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Space–Evolving Instability

Time–Evolving to Space–Evolving Rayleigh–Bénard Instability

of a Horizontal Porous Medium Flow
A. Barletta

Department of Industrial Engineering, Alma Mater Studiorum Università di Bologna,

Viale Risorgimento 2, 40136 Bologna, Italya)

(Electronic mail: antonio.barletta@unibo.it)

(Dated: 27 November 2021)

The Rayleigh–Bénard instability of the stationary throughflow in a horizontal porous layer, also known as Prats’ prob-

lem, is here analysed in a fresh new perspective. In fact, the classical analysis of the linear instability, carried out

by employing time–evolving and space–periodic Fourier modes, is here reconsidered by focussing on the effects of

time–periodic and space–evolving modes. The basic stationary flow is assumed to be perturbed by a localised source

of perturbation which is steady–periodic in time. Then, the spatial development of such perturbations is monitored in

order to detect their possible amplification or decay in their direction of propagation. Accordingly, the spatial stabil-

ity/instability threshold is determined. The study is carried out by employing a Fourier transform formalism, where the

transformed variable is time.

I. INTRODUCTION

The linear stability analysis of shear flows can be carried

out either by employing space–periodic perturbation modes

with a real wavenumber and a complex angular frequency or

by utilising time–periodic modes with a complex wavenum-

ber and a real angular frequency1. The former approach, also

called temporal stability analysis, is the classical linear sta-

bility analysis aimed to determine the time–growth rate of

the perturbation modes, the neutral stability curve for the on-

set of convective instability and the critical parameters for

the existence of unstable modes. On the other hand, the

latter type of analysis leads to the evaluation of the spatial

stability/instability, namely the existence of spatially decay-

ing/growing modes in their direction of propagation.

There exists a wide literature about the spatial stability anal-

ysis of jets and mixing layers2–5. The importance of these

studies arises mainly from their applications in aerodynam-

ics and in the dynamics of oceanic streams. The development

of spatial modes of instability in internal flows with perme-

able boundaries is discussed by Casalis, Avalon, and Pineau 6 ,

and by Griffond, Casalis, and Pineau 7 . In these papers, the

analysis of spatial instability focusses on basic flow condi-

tions where a plane channel or circular duct features perme-

able boundaries with fluid injection. Gill 8 , as well as Garg

and Rouleau 9 , examines the spatial stability of the Hagen–

Poiseuille flow in a circular pipe. Garg and Rouleau 9 demon-

strate that this basic flow is spatially stable according to the

linear analysis to all Reynolds number (at least, up to 10000),

thus confirming the well–known result of the stability analysis

to real wavenumber and complex angular frequency modes.

Other closely related studies were published recently, where

the concept of spatially–developing time–periodic modes is

further investigated10–12.

As pointed out by Gill 8 , the importance of a type of lin-

ear analysis involving “a disturbance of a fixed frequency that

a)https://www.unibo.it/sitoweb/antonio.barletta/en

decays with downstream distance”, i.e. of the spatial stability

analysis, is justified as “in experiments in which disturbances

are introduced into the flow in a controlled manner, a con-

stant frequency–generating device is commonly used”. The

same concept is emphasised in chapter 7 of Schmid and Hen-

ningson 1 when the authors say that the “excitation of spa-

tially growing disturbances by a vibrating ribbon is a com-

mon experimental technique to investigate the response of a

shear layer to harmonic forcing”. The clue of the spatial ap-

proach to the linear stability analysis is that the flow instabil-

ity is not necessarily an application of Lyapunov’s definition,

where instability means that an arbitrarily small perturbation

of the initial state at time t = 0 yields a perturbation amplitude

growing in time. The spatial stability analysis interchanges

the roles of space and time, inasmuch as a perturbed initial

condition at t = 0 is replaced by a perturbed condition set at a

given spatial position, say x = 0. This given spatial position is

the place where the “constant frequency–generating device”

mentioned by Gill 8 , or the “vibrating ribbon” considered by

Schmid and Henningson 1 , is localised. Such a device is the

pointlike source of harmonic forcing and, as a consequence,

the cause of the perturbation.

Many authors have also highlighted the higher level of

mathematical complexity typical of the spatial stability anal-

ysis, with respect to the classical stability analysis of space–

periodic and time–growing modes. This reflection stems from

the intrinsic characteristics of flow systems where the govern-

ing equations are, usually, second–order in space and first–

order in time. There are obvious exceptions to this rule when

it comes, say, to viscoelastic flows or acoustic wave dynam-

ics. In fact, a higher differential order in a coordinate means

a higher degree of the wavenumber in the dispersion relation,

and likewise for the differential order in time and the degree

of the angular frequency. The temporal stability analysis aims

to provide an explicit determination of the (complex) angular

frequency, while the spatial stability analysis aims to obtain an

explicit evaluation of the (complex) wavenumber. The larger

is the degree of the variable to be solved for in the dispersion

relation, the larger is the number of solution branches to be

accounted for in the stability analysis. This extra mathemati-
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Space–Evolving Instability 2

cal difficulty in the spatial stability analysis is pointed out, for

instance, in Schmid and Henningson 1 where the authors say:

“the problem of determining the spatial stability is given by

an eigenvalue problem where the eigenvalue appears nonlin-

early”.

The spatial stability analysis of fluid flows in saturated

porous media is a relatively new area where only a few

explorations are available in the literature to date. The

most significant bulk of papers where a complex wavenum-

ber is employed in a stability analysis regards the absolute

instability13–20. However, the focus of the transition to ab-

solute instability is on the dynamics of wavepackets mathe-

matically modelled as Fourier integrals that linearly combine

time–growing modes18. In this framework, the use of a com-

plex wavenumber is only a mathematical tool requested by

the steepest–descent approximation of the Fourier integrals

at large times18. As such, the absolute instability analysis is

nothing but a step within the temporal stability analysis en-

tirely embodying Lyapunov’s concept. In other words, en-

visaging a complex wavenumber does not imply necessarily

carrying out a spatial stability analysis. Tyvand and Nøland 21

have recently studied the characteristics of spatial modes hav-

ing a complex wavenumber as a tool to lay out an asymp-

totic analysis of the spatial decay of perturbations in the do-

mains of lateral penetration within a horizontal porous layer.

In fact, these authors aim to study, for a porous layer, a model

marginal state of convection which is localised in space21.

