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Group convolutions and cross-correlations, which are equivariant to the actions of group elements,
are commonly used to analyze or take advantage of symmetries inherent in a given problem setting.
Here, we provide efficient quantum algorithms for performing linear group convolutions and cross-
correlations on data stored as quantum states. Runtimes for our algorithms are poly-logarithmic in
the dimension of the group and the desired error of the operation. Motivated by the rich literature
on quantum algorithms for solving algebraic problems, our theoretical framework opens a path
for quantizing many algorithms in machine learning and numerical methods that employ group
operations.

I. INTRODUCTION

Symmetry and invariance are properties of func-
tions that have central importance in mathematics
and physics. In machine learning, for example, many
successful algorithms exploit inherent symmetries in
a problem to guide or bias an algorithm towards
special classes of functions which are suitable for
that problem. Notably, convolutional neural net-
works (CNNs) exploit the translationally invariant
structures within images (say if a cat moves side-
ways in an image, the features of that cat move with
it) [1, 2]. Convolutional neural networks seek to take
advantage of translational invariance; however, sym-
metries arise through countless other group actions
which each correspond to different invariance prop-
erties. More recent literature has focused on gener-
alizing the results of convolutional neural networks
to a broader class of group actions via the analy-
sis of equivariance [3, 4]. Informally, a function is
equivariant if it transfers symmetries from the func-
tion’s input space into its output space. Convolu-
tions and cross-correlations provide a means to ap-
ply linear equivariant transformations. For group
convolutional neural networks, previous work have
shown that equivariant functions are precisely those
that implement some form of group convolution or
cross-correlation [4–6].

In this study, we overview the group equivari-
ant transformations of group convolution and cross-

∗ Equal contribution.

correlation and present quantum algorithms to per-
form these linear group operations on data stored as
quantum states. Our algorithms can output quan-
tum states storing the output of a group convo-
lution or cross-correlation operation with runtimes
that scale polynomially with the condition number
of the linear operation and poly-logarithmically with
the dimension of the group. Our primary aim is
to contribute a theoretical framework for quantizing
existing classical algorithms or designing new quan-
tum algorithms in the group theoretic setting. A
brief discussion of some concrete application of our
work is also included.

Given functions f and g which map group ele-
ments u ∈ G to complex or real numbers, a convo-
lution over a group G is defined as

(f ~ g)(u) =
∑
v∈G

f(uv−1)g(v). (1)

Similarly, cross-correlation is defined as

(f ? g)(u) =
∑
v∈G

f(vu−1)g(v). (2)

As an example, let us consider G as the cyclic
group Z/nZ. Then the group operation is isomor-
phic to integer addition modulus n. For example, if
u and v are two elements of the groups correspond-
ing to integers u and v as well (abusing notation),
then we note that the operation uv is equivalent to
u+v mod n and uv−1 is equivalent to u−v mod n.
Hence, for the cyclic group, the convolution corre-
sponds to the typical case for one dimensional func-
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tions:

(f ~ g)(u) =
∑
v∈G

f(uv−1)g(v) =

n−1∑
v=0

f(u− v)g(v),

(3)
where indices above are taken mod n.

Note, that the equations above hold for finite
groups, which are the focus of this study. For gen-
eral groups, performing group convolution would re-
quire integration over Haar measures [4, 7]. Though
classical algorithms exist for approximately perform-
ing equivariant transformations over infinite dimen-
sional groups [8–11], we leave this more general case
to future work.

Quantum algorithms have been proposed to effi-
ciently solve many algebraic or group-theoretic prob-
lems [12]. Motivated by this prior success, we aim
to address here the question of whether quantum
computers can efficiently perform linear group oper-
ations efficiently. For properly chosen oracles and
inputs, we provide two different methods to per-
form the linear group operations above. The first
implements linear group operations in the “real”
regime by applying well-known quantum algorithms
for performing linear combinations of unitary oper-
ators [13]. The second implements convolution the-
orems in the group Fourier regime by leveraging ef-
ficient quantum algorithms for group Fourier trans-
forms [14].

Our paper is organized as follows. First, we
list some related works (section II) and overview
salient group theoretic and representation theory
concepts essential to understanding our algorithms
(section III A). We also introduce the main spe-
cific linear algebraic methods used in our study
such as converting group operations into matrices
(section III B) and block encoding (section III C).
Then, we present our algorithms for performing lin-
ear group operations both in the real (section IV)
and Fourier (section V) regimes by providing block
encodings – for the linear operations on a quan-
tum computer. Furthermore, in (section VI) we
provide an algorithm for applying inverse convolu-
tions or cross-correlations, i.e., deconvolution both
in the real and Fourier regimes. Finally, we give
an example application of our methods in solving
an integral equation exhibiting a specific symmetry
(section VII) and conclude with some discussion of
future work (section VIII).

II. RELATED WORKS

Motivation for this work derives from the study of
algebraic problems in quantum computing and im-
plementations of equivariant transformations in deep
learning especially in the context of group convolu-
tional neural networks. We catalog some of these
related works here.

a. Quantum algorithms for group theoretic prob-
lems Prior motivation for solving group theoretic
problems in quantum computing stems from quan-
tum algorithms aimed at solving the hidden sub-
group problem [12]. [15] proposed an algorithm for
solving the hidden shift problem which employed
group deconvolution on quantum states storing a su-
perposition of queried function values. These ideas
were expanded in [16, 17]. [14] provides an algo-
rithm to perform generic group Fourier transforms
on a quantum computer which forms the basis for
many of the transformations performed in this work.
In the broader context of quantum circuit analysis,
group convolution has been used to analyze rates of
convergence of ensembles of unitaries [18, 19].

b. Quantum algorithms for linear algebra The
specific methods we use in this study are based on
algorithms for performing linear algebraic operations
on a quantum computer. Methods for block encod-
ing unitary operators [20, 21] and applying linear
combinations of unitary matrices [13, 22] are exten-
sively used in our algorithms. Prior work in quan-
tum computing has proposed methods and algo-
rithms for efficiently performing matrix multiplica-
tion or solving linear systems of equations for dense
matrices. The most related papers are those for ap-
plying circulant or Toeplitz matrices [23–25]. Circu-
lant matrices are a specific instance of the more gen-
eral form of group cross-correlation matrices studied
here. From a more applied perspective, other related
work focuses on pre-conditioning matrices using cir-
culant matrices or solving Green’s functions by tak-
ing advantage of symmetries in a problem [26, 27].
We note that our work considers a different setting
than that of [28] which proved that group convolu-
tion is “physically impossible.” The work of [28] as-
sumed that the convolution filter is given as a quan-
tum state, whereas here we assume oracle access to
its entries.

c. Equivariant and group convolutional neural
networks In the past few years, many algorithms
for equivariant neural networks have been proposed
and analyzed [3–5, 29]. These algorithms employ
and analyze weight sharing schemes that are inher-
ent in equivariant transformations. This work has
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motivated a long line of research aiming to take ad-
vantage of symmetries in data [30–32] with applica-
tions particularly in physics and chemistry [9, 33–
35].

Many quantum algorithms have converted ma-
chine learning algorithms into quantum algorithms
that are related to convolutions. For example, [36]
construct a quantum algorithm that mimics the op-
eration of a classical convolutional neural network
(e.g., for image recognition). Quantum versions of
convolutional neural networks which parameterize
convolutions as quantum gates have also been pro-
posed [37–39].

III. PRELIMINARIES

A. Background in representation theory and
group Fourier transforms

In this section, we will discuss how to perform a
group Fourier transform via the irreducible repre-
sentations of a group. For the discussion here, we
restrict ourselves to finite groups where the exposi-
tion of representations and group Fourier transforms
is simpler.

a. Representation Representations of a group
aim to translate the action of groups onto matrix
operations. A representation of a group G is a ma-
trix valued function ρ : G → Cdρ×dρ such that
ρ(g1)ρ(g2) = ρ(g1g2) for all g1, g2 ∈ G [40], where
dρ is the dimension of the representation. As an ex-
ample, we have the trivial representation ρ(gi) = 1
for all gi ∈ G.

Representations of a group can arise when asso-
ciating a basis vector to each element of a group.
Let V be a vector space of dimension |G| with ba-
sis {ex : x ∈ G}, then the left (right) action of any
g ∈ G is a permutation: gex = egx (gex = exg). This
gives rise to a representation consisting of permuta-
tion matrices of size |G|×|G| which are called the left
and right regular representations, denoted Lu and
Ru respectively for u ∈ G. These matrices permute
the basis elements according to the left and right ac-
tions of the group: Liej = eij and Riej = eji [40].
For example, the cyclic group Z/3Z has the follow-
ing 3× 3 regular representation matrices (since this
group is abelian, Ri = Li for all group elements):1 0 0

0 1 0
0 0 1

 ,

0 0 1
1 0 0
0 1 0

 ,

0 1 0
0 0 1
1 0 0

 . (4)

A representation is unitary if ρ(g) is a unitary

matrix for all g. A representation is irreducible if
it contains no proper invariant subspaces with re-
spect to the action of the group. For finite groups,
unitary irreducible representations always exist. On
the contrary, a representation is reducible if it de-
composes as a direct sum of irreducible subrepre-
sentations. For example, if a representation ρ can
be decomposed into the direct sum of two other rep-
resentations ρ1 and ρ2 as below,

ρ(g) = Q−1

(
ρ1(g) 0

0 ρ2(g)

)
Q, (5)

where Q ∈ Cdρ×dρ is an invertible matrix, then it
is reducible. Importantly, for compact groups, any
representation ρ can be decomposed as above into a
direct sum of irreducible representations:

ρ(g) = Q−1 [ρ1(g)⊕ ρ2(g)⊕ · · · ⊕ ρk(g)]Q. (6)

