping inside
he main halo. This latent controls the profile shape in the subhalo
utskirts: the profile flattens to the background density at smaller
larger) radii the stronger (weaker) the tidal stripping. To summarize,
he IVE disentangles two effects, one controlling normalization and
ne outer shape, which are sensitive to the pre-infall and post-infall
hase of the subhalo formation history , respectively . It should be em-
hasized that no knowledge about the subhaloes’ formation history
as provided to the IVE during training. The third latent resembles

he NFW concentration, in that both parameters control the inner
hape of the density profile and are sensitive primarily to the mass
ssembly history of the subhaloes at their half-mass formation time.

We tested the impact of baryonic effects on the density profiles
f subhaloes by performing a one-to-one comparison between IVE
odels trained on TNG100 and TNG100-Dark, respectively. We
nd that baryonic effects do not have a qualitative impact on our
esults: the density profiles of subhaloes in both gravity-only and
ydrodynamical simulations can be described by the same 3 degrees
f freedom. The physical interpretation of the latents in relation
o the subhaloes’ formation history is also the same. Our results
emonstrate that the modifications to the subhalo profiles induced by
aryons can be absorbed with minimal modifications to the parameter
pace range of the same degrees of freedom as for the pure dark matter
ase. Our results are limited to the effect of baryonic physics on
he density profiles in the galaxy formation prescription adopted by
llustrisTNG; we plan to test our model on different galaxy formation
odels in future work. 
The evolution of dark matter substructures has been e xtensiv ely

tudied in high-resolution cosmological simulations (Kravtsov,
nedin & Klypin 2004 ; Diemand et al. 2007 ; Springel et al. 2008 ;
olag et al. 2009 ). Our approach for characterizing subhalo density
rofiles differs from the common approach of manually searching for
mpirical, analytic fitting functions which often requires introducing
any correlated parameters with loose physical moti v ation (Einasto

965 ; Navarro et al. 1996 ; Kazantzidis et al. 2004 ; Baltz et al. 2009 ;
i Cintio et al. 2013 ; Heinze et al. 2024 ); the range of validity of

he different fitting functions and the number of parameters required
o account for the rele v ant physics often remain unclear. Instead,
he IVE provides us with a minimal, independent set of ingredients
o describe the subhaloes’ density profile, which can be directly
onnected to the physical processes driving the formation history of
ubhaloes. The IVE latent parameters have a clear physical interpre-
ation in relation to the well-studied subhalo evolution history: the
odel redisco v ers the known correlation between the inner profile

nd half-mass formation time, and that between the outer truncation
nd the subhalo mass loss due to tidal stripping. All this was done
rom z = 0 inputs alone, without the need to pro vide an y information
o the IVE about the subhalo formation histories. The radius at which
he outer profile flattens to the background value does not coincide
ith the well-known tidal radius (Tormen et al. 1998 ; Zavala & Frenk
019 ), suggesting that the IVE fitting function is a more complex,
on-trivial generalization of the NFW model that goes beyond the
runcated NFW model. 

One of the main moti v ations behind this work is the future
pplication to strong lensing analyses. An accurate, robust model for
he density profiles of dark matter substructures is key to inferring
he correct masses of subhaloes, which are then used to test the
 CDM cosmological model. Going forward, we plan to apply the

VE-based density profile model to strong lensing pipelines. The
ecoder component of the IVE can be used just as it is done with
ny empirical fitting functions, except that this time we have a
NRAS 532, 164–176 (2024) 
eural network replacing an analytic fitting function and the latent
arameters as model parameters. Our work shows the promise of
sing interpretable, deep-learning frameworks to model large-scale
tructure observables in the non-linear regime. 
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PPEN D IX  A :  T H E  I V E  PREDICTION  

 C C U R A  C Y  

1 Determining the latent dimensionality 

s mentioned in Section 4.3 , we first focused on finding the
nderlying dimensionality of the subhalo density profile outputs. We 
rained four different IVE models with L -dimensional latent spaces, 
here L = 2, 3, 4, and 5 for the four models, respectively. We fixed
= 10 −8 in order for the model to focus e xclusiv ely on minimizing

he predictiv e accurac y, without the need to disentangle the latent
pace. We then compared the accuracy of the four models to find the
mallest number of latents which saturates the model accuracy. 

Fig. A1 shows the residuals, log [ ρpred /ρtrue ], for different IVE 

odels trained with different latent dimensionalities, i.e. a 2D, 3D, 
nd 4D latent space. We do not show the results for the 5D latent
imensionality case to ease visualization. The top panel (bottom 

anel) shows the case where the IVE is trained on TNG100-Dark
TNG100) subhaloes. We find that the residuals look near-identical 
hen using a 3D and a 4D latent space; on the other hand, using
 2D latent space significantly degrades the accuracy such that the
esiduals histogram appears broader than histograms of the former 
wo cases. Thus, we conclude that a 3D latent space is required and
ufficient to describe the density profiles of subhaloes. 

2 IVE profile predictions in hydrodynamical TNG100 

ig. A2 shows the residuals log 10 [ ρpred /ρsim 

] for the Einasto and the
VE model trained on subhaloes from the hydrodynamical TNG100 
imulation, as a function of radius, for four different mass bins in
ach panel. This is equi v alent to Fig. 2 but for subhaloes from the
ydrodynamical TNG100 (instead of those from TNG100-Dark). 
he x-axis shows the mean value of r in each radial bin out of
MNRAS 532, 164–176 (2024) 
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Figure A2. Mean and standard deviation of the residuals log 10 [ ρpred /ρsim 

] as a function of radius, where ρsim 

is the ground-truth profile measured from the 
simulations and ρpred is the predicted profile for either the Einasto (in the lighter, grey colour) or the IVE model trained on TNG100 (in the darker, coral colour). 
Each panel shows the residuals for subhaloes of four different mass bins. The radius value on the x-axis is given by the mean value of r amongst the subhaloes 
in each radial bin. 
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ll subhaloes in that mass bin, while the y-axis gives the mean
nd standard deviation of the residuals for each model. We find
hat the IVE returns predictions at similar level of accuracy than
n the gravity-only case. Similarly to the TNG100-Dark case, the
VE outperforms the Einasto model; this is especially evident at
ntermediate radii for the lowest mass range of subhaloes, and at
arge radii throughout all mass ranges. 

As mentioned in Section 5 , we find that the tidal truncation in the
rofiles is less pronounced than in the gravity-only simulation due to
he presence of baryons. This, in turn, makes the discrepancy between
NRAS 532, 164–176 (2024) 
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he Einasto model and the simulation profiles less pronounced at
arge radii, albeit it is still present. On the other hand, we find
hat the performance of the Einasto model worsens at intermediate
adii, especially for low-mass haloes, compared to the pure dark
atter case. As previously mentioned, the flexibility of the IVE

llows for significantly better predictions on these scales compared to
inasto. 
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