The objective of the investigation presented in the forth-

coming sections is to provide a spatial analysis of the

Rayleigh–Bénard instability in a horizontal porous layer sub-

jected to a basic horizontal throughflow. Such an instability

is also known as Prats’ problem22, from the name of the au-

thor that developed the temporal stability analysis for this ba-

sic configuration. In recent years, many studies have been

published developing and extending the stability analysis of

Prats’ problem23–27. These studies are oriented to the investi-

gation of the role played by the boundary conditions, the effect

of viscous dissipation, the inclination of the basic tempera-

ture gradient, the heterogeneity of the porous medium and the

double diffusion of heat and mass in the porous layer. How-

ever, the analysis of the spatial stability of Prats’ problem is

not available in the literature even if a special case, i.e. that

where no throughflow is present in the basic state, is discussed

in a recent paper28. Since throughflow in Prats’ problem is

parametrised by the Péclet number, Pe, the special case ex-

amined by Barletta 28 corresponds to the limit Pe → 0. The

aim is to extend this investigation by allowing for a general

Pe 6= 0 and for a three-dimensional stability analysis, as that

carried out by Barletta 28 is two–dimensional. As shown in

Prats’ paper22, the temporal analysis of the convective insta-

bility for Prats’ problem discloses no really new features as

compared to the analysis of the Rayleigh–Bénard instability

in a horizontal porous medium. The reason is that the ba-

sic throughflow, being uniform, just affects the phase veloc-

ity of the perturbing modes, while the neutral stability con-

dition and the critical values of the Rayleigh number and

wavenumber at instability onset do not depend on the flow

rate. Things get different when it comes to the analysis of

absolute instability18. Just the same nontrivial role played by

the basic throughflow emerges also for the spatial instability,

as it will become clear in the forthcoming sections. Since the

method involving spatial modes could be unfamiliar for read-

ers interested in convection processes and buoyant flows in

porous media, the presentation of the study is carried out step–

by–step by briefly recalling the main features of the temporal

stability analysis and introducing the spatial stability analy-

sis of Prats’ problem. The motivation of this approach is also

the need of justifying, mathematically, why the dual methods

with either a real wavenumber and a complex frequency or

a complex wavenumber and a real frequency are both con-

ceivable. The mathematical tool leading to such schemes is

the Fourier transform involving either a coordinate or time

in the two approaches. Stressing this point possibly fills a

gap in some pedagogical treatments of this subject available

in the literature. The use of space–evolving modes leads to

the conclusion that such modes can yield a destabilisation of

the basic throughflow whatever small is the positive value of

the Rayleigh number, Ra, which parametrises the tempera-

ture difference between the boundaries and, thus, the heating–

from–below mechanism causing the Rayleigh–Bénard insta-

bility. As expected, for a negative Ra (heating from above)

spatial instability turns out to be impossible.

The motivation and the novelty of this analysis are in the

development of a linearised spatial stability analysis of the

Prats’ problem, whereas the literature focusses on the tempo-

ral stability analysis. The physical meaning of such a differ-

ent perspective relies on the thought experiments on which the

spatial stability and temporal stability concepts are grounded.

As already pointed out above and as it will become clearer

from the analysis developed in the forthcoming sections, the

temporal stability analysis is meant to test the reaction of the

system to a slightly altered initial condition relatively to that

yielding the basic flow. On the other hand, the spatial stability

analysis is aimed to exploit the system reaction to a slightly

altered space–localised and time–persistent alteration of the

basic flow caused, for example, by a harmonic source of per-

turbation placed at a given spatial position.

II. MATHEMATICAL MODEL

Let us consider a horizontal porous channel bounded by the

two planes y = 0 and y = H, where the y axis is oriented ver-

tically. The two boundary planes y = 0 and y = H are im-

permeable and isothermal with temperatures Th and Tc < Th,

respectively, with c and h standing for cold and hot. In the un-

perturbed state, the saturating fluid flows with a uniform and

constant velocity U0.

The Oberbeck–Boussinesq approximation is employed

within a model of seepage flow based on Darcy’s law. In par-

ticular, the local momentum balance equation obtained from

Darcy’s law by including the buoyancy force, as required by

the Oberbeck–Boussinesq approximation, can be written as29

ν

K
u =−∇P

ρ0
−β (T −T0)g, (1)
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Space–Evolving Instability 3

where ν is the kinematic viscosity, K is the permeability, u is

the velocity, P is the local difference between the pressure and

the hydrostatic pressure, ρ0 is the fluid density at the reference

temperature T0, β is the coefficient of fluid thermal expansion

and g is the gravitational acceleration. The reference temper-

ature T0 can be chosen as the mean value (Th +Tc)/2. A vor-

ticity formulation of the local momentum balance is obtained

by evaluating the curl of equation (1), namely

ν

K
∇×u =−β∇× (T g). (2)

Such a formulation is convenient if one aims to encompass the

dependence on the scalar field P.

Thus, the dimensionless governing equations are written as

∂u

∂x
+

∂v

∂y
+

∂w

∂ z
= 0, (3a)

∂w

∂y
− ∂v

∂ z
=−Ra

∂T

∂ z
, (3b)

∂u

∂ z
− ∂w

∂x
= 0, (3c)

∂v

∂x
− ∂u

∂y
= Ra

∂T

∂x
, (3d)

∂T

∂ t
+u

∂T

∂x
+ v

∂T

∂y
+w

∂T

∂ z
=

∂ 2T

∂x2
+

∂ 2T

∂y2
+

∂ 2T

∂ z2
. (3e)

Equations (3) express the local balances of mass, momentum

and energy, respectively. In particular, equations (3b)–(3d)

are the vorticity formulation of the momentum balance. The

velocity components in the (x,y,z) directions are (u,v,w), t

is the time, while T is the temperature. The porous medium

definition of Rayleigh number is given by

Ra =
gβ (Th −Tc)K H

ν α
, (4)

where g is the modulus of g and α is the average thermal dif-

fusivity of the saturated porous medium.

The dimensionless formulation expressed through equa-

tions (3) is obtained by scaling the dimensional quantities as

(x,y,z)

H
→ (x,y,z),

t

σH2/α
→ t,

(u,v,w)

α/H
→ (u,v,w),

T −Tc

Th −Tc

→ T. (5)

The dimensionless parameter σ is the ratio between the volu-

metric heat capacity of the saturated porous medium and the

volumetric heat capacity of the fluid. Hereafter, all fields, co-

ordinates and time will be intended as dimensionless through

such a scaling.