For abelian groups, the irreducible representations
all have dimension equal to one. For non-abelian
groups, there is at least one irreducible representa-
tion which has dimension greater than one.

b. Group Fourier transform Given any func-
tion f : G → C which maps group elements to
scalars, the group Fourier transform of f is a func-
tion which maps irreducible representations to ma-

trices whose output is denoted by f̂(ρ) and is defined
as (for finite groups)

f̂(ρ) =
∑
u∈G

f(u)ρ(u). (7)

As a corollary to the conventional Fourier trans-
form, convolution in the Fourier regime of the group
corresponds to matrix multiplication over irreducible
representations. Namely, for convolutions we have

̂(f ~ g)(ρ) = f̂(ρ)ĝ(ρ), (8)

Similarly for cross-correlations we have

(̂f ? g)(ρ) = f̂(ρ)†ĝ(ρ). (9)

Note that throughout this text, we will use ~
to indicate convolution and ? to indicate cross-
correlation.

c. Equivariance Equivariance is the property of
a function that translates symmetries of a function
from its domain to codomain (input to output do-
main). A function is equivariant when the action of
the group commutes with the function.
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Definition 1 (Paraphrased from [4]). Let G be a
group and X1,X2 be two sets with corresponding G-
actions

Tg : X1 → X1 T ′g : X2 → X2. (10)

Let V1 and V2 be vector spaces with basis elements
labeled by elements of X1 and X2 respectively, and let
LV1 (LV2) be the set of functions mapping X1 (X2)
to V1 (V2). Let T and T′ be the induced actions
of group elements onto V1 and V2 respectively (i.e.,
permute vector elements). A map φ : LV1

→ LV2
is

equivariant if

φ(Tg(f)) = T′g(φ(f)) ∀f ∈ LV1
. (11)

For example, circular or cyclic convolutional layers
(i.e., filters or kernels wrap around to perform con-
volution) in a convolution neural network are equiv-
ariant to cyclic permutations – applying a cyclic per-
mutation to the pixels before or after the layer re-
sults in equivalent outputs [5].

The property of equivariance can be visualized as
a commutative diagram:

LV1
LV1

LV2 LV2

Tg

φ φ

T′
g

(12)

Convolutions and cross-correlations are examples
of functions which are equivariant to the actions of
a group (see section C for more details). These op-
erations are studied in deep learning under the topic
of equivariant neural networks [4, 5]. [4] proves that
a feedforward neural network layer is equivariant to
the action of a group if and only if each layer of
the neural network performs a generalized form of
convolution or cross-correlation.

B. Converting group convolution to a linear
algebraic formulation

Since convolutions and cross-correlations are lin-
ear operations, one can convert them into a matrix
formulation. One simple way to do so is to vectorize
the two input functions into the transformation and
represent the action of the transformation via a ma-
trix. Given two functions that map group elements
to complex numbers, m,x : G → C, we vectorize
these functions over group elements by associating
every group element to a basis of the vector space
and denote the vectors of dimension |G| as ~m (filter)
and ~x (input). Any convolution or cross-correlation
can be converted into a matrix weighted sum of the
left or right regular representations Lu and Ru re-
spectively.

Lemma 2 (Group operations as matrices). Given a group G, let ~m ∈ C|G| and ~x ∈ C|G| be the filter and
input for a group operation. Then, group convolutions and cross-correlations correspond to matrix weighted
sums of the left or right regular representations.

(m~ x)(u) =
∑
v∈G

m(uv−1)x(v)
convolution⇐⇒ ~m~ ~x = M~~x, M~ =

∑
i∈G

miLi

(m~R x)(u) =
∑
v∈G

m(v−1u)x(v)
right convolution⇐⇒ ~m~R ~x = MR~~x, MR~ =

∑
i∈G

miRi

(m ? x)(u) =
∑
v∈G

m(vu−1)x(v)
cross−correlation⇐⇒ ~m ? ~x = M?~x, M? =

∑
i∈G

miL
−1
i

(m ?R x)(u) =
∑
v∈G

m(u−1v)x(v)
right cross−correlation⇐⇒ ~m ?R ~x = MR?~x, MR? =

∑
i∈G

miR
−1
i

(13)

For each of the operations above, we also have a corresponding convolution theorem which applies the
operation in the Fourier domain of the group.

Lemma 3 (Convolution theorems [40]). Given a group G, let ~m ∈ C|G| and ~x ∈ C|G| be the filter and input
for a group operation. Let m̂(ρ) and x̂(ρ) indicate the value of the Fourier transform of the filter and input
for irreducible representation ρ. Then, one can perform group operations in the Fourier regime by applying
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the corresponding convolution theorem.

(m~ x)(u) =
∑
v∈G

m(uv−1)x(v)
convolution⇐⇒ ̂(m~ x)(ρ) = m̂(ρ)x̂(ρ)

(m~R x)(u) =
∑
v∈G

m(v−1u)x(v)
right convolution⇐⇒ ̂(m~R x)(ρ) = x̂(ρ)m̂(ρ)

(m ? x)(u) =
∑
v∈G

m(vu−1)x(v)
cross−correlation⇐⇒ ̂(m ? x)(ρ) = m̂(ρ)†x̂(ρ)

(m ?R x)(u) =
∑
v∈G

m(u−1v)x(v)
right cross−correlation⇐⇒ ̂(m ?R x)(ρ) = x̂(ρ)m̂(ρ)†

(14)

We defer proofs of the above to section A and
provide examples of these concepts in section B.

The above shows that there are two methods by
which one can perform group convolution or cross-
correlation on a quantum computer. The first is
to apply the matrices described in Lemma 2 as
a weighted sum of unitaries [13]. The second is
to apply Fourier transforms to inputs and perform
convolution in the Fourier regime as described in
Lemma 3. This method takes advantage of the fact
that many group Fourier transforms are efficiently
performable on a quantum computer [12, 14].

C. Block encodings

Throughout this study, we employ the block en-
coding framework to implement linear transforma-
tions on a quantum computer [20]. In this frame-
work, a desired linear but not necessarily unitary
transformation A ∈ C2w×2w bounded in the spectral
norm by ‖A‖ ≤ 1 is encoded in a unitary operator

U ∈ C2(w+a)×2(w+a)

with a ancilla qubits such that
the top left block of U is precisely A.

U =

(
A ·
· ·

)
, (〈0a| ⊗ Iw)U (|0a〉 ⊗ Iw) = A,

(15)
where Iw is the identity operation on the w qubits
encoding A. In other words, applying the unitary
U to a quantum state |0a〉 |ψ〉 and post-selecting on
the measurement outcome |0a〉 on the ancilla qubits
is equivalent to applying the operation A on |ψ〉.

U |0a〉 |ψ〉 = |0a〉A |ψ〉+ |garbage〉 , (16)

where |garbage〉 is a garbage state that is orthogonal
to the subspace |0a〉 (i.e., [〈0a| ⊗ Iw] |garbage〉 = 0).

The probability of successfully post-selecting |0〉a is
thus equal to ‖A |ψ〉 ‖22.

IV. QUANTUM IMPLEMENTATION AS
SUM OF UNITARIES

Previous quantum algorithms have proposed effi-
cient means to block encode and apply certain ma-
trices as a sum of unitary matrices, each of which
can be efficiently performed via quantum operations
[13, 41]. This framework can be applied to the form
of the operations shown in Lemma 2 where convolu-
tion and cross-correlation operations are a weighted
sum of the left or right regular (and unitary) repre-
sentations.

Let w = dlog2 |G|e indicate the number of qubits
needed to block encode a given group operation. In
the quantum case, we assume that we have access
to either of the below oracles, Am or Om, as well
as their inverses, which provide values of the convo-
lution filter as b-bit descriptions or amplitudes of a
quantum state:

Am : |0w〉 → 1√
‖~m‖1

∑
i∈G

√
|mi| |i〉 ,

Om : |i〉 |0b〉 → |i〉 |mi〉 .
(17)

If entries mi scale independently with the size of the
group, one can efficiently convert oracle Om to Am
(and vice-versa up to phase factors) via algorithms
for quantum digital-to-analog conversion [42], which
we detail in section A 3 of the appendix. The ora-
cle Om can be efficiently constructed if the entries
mi are efficiently computable with a classical cir-
cuit, e.g. when m is sparse or is the discretization
of a kernel function (e.g., see Appendix D). We note
that from the oracle Om, one can also extract the
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phase of mi, a fact which will become useful in block
encoding the operations properly.

From here, we apply quantum algorithms for lin-
ear combinations of unitary matrices to perform
group convolutions and cross-correlations.

Lemma 4 (Linear combination of unitaries, para-
phrased from Lemma 2.1 of [13]). Let V =

∑
i aiUi

be a linear combination of unitary matrices Ui with
ai > 0. Let A be a unitary matrix that maps
|0w〉 to 1√

a

∑
i

√
ai |i〉 where a :=

∑
i ai. Let U :=∑

i |i〉 〈i| ⊗ Ui, then W := A†UA satisfies for any
state |ψ〉

W |0w〉 |ψ〉 =
√
p |0w〉V |ψ〉+ |Ψ⊥〉 , (18)

where p = a−2 and the unnormalized state |Ψ⊥〉 (de-
pending on |ψ〉) satisfies (|0w〉 〈0w| ⊗ I) |Ψ⊥〉 = 0.

In other words, Lemma 4 shows that W is a block
encoding of the matrix V [21]. Performing group
convolution or cross-correlation is a direct applica-
tion of the above Lemma.

Lemma 5 (Block encoding of group convolution or
cross-correlation). Given oracle access to a filter ~m
where ~m is normalized such that ‖~m‖1 = 1, one can
block encode the matrix M =

∑
imiUi correspond-

ing to group convolution or cross-correlation (see
Lemma 2 for the proper choice of Ui). This requires
two calls to the oracle Am, one call to the oracle
Om, and efficient (classical) circuits for performing
permutations based on group operations (Ui).

Proof. Based on which operation we would like to
perform, we choose Ui to be either Li or Ri (or
their inverses) as given in Lemma 2. These permuta-
tion operations typically can be efficiently performed
classically. Furthermore, we make a call to Om and
apply a phase transformation to Ui proportional to
the phase of mi. Finally, we use Lemma 4, setting
A in Lemma 4 to Am and Ui to the chosen permu-
tation operation (including the possible phase), and
directly apply the results of Lemma 4.

Remark. The normalization ‖~m‖1 = 1 is set to
ensure that the largest singular value of the linear
operation is no greater than 1. This bound can be
easily obtained via the triangle inequality, e.g., for
convolution ‖M~‖ = ‖

∑
i∈GmiLi‖ ≤

∑
i∈G |mi| =

‖~m‖1. This is required for block encoding a matrix
within a larger unitary matrix.

The linear combination of unitaries approach can
provide an efficient means to apply group operations
to a quantum state as we describe below.

Proposition 6 (Applying group operations to an
input state). Given a quantum state |x〉 =

∑
i xi |i〉

containing the input state ~x normalized such that
‖~x‖2 = 1 and oracle access to the convolution fil-
ter ~m, one can construct a state |m ◦ x〉 which is
equal to the normalized output of ~m ◦ ~x where ◦ cor-
responds to one of the group operations delineated in
Lemma 2. This operation has a runtime that scales
as O(TB‖~m ◦ ~x‖−1

2 ) where TB is the runtime of the
block encoding of Lemma 4.

Proof. Let the matrix M correspond to the linear
operator where ~m ◦ ~x = M~x for a given group oper-
ation. Applying the block encoding of Lemma 4, we
obtain the state

|0w〉M |x〉+ |x⊥〉 , (19)

where |x⊥〉 is the “garbage” projected into the per-
pendicular subspace. The operation is successful af-
ter measuring the first register and obtaining the
outcome |0〉. The probability of success for this mea-
surement is equal to ‖~m ◦ ~x‖22. By using amplitude
amplification, this probability can be improved to
O(‖~m ◦ ~x‖2) [43, 44].

Remark. The runtime of the above operation is ef-
ficient when the term ‖~m ◦~x‖2, which be bounded by
the condition number of the matrix corresponding to
the group operation (see Proposition 11), is small.
These matrices are diagonalized (abelian groups) or
block diagonalized (non-abelian groups) by the group
Fourier transform as discussed in the next section.
This provides a convenient method to calculate the
condition number of any given linear operation.

Note, that if the group G is a cyclic group of
order n, then the cross-correlation operation over
the group produces a circulant matrix and we re-
cover results similar to prior quantum algorithms for
performing quantum matrix operations for circulant
matrices [23, 24].

V. QUANTUM IMPLEMENTATION VIA
CONVOLUTION THEOREMS

In this section, we consider quantum implementa-
tions of group operations when one is given oracle
access to the convolutional filter ~m in the Fourier
regime. Such settings are possible when for example
one has access to the generating function of a kernel
or can approximate the eigenvalues of the convolu-
tion matrix by analytically calculating a correspond-
ing integral (see example provided later) [23]. When
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performing group operations in the Fourier regime,
there is an important distinction between abelian
and non-abelian groups that arises from the prop-
erty of the irreducible representations of each class
of groups. Namely, abelian groups have the nice
property that all of their irreducible representations
are scalars. Furthermore, the Fourier transform for
an abelian group can be easily obtained given the
fact that any finite abelian group is a direct product
of cyclic groups.

Theorem 7 (Fundamental theorem of finite abelian
groups [45]). Every finite abelian group is a direct
product of cyclic groups whose orders are prime pow-
ers uniquely determined by the group.

Given this convenient theorem, the algorithm for
performing abelian group operations is rather sim-
ple and we consider that case first. Then, we will
generalize to the case of non-abelian groups which
requires more detail.

A. Block encoding for abelian groups

Based on the fundamental theorem of finite
abelian groups, one can form the Fourier transform
for a finite abelian group by taking tensor products
over the corresponding Fourier transform (DFT ma-
trix) for the groups in the direct product. For exam-
ple, if an abelian group G is isomorphic to k cyclic
groups of dimension di respectively, then

FG =

k⊗
i=1

Fdi (abelian groups), (20)

where Fd is the discrete Fourier transform matrix of
dimension d. This provides a direct means for di-
agonalizing convolutions and cross-correlations. For
example, for convolution over an abelian group, we
can form a matrix with the corresponding eigenval-
ues and eigenvectors.

FGM
~~x =

√
|G|(FG ~m)� (FG~x)

=
√
|G| diag(FG ~m)FG~x,

(21)

where the � is entry-wise multiplication. This im-
plies that

M~ = F †G diag(
√
|G|FGm)FG, (22)

where the eigenvalues of M~ are the entries of√
|G| FGm and the eigenvectors are the columns

of FG. Note, that in the above, we assume the FG
are normalized to be unitary and hence we have the
additional factor of

√
|G| not typically seen in the

convolution theorem. Since outputs are quantum
states, this additional factor will be removed due to
the normalization of the state.

Assume we are given access to an oracle OFm
which returns entries of m̂i = diag(

√
|G|FGm)ii in

a separate register:

OFm : |i〉 |0b〉 → |i〉 |m̂i〉 . (23)

This oracle can be efficiently constructed if the en-
tries mi are efficiently computable with a classi-
cal circuit, e.g. when m is sparse or when the
group Fourier transform can be analytically com-
puted (e.g., see Appendix D).

Any finite abelian group G of size n is isomorphic
to a direct product of c cyclic groups of dimension
n1, . . . , nc. Therefore, the Fourier transform for a
finite abelian group is simply FG = Fn1

⊗ · · · ⊗ Fnc
where Fm is the standard unitary discrete Fourier
transform matrix of dimension m. To apply a con-
volution matrix, we need to apply the Fourier trans-
form, a diagonal matrix, and an inverse Fourier
transform (see Equation 22). The applications of
the Fourier transform and inverse Fourier transform,
at least for the abelian case, are applications of the
corresponding quantum Fourier transform in the ap-
propriate dimensions of the cyclic group decomposi-
tion.

To perform the diagonal matrix operation
diag(

√
|G|FGm), we can use a block encoding as be-

low. Alternatively, we can directly apply theorems
from [26] which provide a method for performing the
inverse of a diagonal matrix.

Lemma 8 (Block encoding of diagonal matrix,
adapted from Lemma 48 of [21]). Let A ∈ C2w×2w

be a diagonal matrix and each entry of A has abso-
lute value of at most 1. Given access to the oracle
OA such that

OA : |i〉 |0b〉 → |i〉 |Aii〉 , (24)

where |Aii〉 is a b-bit binary description of diagonal
element i, then we can implement a unitary block
encoding U such that ‖A − (〈0w+3| ⊗ I)U(|0w+3〉 ⊗
I)‖ ≤ ε with O(polylog 1

ε +w) gates and two calls to
OA.

The block encoding for a given group operation is
a simple application of the proper Fourier transforms
and the lemma above.
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Lemma 9 (Fourier block encoding of abelian group
convolution or cross-correlation). For an abelian
group G, let w = dlog2(|G|)e. Assume we are given
oracle access OFm to the convolution filter m̂ in the
Fourier regime as described earlier. Furthermore,
assume the filter m̂ is normalized so that |m̂(ρ)| ≤ 1
for all entries. Then, one can obtain a unitary
operator U that is a block encoding of the group
operation, e.g., for convolution ‖M~ − (〈0w+3| ⊗
I)U(|0w+3〉 ⊗ I)‖ ≤ ε, with O(polylog 1

ε + w) ad-
ditional gates and application of the group Fourier
transform, the inverse group Fourier transform, and
two calls to the oracle OFm.

Proof. Let us consider the case of group convolu-
tion. Other group operations are equivalent up to
simple transformations in the elements of the diag-
onal transformation.

For group convolution, one must perform the three
operations given in Equation 22 copied below in un-
normalized form:

M~ = F †G diag(FG ~m)FG. (25)

The operation FG and F †G are implementations of
the proper quantum Fourier transform for the di-
mensions of the group. To perform diagonal ma-
trix multiplication of matrix A = diag(

√
|G|FG ~m),

we block encode A into U using oracle OFm and
Lemma 8. Thus, we apply the above operations in
the order described to obtain the given block encod-
ing.

B. Block encoding for non-abelian groups

For non-abelian groups, irreducible representa-
tions are matrices, and convolution applied in the
Fourier regime requires matrix multiplication over
the irreducible representation. In this setting, we
now assume access to an oracle OFm which provides
matrix entries of the Fourier transform of a convo-
lution filter in a given irreducible representation,

OFm : |ρ, a, b〉 |0〉 → |ρ, a, b〉 |m̂(ρ)ab〉 , (26)

where ρ ∈ Ĝ indexes the irreducible representations
and m̂(ρ)ab is the a, b-th entry of the matrix m̂(ρ).
Note, that this oracle can be simplified for abelian
groups by simply removing the a, b indexing since all
irreducible representations are scalars.

Quantum algorithms efficiently perform group
Fourier transforms over many non-abelian groups
(e.g., dihedral and symmetric groups) [12, 14]. The

quantum group Fourier transform for a group G re-
turns a state containing a weighted superposition
over irreducible representations [12]:

FG =
∑
x∈G
|x̂〉 〈x|

=
∑
x∈G

∑
ρ∈Ĝ

√
dρ
|G|

dρ∑
j,k=1

ρ(x)j,k |ρ, j, k〉 〈x| ,
(27)

where |x̂〉 is the group Fourier transform of a given

basis vector |x〉 and Ĝ is the set of irreducible repre-

sentations of G. The factor
√
dρ/|G| included above

enforces FG as unitary. FG also has the convenient
property that it block diagonalizes the left and right
regular representations into the irreducible represen-
tations [12], e.g., for the left regular representation,
we have that [12, Eq. 118].