A. The boundary conditions and the basic flow

The boundaries y = 0 and y = 1 are subject to the same

thermal and dynamic conditions employed in the paper by

Prats 22 , namely

v = 0, T = 1 if y = 0,

v = 0, T = 0 if y = 1. (6)

A stationary flow solution of equations (3) and (6) is allowed

with the basic flow velocity lying on the horizontal xz plane

and inclined an angle φ to the x axis, namely

ub = Pecosφ , vb = 0, wb = Pesinφ , Tb = 1− y. (7)

The basic flow fields are identified with the subscript b and

depend on the Péclet number,

Pe =
U0 H

α
, (8)

as well as on the angle φ .

B. Dynamics of the small–amplitude perturbations

The basic flow (7) is assumed to be weakly perturbed as,

u = Pe cosφ + ε U, v = ε V

w = Pe sinφ + ε W, T = 1− y+ ε θ , (9)

where the perturbations (U,V,W,θ) are modulated by a small

parameter ε , such that the substitution of equation (9) in equa-

tions (3) and (6) yields the linearisation,

∂U

∂x
+

∂V

∂y
+

∂W

∂ z
= 0, (10a)

∂W

∂y
− ∂V

∂ z
=−Ra

∂θ

∂ z
, (10b)

∂U

∂ z
− ∂W

∂x
= 0, (10c)

∂V

∂x
− ∂U

∂y
= Ra

∂θ

∂x
, (10d)

∂θ

∂ t
+Pe cosφ

∂θ

∂x
+Pe sinφ

∂θ

∂ z
−V

=
∂ 2θ

∂x2
+

∂ 2θ

∂y2
+

∂ 2θ

∂ z2
, (10e)

V = 0, θ = 0 if y = 0,1. (10f)

In equations (10), terms of order ε2 were neglected, so that ε
could be simplified in all the governing equations.

The linear dynamics of the perturbations can be studied by

assuming their propagation in any horizontal direction. Such

an arbitrary horizontal direction can be chosen as the x axis

without any loss of generality, provided that the angle φ be-

tween the basic velocity and the x axis is considered arbitrary.

Then, equations (10) can be turned into a two–dimensional

formulation where the perturbations are assumed to be inde-

pendent of z, i.e. the axis perpendicular to the propagation

direction of the perturbations. As a consequence, the velocity
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Space–Evolving Instability 4

perturbations can be expressed in terms of a streamfunction,

Ψ, namely

U =
∂Ψ

∂y
, V =−∂Ψ

∂x
. (11)

Then, a reformulation of equations (10) is obtained

∂ 2Ψ

∂x2
+

∂ 2Ψ

∂y2
+Ra

∂θ

∂x
= 0, (12a)

∂ 2θ

∂x2
+

∂ 2θ

∂y2
− ∂θ

∂ t
−P

∂θ

∂x
− ∂Ψ

∂x
= 0, (12b)

Ψ = 0, θ = 0 if y = 0,1, (12c)

where P = Pe cosφ is a modified Péclet number which de-

pends on the basic flow rate and on its inclination to the x axis.

It is to be emphasised that having turned the governing

equations for the perturbing modes to a two–dimensional

form does not alter, from the physical viewpoint, the three–

dimensional nature of the stability analysis. In fact, by chang-

ing the angle φ , one tests the effect of a generic plane wave

propagating along any inclined direction relative to the ba-

sic flow direction. Furthermore, assuming a z independence

just characterises such perturbation modes as plane waves, but

does not constrain in any manner their propagation direction.

We now express Ψ and θ in terms of Fourier series as

Ψ(x,y, t) =
∞

∑
n=1

Ψn(x, t) sin(nπy),

θ(x,y, t) =
∞

∑
n=1

θn(x, t) sin(nπy), (13)

where Ψn and θn can be evaluated as

Ψn(x, t) = 2

∫ 1

0
Ψ(x,y, t) sin(nπy)dy,

θn(x, t) = 2

∫ 1

0
θ(x,y, t) sin(nπy)dy. (14)

Thus, equation (12c) is satisfied and we can reformulate equa-

tions (12) as

∂ 2Ψn

∂x2
− (nπ)2

Ψn +Ra
∂θn

∂x
= 0, (15a)

∂ 2θn

∂x2
− (nπ)2θn −

∂θn

∂ t
−P

∂θn

∂x
− ∂Ψn

∂x
= 0. (15b)

III. TIME–EVOLVING FOURIER MODES

A possible approach to the solution of equations (15) is

based on the Fourier transform, with the x coordinate being

the transformed variable. We define

Ψ̃n(k, t) =
1√
2π

∫ ∞

−∞
Ψn(x, t)e−ikx dx,

θ̃n(k, t) =
1√
2π

∫ ∞

−∞
θn(x, t)e−ikx dx, (16)

so that the inverse transform yields

Ψn(x, t) =
1√
2π

∫ ∞

−∞
Ψ̃n(k, t)eikx dk,

θn(x, t) =
1√
2π

∫ ∞

−∞
θ̃n(k, t)eikx dk. (17)

By utilising the properties of Fourier transforms, we can

rewrite equations (15) as

∂ θ̃n

∂ t
=−

[

k2 +(nπ)2 − k2 Ra

k2 +(nπ)2
+ ikP

]

θ̃n,

with Ψ̃n =
ik Ra

k2 +(nπ)2
θ̃n. (18)

The solution for θ̃n is a simple exponential in time,

θ̃n(k, t) = θ̃n(k,0)eλ (k)t ,

with λ (k) =−k2 − (nπ)2 +
k2 Ra

k2 +(nπ)2
− ikP. (19)

If we use equations (13), (14) and (16)–(19), we can evaluate

the time evolution of a perturbation assigned at time t = 0.

The steps are as follows:

1. Start from an initial perturbation θ(x,y,0);

2. Evaluate θn(x,0) by employing equation (14);

3. Evaluate θ̃n(k,0) by employing equation (16);

4. Evaluate θ̃n(k, t) by employing equation (19);

5. Evaluate Ψ̃n(k, t) by employing equation (18);

6. Evaluate Ψn(x, t) and θn(x, t) by employing equa-

tion (17);

7. Evaluate Ψ(x,y, t) and θ(x,y, t) by employing equa-

tion (13).