L̂i =
∑
j∈G
|îj〉 〈ĵ| = FGLiF

†
G =

⊕
ρ∈Ĝ

ρ(i)⊗ Idρ . (28)

Since convolutions and cross-correlations over
non-abelian groups require matrix multiplication
over irreducible representations, we cannot simply
diagonalize the state written above as in the abelian
case. Here, to convolve ~m with ~x, we need to apply
a matrix of the form below.

~m~ ~x = F−1
G

⊕
ρ∈Ĝ

m̂(ρ)⊗ Idρ

FG~x, (29)

where m̂(ρ) is the Fourier transformed matrix for
irrep ρ with dimensionality dρ.

Lemma 10 (Fourier block encoding of general group
convolution or cross-correlation). For a group G
of dimension |G| which has irreducible representa-
tions of dimension no greater than dmax, let w =
dlog2(|G|)e. Assume we are given oracle access OFm
to the convolution filter m̂ in the Fourier regime as
described earlier. Furthermore, assume the filter m̂
is normalized so that |m̂(ρ)ab| ≤ 1 for all entries.
Then, one can obtain a unitary operator U that is a
block encoding of the group operation – e.g., for con-
volution ‖M~−dmax(〈0w+3|⊗ I)U(|0w+3〉⊗ I)‖ ≤ ε
– with one application of the group Fourier trans-
form and its inverse, two calls to the oracle OFm,
and O(polylog dmax

ε + w) additional gates.

Proof. Let us consider the case of group convolution.
Other group operations are equivalent up to simple
transformations in the elements of the block diagonal
transformation. For group convolution, one must
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perform the three operations given in Equation 29
copied below:

F †G

⊕
ρ∈Ĝ

m̂(ρ)⊗ Idρ

FG. (30)

The operations FG and F †G are implementations of
the group Fourier transform and its inverse [14]. Let
|G| ≤ 2w so we can encode the data in w qubits. To
form the block encoding we follow methods in [21].
For our block encoding, we construct a data register
of w qubits and ancillary registers of w + 3 qubits
where the |0〉 measurement in this register corre-
sponds to the location of the block encoding. We
first apply the group Fourier transform to the data

register. The middle operation
[⊕

ρ∈Ĝ m̂(ρ)⊗ Idρ
]

is a block diagonal matrix which we block encode
using Lemma 48 of [21]. Each row or column of the
matrix is at most dmax sparse. Note, this lemma
also requires oracles that provide the locations of
each sparse entry in a given row or column of the
matrix; in our case, since matrices are block diag-
onal, locating these entries is easy. Applying this
operation up to error ε in operator norm requires
two calls to the oracle OFm and O(poly log dmax

ε )
additional gates [21]. Finally, one applies an inverse

group Fourier transform F †G to the data register to
obtain the given encoding.

Remark. dmax corresponds to the maximum spar-
sity of any row or column of the block diagonal ma-
trix in our block encoding. The number of irreducible
representations of a group is equal to the number of
conjugacy classes of the group, so groups with many
conjugacy classes tend to have lower dimensional
irreducible representations. For all abelian groups,
dmax is trivially equal to 1. For many non-abelian
groups, dmax is also strictly bounded, e.g., dmax = 2
for dihedral groups D2n for all n [12].

C. Performing group operations on quantum
states

With the block encodings described above, we can
apply linear group operations to an input state |x〉
and leverage the runtime benefits of the quantum
group Fourier transform to efficiently perform lin-
ear group operations. Here, we consider the case of
group convolution, and note that other group oper-
ations can be performed by simple changes to the
steps below. First, we show how to perform group
convolution directly on an input state.

Proposition 11 (Applying group convolution to
|x〉). For a group G of dimension |G| which has irre-
ducible representations of dimension no greater than
dmax, assume we are given oracle access to the con-
volution filter m to form block encodings described in
Lemma 9 or Lemma 10. Furthermore, assume the
filter m̂ is normalized so that |m̂(ρ)ab| ≤ 1 for all en-
tries. Given a quantum state |x〉 =

∑
i xi |i〉 contain-

ing the input state ~x normalized such that ‖~x‖2 = 1,
one can construct a state |ỹ〉 which is ε-close to the
true normalized output ~m◦~x, i.e., ‖ |ỹ〉−|~m ◦ ~x〉 ‖ ≤
ε where ◦ corresponds to one of the group operations
delineated in Lemma 2. This operation has a run-
time that scales as O(TBκdmax/‖M‖) where TB is
the runtime of the block encoding (which includes the
dependence on ε) of Lemma 9 or Lemma 10, ‖M‖
is the operator norm of M , and κ is the condition
number of M .

Proof. One first applies the block encoding of
Lemma 9 or Lemma 10 to a state with the data en-
coded in the data register. After applying the block
encoding, we obtain success when ancillary registers
are measured in the |0〉 basis. The minimum singu-
lar value of the linear operation is ‖M‖/κ and the
block encoding is such that it has a normalization
factor of dmax. Therefore, this has a worst-case suc-
cess probability of (κdmax

‖M‖ )−2. By using amplitude

amplification, this probability can be improved to

O
(

(κdmax

‖M‖ )−1
)

[43, 44].

Remark. The condition number κ can be calculated
by analyzing the norms of the diagonal or block di-
agonal matrices in the block encoding. For example,
for abelian groups,

κ =
maxρ∈Ĝ |m̂(ρ)|
minρ∈Ĝ |m̂(ρ)|

. (31)

For non-abelian groups, we analyze the singular val-
ues of the Fourier transform over its irreducible rep-
resentations. Let smin(M) and smax(M) be the
smallest and largest singular values of a matrix M ,
then for non-abelian groups,

κ =
maxρ∈Ĝ smax(m̂(ρ))

minρ∈Ĝ smin(m̂(ρ))
. (32)

VI. INVERSE GROUP OPERATIONS OR
DECONVOLUTION

Given group operations as block encodings, we
can conveniently perform polynomial transforma-
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tions to the singular values of the block encoded ma-
trix [21]. This consequentially provides a straightfor-
ward means to apply inverse convolutions or cross-
correlations, also commonly termed deconvolution.
In this setting, one is provided with the output
~y = ~m◦~x as a quantum state |y〉 where ◦ corresponds
to convolution or cross-correlation. Given informa-
tion about the filter ~m, one hopes to reconstruct the
input to the group operation ~x as a quantum state
|x〉.

Here, we provide an algorithm to perform decon-
volution given the block encoding using oracle Om
described in Lemma 5. Similar steps can be followed
to apply deconvolution for other block encodings.

Proposition 12 (Applying inverse group convo-
lution or cross-correlation (deconvolution)). For a
group G of dimension |G|, assume we are given ora-
cle Om to access the convolution filter m as described
in Lemma 5. Given a quantum state |y〉 contain-
ing the output of ~y = ~m ◦ ~x normalized such that
‖~y‖2 = 1, one can construct a state |x̃〉 which is
ε-close to the true normalized input ~x, where ◦ cor-
responds to one of the group operations delineated in
Lemma 2. This operation has a runtime that scales

as O(TB
κ2

‖M‖ polylog κ
‖M‖ε ) where TB is the runtime

of the block encoding (which includes the dependence
on ε) of Lemma 5 and κ is the condition number of
the linear group operation M .

Proof. Follow the steps of Proposition 6, but instead
of directly applying the block encoding, apply a sin-
gular value transformation with polynomial approx-
imations of the inverse function instead. In this set-
ting, we start with a unitary U that block encodes
M as in Lemma 5. Let M = WDV † be the singu-
lar value decomposition of M where D is a diagonal
matrix and W and V are unitary matrices. Using
the quantum singular value transformation, with d
applications of the block encoding U and its inverse,
one can apply polynomial transformations P (·) of
up to degree d to the diagonal entries of D, i.e.,
p(D)ii = p(Dii) [21]. Therefore, one must simply
apply a polynomial approximating the inverse func-
tion as shown in Lemma 40 of [21] and described
below.

On the domain [−1, 1] \
(
−‖M‖κ−1, ‖M‖κ−1

)
,

there exists an O
(

κ
‖M‖ log( κ

‖M‖ε )
)

-degree polyno-

mial function that is ε-close to the inverse func-
tion 1/x [21]. Using this polynomial transforma-
tion of the singular values, one can obtain an ε-close
block encoding of the deconvolution operation us-

ing O
(

κ
‖M‖ log( κ

‖M‖ε )
)

applications of the unitary

U block encoding M and its inverse. See Lemma
40 and Theorem 41 of [21]. Upon application of
this singular value transformation, the probability of
successfully obtaining the state |x̃〉 is O(κ−2) since
the normalization factor of the inverse block encod-
ing in Theorem 41 of [21] is equal to the smallest
eigenvalue of M , which is ‖M‖κ−1, and the smallest
eigenvalue of the inverse operation (deconvolution)
M−1 is equal to ‖M‖−1. By using amplitude ampli-
fication, this probability can be improved to O(κ−1)
[43, 44].

Remark. Alternatively, when performing deconvo-
lution in the Fourier regime using the block encoding
in Lemma 10, the operation has a runtime that scales

as O( TB
dmax

κ2

‖M‖ polylog κ
‖M‖ε ), where TB is the run-

time of Lemma 10. We defer the proof and formal
statement to Appendix A 4.