Such seven steps highlight that the initial perturbation, fixed

arbitrarily, is a temperature perturbation. One cannot fix in-

dependently also an initial perturbation for the streamfunc-

tion. The reason is that Ψ and θ are not independent inas-

much as they are governed by equation (12a). This seven–

steps method embodies Lyapunov’s concept of instability for

an equilibrium state. When it comes to fluid flow, an equilib-

rium state is a stationary solution of the governing equations.

A small amplitude perturbation at time t = 0 may either yield

an amplification in time or a damping in time or even be time–

independent. Lyapunov’s instability is the former case, while

stability is the second or third case. The concept is simple and

well–known: modify, but only slightly, the initial condition of

the flow system and see what happens. At this point, the way

one monitors the evolution in time of an initially prescribed

perturbation makes the difference between the convective in-

stability and what is called absolute instability.
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Space–Evolving Instability 5

A. Convective instability

Imagine an initial perturbation set at time t = 0 with the

shape of a monochromatic plane wave, i.e. a plane wave with

a given wavenumber. Strictly speaking this means a function

that is not absolutely–integrable over the real x axis. Thus,

its Fourier transform does not exist if not in terms of a gener-

alised function, or distribution. In fact, the Fourier transform

of a plane wave is a Dirac’s delta function, i.e. something

proportional to δ (k− kp), where kp is the wavenumber of the

plane wave. If one aims to monitor the time evolution of a

plane wave with a given wavenumber k, then one is seeking

the convective instability of the flow system. The ultimate

evolution of an initial condition θ(x,y,0) expressed through

a plane wave exp(ikx) is easily judged by employing equa-

tion (19), with Re(λ ) = γ and Im(λ ) =−ω . Then, one has

γ =−k2 − (nπ)2 +
k2 Ra

k2 +(nπ)2
and ω = kP. (20)

With a direct physical meaning for both γ and ω: the former is

the exponential growth rate, the latter is the angular frequency

of the time–evolving wave. Convective instability is when γ >
0 or, equivalently,

Ra >

[

k2 +(nπ)2
]2

k2
.

(21)

The lowest branch of instability described by equation (21) is

with n= 1. Thus, the onset of the convective instability occurs

by the modes n = 1, at the threshold

Ra =

(

k2 +π2
)2

k2
, (22)

also known as neutral stability condition. The least value

of Ra at neutral stability is the minimum, or critical, value

Rac = 4π2 occurring when k = kc = π . Such results are all

well–known starting from the paper by Prats 22 and are re-

ported in detail, say, in the books by Straughan 30 , by Nield

and Bejan 29 and by Barletta 18 . An evident feature of the con-

vective instability for Prats’ problem is that its onset is a con-

dition independent of the modified Péclet number, P , as it is

evident from equations (21) and (22). This is not true anymore

if we are to define the transition to absolute instability.

B. Absolute instability

If the initial condition is not a wavelike signal, θ(x,y,0),
but a function of x absolutely integrable over the real x axis,

then we are monitoring the time development of a localised

wavepacket. In this case, we do not need the theory of distri-

butions as the Fourier transform is defined in the usual sense,

viz. in terms of functions.

In fact, the absolute instability occurs when

lim
t→+∞

|Ψ(x,y, t)|= ∞ and lim
t→+∞

|θ(x,y, t)|= ∞. (23)

Thus, on account of equation (13), we are to establish the

large–t behaviour of the Fourier integrals on the right hand

side of equation (17) which, by employing equations (18) and

(19), can be rewritten as

Ψn(x, t) =
1√
2π

∫ ∞

−∞
Ψ̃n(k,0)eλ (k)t eikx dk,

θn(x, t) =
1√
2π

∫ ∞

−∞
θ̃n(k,0)eλ (k)t eikx dk. (24)

As widely discussed by several authors (see, for in-

stance, Barletta 18 , Lingwood 31 or Suslov 32 ), stationary

phase mathematical techniques such as the steepest–descent

approximation33 can be efficiently utilised in the evaluation of

the limiting behaviour for t →+∞ of the integrals employed in

equation (24). In this way, the condition of absolute instability

is identified when the real part of λ (k0) is positive. Here, k0 is

a saddle point of λ (k), that is a zero of its derivative18,31,32,

namely dλ (k)/dk. We do not go any further into the de-

tails of the absolute instability analysis for the Prats’ problem

and we refer the reader to the detailed studies available in the

literature13,18. We just say that the transition to an absolutely

unstable regime occurs when the Rayleigh number Ra exceeds

a threshold value, Raa, coincident with the critical value Rac

for P = 0. When P > 0, one has Raa > Rac with Raa mono-

tonically increasing with P .

IV. SPACE–EVOLVING FOURIER MODES

An alternative solution method for equations (15) is again

based on the Fourier transform, but with the time t as the trans-

formed variable. Thus, we write

Ψ̂n(x,ω) =
1√
2π

∫ ∞

−∞
Ψn(x, t)eiωt dt,

θ̂n(x,ω) =
1√
2π

∫ ∞

−∞
θn(x, t)eiωt dt, (25)

so that the inverse transform yields

Ψn(x, t) =
1√
2π

∫ ∞

−∞
Ψ̂n(x,ω)e−iωt dω,

θn(x, t) =
1√
2π

∫ ∞

−∞
θ̂n(x,ω)e−iωt dω. (26)

On account of the properties of Fourier transforms, we can

rewrite equations (15) as

∂ 2Ψ̂n

∂x2
− (nπ)2

Ψ̂n +Ra
∂ θ̂n

∂x
= 0, (27a)

∂ 2θ̂n

∂x2
− (nπ)2θ̂n + iω θ̂n −P

∂ θ̂n

∂x
− ∂ Ψ̂n

∂x
= 0. (27b)

The solution for Ψ̂n and θ̂n is given by exponentials in x,

Ψ̂n(x,ω) = Ψ̂n(0,ω)eη(ω)x,

θ̂n(x,ω) = θ̂n(0,ω)eη(ω)x, (28)
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Space–Evolving Instability 6

with

Ψ̂n =− η Ra

η2 − (nπ)2
θ̂n, (29)

provided that η(ω) satisfies the relation

η2 − (nπ)2 + iω +
η2 Ra

η2 − (nπ)2
−η P = 0. (30)

The first apparent feature of equation (30) is that it defines

function η(ω) only implicitly. Turning such an implicit def-

inition into an explicit expression would give rise to four so-

lution branches. The second feature regards the use of these

solutions.

By employing equations (13), (14), (25), (26) and (28)–

(30), one can evaluate the space development of a perturbation

which is assigned at the initial cross–section, x = 0. The steps

are as follows:

1. Start from an initial perturbation θ(0,y, t);

2. Evaluate θn(0, t) by employing equation (14);

3. Evaluate θ̂n(0,ω) by employing equation (25);

4. Evaluate θ̂n(x,ω) by employing equations (28) and

(30);

5. Evaluate Ψ̂n(x,ω) by employing equation (29);

6. Evaluate Ψn(x, t) and θn(x, t) by employing equa-

tion (26);

7. Evaluate Ψ(x,y, t) and θ(x,y, t) by employing equa-

tion (13).

The main difference with respect to Section III is that, here,

we are monitoring the space development of a perturbation

acting at x = 0. Then, we are setting up a concept sharply

different from the Lyapunov approach to instability. The latter

approach is based on the sensitivity to the initial condition at

t = 0, while we are now assessing the sensitivity to the initial

condition at x = 0.

Equation (25) makes it evident that time is now assumed to

range from −∞ to +∞. Such a scheme is typical of steady–

periodic phenomena where there is no starting time or initial

time, so that t = 0 has no special physical meaning. This

is obviously different from the type of analysis developed in

Section III where the system reaction to an initially imposed

perturbation, set at t = 0, is tested.

An important comment is relative to step 4 listed above. In

fact, θ̂n(x,ω) can be evaluated only if η(ω) were uniquely de-

fined by solving equation (30). However, this is not the case

since equation (30) admits four roots. The point is that the

initial condition given by the assignment of θ(0,y, t) is not

sufficient. Further initial conditions are needed, such as the

specifications of Ψ(0,y, t) and of the derivatives of θ and Ψ

with respect to x evaluated at x = 0. Anyway, the fourfold na-

ture of the initial condition to be prescribed at x = 0 does not

alter the core of the reasoning given above: with the Fourier

transform formulation defined by equations (25) and (26), we

are testing the sensitivity to the entrance condition for the per-

turbations set at x = 0. The initial condition at x = 0 induces

an evolution in space both in the negative x direction and in

the positive x direction. This is a marked difference between

time evolution, subject to the causality principle, and space

evolution where there is no preferred direction and the physi-

cal domain is −∞ < x <+∞.

Perturbations originated at x = 0 and propagating right-

ward (x > 0) or leftward (x < 0) can be wavepackets made

by many single–frequency modes, where the superposition is

mathematically given by the Fourier integrals in equation (26).

Alternatively, one can study the dynamics of each single–

frequency mode, labelled by the value of ω , evolving from

x = 0 either in the rightward x direction or in the leftward x

direction. The latter path will be that pursued in the forthcom-

ing study. It might be emphasised that the actual cause of the

single–frequency perturbations is a harmonic (time–periodic)

source placed at x = 0. The direction of propagation is deter-

mined by the phase velocity, ω/k. Thus, if a perturbation is

characterised by ω/k > 0 (wave propagating in the positive

x direction), its origin is in the source position x = 0 and its

domain of existence is the positive x axis. On the contrary, if

a perturbation is characterised by ω/k < 0 (wave propagating

in the negative x direction), its origin is again in the source

position x = 0 and its domain of existence is the negative x

axis. The toy model proposed in Appendix A can be helpful

for exemplifying this point.

A. Spatial instability

We have pointed out that the focus is on testing the sys-

tem reaction to a time–dependent perturbation acting at the

entrance cross–section x = 0. The absolute value of the per-

turbation has to be integrable over the real t axis, which means

a perturbation localised in time. However, this restrictive

characterisation can be relaxed should one extend the Fourier

transform to the domain of distributions. Then, a sinusoidal

signal is allowed. In this case, θ̂n(0,ω) is proportional to a

Dirac’s delta, δ (ω −ωp), where ωp is the angular frequency

of the wavelike perturbation, i.e. of the sinusoidal signal.

In analogy with the analysis performed in Section III A, the

growth in space of the periodic sinusoidal signal acting at

x = 0 and having an angular frequency ω develops with a

growing amplitude pattern for x > 0 when Re[η(ω)]> 0. On

the other hand, for x > 0, the perturbation is damped in space

if Re[η(ω)]< 0. However, there is an intrinsic difference be-

tween a change in space and a change in time: one can only

allow for an evolution in the positive t direction, while evolu-

tion both in the positive and in the negative x direction can be

allowed. As already pointed out in Section IV, this physical

difference between the variables t and x is due to the causal-

ity principle which holds in time, but not in space. Therefore,

the assessment of growth or damping along the x axis is not

important, but one must check if the signal amplitude either

grows or is damped along its direction of propagation. One

can set the angular frequency of the wave, ω , to be positive
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Space–Evolving Instability 7
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FIG. 1. Plots of s versus ω for P = 0 and different values of Ra. Dashed lines denote spatially stable branches (sk < 0), while solid lines

denote spatially unstable branches (sk > 0).

or zero, without any loss of generality. Thus, the direction

of propagation is established either by the sign of the phase

speed, ω/k, or by the sign of the wavenumber, k.

Let us write

η = s+ i k, (31)

where s = Re(η) is the spatial growth rate and k = Im(η) is

the wavenumber. We define spatial stability a condition where

sk < 0. (32)

On the other hand, spatial instability is defined by the condi-

tion

sk > 0. (33)

One may point out that, excluded from equations (32) and

(33), there may exist a special case where k = 0. Such a case

depicts a situation where there are no oscillations in space, but

we may have oscillations in time since the angular frequency

is assumed to be positive or zero. In this special case, s 6= 0 al-

ways entails spatial instability either in the positive x direction

(if s > 0) or in the negative x direction (if s < 0).

The marginal condition where s = 0 is also excluded from

equations (32) and (33). This case defines the intersection be-

tween the set of perturbation modes allowed by the definition

of Fourier transform implied by equations (16) and (17) and

the set of Fourier modes defined by equations (25) and (26). In

fact, the marginal condition given by s = 0 identifies Fourier

modes which may oscillate in space and in time, but whose

amplitude is constant both in space and in time. In the context

of Section III, such modes are those defining the neutral sta-

bility condition while, in the present context of time–periodic

modes, they definitely yield a condition of spatial stability,

albeit marginal, as there is no damping in space. If s = 0,

equation (30) yields

Ra =

[

k2 +(nπ)2
]2

k2
and ω = kP,

(34)
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Space–Evolving Instability 8
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FIG. 2. Plots of the isolines of sk in the (ω,Ra) plane for P = 0 and

conditions of spatial instability (sk > 0).

which means

Ra =

[

ω2 +(nπ)2
P2

]2

ω2 P2
.