VII. EXAMPLE APPLICATION FOR
INTEGRAL EQUATIONS

One particular application of the group convolu-
tion algorithms written above is in solving linear in-
tegral equations over domains that contain a certain
symmetry. The example we consider here is solving
a linear integral equation defined over the surface
of an n-dimensional Torus T d which is the d-fold
product of the circle S1.

Consider an integral equation defined as below:

g(~t) = f(~t) + λ

∫
T d

K(‖~t− ~t′‖)f(~t′)dt′, (33)

where ~t = [t1, t2, . . . , td] is an d-dimensional vector
indicating the location of a point on the surface of
the Torus, f(~t) is the unknown function (defined on

the Torus) we would like to solve for, ‖~t − ~t′‖ is a
norm which is cyclically invariant (see example in
section D), and λ is a scalar constant.

To solve the given integral equation numerically,
one approximates the integral above via a numeri-
cal approximation scheme. For example, using the
Nyström method [46], one can approximate the in-
tegral as a weighted sum over nd discretized points
with n points evenly spaced along each dimension
of ~t. In each dimension k, we identify these evenly
spaced points as tk,i where i ∈ [n] such that any

given discretized point ~ti1,...,id = [t1,i1 , . . . , td,id ].
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Here, our approximation would be∫
T d

K(‖~t− ~t′‖)f(~t′)dt′ ≈

1

nd

n∑
i1=1

· · ·
n∑

id=1

K(‖~t− ~t′i1,...,id‖)f(~t′i1,...,id).

(34)

Therefore, to solve the above integral equation, we
discretize our numerical solution and solve a linear
systems of equations. In our example, we have

g = (I + λK)f , (35)

where bold text indicates discretized values vector-
ized in lexicographic order and K is a nd×nd matrix.
The form of the matrix K corresponds to a group
cross-correlation over the direct product of the cyclic
groups (Z/nZ)(×d) where the filter ~m is equal to the
values of the first row of K. In other words, mov-
ing from one row of K to another is equivalent to
applying a permutation operation corresponding to
one of the group elements of (Z/nZ)(×d).

Solving Equation 35 requires inverting a dense
matrix, and most existing quantum algorithms [47–
49] for this task only run efficiently with sparse ma-
trices. This matrix, however, has added structure
as it is a group cross-correlation and thus can be
solved by inverting the cross-correlation operation
via algorithms outlined here (Proposition 12 or Ap-
pendix A 4). When g is provided as a quantum state,
such an operation can be performed efficiently. In
section D we provide a detailed example of treating
integrals over a Torus as group cross-correlation.

VIII. DISCUSSION

Group convolutions and cross-correlations cover a
wide class of equivariant functions commonly stud-
ied in machine learning and mathematics. We pro-
vide a framework and methodology for performing

these equivariant group operations on a quantum
computer. In well-conditioned cases, the runtimes
of these operations scale logarithmically with the di-
mension of the group. Outputs of our algorithms,
which are quantum states storing the vectorial out-
put of the operations, can be post-processed or an-
alyzed through various schemes, e.g., see [50–53] for
examples.

For applications in machine learning, it has been
shown that group-equivariant neural networks can
be decomposed into layers of group convolutions
[4] followed by nonlinear activation functions and
pooling operators. Our algorithms provide a path
towards quantizing the linear operations in group-
equivariant neural networks [3–6] and exploring po-
tential quantum speedups in these machine learn-
ing models. Furthermore, one can apply our frame-
work in a variational algorithm where a quantum
circuit is parameterized and optimized as a convolu-
tional filter [54]. More generally, our work provides a
means to speed up linear operations for kernel matri-
ces in the form of convolutions or cross-correlations
commonly found in algorithms for machine learning
and numerical methods [46, 55, 56]. This general-
izes results from previous quantum algorithms for
implementing circulant or Toeplitz matrices [23, 24]
and calculating Green’s functions via convolutional
formulations [26] using our algorithms for inverting
group convolutions.
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Appendix A: Deferred proofs

1. Linear algebraic formulation (Lemma 2)

We would like to prove the equivalences shown in Lemma 2 and repeated below.

(m~ x)(u) =
∑
v∈G

m(uv−1)x(v)
convolution⇐⇒ ~m~ ~x = M~~x, M~ =

∑
i∈G

miLi

(m~R x)(u) =
∑
v∈G

m(v−1u)x(v)
right convolution⇐⇒ ~m~R ~x = MR~~x, MR~ =

∑
i∈G

miRi

(m ? x)(u) =
∑
v∈G

m(vu−1)x(v)
cross-correlation⇐⇒ ~m ? ~x = M?~x, M? =

∑
i∈G

miL
−1
i

(m ?R x)(u) =
∑
v∈G

m(u−1v)x(v)
right cross-correlation⇐⇒ ~m ?R ~x = MR?~x, MR? =

∑
i∈G

miR
−1
i

(A1)

We provide a proof for convolution (m~ x)(u) noting that the others require similar steps.

(m~ x)(u) =
∑
v∈G

m(uv−1)x(v)

=
∑
v∈G

m(v−1)x(vu)

=
∑
v∈G

m(v)x(v−1u)

=
∑
v∈G

m(v) [Lv~x]u ,

(A2)

where the notation [·]i indicates the i-th component of the vector within the brackets. In the second and third
lines above, we re-order the sum over all group elements by transforming v → vu and v → v−1 respectively.
Converting the above into a vector form over the output, we have the final result:

~m~ ~x =
∑
i∈G

miLi~x. (A3)

2. Proofs of convolution theorems (Lemma 3)

We would like to prove the equivalences via the various convolution theorems shown in Lemma 3 and
repeated below.

(m~ x)(u) =
∑
v∈G

m(uv−1)x(v)
convolution⇐⇒ ̂(m~ x)(ρ) = m̂(ρ)x̂(ρ)

(m~R x)(u) =
∑
v∈G

m(v−1u)x(v)
right convolution⇐⇒ ̂(m~R x)(ρ) = x̂(ρ)m̂(ρ)

(m ? x)(u) =
∑
v∈G

m(vu−1)x(v)
cross−correlation⇐⇒ ̂(m ? x)(ρ) = m̂(ρ)†x̂(ρ)

(m ?R x)(u) =
∑
v∈G

m(u−1v)x(v)
right cross−correlation⇐⇒ ̂(m ?R x)(ρ) = x̂(ρ)m̂(ρ)†

(A4)
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For standard convolution, we have:

̂(m~ x)(ρ) =
∑
u∈G

ρ(u)
∑
v∈G

m(uv−1)x(v)

=
∑
u∈G

∑
v∈G

ρ(u)ρ(v−1)ρ(v)m(uv−1)x(v)

=
∑
v∈G

∑
u∈G

m(uv−1)ρ(uv−1)x(v)ρ(v)

=
∑
v∈G

[∑
u∈G

m(uv−1)ρ(uv−1)

]
x(v)ρ(v)

=
∑
v∈G

m̂(ρ)x(v)ρ(v)

= m̂(ρ)x̂(ρ).

(A5)

Since (m~Rx)(u) = (x~m)(u), then the above argument can be applied to also show that ̂(m~R x)(ρ) =
x̂(ρ)m̂(ρ).

For standard cross-correlation, we similarly can show that:

̂(m ? x)(ρ) =
∑
u∈G

ρ(u)
∑
v∈G

m(vu−1)x(v)

=
∑
u∈G

∑
v∈G

ρ(u)ρ(v−1)ρ(v)m(vu−1)x(v)

=
∑
v∈G

∑
u∈G

m(vu−1)ρ(uv−1)x(v)ρ(v)

=
∑
v∈G

[∑
u∈G

m(vu−1)ρ(vu−1)†

]
x(v)ρ(v)

=
∑
v∈G

m̂(ρ)†x(v)ρ(v)

= m̂(ρ)†x̂(ρ).

(A6)

For right cross-correlation, we have that:

̂(m ?R x)(ρ) =
∑
u∈G

ρ(u)
∑
v∈G

m(u−1v)x(v)

=
∑
u∈G

∑
v∈G

ρ(v)ρ(v−1)ρ(u)m(u−1v)x(v)

=
∑
v∈G

∑
u∈G

x(v)ρ(v)m(u−1v)ρ(v−1u)

=
∑
v∈G

x(v)ρ(v)

[∑
u∈G

m(u−1v)ρ(u−1v)†

]
=
∑
v∈G

x(v)ρ(v)m̂(ρ)†

= x̂(ρ)m̂(ρ)†.

(A7)
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3. Digital to analog oracle conversion

As a reminder, we have analog (Am) and digital oracles (Om) as shown below.

Am : |0w〉 → 1√
‖~m‖1

∑
i∈G

√
|mi| |i〉 ,

Om : |i〉 |0b〉 → |i〉 |mi〉 .
(A8)

Given oracle Om, our goal is to construct Am. Here, we assume that Om returns values normalized such
that the magnitude of the maximum value of mi is equal to 1. This is chosen to maximize the success
probability of oracle conversion which can be performed by following the steps below.

1. Beginning with the state |0w〉 |0b〉, obtain an equal superposition of states in the support of m.

|0w〉 |0b〉 → 1√
| supp(m)|

∑
i∈supp(m)

|i〉 |0b〉 , (A9)

where supp(m) returns the set of basis states in the support of m. If the filter m has full support, then
this is equivalent to applying Hadamard gates to each qubit.

2. Call oracle Om and perform (classical) transformations to obtain the magnitude of the filter resulting
in

1√
| supp(m)|

∑
i∈supp(m)

Om |i〉 |0b〉 →
1√

| supp(m)|

∑
i∈supp(m)

|i〉 ||mi|〉 . (A10)

3. Append a qubit and conditionally rotate the qubit by
√
|mi|.

1√
| supp(m)|

∑
i∈supp(m)

|i〉 |mi〉 |0〉 →
1√

| supp(m)|

∑
i∈supp(m)

|i〉 |mi〉
(√
|mi| |0〉+

√
1− |mi| |1〉

)
. (A11)

4. Measuring the last appended register, the oracle conversion is successful when the outcome of the
measurement is |0〉. We note, that this register need not be measured right away and can be included
in the block encoding to be measured later.

The runtime of this procedure depends on the probability of successfully measuring the |0〉 state in the
last step. This probability is | supp(m)|−1

∑
i∈supp(m) |mi| and is equal to the average value of |mi|. If values

of mi are Θ(1) and do not decay with the dimension of the group, then this success probability is also
Ω(1). Finally, additional gates are needed to obtain an equal superposition over states in the support of m
as in step 1. This, in most cases, requires a number of operations that scale poly-logarithmically with the
dimension of the state. For example, for filters with support over all states, this is equivalent to applying
Hadamard gates to each qubit.

4. Deconvolution in the Fourier regime (Proposition 12)

To perform deconvolution in the Fourier regime, we apply Theorem 41 of [21] to perform an inverse block
encoding.

Lemma 13 (Inverse block encoded matrix, adapted from Theorem 41 of [21]). Let A be an invertible
matrix and A = (〈0a| ⊗ I)U(|0a〉 ⊗ I). Let δ be the smallest singular value of A and 0 < ε ≤ δ ≤ 1

2 . For

m = O( 1
δ log 1

δε ), there is an efficient circuit to implement UΦ such that∣∣∣∣(〈+| ⊗ I)UΦ(|+〉 ⊗ I)− δ

2
A−1

∣∣∣∣ ≤ ε,
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where UΦ can be implemented using a single ancilla qubit and O(m) gates, which include m uses of U , U†,
C|0a〉〈0a|NOT and single-qubit gates.

From here, one can perform deconvolution in the Fourier regime via block encodings described in Lemma 9
and Lemma 10.

Proposition 14 (Applying deconvolution in the Fourier regime). For a group G, assume we are given oracle
access OFm to the Fourier transformed convolution filter m̂ as described in Lemma 10. Given a quantum
state |y〉 containing the output of ~y = ~m ◦ ~x normalized such that ‖~y‖2 = 1, one can construct a state |x̃〉
which is ε-close to the true normalized input ~x, where ◦ corresponds to one of the group operations delineated

in Lemma 2. This operation has a runtime that scales as O(TBdmax
κ2

‖M‖ polylog dmaxκ
‖M‖ε ) where TB is the

runtime of the block encoding (which includes the dependence on ε and dmax) of Lemma 10 and κ is the
condition number of the linear group operation M .

Proof. We take A = M/dmax = (〈0w+3| ⊗ I)U(|0w+3〉 ⊗ I) where U is the block encoding in Lemma 10.
The smallest eigenvalue of M/dmax is δ = ‖M‖κ−1d−1

max. Thus, one can obtain a block encoding of A−1

in O(TB
dmaxκ
‖M‖ log dmaxκ

‖M‖ε ) operations. Upon application of this block encoded inverse, the probability of

successfully obtaining the state |x̃〉 is O(κ2) since the normalization factor of the block encoding of the
inverse A−1 is δ/2 = O(‖M‖κ−1d−1

max) and the smallest singular value of A−1 is dmax‖M‖−1. By using
amplitude amplification [43, 44], this probability of success can be improved to O(κ).

Note, that the assumption ε ≤ δ, while being natural, can be removed by applying Corollary 69 of [21].
Furthermore, the assumption δ ≤ 1

2 can be fulfilled by rescaling entries of m̂ accordingly.

Note, that the runtime of the above algorithm has an additional factor of dmax compared to the runtime
shown in Proposition 12.

Appendix B: Representation theory of finite groups: example for the dihedral group

In this section we will provide a detailed example that highlights some important concepts of representation
theory [57] focusing on the dihedral groups Dn, and specifically on D3, which is the non-abelian group having
the smallest group order.

a. Representations A representation of a finite group G on a finite-dimensional complex vector space
V is a homomorphism ρ : G → GL(V ) -where GL(V ) is the group of invertable linear transformations of
the vector space V - of G to the group of automorphisms of V (invertible matrices).

b. Left and right regular representations If we associate each element u of a group G to a basis element
eu in a vector space V , then the left and right regular representations, denoted by Lu and Ru, respectively,
are matrices that permute the basis elements according to the left and right actions of the group:

Luev = euv Ruev = evu.

c. Subrepresentations A subrepresentation of a representation V is a vector space W of V which is
invariant under G. For compact groups, any representation ρ can be decomposed as a direct sum of subrep-
resentations which are irreducible,

ρ(g) = Q−1[ρ1(g)⊕ ρ2(g)⊕ · · · ⊕ ρk(g)]Q. (B1)

where Q is an invertible matrix and each ρi is irreducible.
d. Irreducible representations A representation is irreducible if there is no proper, nontrivial subspace

of V that is invariant under the action of G. It is called completely reducible if it decomposes as a direct
sum of irreducible subrepresentations. The number of irreducible representations for a finite group is equal
to the number of conjugacy classes [40]. A conjugacy class in G is a nonempty subset H of G that is closed
under the action of the group on itself by conjugation, i.e.

• Given any x, y ∈ H, there exists g ∈ G such that gxg−1 = y.
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• If x ∈ H and g ∈ G, then gxg−1 ∈ H.

Furthermore, the sum of the dimensions squared of all the irreducible representation of a group G equals
group size G.

∑
σ

|dσ|2 = |G| (B2)

1. Representations of Dn

a. Dihedral groups The dihedral group Dn is the group of symmetries of the regular n-gon in the plane.
The dihedral group Dn is of order 2n and is represented by Dn = Z/nZ o Z/2Z, with the group law

(x, a) · (y, b) = (x+ (−1)ay, a+ b),

for x, y ∈ Z/nZ and a, b ∈ Z/2Z.
The dihedral group Dn with 2n elements is isomorphic to a semidirect product of the cyclic groups Z/nZ

and Z/2Z. Let r be the generator of Z/nZ and s be the generator of Z/2Z, then the dihedral group Dn can
be written compactly as

〈r, s|s2 = e, rn = e, srs−1 = r−1〉. (B3)

b. Irreducible representations of Dn For n even, we have the following 1-dimensional irreducible repre-
sentations

σtt((x, a)) = 1

σts((x, a)) = (−1)a

σst((x, a)) = (−1)x

σss((x, a)) = (−1)x+a.

(B4)

For n odd, we have σtt and σts only. The 2-dimensional irreducible representations are of the form

σh((x, 0)) =

(
e2πihx/n 0

0 e−2πihx/n

)
σh((x, 1)) =

(
0 e2πihx/n

e−2πihx/n 0

)
, (B5)

for h ∈ {1, 2, . . . , dn2 e − 1}. The sum of the squared dimensions of the irreducible representations is equal to
2n, which is the size of the group: ∑

σ

|dσ|2 = 2n = |G|.

2. Representations of D3

The dihedral group D3 is obtained by composing the six symmetries of an equilateral triangle. The
dihedral group D3 and the cyclic group C6 are the only two groups that have order 6. Unlike C6 (which
is abelian), D3 is non-abelian. Products of group elements of D3 are shown in the Cayley table shown in
Table I.

Like all dihedral groups, group elements of D3 are generated by s and r, where s is a rotation by π radians
about an axis passing through the center and one of the vertices of a regular n-gon and r is a rotation by
2π/n about the center of the n-gon (see Figure 1).
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FIG. 1. The dihedral group D3 is the symmetry group of an equilateral triangle, that is, it is the set of all trans-
formations such as reflection, rotation, and combinations of these, that leave the shape and position of this triangle
fixed.

TABLE I. The Cayley table of D3.

1 r r2 s rs r2s
1 1 r r2 s rs r2s
r r r2 1 rs r2s s
r2 r2 1 r r2s s rs
s s r2s rs 1 r2 r
rs rs s r2s r 1 r2

r2s r2s rs s r2 r 1

a. Left and right regular representations of D3. The regular representations of D3 are obtained by
associating a basis vector to each element of the group {1, r, r2, s, rs, r2s}.

~e1 =


1
0
0
0
0
0

 ~er =


0
1
0
0
0
0

 ~er2 =


0
0
1
0
0
0

 ~es =


0
0
0
1
0
0

 ~ers =


0
0
0
0
1
0

 ~er2s =


0
0
0
0
0
1


For all u ∈ D3, the left regular representations Lu are:

L1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 Lr =


0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

 Lr2 =


0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0



Ls =


0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

 Lrs =


0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

 Lr2s =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 .
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TABLE II. Irreducible representations of D3

ρ1 ρ2 ρ3
σtt((x, a)) σts((x, a)) σ1((x, a))

(0,0) 1 1

(
1 0
0 1

)
(1,0) 1 1

(
ω1 0
0 ω−1

)
(2,0) 1 1

(
ω2 0
0 ω−2

)
(0,1) 1 -1

(
0 1
1 0

)
(1,1) 1 -1

(
0 ω1

ω−1 0

)
(2,1) 1 -1

(
0 ω2

ω−2 0

)

Similarly, right regular representations Ru of D3 are:

R1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 Rr =


0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

 Rr2 =


0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0



Rs =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 Rrs =


0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 Rr2s =


0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0


b. Irreducible representations of D3 As D3 is a non-abelian group, at least one of its irreducible repre-

sentations is a matrix. Table II shows the irreducible representations of D3, obtained from Equation B4 and
Equation B5, noting that h ∈ {1, 2, . . . , dn2 e − 1} = {1}.

3. The Group Fourier Transform and the Convolution Theorem over D3

The group Fourier transform table (i.e. FG) for D3 can be constructed by aligning the elements of the
2-dimensional representation ρ3 elementwise (ρ311 , ρ312 , ρ321 , ρ322), yielding a 6× 6 transformation matrix.