(35)

Equations (34) and (35) convey an important result. The

marginal condition s = 0 is achieved at its lowest by setting

n = 1. Then, it has exactly the same form as the threshold

to convective instability within the analysis of time–evolving

modes presented in Section III. This is easily established on

comparing equation (34) with equations (20) and (22).

The implicit form of the dispersion relation (30) cannot be

encompassed in the case where s 6= 0. There are, in fact,

four branches η(ω) which can be exploited by solving equa-

tion (30), for given n and P .

An important feature of equation (30) is its dependence on

n. We can employ the scaling

η ′ =
η

n
, ω ′ =

ω

n2
, Ra′ =

Ra

n2
, P

′ =
P

n
. (36)

With such a scaling, equation (30) can be rewritten as

η ′ 2 −π2 + iω ′+
η ′ 2 Ra′

η ′ 2 −π2
−η ′

P
′ = 0, (37)

which formally coincides with equation (30) for the special

case n = 1. Thus, we can encompass the dependence on n by

employing the primed quantities. Hereafter, the primes will

be omitted, for the sake of simplicity in the notation, but we

will keep in mind that any special value of (η ,ω,Ra,P) must

be implicitly scaled proportionally to
(

n,n2,n2,n
)

.

B. Darcy–Bénard system (P = 0)

Equation (30) has four roots η = η j, with j = 1, . . . ,4. Al-

though, in general, the analytical expression of such roots is

quite complicated, they can be easily written in the case when

either the basic flow rate vanishes or the basic flow direction

is parallel to the x axis, i.e., when P = 0. In fact, one can

write

η1 =

√

1

2

[

2π2 −Ra− iω −
√

(Ra+ iω)2 −4π2Ra

]

,

η2 =−η1,

η3 =

√

1

2

[

2π2 −Ra− iω +

√

(Ra+ iω)2 −4π2Ra

]

,

η4 =−η3. (38)

Figure 1 illustrates the behaviour of the real part s of the four

roots η j given by equation (38) as ω increases, for prescribed

values of Ra. The symmetry with respect to the ω axis of the

plots reported in Fig. 1 is evident and it is a consequence of

equation (30) being dependent on η2 when P = 0.

Figure 1 illustrates the behaviour of the spatial growth rate s

for the subcritical case Ra= 10, for the critical case Ra= 4π2,

and for the two supercritical cases Ra = 50 and 100. Spatially

stable (sk < 0) branches are drawn as dashed lines, while spa-

tially unstable (sk > 0) branches are drawn as solid lines. The

unstable branches are those associated with the roots η3 and

η4 defined by equation (38). The remarkable fact about Fig. 1

is that, whatever is the positive value of Ra either subcriti-

cal, critical or supercritical, there are always spatially unsta-

ble modes. This means that the Darcy–Bénard system is al-

ways spatially unstable. Furthermore, the special condition

described by equation (35) and defining the locus s = 0 yields

an infinite Ra when P → 0 with ω 6= 0.

The whole parametric plane (ω,Ra) includes modes with

(sk > 0). This circumstance is illustrated in Fig. 2 where the

lines with sk = constant are drawn in the (ω,Ra) plane for

conditions of spatial instability. Such isolines can be easily

drawn as parametric plots by employing the expressions of

Ra and ω as functions of k which can be gathered from equa-

tion (30) with P = 0,

Ra =

[

k2 +(s−π)2
](

k2 − s2 +π2
)[

k2 +(s+π)2
]

k4 + k2 (2s2 +π2)+ s2(s2 −π2)
,

ω =−
2ks

[

(

k2 + s2
)2 −π4

]

k4 + k2 (2s2 +π2)+ s2(s2 −π2)
. (39)

A comprehensive discussion of the spatial instability in the

Darcy–Bénard system can be found in Barletta 28 .

C. Non–vanishing flow rate (P > 0)

The symmetry with respect to the ω axis discussed with

reference to Fig. 1 is lost when P > 0. This feature emerges

quite clearly in Figs. 3–5. In these figures, plots of s versus ω
are provided for different values of Ra and P = 10 or P =
50. Again, the dashed lines entail spatial stability conditions

(sk < 0), while solid lines connote spatial instability (sk > 0).
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FIG. 3. Plots of s versus ω for P = 10 and different values of Ra. Dashed lines denote spatial stability (sk < 0), while solid lines denote

spatial instability (sk > 0).
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FIG. 4. Plots of s versus ω for P = 10 and Ra = 57 and 58. Dashed lines denote spatial stability (sk < 0), while solid lines denote spatial

instability (sk > 0).

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
7
6
3
6
8



Space–Evolving Instability 10

0 100 200 300 400 500
−20

−10

0

10

20

30

40

50

60

Ra = 10

ω

s

0 100 200 300 400 500
−20

−10

0

10

20

30

40

50

60

Ra = 4π
2

ω

s

0 100 200 300 400 500
−20

−10

0

10

20

30

40

50

60

Ra = 50

ω

s

0 100 200 300 400 500
−20

−10

0

10

20

30

40

50

60

Ra = 100

ω

s

FIG. 5. Plots of s versus ω for P = 50 and different values of Ra. Dashed lines denote spatial stability (sk < 0), while solid lines denote

spatial instability (sk > 0).

For every given pair (P,Ra) one has both positive and neg-

ative branches of s which, in some cases. cross the ω axis and

change their sign. Figures 3 and 4 are relative to P = 10,

while Fig. 5 is for the case P = 50. Black dots are drawn

in these figures to identify the points where s = 0, namely the

intersections with the ω axis. Such points can be easily de-

tected by solving equation (35) with given Ra and P . It is

quite expected that the condition s = 0 emerges only when

Ra ≥ Rac = 4π2. In fact, the minimum Ra is attained, accord-

ing to equation (35), if ω = ωc = π P . Another interesting

feature displayed in Fig. 3 is that, for the supercritical val-

ues Ra = 50 and Ra = 100, the two central branches s(ω) in

the plot gradually approach and, eventually, they meet (frame

with Ra = 100). Figure 4 shrinks the interval of Ra where

the two central branches s(ω) approach and clap together. In

Fig. 4, it is evident that the central branches merge for a value

of Ra within 57 and 58 and for a value of ω within 30 and 40.

The exact values are, in fact,

Ra = 57.8036, ω = 36.2947, s = 1.89300. (40)

Interestingly enough, such values coincide with those charac-

terising the transition to absolute instability when P = 10,

as reported in Barletta 18 . This is not accidental given that

the branches merging is accompanied, as evidently shown in

the frame of Fig. 4 for Ra = 58, by a situation where the

derivative ds(ω)/dω becomes infinite, which is equivalent to

having dω/ds = 0. The latter condition is a restatement, for

time–periodic Fourier modes, of the definition of saddle point,

dλ/dk = 0, which entails the transition to absolute instabil-

ity as mentioned in Section III B and extensively discussed in

Barletta 18 .

Incidentally, we point out that the merging of the central

branches in the (ω,s) plane is present also for P = 0, as il-

lustrated in Fig. 1. In this case, the merging occurs at the

origin, ω = 0, when Ra = Rac = 4π2 and with s = 0. This

result is perfectly coherent with the transition to absolute in-

stability taking place, with P = 0, at the onset of convective

instability18. No merging between the central branches s(ω)
is displayed in Fig. 5. This is not surprising since, for P = 50,

the transition to absolute instability happens at Ra = 208.441,
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FIG. 6. Plots of the isolines of sk (dotted lines) with sk > 0 in the

(ω,Ra) plane for P = 10. The solid line denotes the neutral stability

curve (s = 0).
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FIG. 7. Plots of of sk versus Ra for P = 10 and either ω = 20 (black

lines) or ω = 50 (grey lines).

as reported by Barletta 18 , which is outside the range consid-

ered in Fig. 5.

From Figs. 3–5, it is clear that there are always positive and

negative values of the spatial growth rate s, exactly as for the

Darcy–Bénard problem examined in Section IV B. The phys-

ical rationale is exactly the same. There always exist spatially

developing modes which can destabilise the basic solution ei-

ther in the rightward x direction (x > 0) or in the leftward x

direction (x < 0). As we are envisaging cases with P ≥ 0,

we conventionally call upstream region the domain x > 0 and

upstream region the domain x < 0. What happens in the up-

stream region can be described by recognising that the most

unstable modes are those with the smallest negative s. The

amplification upstream is, again, always present although its

rate of exponential change in the negative x direction is, with a
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FIG. 8. Plots of the isolines of sk (dotted lines) with sk > 0 in the

(ω,Ra) plane for P = 50. The solid line denotes the neutral stability

curve (s = 0).
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FIG. 9. Plots of of sk versus Ra for P = 50 and either ω = 100

(black lines) or ω = 250 (grey lines).

few exceptions (see, for instance, Fig. 4 for the case Ra = 58),

smaller than that occurring downstream. A counterexample

for the case Ra = 58, illustrated in Fig. 4, is for ω = 36. With

this angular frequency, for the spatially unstable modes, the

maximum spatial growth rate downstream is s = 2.159, while

the maximum growth rate upstream is |s| = 2.234. This fea-

ture is yet another way to interpret the lack of symmetry with

respect to the ω axis in all the plots reported in Figs. 3–5. In

fact, the symmetry observed in Fig. 1 for P = 0 implies that

the amplification of the perturbation modes upstream (x < 0)
always coincide with that downstream (x > 0). With P 6= 0,

this symmetric behaviour disappears.

We have considered P ≥ 0 in all examples so far, but tak-

ing P ≤ 0 does not change the physical interpretation in any

substantial way. Indeed, we have just to consider the nega-
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tive x direction as downstream and the positive x direction as

upstream.

Figures 6 and 7 are relative to P = 10. They illustrate

how spatially unstable modes (sk > 0) occur for every Ra> 0,

while they do not emerge in the case of stable thermal stratifi-

cation, Ra< 0. The latter feature is quite important as it shows

that stable thermal stratification means both Lyapunov’s lin-

ear stability and spatial stability. Figure 6 depicts the (ω,Ra)
plane with the neutral stability curve given by equation (35)

(solid line). The dotted lines are the isolines of sk with pos-

itive values 0.5,1,2 and 3. Such spatially unstable isolines

are spread across the (ω,Ra) plane both above and below the

neutral stability curve. This, once again, means that spatial

instability arises both in subcritical and in supercritical con-

ditions. On the other hand, spatial instability is ruled out for

Ra < 0 as shown by Fig. 7. In fact, this figure shows the possi-

ble branches of sk versus Ra with either ω = 20 (black lines)

or ω = 50 (grey lines). In these cases, sk cannot be positive

with a negative Ra, which is a general result. This means that

spatial instability is out of the question when Ra < 0.

The data employed in Fig. 6 are evaluated by employing the

generalised version of equation (39), namely

Ra =

[

k2 +(s−π)2
][

k2 +(s+π)2
][

k2 + s(P − s)+π2
]

k4 + k2(2s2 +π2)+ s2(s2 −π2)
,

ω =
k
(

k2 + s2 +π2
)[(

k2 + s2
)

(P −2s)+2sπ2)
]

k4 + k2(2s2 +π2)+ s2(s2 −π2)
. (41)

In fact, we recall that equation (39) holds just for the case

P = 0, while equation (41) is valid for every P .

The test carried for P = 10 in Figs. 6 and 7 is repeated for

P = 50 in Figs. 8 and 9. The behaviour is just the same ob-

served for a smaller P: there is spatial instability both above

and below the neutral stability curve. Furthermore, by explor-

ing the cases ω = 100 and ω = 250 in Fig. 9, we do not detect

any spatial instability when Ra < 0. Indeed, there always ex-

ist spatial modes growing in either the downstream or the up-

stream direction, whatever is the value of ω and the (positive)

value of Ra. Roughly speaking, this is equivalent to saying

that the linear spatial instability of the basic flow (7) always

occurs, no matter how small is the Rayleigh number, provided

that Ra > 0.

V. CONCLUSIONS

The linear instability of the stationary throughflow in a

horizontal porous channel, known in the literature as Prats’

problem, has been analysed by employing time–periodic

modes whose amplitude may vary along a given horizontal

direction. This approach, called spatial stability analysis,

sheds a new light on the conditions leading to a linearly

unstable behaviour for Prats’ problem. In fact, the widely

accepted result is that a linearly unstable behaviour of the

horizontal throughflow arises when the Rayleigh number, Ra,

becomes larger than its critical value, 4π2. This result, which

holds for every value of the modified Péclet number, P , relies

on the classical stability analysis based on space–periodic

and time–evolving modes. The classical analysis of linear

stability is, in fact, an application of Lyapunov’s definition

of instability, where the time–evolution of the dynamical

system is tested versus small perturbations of its initial state.