The normalized (unitary) Fourier transformation matrix FG is defined as [12]

FG =
∑
x∈G
|x̂〉 〈x| =

∑
x∈G

∑
ρ∈Ĝ

√
dρ
|G|

dρ∑
j,k=1

ρ(x)j,k |ρ, j, k〉 〈x|

where Ĝ is the set of irreducible representations and the
√

dρ
|G| factor enforces FG as unitary. For D3, we

have:
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FG =



1/
√

6 1/
√

6 1/
√

6 1/
√

6 1/
√

6 1/
√

6

1/
√

6 1/
√

6 1/
√

6 −1/
√

6 −1/
√

6 −1/
√

6

1/
√

3 ω1/
√

3 ω2/
√

3 0 0 0

0 0 0 1/
√

3 ω1/
√

3 ω2/
√

3

0 0 0 1/
√

3 ω−1/
√

3 ω−2/
√

3

1/
√

3 ω−1/
√

3 ω−2/
√

3 0 0 0

 . (B6)

Let m and f be functions that map group elements of G to complex numbers, if we associate each element
u ∈ G to a basis vector eu in some vector space V , we can represent m and f as vectors,

~m =
∑
u∈G

m(u)eu, ~f =
∑
u∈G

f(u)eu.

As an example, we take

~m = ~f =


1
ω1

ω2

0
0
0

 , (B7)

where we have chosen eu to be the standard basis of C|G|.
Calculating the Fourier transform through matrix multiplication on ~m and ~f we obtain

m̂ = f̂ = FG ~m = FG ~f =


0
0
0
0
0√
3


Note that 1 + ω1 + ω2 = 0 since the cube root of unity (i.e. ω3 = 1) can be factorized as

ω3 − 1 = (ω − 1)(ω2 + ω + 1) = 0.

In the following we compare the computation of the Fourier transform of ~m~ ~f by two different methods:
(1) through direct calculation of the convolution and applying the Fourier transform, and (2) by computing

the individual Fourier transforms of ~m and ~f via the convolution theorem.
First, we complete case (1). Recall the definition of a convolution over a group G

(m~ f)(u) =
∑
v∈G

m(uv−1)f(v)

Calculating the convolution expansion over the indexed elements of D3, where 1, 2, 3, 4, 5, 6 correspond to
(refer to Table I for group element multiplication uv−1)

(m~ f)(1) = m(1) · f(1) +m(3) · f(2) +m(2) · f(3) +m(4) · f(4) +m(5) · f(5) +m(6) · f(6)

(m~ f)(2) = m(2) · f(1) +m(1) · f(2) +m(3) · f(3) +m(5) · f(4) +m(6) · f(5) +m(4) · f(6)

(m~ f)(3) = m(3) · f(1) +m(2) · f(2) +m(1) · f(3) +m(6) · f(4) +m(4) · f(5) +m(5) · f(6)

(m~ f)(4) = m(4) · f(1) +m(5) · f(2) +m(6) · f(3) +m(1) · f(4) +m(3) · f(5) +m(2) · f(6)

(m~ f)(5) = m(5) · f(1) +m(6) · f(2) +m(4) · f(3) +m(2) · f(4) +m(1) · f(5) +m(3) · f(6)

(m~ f)(6) = m(6) · f(1) +m(4) · f(2) +m(5) · f(3) +m(3) · f(4) +m(2) · f(5) +m(1) · f(6).
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In particular, for m and f

(m~ f)(1) =1 · 1 + ω2 · ω1 + ω1 · ω2 + 0 · 0 + 0 · 0 + 0 · 0 = 3

(m~ f)(2) =ω1 · 1 + 1 · ω1 + ω2 · ω2 + 0 · 0 + 0 · 0 + 0 · 0 = 3ω1

(m~ f)(3) =ω2 · 1 + ω1 · ω1 + 1 · ω2 + 0 · 0 + 0 · 0 + 0 · 0 = 3ω2

(m~ f)(4) =(m~ f)(5) = (m~ f)(6) = 0.

Written in vector form,

~m~ ~f =


3

3ω1

3ω2

0
0
0

 ,

calculating the Fourier transform of ~m~ ~f through matrix multiplication with FG,

m̂~ f = FG(~m~ ~f) =


0
0
0
0
0

3
√

3

 .

Now, we overview case (2). Recall the convolution theorem (Equation 14)

(m̂~ f)(ρi) = m̂(ρi)f̂(ρi).

First we compute the group Fourier transform (Equation 7) of m and f over the irreducible representations,

m̂(ρ1) = f̂(ρ1) = 0 m̂(ρ2) = f̂(ρ2) = 0 m̂(ρ3) = f̂(ρ3) =

(
0 0
0 3

)
.

Applying the convolution theorem, we have

m̂~ f(ρ1) = m̂(ρ1)f̂(ρ1) = 0 m̂~ f(ρ2) = m̂(ρ2)f̂(ρ2) = 0 m̂~ f(ρ3) = m̂(ρ3)f̂(ρ3) =

(
0 0
0 9

)
Aligning the elements of m̂~ f(ρi) in order for all the irreps ρi on a 6-dim vector on the same standard

basis we obtain

m̂~ f =


0
0
0
0
0
9

 (B8)

Note that Equation B 3 and Equation B8 differ by a factor of normalization
√
dρ/|G| since in method (1)

FG is already forced to be unitary, while method (2) is based on purely classical calculations.
Alternatively, we can also perform the group Fourier transform in the block encoding form of Equation 29,

20



m̂~ f =
[⊕
v∈G

m̂(ρi)⊗ Idρ
]
f̂ =

([
0
]
⊕
[
0
]
⊕
[
0 0
0 3

]
⊗ I2

)


0
0
0
0
0√
3

 =


0
0
0
0
0

3
√

3

 (B9)

which already includes the normalization factor on FG.

Appendix C: Equivariance

Here, we show explicitly that convolution and cross-correlation are equivariant actions. Let G be a group
and X1,X2 be two sets with corresponding G-actions

Tg : X1 → X1 T ′g : X2 → X2.

Let V1 and V2 be vector spaces with basis elements labeled by elements of X1 and X2, respectively, and let
LV1

, (LV2
) be the set of functions mapping X1(X2) to V1(V2). First, we will look at the case of convolution.

1. Convolution

Let φm : LV1
→ LV2

be the map performing convolution with a fixed filter ~m on an input ~f ,

φm(~f) = ~m~ ~f.

Let Tg, T
′
g denote the right actions of the group,

Tg, T
′
g : u→ ug, (C1)

and let Tg and T′g be the induced actions of group elements onto V1 and V2 respectively. From definition
1.1, the map φm : LV1

→ LV2
is equivariant to the action of Tg since

φm(Tg ~f) = T′g(φm(~f)).

Proof. Recall the convolution definition from Equation 14[
φm(~f)

]
u

=
[
~m~ ~f

]
u

=
∑
v∈G

m(uv−1)f(v)

Let φm act on Tg ~f , [
φm(Tg ~f)

]
u

=
[
~m~ Tg ~f

]
u

=
∑
v∈G

m(uv−1)
[
Tg ~f

]
v

=
∑
v∈G

m(uv−1)f(vg)

Now redefine the sum above over v′ = vg, and now we have v−1 = g(v′)−1,∑
v∈G

m(uv−1)f(vg) =
∑
v′∈G

m(ugv′−1)f(v′)

=
[
~m~ ~f

]
ug

=
[
φm(~f)

]
ug

=
[
T′g(φm(~f))

]
u
∀ u ∈ G.

(C2)
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Concluding that φm(Tg ~f) = T′g(φm(~f)); hence convolution is equivariant to the right actions of the
group.

2. Cross-correlation

Let φm : LV1
→ LV2

be the map performing cross-correlation with a fixed filter ~m on an input ~f ,

φm(~f) = ~m ? ~f.

Let Tg and T ′g denote the right actions of the group,

Tg, T
′
g : u→ ug

Let Tg and T′g be the induced action of group elements onto V1 and V2. From definition 1.1, the map
φm : LV1

→ LV2
is equivariant to Tg since

φm(Tg ~f) = T′g(φm(~f)).

Proof. Recall the cross correlation definition from Equation 14[
φm(~f)

]
u

=
[
~m ? ~f

]
u

=
∑
v∈G

m(vu−1)f(v).

Let φm act on Tg ~f , [
φm(Tg ~f)

]
u

=
[
~m ? Tg ~f

]
u

=
∑
v∈G

m(uv)
[
Tg ~f

]
v

=
∑
v∈G

m(vu−1)f(vg)

Now redefine the sum above over v′ = vg, and now we have v = v′g−1,∑
v∈G

m(vu−1)f(vg) =
∑
v′∈G

m(v′g−1u−1)f(v′)

=
[
~m ? ~f

]
ug

=
[
T′g(φm(~f))

]
u
∀u ∈ G.

Concluding that φm(Tg ~f) = T′g(φm(~f)); hence cross-correlation is equivariant to the right actions of the
group.

Appendix D: Details of algorithm for solving integral equation

In this section we detail an application of our quantum group convolution algorithms for solving integral
equations where an unknown function appears under an integral sign. Integral equations often arise in
mathematical physics models which require summations (integrations) over space or time or can be formed by
appropriately transforming differential operators [58]. Integral equations have wide applications in scientific
and engineering problems including diffraction problems, scattering in quantum mechanics, and conformal
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mappings, among others. One common integral equation is a second kind Fredholm equation shown in
general form below:

g(~x) = y(~x)f(~x) + λ

∫ ~b

~a

K(~x, ~x′)f(~x′)d~x′, (D1)

where f(~x) is the unknown function and K(~x, ~x′) is the kernel of the integral equation. In physical settings,
kernels are often potential functions (e.g. gravitational, electric potentials) which depend only on the dif-
ference between their arguments: K(~x, ~x′)) = K(~x − ~x′)), commonly termed displacement kernels. Kernels
commonly used in machine learning such as the squared exponential or rational quadratic kernels also take
this form [55].