On the other hand, the spatial stability approach monitors the

effects in the flow domain of a time–periodic source acting

at a given spatial position. The applied periodic forcing can

be either amplified or damped along a given spatial direc-

tion. The spatially unstable behaviour occurs when a given

Fourier mode of perturbation is amplified along its direc-

tion of propagation. In this paper, these concepts have been

introduced step–by–step, thus leading to the following results:

• For every given pair (P,Ra), there are four branches

of Fourier perturbation modes which are time–periodic,

with an angular frequency ω , and which are endowed

with a complex growth–rate, η . The real part of η ,

denoted with s, is the spatial growth rate along a

horizontal axis, x. The imaginary part of η , called k, is

the wavenumber of the mode.

• A regime of spatial instability is defined when the

product sk is positive.

• The basic throughflow along the porous channel is spa-

tially unstable for every positive value of the Rayleigh

number. A regime where Ra > 0 defines a condition of

heating from below.

• The spatial instability has been explicitly investigated

by considering the values P = 10 and P = 50. Sig-

nificant geometrical features of the spatial modes are

detected when the Rayleigh number equals its critical

value 4π2, as well as its threshold value for the transi-

tion to the absolute instability. In particular, the transi-

tion to absolute instability is accompanied by the merg-

ing of two spatial instability branches in the plane where

s is drawn versus ω . The merging of these branches

happens with an infinite derivative, ds/dω , which can

be identified with the saddle–point condition typical of

the absolute instability threshold.

The results obtained in this paper offer a new perspective for

the concept of unstable flow in a porous channel. There are

opportunities for an experimental validation, by testing the

streamwise spatial evolution, both upstream and downstream,

induced by a localised time–periodic source of perturbations.

There are also significant interesting developments that can

be obtained by devising different flow regimes and bound-

ary conditions for the porous channel. Future research can

also address the role played by the nonlinearity of convection

heat transfer. This task can be accomplished by investigating

the actual nonlinear, or weakly nonlinear, flow regions down-

stream and upstream of a localised harmonic source of tem-

perature/velocity perturbations. In fact, one reasonably ex-

pects that the exponential spatial growth predicted by the lin-

ear analysis is tamed by a nonlinear saturation effect, just as

it happens for the classical analysis of instability to temporal

modes.
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Appendix A: A toy model of spatial modes

Let us consider the one–dimensional heat conduction in a

semi–infinite solid medium occupying the region x > 0. The

heat diffusion process is described through Fourier’s equation,

∂T

∂ t
= α

∂ 2T

∂x2
, (A1)

where α is the thermal diffusivity of the solid. Let us assume

that a steady–periodic temperature signal is supplied at x = 0,

T (0, t) = A cos(ω t), (A2)

where A is a constant and ω is the angular frequency.

In the steady–periodic regime, there exist two possible so-

lutions for equations (A1) and (A2),

T1(x, t) = Aexp

(

−x

√

ω

2α

)

cos

(

ω t − x

√

ω

2α

)

, (A3a)

T2(x, t) = Aexp

(

x

√

ω

2α

)

cos

(

ω t + x

√

ω

2α

)

. (A3b)

This is what mathematics says about the temperature distri-

bution in the semi–infinite solid with harmonic temperature

forcing at x = 0.
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FIG. 10. Qualitative sketch of the solutions T1(x, t) and T2(x, t), at a

fixed time t, for a semi–infinite solid medium extending over x > 0

(a), and for its dual filling the region x < 0 (b).

FIG. 11. Qualitative sketch of the solutions T1(x, t) and T2(x, t), at a

fixed time t, for an infinite solid medium extending over −∞ < x <
+∞, with a localised harmonic source at x = 0.

The question is: which is the correct exploitation of the ac-

tual temperature response in the semi–infinite medium: equa-

tion (A3a) or equation (A3b)? It is worth being mentioned that

equations (A1) and (A2) represent an oversimplified model of

a real–world situation, namely the temperature change in time,

at a given depth, inside the soil. Here, x > 0 is precisely the

depth where the temperature is evaluated.

The harmonic forcing at the ground surface x = 0 could be

caused, for instance, by the seasonal change of the air tem-

perature. It is utterly evident that the correct physical solu-

tion is given by equation (A3a). Indeed, T1(x, t) represents a

wave propagating in the positive x direction and damped for

increasing values of x. On the other hand, T2(x, t) represents a

wave propagating in the negative x direction and amplified for

increasing values of x. If the solid medium occupies the semi–

infinite region x > 0, there is no chance to observe a temper-

ature signal amplification for increasing values of the depth x

such as that predicted by T2(x, t). Thus, one could question

on the reasons why mathematics leads to a ghost solution,

T2(x, t), for a physical problem. Indeed, the model defined

by equations (A1) and (A2) does not contain any information

about the domain where the solution is to be employed.

As illustrated in Fig. 10, equation (A3b) provides the so-

lution for the dual problem where the semi–infinite solid

medium extends over the region x < 0. In that case, the di-

rection of propagation of the temperature signal T2(x, t) is the

negative x direction, namely the direction of increasing depth

inside the region x < 0. In this direction, T2(x, t) is correctly

damped in amplitude, as expected.

Figure 11 shows that both the solutions T1(x, t) and T2(x, t)
are involved if we consider an infinite solid medium extend-

ing over −∞ < x < +∞, with a localised source of harmonic

temperature signals at x = 0. In this case, T1(x, t) describes

the signal propagation over the range x > 0, while T2(x, t) de-

scribes the signal propagation over x < 0. At every time t, the

temperature distribution is an even function of x defined in the

range −∞ < x <+∞.

It must be pointed out that, for T1(x, t), the exponential

growth rate, s, and the wavenumber k turn out to be given

by

s =−
√

ω

2α
, k =

√

ω

2α
. (A4)

On the other hand, for T2(x, t), the exponential growth rate and

the wavenumber are given by

s =

√

ω

2α
, k =−

√

ω

2α
. (A5)

Then, borrowing the definitions of spatial stability/instability

given by equations (32) and (33), we can say that both solu-

tions T1(x, t) and T2(x, t) are spatially stable (sk < 0).
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