For most integral equations, closed form solutions do not exist. Thus, one must numerically solve integral
equations by converting them into a linear system of equations. One option for discretizing an integral equa-
tion is the Nyström method [46] which approximates the integral via a weighted summation over discretized
points (e.g., quadrature or Riemann sum) and solves for the values of the unknown function at discretized
points. If certain group symmetries are present in the problem setting, one can use the Nyström method to
convert the numerical integration into a finite group cross-correlation (recall definitions in Lemma 2) and
solve the integral equation using our quantum algorithms in time logarithmic in the number of discretized
points given inputs stored as quantum data.

We consider an integral equation defined over the boundary of a 2-dimensional periodic (wrap-around)
lattice:

g(t1, t2) = f(t1, t2) + λ

∫ 1

0

∫ 1

0

K(‖~t− ~t′‖)f(t′1, t
′
2)dt′1dt

′
2. (D2)

Here, we would like to solve for f(t1, t2). Due to the periodic property of the lattice, if we discretize
t1 and t2 evenly, the resultant discritized grid is invariant to certain two dimensional translations of the
grid (i.e., translations from the direct sum of two cyclic groups). In this setting, we will show that nu-

merical discretization of integral equations with a displacement kernel K(‖~t − ~t′‖) take the form of group
convolution/cross-correlation. Using the Nyström method, we approximate the integral as a weighted sum
over n2 discretized points evenly spaced on t1 and t2:∫ 1

0

∫ 1

0

K(‖~t− ~t′‖)f(~t′)d~t′ ≈ 1

n2

n∑
i1=1

n∑
i2=1

K(‖~t− ~t′i1,i2‖)f(~t′i1,i2). (D3)

Here we have utilized the trapezoidal rule, noting that the integrand evaluates to the same values at the
boundaries of the lattice. Equation D2 can then be written as a system of equations

g ≈ (I + λK)f = K̃f , (D4)

where bold text indicates discretized values of the functions vectorized in lexicographic order and K is an

n2×n2 matrix whose entries Kij = (1/n2)K(‖~ti− ~t′j‖) (note that i, j ∈ [n2] here index vectors ~t or ~t′ at grid

points). The form of the matrix K̃ (and K) corresponds to a group cross-correlation over the direct product
of the cyclic groups (Z/nZ)×(Z/nZ) where the filter m is equal to the values of the first row (or equivalently

the first column) of K̃. In other words, moving from one row of K̃ to another is equivalent to applying a
permutation operation corresponding to one of the group elements. In our case, these permutations are the
(left) regular representations of (Z/nZ)× (Z/nZ):

Li = Pi1 ⊗ Pi2 , for i ∈ [n2], (D5)

where i1 = bi/nc, i2 = i mod n, and Pi are the n × n cyclic permutation matrices corresponding to the
cyclic group Z/nZ: [Pi]jk = δj,k+i.

As stated above, we take the filter m to be the first column of K̃:

mi = δi0 + λKi0, for i ∈ [n2], (D6)
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and rewrite K̃ =
∑
i∈[n2]miL

−1
i (Lemma 2). Thus, Equation D4 is equivalent to a group cross-correlation

g ≈m ? f . (D7)

We now show that the above procedure is numerically robust by analyzing a numerical experiment where
we can conveniently calculate errors by comparing to a closed form solution (of course, the existence of a
closed form solution is not required for our algorithm). We emphasize here that we are directly inverting

the cross-correlation matrix K̃ in Equation D4 and not simulating the experiment as it would be performed
on a quantum computer. Later, we discuss runtimes and errors should on perform this task one a quantum
computer. We take the exponential kernel

K(‖~t− ~t′‖) = e−D(~t,~t′), (D8)

where D(~t, ~t′) =
∑d
i min{|ti − t′i|, Li − |ti − t′i|} is the Manhattan distance [59] defined over the periodic

lattice of size Li in each dimension (in our case d = 2 and Li = 1),

λ = 1, g(t1, t2) = (t1 − t31)(t2 − t32) + h(t1)h(t2), (D9)

where

h(u) =

{
−3e−u − 2u(5 + u2) + (1+2u)(21+4u(1+u))

4
√
e

if 0 ≤ u < 1/2

9e−1+u − 2u(5 + u2) + (−1+2u)(21+4u(−1+u))
4
√
e

if 1/2 ≤ u < 1
. (D10)

The solution takes the following simple form

f(t1, t2) = (t1 − t31)(t2 − t32). (D11)

Figure 2 displays the the underlying solution alongside the discretized solution f for various numbers of
discretized points n2, where n ∈ {4, 16, 64}. We observe that the numerical solution using inverse group
cross-correlation converges to the true solution. Furthermore, as numerically shown in Figure 3, the average
absolute error, defined as

‖f − f(t)‖1
n2

, (D12)

decreases at a rate of 1/n2 with the discretization resolution n. Here, we use the notation f(t) to represent
the vector of values of the underlying solution at the discretized points. This is consistent with errors in
integral approximations with the trapezoidal rule where n discretized points in each dimension produces an
error of O(1/n2) [46] (for functions with non-smooth derivatives at the boundary). In addition, the condition

number of K̃ is bounded by O(1 + 1/n2), as we will show later. Therefore, by the fundamental theorem of
numerical analysis [60], the error in convergence to the true solution decays at a rate of 1/n2. For details of
these error analysis techniques, we refer the reader to [46].

The cross correlation inversion step above can be implemented in quantum settings using our quantum
group convolution/cross-correlation algorithms as follows. One first computes the group Fourier transform
m̂ of the filter (Equation D6) and prepares a circuit that implements an oracle Om̂ which returns entries of
m̂ (Equation 23 repeated):

Om̂ : |j〉 |0〉 → |j〉 |m̂j〉 . (D13)

When n is sufficiently large, we have m̂j ≈
∫ 1

0

∫ 1

0
K(‖~t‖)χj(~t)d~t, where χj(~t) = e2πi(j1t1+j2t2)/n (with j1 =

bj/nc, j2 = j mod n) is a character of the group (Z/nZ)×2. The error of this approximation can be
similarly analyzed using standard error bounds from quadrature schemes; we refer the reader to [46]. This
integral can be done analytically with the exponential kernel K defined in Equation D8, hence there exists
an efficient circuit for Om̂. In addition, this oracle only depends on the kernel K, the constant λ, and
the number of discretized points n and thus can be reused for different functions f, g. Given the input
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FIG. 2. Numerical solution (yellow-red dots) of the integral equation defined in Equation D2 and Equation D10 using
our Nyström cross-correlation approach shown side-by-side with the underlying solution f(t1, t2) = (t1 − t31)(t2 − t32)
(blue surface) for increasing number of discretized points n along each dimensiona.

a See supplementary code at: https://github.com/nguyenquantum/group-convolution.
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FIG. 3. Log-log scale: average absolute error (Equation D12) of our Nyström cross-correlation approach for solving
the integral equation decreases at rate ∼ 1/n2 (dashed grey), where n is the number of discretized points along each
dimension.

function g stored as a quantum state |g〉, one can apply our algorithm for inverting group cross-correlation
(Proposition 12 or Proposition 14) to efficiently obtain the discretized solution f as a quantum state in

time O(TB
κ2

‖K̃‖
polylog κ

‖K̃‖ε
), where we have taken dmax = 1 as the group (Z/nZ)×2 is abelian. Here TB

is the runtime of the block encoding of forward group convolution/cross-correlation in Lemma 9, which is
composed of one group Fourier transform, one inverse group Fourier transform, two calls to the oracle Om̂

above, andO(polylog 1
ε+log n) additional gates. The group Fourier transform and its inverse can be efficiently

implemented by a circuit of size logarithmic in the size of the group [12] (here, |(Z/nZ)×2| = n2). Thus,
assuming the two oracle calls also take at worst polylogarithmic time, we have TB = O(polylog 1

ε , log n).

We now bound the condition number κ and the operator norm of the cross-correlation matrix K̃ in
Equation D4. First, the operator norm of K can be bounded as follows:

‖K‖ = ‖
∑
i∈[n2]

Ki0L
−1
i ‖ ≤

∑
i∈[n2]

Ki0

≤
∫∫

K(‖~t−~0‖)d~t+O(1/n2),

(D14)
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where we have used the triangle inequality, noting that the kernel is real non-negative, and the error estimate
of the trapezoidal quadrature scales as O(1/n2). For example, the integral of the Manhattan-distance-

exponential kernel in our example evaluates to
∫∫

e−(D(~t,0))d~t = 0.7869, which is independent of n. For the
(classical) numerical approximation to be stable, we require that 1− 0.7869|λ| = Ω(1) [61], which is indeed

the case in our example specified by Equation D9. The condition number of K̃ = I + λK can then be
bounded as

κ(K̃) ≤ 1 + |λ|‖K‖
1− |λ|‖K‖

≤ 1 + 0.7869|λ|+O(1/n2)

1− 0.7869|λ| −O(1/n2)
= O(1), (D15)

and the operator norm of K̃ can be lower bounded as

‖K̃‖ ≥ σmin(K̃) ≥ 1− |λ|‖K‖ = Ω(1). (D16)

Therefore, given g as quantum data, our quantum inverse cross-correlation algorithm solves the above
integral equation in time O(log n, polylog 1

ε ) up to normalization. In practice, kernels are often well condi-
tioned for the use of trapezoidal rule, thus the condition number κ can be bounded similarly as above. In
these well-conditioned settings, our algorithm is applicable to integral equations with any number of group
symmetries.
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